Sample records for surface electromyography pattern

  1. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    PubMed

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  2. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Prosthesis Control with an Implantable Multichannel Wireless Electromyography System for High-Level Amputees: A Large-Animal Study.

    PubMed

    Bergmeister, Konstantin D; Hader, Marie; Lewis, Soeren; Russold, Michael-Friedrich; Schiestl, Martina; Manzano-Szalai, Krisztina; Roche, Aidan D; Salminger, Stefan; Dietl, Hans; Aszmann, Oskar C

    2016-01-01

    Myoelectric prostheses lack a strong human-machine interface, leading to high abandonment rates in upper limb amputees. Implantable wireless electromyography systems improve control by recording signals directly from muscle, compared with surface electromyography. These devices do not exist for high amputation levels. In this article, the authors present an implantable wireless electromyography system for these scenarios tested in Merino sheep for 4 months. In a pilot trial, the electrodes were implanted in the hind limbs of 24 Sprague-Dawley rats. After 8 or 12 weeks, impedance and histocompatibility were assessed. In the main trial, the system was tested in four Merino sheep for 4 months. Impedance of the electrodes was analyzed in two animals. Electromyographic data were analyzed in two freely moving animals repeatedly during forward and backward gait. Device implantation was successful in all 28 animals. Histologic evaluation showed a tight encapsulation after 8 weeks of 78.2 ± 26.5 µm subcutaneously and 92.9 ± 31.3 µm on the muscular side. Electromyographic recordings show a distinct activation pattern of the triceps, brachialis, and latissimus dorsi muscles, with a low signal-to-noise ratio, representing specific patterns of agonist and antagonist activation. Average electrode impedance decreased over the whole frequency range, indicating an improved electrode-tissue interface during the implantation. All measurements taken over the 4 months of observation used identical settings and showed similar recordings despite changing environmental factors. This study shows the implantation of this electromyography device as a promising alternative to surface electromyography, providing a potentially powerful wireless interface for high-level amputees.

  4. Evaluation of neuromuscular activity in patients with obstructive sleep apnea using chin surface electromyography of polysomnography.

    PubMed

    Yin, Guo-ping; Ye, Jing-ying; Han, De-min; Wang, Xiao-yi; Zhang, Yu-huan; Li, Yan-ru

    2013-01-01

    It is believed that defects in upper airway neuromuscular control play a role in sleep apnea pathogenesis. Currently, there is no simple and non-invasive method for evaluating neuromuscular activity for the purpose of screening in patients with obstructive sleep apnea. This study was designed to assess the validity of chin surface electromyography of routine polysomnography in evaluating the neuromuscular activity of obstructive sleep apnea subjects and probe the neuromuscular contribution in the pathogenesis of the condition. The chin surface electromyography of routine polysomnography during normal breathing and obstructive apnea were quantified in 36 male patients with obstructive sleep apnea. The change of chin surface electromyography from normal breathing to obstructive apnea was expressed as the percent compensated electromyography value, where the percent compensated electromyography value = (normal breath surface electromyography - apnea surface electromyography)/normal breath surface electromyography, and the percent compensated electromyography values among subjects were compared. The relationship between sleep apnea related parameters and the percent compensated electromyography value was examined. The percent compensated electromyography value of the subjects varied from 1% to 90% and had a significant positive correlation with apnea hypopnea index (R(2) = 0.382, P < 0.001). Recording and analyzing chin surface electromyography by routine polysomnography is a valid way of screening the neuromuscular activity in patients with obstructive sleep apnea. The neuromuscular contribution is different among subjects with obstructive sleep apnea.

  5. [Surface electromyography signal classification using gray system theory].

    PubMed

    Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai

    2004-12-01

    A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.

  6. Utility of multi-channel surface electromyography in assessment of focal hand dystonia.

    PubMed

    Sivadasan, Ajith; Sanjay, M; Alexander, Mathew; Devasahayam, Suresh R; Srinivasa, Babu K

    2013-09-01

    Surface electromyography (SEMG) allows objective assessment and guides selection of appropriate treatment in focal hand dystonia (FHD). Sixteen-channel SEMG obtained during different phases of a writing task was used to study timing, activation patterns, and spread of muscle contractions in FHD compared with normal controls. Customized software was developed to acquire and analyze EMG signals. SEMG of FHD subjects (20) showed "early onset" during motor imagery, rapid proximal muscle recruitment, agonist-antagonist co-contraction involving proximal muscle groups, "delayed offset" after stopping writing, higher rectified mean amplitudes, and mirror activity in contralateral limb compared with controls (16). Muscle activation latencies were heterogenous in FHD. Anticipation, delayed relaxation, and mirror EMG activation were noted in FHD. A clear pattern of muscle activation cannot be ascertained. Multi-channel SEMG can aid in objective assessment of temporal-spatial distribution of activity and can refine targeted therapies like chemodenervation and biofeedback. Copyright © 2013 Wiley Periodicals, Inc.

  7. Real-time controller for foot-drop correction by using surface electromyography sensor.

    PubMed

    Al Mashhadany, Yousif I; Abd Rahim, Nasrudin

    2013-04-01

    Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface electromyography electrodes are connected to the skin surface of the human muscle and work on the mechanics of human muscle contraction. The design uses real surface electromyography signals for estimation of the joint angles. Various-speed flexions and extensions of the leg were analyzed. The two phases of the design began with surface electromyography of real human leg electromyography signal, which was subsequently filtered, amplified, and normalized to the maximum amplitude. Parameters extracted from the surface electromyography signal were then used to train an artificial neural network for prediction of the joint angle. The artificial neural network design included various-speed identification of the electromyography signal and estimation of the angles of the knee and ankle joints by a recognition process that depended on the parameters of the real surface electromyography signal measured through real movements. The second phase used artificial neural network estimation of the control signal, for calculation of the electromyography signal to be stimulated for the leg muscle to move the ankle joint. Satisfactory simulation (MATLAB/Simulink version 2012a) and implementation results verified the design feasibility.

  8. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    PubMed

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  9. Use of surface electromyography in phonation studies: an integrative review

    PubMed Central

    Balata, Patricia Maria Mendes; Silva, Hilton Justino da; Moraes, Kyvia Juliana Rocha de; Pernambuco, Leandro de Araújo; Moraes, Sílvia Regina Arruda de

    2013-01-01

    Summary Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others). Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies. PMID:25992030

  10. Analysis of concentric and eccentric contractions in biceps brachii muscles using surface electromyography signals and multifractal analysis.

    PubMed

    Marri, Kiran; Swaminathan, Ramakrishnan

    2016-06-23

    Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median frequency. It appears that these multifractal features extracted from the concentric and eccentric contractions can be useful in the assessment of surface electromyography signals in sports medicine and training and also in rehabilitation programs. © IMechE 2016.

  11. Laryngeal electromyography as a diagnostic tool for Parkinson's disease.

    PubMed

    Zarzur, Ana P; Duprat, André de Campos; Cataldo, Berenice O; Ciampi, Daniel; Fonoff, Erich

    2014-03-01

    To study the laryngeal electromyography pattern in patients with Parkinson's disease (PD) and vocal complaints at different stages of the disease. Cross-sectional cohort study. Ninety-four adults with PD and vocal complaints at different stages of the disease (according to the Hoehn and Yahr scale) underwent laryngeal electromyography. Tremors were not detected on laryngeal electromyography of the cricothyroid and thyroarytenoid muscles even in patients with clinical tremor. Laryngeal electromyography hypercontractility during voice rest was the typical result observed in 91.5% of patients regardless of disease severity. Gender and age of subjects did not correlate with laryngeal electromyography results. Patients with PD presented spontaneous intrinsic laryngeal muscle activity during voice rest, regardless of disease severity. This study was significant because it reported on the use of laryngeal electromyography in a large number of patients with PD and vocal complaints grouped according to PD severity. The patterns observed suggest that laryngeal electromyography is a valuable diagnostic tool for PD even at early phases of the disease. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  12. [Study of ocular surface electromyography signal analysis].

    PubMed

    Zhu, Bei; Qi, Li-Ping

    2009-11-01

    Test ocular surface electromyography signal waves and characteristic parameters to provide effective data for the diagnosis and treatment of ocular myopathy. Surface electromyography signals tests were performed in 140 normal volunteers and 30 patients with ophthalmoplegia. Surface electrodes were attached to medial canthi, lateral canthi and the middle of frontal bone. Then some alternate flashing red lamps were installed on perimeter to reduce the movement of eyeball. The computer hardware, software, and A/D adapter (12 Bit) were used. Sampling frequency could be selected within 40 kHz, frequency of amplifier was 2 kHz, and input short circuit noise was less than 3 microV. For normal volunteers, the ocular surface electromyography signals were regular, and the electric waves were similar between different sex groups and age groups. While for patients with ophthalmoplegia, the wave amplitude of ocular surface electromyography signals were declined or disappeared in the dyskinesia direction. The wave amplitude was related with the degree of pathological process. The characteristic parameters of patients with ophthalmoplegia were higher than normal volunteers. The figures of ocular surface electromyogram obtained from normal volunteers were obviously different with that from patients with ophthalmoplegia. This test can provide reliable quantized data for the diagnosis and treatment of ocular myopathy.

  13. EMGAN: A computer program for time and frequency domain reduction of electromyographic data

    NASA Technical Reports Server (NTRS)

    Hursta, W. N.

    1975-01-01

    An experiment in electromyography utilizing surface electrode techniques was developed for the Apollo-Soyuz test project. This report describes the computer program, EMGAN, which was written to provide first order data reduction for the experiment. EMG signals are produced by the membrane depolarization of muscle fibers during a muscle contraction. Surface electrodes detect a spatially summated signal from a large number of muscle fibers commonly called an interference pattern. An interference pattern is usually so complex that analysis through signal morphology is extremely difficult if not impossible. It has become common to process EMG interference patterns in the frequency domain. Muscle fatigue and certain myopathic conditions are recognized through changes in muscle frequency spectra.

  14. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    PubMed

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control

    NASA Astrophysics Data System (ADS)

    Ison, Mark; Artemiadis, Panagiotis

    2014-10-01

    Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.

  16. Biomechanical Correlates of Surface Electromyography Signals Obtained during Swallowing by Healthy Adults

    ERIC Educational Resources Information Center

    Crary, Michael A.; Carnaby (Mann), Giselle D.; Groher, Michael E.

    2006-01-01

    Purpose: The purpose of this study was to describe biomechanical correlates of the surface electromyographic signal obtained during swallowing by healthy adult volunteers. Method: Seventeen healthy adults were evaluated with simultaneous videofluoroscopy and surface electromyography (sEMG) while swallowing 5 mL of liquid barium sulfate. Three…

  17. Electromyographic Analysis of the Lower Limb Muscles in Low- and High-Handicap Golfers

    ERIC Educational Resources Information Center

    Marta, Sérgio; Silva, Luís; Vaz, João R.; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    Purpose: The aim of this study was to compare the electromyographic patterns of the lower limb muscles during a golf swing performed by low- and high-handicap golfers. Method: Ten golfers (5 low- and 5 high-handicap) performed 8 swings using a 7-iron. Surface electromyography (EMG) was recorded for the following lower limb muscles on both sides:…

  18. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].

    PubMed

    Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu

    2016-12-01

    In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

  19. Surface electromyography in orthodontics – a literature review

    PubMed Central

    WoŸniak, Krzysztof; Piątkowska, Dagmara; Lipski, Mariusz; Mehr, Katarzyna

    2013-01-01

    Electromyography is the most objective and reliable technique for evaluating muscle function and efficiency by detecting their electrical potentials. It makes it possible to assess the extent and duration of muscle activity. The main aim of surface electromyography is to detect signals from many muscle fibers in the area of the detecting surface electrodes. These signals consist of a weighted summation of the spatial and temporal activity of many motor units. Hence, the analysis of the recordings is restricted to an assessment of general muscle activity, the cooperation of different muscles, and the variability of their activity over time. This study presents the main assumptions in the assessment of electrical muscle activity through the use of surface electromyography, along with its limitations and possibilities for further use in many areas of orthodontics. The main clinical uses of sEMG include the diagnostics and therapy of temporomandibular joint disorders, an assessment of the extent of stomatognathic system dysfunctions in subjects with malocclusion, and the monitoring of orthodontic therapies. PMID:23722255

  20. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    PubMed

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  1. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement

    PubMed Central

    2013-01-01

    Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005

  2. Surface Electromyography for Speech and Swallowing Systems: Measurement, Analysis, and Interpretation

    ERIC Educational Resources Information Center

    Stepp, Cara E.

    2012-01-01

    Purpose: Applying surface electromyography (sEMG) to the study of voice, speech, and swallowing is becoming increasingly popular. An improved understanding of sEMG and building a consensus as to appropriate methodology will improve future research and clinical applications. Method: An updated review of the theory behind recording sEMG for the…

  3. [Orofacial alterations and surface electromyography in neurodevelopmental disorders].

    PubMed

    Rosell-Clari, V

    2017-02-24

    Surface electromyography has become a widely used technique for measuring the activity of different muscle groups. Although the reliability and validity of the technique are discussed, there is an important body of scientific literature that defends the use of this technique. To present through a case study, the two basic uses of surface electromyography: the measurement of orofacial muscular activity and use it as biofeedback modulator of the muscular activity itself. A 10 years-old girl with a dolichocephalic and prognosis facial profile, anterior open bite and bilateral cross bite, bilateral Angle class II occlusion and atypical swallowing with lingual interposition. The MioTool Face by Miotec Suite 1.0, it could use until 8-channel bipolar surface electromyography. Surface electrodes were placed in the orofacial musculature and the results obtained were measured and visualized through the software Miograph and Biotrainer. The results confirm those obtained through the clinical exploration of the patient and support the use of these measurements for the estimation and validation of mechanical models of the masticatory and swallowing system. Electromyographic biofeedback is shown as an effective technique to self-control the force performed in key muscle groups by performing primary activities such as chewing and swallowing.

  4. Diagnostic and prognostic contribution of laryngeal electromyography in unilateral vocal-fold immobility in adults.

    PubMed

    Focquet, A; Péréon, Y; Ségura, S; Ferron, C; Malard, O; Espitalier, F

    2017-02-01

    To study the diagnostic and prognostic contribution of laryngeal electromyography in unilateral vocal-fold immobility in adults. A retrospective study included patients with unilateral vocal-fold immobility undergoing laryngeal electromyography between 2007 and 2015. Neurogenic, normal or myogenic findings were compared to the clinical aspect. Prognosis for recovery was assessed from motor unit potentials on laryngeal electromyography, and compared to subsequent progress on laryngoscopy. Sixty-three patients (mean age, 59 years) were initially included; 2 were subsequently excluded from analysis. Mean time from onset of immobility to laryngeal electromyography was 7 months. 85% of the 61 patients showed neurogenic findings, indicating neural lesion; 13% showed normal electromyography, indicating cricoarytenoid joint ankylosis; and 1 patient showed a myogenic pattern. Neurogenic cases were usually secondary to cervical surgery. Thirty-eight patients were followed up. In total, 75% of patients showing reinnervation potentials recovered. The positive predictive value of laryngeal electromyography was 69.2%. Laryngeal electromyography is effective in specifying the origin of unilateral vocal-fold immobility in adults. It also has a prognostic role, lack of reinnervation potentials being a possible indication for early medialization surgery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. The Relationship between Submental Surface Electromyography and Hyo-Laryngeal Kinematic Measures of Mendelsohn Maneuver Duration

    ERIC Educational Resources Information Center

    Azola, Alba M.; Greene, Lindsey R.; Taylor-Kamara, Isha; Macrae, Phoebe; Anderson, Cheryl; Humbert, Ianessa A.

    2015-01-01

    Purpose: The Mendelsohn Maneuver (MM) is a commonly prescribed technique that is taught to individuals with dysphagia to improve swallowing ability. Due to cost and safety concerns associated with videofluoroscopy (VFS) use, submental surface electromyography (ssEMG) is commonly used in place of VFS to train the MM in clinical and research…

  6. Detection of changes in SEMG signals with myofascial pain using the pattern-classifier

    NASA Astrophysics Data System (ADS)

    Jiang, Ching-Fen; Huang, Pao-Tieh

    2013-10-01

    Myofascial pain on the upper back (MFPUB) has been a common occupational hazard associated with consistent computer use. Investigations into any sort neuromuscular functional changes due to myofascial pain are rare. This study aims to differentiate the wavelet energy patterns of the surface electromyography signals measured from 30 normal and 26 patient subjects using the K-means clustering process. The results show that the wavelet energy pattern of patient subjects was different to that of normal subject and reveals a sensitivity of 57.69% at a specificity of 76.67% in the identification of myofascial pain. Therefore, this model could provide a reliable feature for clinical diagnosis of myofascial pain.

  7. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    PubMed

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be used for developing new neurorehabilitation techniques and detecting synkinesis after full-face transplantation.

  8. Influence of pressure changes on recruitment pattern and neck muscle activities during Cranio-Cervical Flexion Tests (CCFTs).

    PubMed

    Park, Junhyung; Hur, Jingang; Ko, Taesung

    2015-01-01

    The muscle activity of the deep cervical flexors is emphasized more than that of the superficial cervical flexors, and it has been reported that functional disorders of the longuscolli are found in patients who experience neck pain. The objective of this study was to analyze the recruitment patterns and muscle activities of the cervical flexors during Cranio-Cervical Flexion Tests (CCFTs) through real-time ultrasonography and surface electromyography with a view to presenting appropriate pressure levels for deep cervical flexor exercise protocols based on the results of the analysis. The twenty subjects without neck pain were trained until they became accustomed to CCFTs, and the pressure level was increased gradually from 20 mmHg to 40 mmHg by increasing the pressure level 5 mmHg at a time. Real-time ultrasonography images of the longuscolli and the sternocleidomastoid were taken to measure the amounts of changes in the thicknesses of these muscles, and surface electromyography was implemented to observe the muscle activity of the sternocleidomastoid. The measured value is RMS. According to the results of the ultrasonography, the muscle thicknesses of both the longuscolli and the sternocleidomastoid showed significant increases, as the pressure increased up to 40 mmHg (p< 0.05). The differences in the muscle thicknesses at all individual pressure levels showed significant increases (p< 0.05). According to the results of the electromyography, the muscle activity of the sternocleidomastoid gradually increased as the pressure increased up to 40 mmHg, the increases were significant between 20 mmHg and 25 mmHg, between 30 mmHg and 35 mmHg (p< 0.05). The pressure levels of exercise methods at which the muscle activity of the deep cervical flexors is maximally increased and the muscle activity of the superficial cervical flexors is minimally increased are 25 mmHg-30 mmHg.

  9. Is there correlation between electromyography and digital palpation as means of measuring pelvic floor muscle contractility in nulliparous, pregnant, and postpartum women?

    PubMed

    Botelho, Simone; Pereira, Larissa Carvalho; Marques, Joseane; Lanza, Ana Helena; Amorim, Cesar Ferreira; Palma, Paulo; Riccetto, Cassio

    2013-06-01

    The continence mechanisms depend on the integrity of the pelvic floor muscles. It is therefore important to find simple, reliable, and safe methods to assess its contractility in a clinical setting. This study aims to investigate if digital palpation of the pelvic floor muscles presents correlation with its electromyographic activity. The sample consisted of 307 women with mean age of 23.93 years, including 39 nulliparous, 117 primigravid pregnant, 64 primiparous, in post-vaginal delivery, and 87 primiparous women, in post-cesarean section delivery. The assessment consisted of both digital palpation and surface electromyography. One, and the same, highly skilled and experienced physiotherapist, who was able to classify the different grades of contractility accurately, performed digital palpation using the Modified Oxford Grading Scale. Surface electromyography was performed using an intravaginal probe. For electromyography evaluation, three contractions of 5 sec each were recorded, and an average of three Root Mean squares was considered for analysis. Spearman's Coefficient, Jonckheere-Terpstra Test, Kruskal-Wallis as well as Dunn Test were used for statistical analysis. The strong correlation found between the two methods (P < 0.001) indicates that both digital palpation and electromyography can be used in everyday practice, both for clinical use and scientific research, although both have their specific limitations and requirements to avoid the risk of biases. There was a correlation between pelvic floor muscle contractility measured by surface electromyography and by digital palpation. Both methods can be used to validate data in research and clinical setting. Copyright © 2012 Wiley Periodicals, Inc.

  10. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.

    PubMed

    Siu, Ho Chit; Shah, Julie A; Stirling, Leia A

    2016-10-25

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces.

  11. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    PubMed Central

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  12. Impact of Workstation Accommodation on Fatigue and Performance

    DTIC Science & Technology

    2006-12-01

    Surface electromyography was collected on the left and right trapezius and deltoid muscles. Cerebral oxygenation levels were monitored via non... trapezius muscles using a static contraction testing device that consisted of a load cell to which the subject’s right arm was tethered and an output...experimental conditions. Surface electromyography (EMG) signals of the deltoid and trapezius were recorded during the contractions. In addition to

  13. A novel fuzzy approach for automatic Brunnstrom stage classification using surface electromyography.

    PubMed

    Liparulo, Luca; Zhang, Zhe; Panella, Massimo; Gu, Xudong; Fang, Qiang

    2017-08-01

    Clinical assessment plays a major role in post-stroke rehabilitation programs for evaluating impairment level and tracking recovery progress. Conventionally, this process is manually performed by clinicians using chart-based ordinal scales which can be both subjective and inefficient. In this paper, a novel approach based on fuzzy logic is proposed which automatically evaluates stroke patients' impairment level using single-channel surface electromyography (sEMG) signals and generates objective classification results based on the widely used Brunnstrom stages of recovery. The correlation between stroke-induced motor impairment and sEMG features on both time and frequency domain is investigated, and a specifically designed fuzzy kernel classifier based on geometrically unconstrained membership function is introduced in the study to tackle the challenges in discriminating data classes with complex separating surfaces. Experiments using sEMG data collected from stroke patients have been carried out to examine the validity and feasibility of the proposed method. In order to ensure the generalization capability of the classifier, a cross-validation test has been performed. The results, verified using the evaluation decisions provided by an expert panel, have reached a rate of success of the 92.47%. The proposed fuzzy classifier is also compared with other pattern recognition techniques to demonstrate its superior performance in this application.

  14. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.

  15. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  16. Combined cystometrography and electromyography of the external urethral sphincter following complete primary repair of bladder exstrophy.

    PubMed

    Borer, Joseph G; Strakosha, Ruth; Bauer, Stuart B; Diamond, David A; Pennison, Melanie; Rosoklija, Ilina; Khoshbin, Shahram

    2014-05-01

    Concern in patients with bladder exstrophy after reconstruction regarding potential injury to pelvic neurourological anatomy and a resultant functional deficit prompted combined (simultaneous) cystometrography and electromyography after complete primary repair of bladder exstrophy. We determined whether complete primary repair of bladder exstrophy would adversely affect the innervation controlling bladder and external urethral sphincter function. Complete primary repair of bladder exstrophy was performed via a modified Mitchell technique in newborns without osteotomy. Postoperative evaluation included combined cystometrography and needle electrode electromyography via the perineum, approximating the external urethral sphincter muscle complex. Electromyography was done to evaluate the external urethral sphincter response to sacral reflex stimulation and during voiding. Nine boys and 4 girls underwent combined cystometrography/electromyography after complete primary repair of bladder exstrophy. Age at study and time after complete primary repair of bladder exstrophy was 3 months to 10 years (median 11.5 months). Cystometrography revealed absent detrusor overactivity and the presence of a sustained detrusor voiding contraction in all cases. Electromyography showed universally normal individual motor unit action potentials of biphasic pattern, amplitude and duration. The external urethral sphincter sacral reflex response was intact with a normal caliber with respect to Valsalva, Credé, bulbocavernosus and anocutaneous (bilateral) stimulation. Synergy was documented by abrupt silencing of external urethral sphincter electromyography activity during voiding. After complete primary repair of bladder exstrophy combined cystometrography/electromyography in patients with bladder exstrophy showed normal neurourological findings, including sacral reflex responses, sustained detrusor voiding contraction and synergic voiding, in all patients postoperatively. These findings confirm the safety of complete primary repair of bladder exstrophy. Based on our results we have discontinued routine electromyography in these patients. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Undifferentiated Facial Electromyography Responses to Dynamic, Audio-Visual Emotion Displays in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Rozga, Agata; King, Tricia Z.; Vuduc, Richard W.; Robins, Diana L.

    2013-01-01

    We examined facial electromyography (fEMG) activity to dynamic, audio-visual emotional displays in individuals with autism spectrum disorders (ASD) and typically developing (TD) individuals. Participants viewed clips of happy, angry, and fearful displays that contained both facial expression and affective prosody while surface electrodes measured…

  18. The immediate effects of therapeutic keyboard music playing for finger training in adults undergoing hand rehabilitation.

    PubMed

    Zhang, Xiaoying; Liu, Songhuai; Yang, Degang; Du, Liangjie; Wang, Ziyuan

    2016-08-01

    [Purpose] The purpose of this study was to examine the immediate effects of therapeutic keyboard music playing on the finger function of subjects' hands through measurements of the joint position error test, surface electromyography, probe reaction time, and writing time. [Subjects and Methods] Ten subjects were divided randomly into experimental and control groups. The experimental group used therapeutic keyboard music playing and the control group used grip training. All subjects were assessed and evaluated by the joint position error test, surface electromyography, probe reaction time, and writing time. [Results] After accomplishing therapeutic keyboard music playing and grip training, surface electromyography of the two groups showed no significant change, but joint position error test, probe reaction time, and writing time obviously improved. [Conclusion] These results suggest that therapeutic keyboard music playing is an effective and novel treatment for improving joint position error test scores, probe reaction time, and writing time, and it should be promoted widely in clinics.

  19. [Modelling metallic bars in an orthopaedic laboratory: postural and biomechanical analysis].

    PubMed

    Draicchio, F; Miccio, A; Mari, S; Silvetti, A; Forzano, F; Ranavolo, A

    2012-01-01

    Aim of this work is to assess, with an objective technique (i.e. surface electromyography), the upper limb biomechanical load in workers specialized in manufacturing of orthopedic prostheses. We considered two different working configurations (workstation height at 105 and 110 cm) and three different materials to be modeled (aluminum, steel and titanium). Our results showed significant differences between aluminum/steel and titanium bars. As regards the working configurations, we found differences in the muscle activation patterns between the two heights, with an increased exertion of the shoulder muscles at 110 cm with respect to 105.

  20. Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: a review.

    PubMed

    Naik, Ganesh R; Arjunan, Sridhar; Kumar, Dinesh

    2011-06-01

    The surface electromyography (sEMG) signal separation and decphompositions has always been an interesting research topic in the field of rehabilitation and medical research. Subtle myoelectric control is an advanced technique concerned with the detection, processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews recent research and development in independent component analysis and Fractal dimensional analysis for sEMG pattern recognition, and presents state-of-the-art achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.

  1. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  2. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  3. Tensor veli palatini electromyography for monitoring Eustachian tube rehabilitation in otitis media.

    PubMed

    Picciotti, P M; Della Marca, G; D'Alatri, L; Lucidi, D; Rigante, M; Scarano, E

    2017-05-01

    The pathogenesis of otitis media is related to Eustachian tube dysfunction. The tensor veli palatini muscle actively opens the Eustachian tube and promotes middle-ear ventilation. This study describes a technique for paratubal electromyography that uses a surface, non-invasive electrode able to record tensor veli palatini muscle activity during swallowing. Twenty otitis media patients and 10 healthy patients underwent tensor veli palatini electromyography. Activity of this muscle before and after Eustachian tube rehabilitation was also assessed. In 78.5 per cent of patients, the electromyography duration phase and/or amplitude were reduced in the affected side. The muscle action potential was impaired in all patients who underwent Eustachian tube rehabilitation. This study confirmed that Eustachian tube muscle dysfunction has a role in otitis media pathogenesis and showed that muscle activity increases after Eustachian tube rehabilitation therapy.

  4. Activation of the hip adductor muscles varies during a simulated weight-bearing task.

    PubMed

    Hides, Julie A; Beall, Paula; Franettovich Smith, Melinda M; Stanton, Warren; Miokovic, Tanja; Richardson, Carolyn

    2016-01-01

    To investigate the pattern of muscle activation of the individual hip adductor muscles using a standardised simulated unilateral weight-bearing task. A repeated measures design. Laboratory. 20 healthy individuals (11 females, 9 males) participated in the study. Age ranged from 20 to 25 years. Surface electromyography recordings from adductor magnus and adductor longus muscles were taken at levels representing 10-50% of body weight during a simulated weight-bearing task. Electromyography (EMG) data were normalised to maximal voluntary isometric contraction. The adductor magnus was recruited at significantly higher levels than the adductor longus muscle during a simulated weight-bearing task performed across 10-50% of body weight (p < 0.01). Adductor magnus and adductor longus muscles are recruited to different extents during a simulated weight-bearing task. This information should be considered when selecting exercises for management and prevention of groin strains. Closed chain exercises with weight-bearing through the lower limb are more likely to recruit the adductor magnus muscle over the adductor longus muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  6. Patellar tendon load in different types of eccentric squats.

    PubMed

    Frohm, A; Halvorsen, K; Thorstensson, A

    2007-07-01

    Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.

  7. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.

    PubMed

    Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P

    2006-08-01

    Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.

  8. A comparison of electromyography and stroke kinematics during ergometer and on-water rowing.

    PubMed

    Fleming, Neil; Donne, Bernard; Mahony, Nicholas

    2014-01-01

    This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% VO2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (P <0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, P <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.

  9. Expiratory Muscle Strength Training Evaluated With Simultaneous High Resolution Manometry and Electromyography

    PubMed Central

    Hutcheson, Katherine A.; Hammer, Michael J.; Rosen, Sarah P.; Jones, Corinne A.; McCulloch, Timothy M.

    2017-01-01

    Objective To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Study Design Technical report. Methods Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Results Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Conclusion Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. PMID:28083946

  10. Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study.

    PubMed

    Hug, François; Bendahan, David; Le Fur, Yann; Cozzone, Patrick J; Grélot, Laurent

    2004-07-01

    Although a number of studies have been devoted to the analysis of the activity pattern of the muscles involved in pedaling in sedentary subjects and/or amateur cyclists, data on professional cyclists are scarce and the issue of inter-individual differences has never been addressed in detail. In the present series of experiments, we performed a non-invasive investigation using functional magnetic resonance imaging and surface electromyography to determine the pattern of activity of lower limb muscles during two different exhausting pedaling exercises in eight French professional cyclists. Each subject performed an incremental exercise during which electromyographic activity of eight lower limb muscles and respiratory variables were recorded. After a 3-h recovery period, transverse relaxation times (T2) were measured before and just after a standardized constant-load maximal exercise in order to quantify exercise-related T2 changes. The global EMG activity illustrated by the root mean square clearly showed a large inter-individual difference during the incremental exercise regardless of the investigated muscle (variation coefficient up to 81%). In addition, for most of the muscles investigated, the constant-load exercise induced T2 increases, which varied noticeably among the subjects. This high level of variation in the recruitment of lower limb muscles in professional cyclists during both incremental and constant-load exercises is surprising given the homogeneity related to maximal oxygen consumption and training volume. The high degree of expertise of these professional cyclists was not linked to the production of a common pattern of pedaling and our results provide an additional evidence that the nervous system has multiple ways of accomplishing a given motor task, as has been suggested previously by neural control theorists and experimentalists.

  11. A cross-sectional electromyography assessment in linear scleroderma patients

    PubMed Central

    2014-01-01

    Background Muscle atrophy and asymmetric extremity growth is a common feature of linear scleroderma (LS). Extra-cutaneous features are also common and primary neurologic involvement, with sympathetic dysfunction, may have a pathogenic role in subcutaneous and muscle atrophy. The aim was investigate nerve conduction and muscle involvement by electromyography in pediatric patients with LS. Methods We conducted a retrospective review of LS pediatric patients who had regular follow up at a single pediatric center from 1997–2013. We selected participants if they had consistently good follow up and enrolled consecutive patients in the study. We examined LS photos as well as clinical, serological and imaging findings. Electromyograms (EMG) were performed with bilateral symmetric technique, using surface and needle electrodes, comparing the affected side with the contralateral side. Abnormal muscle activity was categorized as a myopathic or neurogenic pattern. Results Nine LS subjects were selected for EMG, 2 with Parry-Romberg/Hemifacial Atrophy Syndrome, 7 linear scleroderma of an extremity and 2 with mixed forms (linear and morphea). Electromyogram analysis indicated that all but one had asymmetric myopathic pattern in muscles underlying the linear streaks. Motor and sensory nerve conduction was also evaluated in upper and lower limbs and one presented a neurogenic pattern. Masticatory muscle testing showed a myopathic pattern in the atrophic face of 2 cases with head and face involvement. Conclusion In our small series of LS patients, we found a surprising amount of muscle dysfunction by EMG. The muscle involvement may be possibly related to a secondary peripheral nerve involvement due to LS inflammation and fibrosis. Further collaborative studies to confirm these findings are needed. PMID:25053924

  12. Swallowing in patients with Parkinson's disease: a surface electromyography study.

    PubMed

    Ws Coriolano, Maria das Graças; R Belo, Luciana; Carneiro, Danielle; G Asano, Amdore; Al Oliveira, Paulo José; da Silva, Douglas Monteiro; G Lins, Otávio

    2012-12-01

    Our goal was to study deglutition of Parkinson's disease (PD) patients and normal controls (NC) using surface electromyography (sEMG). The study included 15 patients with idiopathic PD and 15 age-matched normal controls. Surface electromyography was collected over the suprahyoid muscle group. Conditions were the following: swallow at once 10 and 20 ml of water and 5 and 10 ml of yogurt of firm consistency, and freely drink 100 ml of water. During swallowing, durations of sEMG were significantly longer in PD patients than in normal controls but no significant differences of amplitudes were found. Eighty percent of the PD patients and 20 % of the NC needed more than one swallow to consume 20 ml of water, while 70 % of the PD patients and none of the NC needed more than one swallow to consume 5 ml of yogurt. PD patients took significantly more time and needed significantly more swallows to drink 100 ml of water than normal controls. We conclude that sEMG might be a simple and useful tool to study and monitor deglutition in PD patients.

  13. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning.

    PubMed

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend.

  14. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning

    PubMed Central

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend. PMID:28977266

  15. Assessment of a Wearable Force- and Electromyography Device and Comparison of the Related Signals for Myocontrol

    PubMed Central

    Connan, Mathilde; Ruiz Ramírez, Eduardo; Vodermayer, Bernhard; Castellini, Claudio

    2016-01-01

    In the frame of assistive robotics, multi-finger prosthetic hand/wrists have recently appeared, offering an increasing level of dexterity; however, in practice their control is limited to a few hand grips and still unreliable, with the effect that pattern recognition has not yet appeared in the clinical environment. According to the scientific community, one of the keys to improve the situation is multi-modal sensing, i.e., using diverse sensor modalities to interpret the subject's intent and improve the reliability and safety of the control system in daily life activities. In this work, we first describe and test a novel wireless, wearable force- and electromyography device; through an experiment conducted on ten intact subjects, we then compare the obtained signals both qualitatively and quantitatively, highlighting their advantages and disadvantages. Our results indicate that force-myography yields signals which are more stable across time during whenever a pattern is held, than those obtained by electromyography. We speculate that fusion of the two modalities might be advantageous to improve the reliability of myocontrol in the near future. PMID:27909406

  16. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    PubMed

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  17. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    PubMed

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Evaluation of swallowing function with surface electromyography before and after tonsillectomy].

    PubMed

    Gürkan, Emre; Veyseller, Bayram; Açıkalın, Reşit Murat; Elbistanlı, Suphi; Yurtsever, Serveren; Acar, Hürtan

    2011-01-01

    In this study, we evaluated the swallowing function with surface electromyography before and after tonsillectomy. Twenty patients (12 males, 8 females; mean age 23.8 years; range 17 to 30 years) who had tonsillectomy indication as study group, and 10 healthy individuals (8 males, 2 females; mean age 26 years; range 18 to 35 years) as control group were included in this prospective study between October 2008 and February 2009. Due to their significant role on oral and faringeal phases of swallowing; the surface electromyography prosedure is performed on the masseter muscle, the submental-submandibular muscle group and the infrahyoid muscles to measure their electrical activity and duration of contraction. For this purpose, single swallow and continuous drinking of 100 cc water tests were applied to each patient preoperatively and; in the postoperative 1st week and the 1st month. The preoperative duration of drinking periods were significanly longer in the study group compared to the control group (p<0.05). At the end of the first postoperative week the duration of drinking 100 cc water test was significantly longer than the preoperative mean of the study group (p<0.05). After one month single- swallow durations of study group were significantly shorter then the preoperative mean (p<0.05). The electrical activity of the masseter and infrahyoid muscles were significantly higher in study group compared with control group (p<0.05). The close proximity of the surgical area to the muscles affects swallowing after tonsillectomy. The surface electromyography is a simple, non-invasive and reliable method for postoperative evaluation of the swallowing functions of the throat muscles and thereby allows monitoring of the recovery and functional improvement of these muscles.

  19. Robust Features Of Surface Electromyography Signal

    NASA Astrophysics Data System (ADS)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show the linear relationship with torque experience by elbow joint to lift different load.

  20. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  1. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  2. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  3. Quality improvement of diagnosis of the electromyography data based on statistical characteristics of the measured signals

    NASA Astrophysics Data System (ADS)

    Selivanova, Karina G.; Avrunin, Oleg G.; Zlepko, Sergii M.; Romanyuk, Sergii O.; Zabolotna, Natalia I.; Kotyra, Andrzej; Komada, Paweł; Smailova, Saule

    2016-09-01

    Research and systematization of motor disorders, taking into account the clinical and neurophysiologic phenomena, are important and actual problem of neurology. The article describes a technique for decomposing surface electromyography (EMG), using Principal Component Analysis. The decomposition is achieved by a set of algorithms that uses a specially developed for analyze EMG. The accuracy was verified by calculation of Mahalanobis distance and Probability error.

  4. Detection of compensatory balance responses using wearable electromyography sensors for fall-risk assessment.

    PubMed

    Nouredanesh, Mina; Kukreja, Sunil L; Tung, James

    2016-08-01

    Loss of balance is prevalent in older adults and populations with gait and balance impairments. The present paper aims to develop a method to automatically distinguish compensatory balance responses (CBRs) from normal gait, based on activity patterns of muscles involved in maintaining balance. In this study, subjects were perturbed by lateral pushes while walking and surface electromyography (sEMG) signals were recorded from four muscles in their right leg. To extract sEMG time domain features, several filtering characteristics and segmentation approaches are examined. The performance of three classification methods, i.e., k-nearest neighbor, support vector machines, and random forests, were investigated for accurate detection of CBRs. Our results show that features extracted in the 50-200Hz band, segmented using peak sEMG amplitudes, and a random forest classifier detected CBRs with an accuracy of 92.35%. Moreover, our results support the important role of biceps femoris and rectus femoris muscles in stabilization and consequently discerning CBRs. This study contributes towards the development of wearable sensor systems to accurately and reliably monitor gait and balance control behavior in at-home settings (unsupervised conditions), over long periods of time, towards personalized fall risk assessment tools.

  5. Expiratory muscle strength training evaluated with simultaneous high-resolution manometry and electromyography.

    PubMed

    Hutcheson, Katherine A; Hammer, Michael J; Rosen, Sarah P; Jones, Corinne A; McCulloch, Timothy M

    2017-04-01

    To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Technical report. Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. 4. Laryngoscope, 127:797-804, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Coordination of deep hip muscle activity is altered in symptomatic femoroacetabular impingement.

    PubMed

    Diamond, Laura E; Van den Hoorn, Wolbert; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S; O'Donnell, John; Hodges, Paul W

    2017-07-01

    Diagnosis of femoroacetabular impingement (FAI) is increasing, yet the associated physical impairments remain poorly defined. This morphological hip condition can cause joint pain, stiffness, impaired function, and eventually hip osteoarthritis. This exploratory study compared coordination of deep hip muscles between people with and without symptomatic FAI using analysis of muscle synergies (i.e., patterns of activity of groups of muscles activated in synchrony) during gait. Fifteen individuals (11 males) with symptomatic FAI (clinical examination and imaging) and 14 age- and sex-comparable controls without morphological FAI underwent testing. Intramuscular fine-wire and surface electrodes recorded electromyographic activity of selected deep and superficial hip muscles. A non-negative matrix factorization algorithm extracted three synergies which were compared between groups. Information regarding which muscles were activated together in the FAI group (FAI group synergy vector) was used to reconstruct individual electromyography patterns and compare groups. Variance accounted for (VAF) by three synergies was less for the control (94.8 [1.4]%) than FAI (96.0 [1.0]%) group (p = 0.03). VAF of obturator internus was significantly higher in the FAI group (p = 0.02). VAF of the reconstructed individual electromyography patterns with the FAI or control group vector were significantly higher for the FAI group (p < 0.01). Following reconstruction, VAF of quadratus femoris was significantly more reduced in controls (p = 0.04), indicating greater between-subject variability. Coordination of deep hip muscles in the synergy related to hip joint control during early swing differed between groups. This phase involves movement towards the impingement position, which has relevance for the interpretation of synergy differences and potential clinical importance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1494-1504, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  8. Ulnar neuropathy at or distal to the wrist: traumatic versus cumulative stress cases.

    PubMed

    Chiodo, Anthony; Chadd, Edmund

    2007-04-01

    To identify clinical and electromyographic characteristics of ulnar neuropathy at or below the wrist, comparing those caused by unitary trauma with those caused by suspected cumulative stress. Retrospective case series. University hospital electromyography laboratory. Patients with electrodiagnostic evidence of an ulnar neuropathy at or distal to the wrist over a 3-year period. Forty-seven hands from 42 patients (age range, 20-80y; mean, 52y) were identified and evaluated in this study. Record review of clinical history, physical examination, electromyography, and treatment. Etiology of injury, physical signs and symptoms, and electromyographic testing results. Ulnar neuropathy at or distal to the wrist is commonly mischaracterized because of other mononeuropathies in the upper extremity and because of peripheral polyneuropathy. Ulnar neuropathy because of cumulative stress presents typically with sensory symptoms (63%) and a normal examination (71%), whereas trauma cases present with motor with or without sensory symptoms (92%) with motor abnormalities (92%) confirmed on examination. Traumatic cases are characterized by electromyography by decreased sensory and motor-evoked amplitudes, prolonged motor distal latencies, and abnormal needle examination. The amplitude changes are noted comparing with laboratory norms and comparing side to side. No characteristic pattern of abnormalities on electromyography is noted in the cumulative stress cases. Patients with no motor symptoms, regardless of etiology, are more apt to have sensory distal latency prolongation, whereas those with motor symptoms have motor amplitude and needle examination abnormalities. Traumatic ulnar neuropathy at or distal to the wrist is characterized by motor symptoms and sensory and motor axonal loss by electromyography, whereas cumulative stress cases have sensory symptoms and electromyographic findings that are highly variable and noncharacteristic. Patients with no motor symptoms are more apt to show sensory distal latency abnormalities on electromyography, whereas those with motor symptoms show motor-evoked amplitude and needle electromyography abnormalities.

  9. Electromyographic and Joint Kinematic Patterns in Runner's Dystonia.

    PubMed

    Ahmad, Omar F; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin; Alter, Katharine

    2018-04-20

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described.

  10. Electromyographic and Joint Kinematic Patterns in Runner’s Dystonia

    PubMed Central

    Ahmad, Omar F.; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin

    2018-01-01

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described. PMID:29677101

  11. Quantitative anal sphincter electromyography in primiparous women with anal incontinence

    PubMed Central

    Gregory, W. Thomas; Lou, Jau-Shin; Simmons, Kimberly; Clark, Amanda L.

    2010-01-01

    OBJECTIVE The purpose of this study was to determine whether evidence of denervation/reinnervation of the external anal sphincter is associated with anal incontinence symptoms immediately after delivery. STUDY DESIGN After a first vaginal delivery, 42 women completed an anal incontinence questionnaire. They also underwent concentric needle electromyography of the external anal sphincter. For each subject, motor unit action potential and interference pattern parameters were determined. RESULTS For the motor unit action potential, no difference was observed between patients with and without anal incontinence symptoms (t-test). For the interference pattern, the amplitude/turn was greater in subjects with fecal urgency (318 ± 48 [SD] μV) and fecal incontinence (332 ± 48 μV), compared with those without fecal urgency (282 ± 38 μV) and fecal incontinence (286 ± 41 μV; P = .02, t-test). CONCLUSION In this group of postpartum women with mild anal incontinence symptoms, interference pattern analysis shows evidence of denervation and subsequent reinnervation. PMID:18455531

  12. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  13. Diaphragm Muscle Surface Electromyography in Patients Submitted to Liver Transplant and Eligible for Extubation.

    PubMed

    Duarte, R P; Sentanin, A C; da Silva, A M O; Tonella, R M; Duarte, G L; Ratti, L S R; Boin, I F S F

    2017-05-01

    Liver disease induces many organic and metabolic changes, leading to malnutrition and weight and muscular function loss. Surface electromyography is an easily applicable, noninvasive study, through which the magnitudes of the peaks on the charts depict voluntary muscle activity. To evaluate the diaphragmatic surface electromyography of postoperative liver transplantation subjects. Subjects were patients who underwent liver transplantation and extubation in the Clinical Hospital of State University of Campinas. Electromyography data were collected with support pressure of ≤10 cm H 2 O, Glasgow Coma Scale = 11, and minimum dosages of vasoactive drugs, and data were collected again 30 minutes after extubation. Signal collection was performed with sEMG System Brazil SAS1000V3 electromyograph and electrode stickers. Statistical analysis was performed using R software. The average time of surgery was 345.36 ± 125.62 minutes. Time from spontaneous mode until extubation was 417.14 ± 362.97 minutes. The RMS (root mean square) values of the right and left domes in spontaneous mode with minimal ventilation parameters were 26.68 ± 10.92 and 26.55 ± 10.53, respectively, and the RMS values after extubation were 31.93 ± 18.69 to 34.62 ± 13.55, for right and left domes. The last calculated pretransplant Model for End-stage Liver Disease score averaged 19.64 ± 8.41. There were significant differences between the RMS of the diaphragm domes under mechanical ventilation and after extubation, showing lower effectiveness of the diaphragm muscle against resistance, without the aid of positive pressure and the existing overload of the left dome. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    PubMed

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  15. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.

    PubMed

    de Moura, Karina de O A; Balbinot, Alexandre

    2018-05-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.

  16. Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System

    PubMed Central

    Balbinot, Alexandre

    2018-01-01

    A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994

  17. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  18. Comparison of Antagonist Muscle Activity During Walking Between Total Knee Replacement and Control Subjects Using Unnormalized Electromyography.

    PubMed

    Lundberg, Hannah J; Rojas, Idubijes L; Foucher, Kharma C; Wimmer, Markus A

    2016-06-01

    Although satisfactory outcomes have been reported after total knee replacement (TKR), full recovery of muscle strength and physical function is rare. We developed a relative activation index (RAI) to compare leg muscle activity from unnormalized surface electromyography (sEMG) between TKR and control subjects. Nineteen TKR and 19 control subjects underwent gait analysis and sEMG. RAIs were calculated by dividing the average sEMG for 2 consecutive subphases of stance defined by the direction of the external sagittal plane moment (flexion or extension). RAIs and external moments indicate TKR subjects have less initial stance antagonist rectus femoris activity (P = .004), greater middle stance antagonist biceps femoris activity (P < .001), and less late stance agonist biceps femoris activity (P < .001) than control subjects. Individuals with TKR demonstrate increased flexor muscle activation during weight bearing, potentially contributing to altered gait patterns found during the stance phase of gait. The RAI helps detail whether decreased external moments correspond to less agonist or more antagonist muscle activity to determine true muscle activity differences between subject groups. Identifying the mechanisms underlying altered muscle function both before and after TKR is critical for developing rehabilitation strategies to address functional deficits and disability found in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Estimating contraction level using root mean square amplitude in control subjects and patients with neuromuscular disorders.

    PubMed

    Boe, Shaun G; Rice, Charles L; Doherty, Timothy J

    2008-04-01

    To assess the utility of the surface electromyographic signal as a means of estimating the level of muscle force during quantitative electromyography studies by examining the relationship between muscle force and the amplitude of the surface electromyographic activity signal; and to determine the impact of a reduction in the number of motor units on this relationship, through inclusion of a sample of patients with neuromuscular disease. Cross-sectional, cohort study design. Tertiary care, ambulatory, electromyography laboratory. A volunteer, convenience sample of healthy control subjects (n=10), patients with amyotrophic lateral sclerosis (n=9), and patients with Charcot-Marie-Tooth disease type X (n=5). Not applicable. The first dorsal interosseous (FDI) and biceps brachii muscles were examined. Force values (at 10% increments) were calculated from two 4-second maximal voluntary contractions (MVCs). Surface electromyographic activity was recorded during separate 4-second voluntary contractions at 9 force increments (10% -90% of MVC). Additionally, a motor unit number estimate was derived for each subject to quantify the degree of motor unit loss in patients relative to control subjects. The relationships between force and surface electromyographic activity for both muscles (controls and patients) were best fit by a linear function. The variability about the grouped regression lines was quantified by 95% confidence intervals and found to be +/-6.7% (controls) and +/-8.5% (patients) for the FDI and +/-5% (controls) and +/-6.1% (patients) for the biceps brachii. These results suggest that the amplitude of the surface electromyographic activity signal may be used as a means of estimating the level of muscle force during quantitative electromyography studies. Future studies should be directed at examining if the variability associated with these force and surface electromyographic activity relationships is acceptable in replacing previous methods of measuring muscle force.

  20. Electromyography assessment in zygomaticomaxillary complex fractures.

    PubMed

    Waheed El-Anwar, Mohammad; Elsheikh, Ezzeddin; Sweed, Ahmed Hassan; Ezzeldin, Nillie

    2015-12-01

    The aim of this study was to assess the activity of the masseter and temporalis muscles using surface electromyography (EMG) in patients with zygomaticomaxillary complex (ZMC) fractures. This prospective study was carried out on 25 patients who had ZMC fractures. Fifteen patients were managed by open reduction and rigid fixation (ORIF) using titanium miniplates. This study, using surface electromyography, analyzed the activity of the masseter and temporalis muscles of 25 patients with ZMC fractures; 15 of them were surgically treated under general anesthesia (GA). Evaluations were made before surgery and 6 weeks after surgery by recording the mean of muscle contraction of 20 motor unit action potential (MUAP) against resistance, and statistical analyses were performed. A significant EMG difference between the normal and ZMC fracture sides was found (P < 0.0001) for both masseter and temporalis muscles and was significantly improved after ORIF. However, postoperative EMV values of the repaired side was significantly less than measured postoperatively in the normal side (P < 0.0001) for both muscles. ZMC fractures significantly diminish muscular activity of the masseter and temporalis and even though significant recovery of muscle activity was revealed after 6 weeks, it is still less than normal activity, highlighting the importance of postoperative rehabilitation.

  1. Assessment of weaning indexes based on diaphragm activity in mechanically ventilated subjects after cardiovascular surgery. A pilot study

    PubMed Central

    Ortega, Isabel Cristina Muñoz; Valdivieso, Alher Mauricio Hernández; Lopez, Joan Francesc Alonso; Villanueva, Miguel Ángel Mañanas; Lopez, Luis Horacio Atehortúa

    2017-01-01

    Objective The aim of this pilot study was to evaluate the feasibility of surface electromyographic signal derived indexes for the prediction of weaning outcomes among mechanically ventilated subjects after cardiac surgery. Methods A sample of 10 postsurgical adult subjects who received cardiovascular surgery that did not meet the criteria for early extubation were included. Surface electromyographic signals from diaphragm and ventilatory variables were recorded during the weaning process, with the moment determined by the medical staff according to their expertise. Several indexes of respiratory muscle expenditure from surface electromyography using linear and non-linear processing techniques were evaluated. Two groups were compared: successfully and unsuccessfully weaned patients. Results The obtained indexes allow estimation of the diaphragm activity of each subject, showing a correlation between high expenditure and weaning test failure. Conclusion Surface electromyography is becoming a promising procedure for assessing the state of mechanically ventilated patients, even in complex situations such as those that involve a patient after cardiovascular surgery. PMID:28977261

  2. Online Bimanual Manipulation Using Surface Electromyography and Incremental Learning.

    PubMed

    Strazzulla, Ilaria; Nowak, Markus; Controzzi, Marco; Cipriani, Christian; Castellini, Claudio

    2017-03-01

    The paradigm of simultaneous and proportional myocontrol of hand prostheses is gaining momentum in the rehabilitation robotics community. As opposed to the traditional surface electromyography classification schema, in simultaneous and proportional control the desired force/torque at each degree of freedom of the hand/wrist is predicted in real-time, giving to the individual a more natural experience, reducing the cognitive effort and improving his dexterity in daily-life activities. In this study we apply such an approach in a realistic manipulation scenario, using 10 non-linear incremental regression machines to predict the desired torques for each motor of two robotic hands. The prediction is enforced using two sets of surface electromyography electrodes and an incremental, non-linear machine learning technique called Incremental Ridge Regression with Random Fourier Features. Nine able-bodied subjects were engaged in a functional test with the aim to evaluate the performance of the system. The robotic hands were mounted on two hand/wrist orthopedic splints worn by healthy subjects and controlled online. An average completion rate of more than 95% was achieved in single-handed tasks and 84% in bimanual tasks. On average, 5 min of retraining were necessary on a total session duration of about 1 h and 40 min. This work sets a beginning in the study of bimanual manipulation with prostheses and will be carried on through experiments in unilateral and bilateral upper limb amputees thus increasing its scientific value.

  3. Surface Electromyography Signal Processing and Classification Techniques

    PubMed Central

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  4. EMG amplifier with wireless data transmission

    NASA Astrophysics Data System (ADS)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  5. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2016-08-01

    Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  6. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  7. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.

    PubMed

    Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping

    2017-08-01

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

  8. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging?

    PubMed

    John, E K; Beith, I D

    2007-11-01

    Differences in the function of the anterolateral abdominal muscles have been the subject of much investigation, but primarily using electromyography. Recently changes in thickness of transversus abdominis and internal oblique measured from real-time ultrasound images have been shown to represent activity within these muscles. However it is still unclear if such a change in thickness in external oblique similarly represents activity within that muscle. The purpose of this study was to investigate the relationship between change in thickness and muscle activity in the external oblique using real-time ultrasound and surface electromyography. Simultaneous measurements of electromyography and real-time ultrasound images of external oblique were studied in up to 24 subjects during two tasks compared to the muscle at rest (1) isometric trunk rotation and (2) drawing in the lower abdomen. Changes in muscle thickness correlated significantly with electromyography during isometric trunk rotation in the majority of subjects but with a significant difference between subjects. In contrast, the relationship between change in thickness and electrical activity in the muscle when drawing in the lower abdomen was significant in less than 50% of subjects and the muscle often got thinner. Thickness changes of external oblique can be used as a valid indicator of electromyography activity during isometric trunk rotation, though the relationship is not as good as previously published data for transversus abdominis. Thickness changes of external oblique measured during lower abdominal drawing in cannot be used to detect activity within this muscle.

  9. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    PubMed

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were consistent increases in fibularis longus sEMG amplitudes during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, and pre-initial contact and post-initial contact during lateral hops and walking.

  10. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  11. Electromyography comparison of the effects of various footwear in the activity patterns of the peroneus longus and brevis muscles.

    PubMed

    Roca-Dols, Andrea; Losa-Iglesias, Marta Elena; Sánchez-Gómez, Rubén; López-López, Daniel; Becerro-de-Bengoa-Vallejo, Ricardo; Calvo-Lobo, César

    2018-06-01

    Peroneus longus and brevis (PLB) disorders are commonly in people with lateral ligamentous instability, ankle pain, lateral hindfoot pain and structures of the proximal compartment of the lower legs and their muscle activity is believed to be influenced by different footwear types. The proposal of this research is to evaluate the effects of five types of footwear with respect to the barefoot condition and analyze the activity patterns of PLB muscles in healthy subjects during the gait cycle. Thirty healthy subjects were recruited in a laboratory in this cross-sectional research design. While walking, electromyography (EMG) activity was measured from PLB via surface electrodes in six experimental conditions: 1) barefoot, 2) minimalist, 3) pronated control, 4) air chamber, 5) ethyl-vinyl-acetate (EVA) and 6) boost. These data were obtained and compared. The peroneus brevis showed significant reductions in the peak amplitude of the five footwear types (minimalist, pronation control, air chamber, EVA and boost) with respect to the barefoot condition in the propulsion phase of the gait cycle during walking (P = 0.034; P < 0.001; P < 0.001; P < 0.001; P = 0.006) and running (P = 0.004; P < 0.001; P = 0.001; P < 0.001; P = 0.001), respectively. Furthermore, peroneus longus showed significant reductions in the peak amplitude of these five footwear types with respect to the barefoot condition in the propulsion phase of the gait cycle during running (P = 0.005; P = 0.038; P = 0.019; P = 0.025; P = 0.021). The EMG activity patterns of the PLB muscles may depend on the use of different types of sport shoes such as minimalist, pronation control, air chamber, EVA and boost footwear with respect the barefoot condition in different phases of the gait cycle during walking and running. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists.

    PubMed

    Hug, François; Drouet, Jean Marc; Champoux, Yvan; Couturier, Antoine; Dorel, Sylvain

    2008-11-01

    The aim of this study was to determine whether high inter-individual variability of the electromyographic (EMG) patterns during pedaling is accompanied by variability in the pedal force application patterns. Eleven male experienced cyclists were tested at two submaximal power outputs (150 and 250 W). Pedal force components (effective and total forces) and index of mechanical effectiveness were measured continuously using instrumented pedals and were synchronized with surface electromyography signals measured in ten lower limb muscles. The intersubject variability of EMG and mechanical patterns was assessed using standard deviation, mean deviation, variance ratio and coefficient of cross-correlation (_R(0), with lag time = 0). The results demonstrated a high intersubject variability of EMG patterns at both exercise intensities for biarticular muscles as a whole (and especially for Gastrocnemius lateralis and Rectus femoris) and for one monoarticular muscle (Tibialis anterior). However, this heterogeneity of EMG patterns is not accompanied by a so high intersubject variability in pedal force application patterns. A very low variability in the three mechanical profiles (effective force, total force and index of mechanical effectiveness) was obtained in the propulsive downstroke phase, although a greater variability in these mechanical patterns was found during upstroke and around the top dead center, and at 250 W when compared to 150 W. Overall, these results provide additional evidence for redundancy in the neuromuscular system.

  13. Respiratory motor training and neuromuscular plasticity in patients with chronic obstructive pulmonary disease: A pilot study.

    PubMed

    Ovechkin, Alexander V; Sayenko, Dimitry G; Ovechkina, Elena N; Aslan, Sevda C; Pitts, Teresa; Folz, Rodney J

    2016-07-15

    The objective of this study was to examine the feasibility of a full-scale investigation of the neurophysiological mechanisms of COPD-induced respiratory neuromuscular control deficits. Characterization of respiratory single- and multi-muscle activation patterns using surface electromyography (sEMG) were assessed along with functional measures at baseline and following 21±2 (mean±SD) sessions of respiratory motor training (RMT) performed during a one-month period in four patients with GOLD stage II or III COPD. Pre-training, the individuals with COPD showed significantly increased (p<0.05) overall respiratory muscle activity and disorganized multi-muscle activation patterns in association with lowered spirometrical measures and decreased fast- and slow-twitch fiber activity as compared to healthy controls (N=4). Following RMT, functional and respiratory sEMG activation outcomes during quite breathing and forced expiratory efforts were improved suggesting that functional improvements, induced by task-specific RMT, are evidence respiratory neuromuscular networks re-organization. Published by Elsevier B.V.

  14. Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity.

    PubMed

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

  15. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences

    PubMed Central

    Vigotsky, Andrew D.; Halperin, Israel; Lehman, Gregory J.; Trajano, Gabriel S.; Vieira, Taian M.

    2018-01-01

    Surface electromyography (sEMG) is a popular research tool in sport and rehabilitation sciences. Common study designs include the comparison of sEMG amplitudes collected from different muscles as participants perform various exercises and techniques under different loads. Based on such comparisons, researchers attempt to draw conclusions concerning the neuro- and electrophysiological underpinning of force production and hypothesize about possible longitudinal adaptations, such as strength and hypertrophy. However, such conclusions are frequently unsubstantiated and unwarranted. Hence, the goal of this review is to discuss what can and cannot be inferred from comparative research designs as it pertains to both the acute and longitudinal outcomes. General methodological recommendations are made, gaps in the literature are identified, and lines for future research to help improve the applicability of sEMG are suggested. PMID:29354060

  16. Effect of mandibular mobilization on electromyographic signals in muscles of mastication and static balance in individuals with temporomandibular disorder: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background The stomatognathic system and dysfunction in this system may be related to postural control. The proposal of the present study is to assess the effect of mandibular mobilization in individuals with temporomandibular disorder using surface electromyography of the muscles of mastication and stabilometric variables. Methods/Design A randomized, controlled, blind, clinical trial will be carried out, with the participants divided into three groups: 1) facial massage therapy (control group), 2) nonspecific mandibular mobilization and 3) specific mandibular mobilization. All groups will be assessed before and after treatment using the Research Diagnostic Criteria for Temporomandibular Disorders, surface electromyography of the masseter and temporal muscles and stabilometry. This study is registered with the Brazilian Registry of Clinical Trials (RBR9x8ssz). Discussion A large number of studies have employed surface electromyography to investigate the function/dysfunction of the muscles of mastication and associations with signs and symptoms of temporomandibular disorders. However, it has not yet been determined whether stabilometric variables offer adequate reliability in patients with this disorder. The results of the proposed study will help determine whether specific and/or nonspecific mandibular mobilization exerts an effect on the muscles of mastication and postural control. Moreover, if an effect is detected, the methodology defined in the proposed study will allow identifying whether the effect is local (found only in the muscles of mastication), global (found only in postural control) or generalized. PMID:24083628

  17. Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective

    PubMed Central

    Naik, Ganesh R.; Al-Ani, Ahmed; Gobbo, Massimiliano; Nguyen, Hung T.

    2017-01-01

    The purpose of this study was to determine whether electromyography (EMG) muscle activities around the knee differ during sit-to-stand (STS) and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2) participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM) and vastus lateralis (VL) that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG) data were acquired during STS and stand-to-sit-returning (STSR) tasks. The data was filtered using a fourth order Butterworth (band pass) filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF) and root mean square (RMS) features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values) indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS) in women. PMID:28894422

  18. Standardised surface electromyography allows effective submental muscles assessment.

    PubMed

    Musto, Federica; Rosati, Riccardo; Sforza, Chiarella; Toma, Marilisa; Dellavia, Claudia

    2017-06-01

    The aims of this pilot study were to evaluate: (i) the reproducibility and variability of an electromyographical protocol developed for the assessment of submental muscles (SM) (ii) to apply the new protocol to maximal teeth clenching, a simple and largely studied static task in order to quantify the relative contribution of submental muscles. In 20 healthy subjects, aged 19-35years, surface electromyography of SM, masseter (MM) and anterior temporalis (TA) muscles was performed during maximal voluntary clenching (MVC) with and without cotton rolls and the pushing of the tongue against the palate. Clenching on cotton rolls and pushing the tongue against the palate were used to standardise respectively MM and TA, and SM muscular potentials. The exercises were repeated in two appointments (T1-T2); submental muscles standardisation was also repeated twice (A-B) in each session to assess repeatability. Symmetry and activity were calculated for each couple of muscles. A two-way analysis of variance was computed for SM: no Factor 1 (T1 vs T2) or Factor 2 (A vs B) or F1×F2 significant effects were found. SM recruitment was 31% of the maximal activity, with symmetry values larger than 80%. In conclusion, standardised electromyography allows a reliable assessment of Submental muscles activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. When should video and EMG be added to urodynamics in children with lower urinary tract dysfunction and is this justified by the evidence? ICI-RS 2014.

    PubMed

    Anding, Ralf; Smith, Phillip; de Jong, Tom; Constantinou, Christos; Cardozo, Linda; Rosier, Peter

    2016-02-01

    An ICI-RS Think Tank in 2014 discussed and evaluated the evidence for adding video and EMG to urodynamics (UDS) in children and also highlighted evidence gaps, with the aim of recommending further clinical and research protocols. A systematic analysis of the relevant literature for both X-ray (video) studies and electromyography, in combination with UDS in children with lower urinary tract dysfunction (LUTD), is summarized in this manuscript. The technical aspects are also critically reviewed. The body of evidence for the addition of X-ray (video) to filling and voiding cystometry and the evidence for the addition of pelvic muscle surface electromyography to urodynamics is scanty and insufficient. Standards are poor and variable so uncontrolled expert opinion dominates practice. The Think Tank has recommended that standardized ALARA ("As Low As Reasonably Achievable") principles should be adopted for video-urodynamics in children. The risk-benefit balance of X-ray exposure needs to be better evaluated and defined. Evaluation of images should be standardized and the association with pressure changes better analyzed and reported. Children's pelvic muscle surface electromyography technique should be standardized, technically improved, and its diagnostic relevance should be better evaluated. © 2016 Wiley Periodicals, Inc.

  20. Impact of Functional Appliances on Muscle Activity: A Surface Electromyography Study in Children

    PubMed Central

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    Background Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. Material/Methods The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. Results The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Conclusions Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles. PMID:25600247

  1. [Application of surface electromyography in the treatment of adolescent idiopathic scoliosis with traditional spinal balanced therapy].

    PubMed

    Du, Hong-Gen; Ye, Shu-Liang; Xu, Jin-Yuan; Jiang, Zhong; Song, Hong-Quan; Yu, Ji-Wei

    2013-11-01

    To evaluate the values of surface electromyography (sEMG) in the treatment of adolescent idiophathic scoliosis (AIS) with non-surgical therapy. From October 2011 to May 2012, the data of 33 patients with AIS underwent traditional spinal balanced therapy were analyzed. There were 14 males and 19 females with an average age of (15.40 +/- 3.01) years,ranging in Cobb angle from 13 degrees to 40 degrees, course of disease more than 3 months. X-rays showed 21 cases were type C and 9 cases were type S. Preoperative and postoperative 6 months, Cobb angle, the ratio of averaged electromyography paramete (AEMG), security of treatment were observed. Thirty cases (90.9%) accomplished the treatment and detection. No harmful effects to vital sign was found and no fracture, dislocation, apopsychia, infection of pin hole was found. There was positive correlation between the ratio of AEMG and Cobb angle (P = 0.003). The ratio of AEMG decreased after treatment,and indicated the improvement of myosthenic otherness. sEMG can be used as a objective examination in evaluating difference of muscle electricity activity on both concaved and convex sides for patients of AIS, so it is a qualified objective examination for effectiveness evaluation and assessment aggravation risk, and has great value in clinic.

  2. Electromyography Biofeedback Exergames to Enhance Grip Strength and Motivation.

    PubMed

    Garcia-Hernandez, Nadia; Garza-Martinez, Karen; Parra-Vega, Vicente

    2018-02-01

    Hand strength weakness affects the performance of most activities of daily living. This study aims to design, develop, and test an electromyography (EMG) biofeedback training system based on serious games to promote motivation and synchronization and proper work intensity in grip exercises for improving hand strength. An EMG surface sensor, soft balls with different stiffness and three exergames, conforms the system to drive videogame clues in response to EMG-inferred grip strength, while overseeing motivation. An experiment was designed to study the effect of performing handgrip (HG) exercises with the proposed system versus traditional exercises. Participants, organized into two groups, followed a training program for each hand. One group followed a HG exergame training (ET) with the dominant hand and traditional HG training with the nondominant hand and inverse sequence by the second group. Initial and final grip forces were measured using a digital dynamometer. Questionnaires evaluated motivation and user experience, and exercise performance was evaluated in terms of work and rest time percentage and maximal voluntary contraction percentage over contraction periods. Data were analyzed for statistically significant differences and increase of means. Participants showed significantly better exercise performance and higher grip forces, with sustained intrinsic motivation and user experience, with the ET. Improvement in force level arises evidently from the synchronized work-rest time pattern and appropriated intensity of the muscle activity. This leads to support that EMG biofeedback exergames improve motor neurons firing and resting.

  3. All on Four® fixed implant support rehabilitation: a masticatory function study.

    PubMed

    De Rossi, Moara; Santos, Carla Moreto; Migliorança, Reginaldo; Regalo, Simone Cecílio Hallak

    2014-08-01

    Fixed implant-supported prostheses according to All-on-Four® (Nobel Biocare, Goteborg, Sweden) principles have become an accepted treatment modality in totally edentulous patients, whereas the functional effect of this therapy is limited. The purpose of this study was to evaluate the muscular function of patients totally rehabilitated with All-on-Four. This study evaluated 63 patients. Twenty-one patients were successfully rehabilitated with maxillary and mandibular All-on-Four (no dropout implants, satisfactory aesthetic and function demands prosthesis), 21 patients were dentate, and 21 were rehabilitated with double complete dentures. Electromyography was carried out during clenching, nonhabitual and habitual chewing, and rest. All values were standardized as percentage of a maximum voluntary contraction. Data were analyzed by ANOVA to compare groups and paired t-test was used for comparison between sides within each group. All groups presented symmetric muscular activity. The All-on-Four and dentate groups had a similar muscles surface electromyography (sEMG) contraction pattern, that is, a higher sEMG activity of masseter than temporalis muscles, differing (p ≤ .05) from those of denture group. Not one statistical difference was found between All-on-Four and dentate groups. The muscular function similarity of All-on-Four and dentate patients shows that this treatment concept may be considered as a good option for oral rehabilitation in edentulous patients. © 2013 Wiley Periodicals, Inc.

  4. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2014-01-01

    The use of a small number of surface electromyography (EMG) channels on the transradial amputee in a myoelectric controller is a big challenge. This paper proposes a pattern recognition system using an extreme learning machine (ELM) optimized by particle swarm optimization (PSO). PSO is mutated by wavelet function to avoid trapped in a local minima. The proposed system is used to classify eleven imagined finger motions on five amputees by using only two EMG channels. The optimal performance of wavelet-PSO was compared to a grid-search method and standard PSO. The experimental results show that the proposed system is the most accurate classifier among other tested classifiers. It could classify 11 finger motions with the average accuracy of about 94 % across five amputees.

  5. Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    PubMed Central

    2018-01-01

    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959

  6. [Electromyography of the perineum. Demonstration of the method].

    PubMed

    Plotti, G; Palla, G P; Romanini, C; Piscicelli, U; Bompiani, A

    1981-05-12

    The Authors, by means of surface E.M.G. have investigated the perineal potentials. The choice of surface E.M.G. is due to the good acceptance of the method by the patients, as it does not interfere with muscular activity and mental concentration, which are fundamental for a good application of R.A.T.

  7. Mapping of the human upper arm muscle activity with an electrode matrix.

    PubMed

    Côté, J; Mathieu, P A

    2000-06-01

    Surface electrode matrices allow measurement of muscle activity while avoiding certain hazardous risks and inconvenience associated with invasive techniques. Major challenges of such equipment involve optimizing spatial resolution, and designing simple acquisition systems able to record simultaneously many potentials over large anatomical areas. We present a surface electromyography acquisition system comprising of 3 x 8 Ag-AgCl electrodes mounted onto an elastic band, which can be adjusted to fit an entire human upper limb segment. Using this equipment, we acquired a simultaneous representation of muscular activity from a segment of the upper limb surface of 6 healthy subjects during isometric contractions at various intensities. We found that the location of regions of highest activity depended on elbow torque direction but also varied among subjects. Signals obtained with such equipment can be used to solve the inverse problem and help optimize the electrode configuration in volume conduction studies. The efficacy of decision algorithms of multi-functional myoelectric prostheses can be tested with the global muscle activity patterns gathered. The electrode cuff could also be used in the investigation of fatigue and injury mechanisms during occupational activities.

  8. Surface electromyography and plantar pressure during walking in young adults with chronic ankle instability.

    PubMed

    Koldenhoven, Rachel M; Feger, Mark A; Fraser, John J; Saliba, Susan; Hertel, Jay

    2016-04-01

    Lateral ankle sprains are common and can manifest into chronic ankle instability (CAI) resulting in altered gait mechanics that may lead to subsequent ankle sprains. Our purpose was to simultaneously analyse muscle activation patterns and plantar pressure distribution during walking in young adults with and without CAI. Seventeen CAI and 17 healthy subjects walked on a treadmill at 4.8 km/h. Plantar pressure measures (pressure-time integral, peak pressure, time to peak pressure, contact area, contact time) of the entire foot and nine specific foot regions and medial-lateral location of centre of pressure (COP) were measured. Surface electromyography (EMG) root mean square (RMS) amplitudes throughout the entire stride cycle and area under RMS curve for 100 ms pre-initial contact (IC) and 200 ms post-IC for anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius were collected. The CAI group demonstrated a more lateral COP throughout the stance phase (P < 0.001 and Cohen's d > 0.9 for all 10 comparisons) and significantly increased peak pressure (P = 0.025) and pressure-time integral (P = 0.049) under the lateral forefoot. The CAI group had lower anterior tibialis RMS areas (P < 0.001) and significantly higher peroneus longus, medial gastrocnemius, and gluteus medius RMS areas during 100 ms pre-IC (P < 0.003). The CAI group had higher gluteus medius sEMG amplitudes during the final 50 % of stance and first 25% of swing (P < 0.05). The CAI group had large lateral deviations of their COP location throughout the entire stance phase and increased gluteus medius muscle activation amplitude during late stance through early swing phase. III.

  9. The different role of each head of the triceps brachii muscle in elbow extension.

    PubMed

    Kholinne, Erica; Zulkarnain, Rizki Fajar; Sun, Yu Cheng; Lim, SungJoon; Chun, Jae-Myeung; Jeon, In-Ho

    2018-03-01

    The aim of this study was to investigate the functional role of each head of the triceps brachii muscle, depending on the angle of shoulder elevation, and to compare each muscle force and activity by using a virtual biomechanical simulator and surface electromyography. Ten healthy participants (8 males and 2 females) were included in this study. The mean age was 29.2 years (23-45). Each participant performed elbow extension tasks in five different degrees (0, 45, 90, 135, and 180°) of shoulder elevation with three repetitions. Kinematics data and surface electromyography signal of each head of the triceps brachii were recorded. Recorded kinematics data were then applied to an inverse kinematics musculoskeletal modeling software function (OpenSim) to analyze the triceps brachii's muscle force. Correlation between muscle force, muscle activity, elbow extension, and shoulder elevation angle were compared and analyzed for each head of triceps brachii. At 0° shoulder elevation, the long head of the triceps brachii generates a significantly higher muscle force and muscle activation than the lateral and medial heads (p < 0.05). While at 90°, 135° and 180° shoulder elevation, the medial head of the triceps brachii showed a significantly higher muscle force than the long and the lateral heads (p < 0.05). Each head of the triceps brachii has a different pattern of force and activity during different shoulder elevations. The long head contributes to elbow extension more at shoulder elevation and the medial head takes over at 90° and above of shoulder elevation. This study provides further understanding of triceps brachii's for clinicians and health trainers who need to investigate the functional role of the triceps brachii in detail. Copyright © 2018. Production and hosting by Elsevier B.V.

  10. Electrophysiological and neuromuscular stability of persons with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Gilmore, Kevin J; Allen, Matti D; Doherty, Timothy J; Kimpinski, Kurt; Rice, Charles L

    2017-09-01

    We assessed motor unit (MU) properties and neuromuscular stability in the tibialis anterior (TA) of chronic inflammatory demyelinating polyneuropathy (CIDP) patients using decomposition-based quantitative electromyography. Dorsiflexion strength was assessed, and surface and concentric needle electromyography were sampled from the TA. Estimates of MU numbers were derived using decomposition-based quantitative electromyography and spike-triggered averaging. Neuromuscular transmission stability was assessed from concentric needle-detected MU potentials. CIDP patients had 43% lower compound muscle action potential amplitude than controls, and despite near-maximum voluntary activation, were 37% weaker. CIDP had 27% fewer functioning MUs in the TA, and had 90% and 44% higher jiggle and jitter values, respectively compared with controls. CIDP had lower strength and compound muscle action potential values, moderately fewer numbers of MUs, and significant neuromuscular instability compared with controls. Thus, in addition to muscle atrophy, voluntary weakness is also due to limitations of peripheral neural transmission consistent with demyelination. Muscle Nerve 56: 413-420, 2017. © 2016 Wiley Periodicals, Inc.

  11. Surface electromyography of myopotential oversensing provoked by simultaneous straining and leftward twisting in a patient with an implantable cardioverter defibrillator.

    PubMed

    Ajiro, Yoichi; Shiga, Tsuyoshi; Shoda, Morio; Hagiwara, Nobuhisa

    2017-03-01

    An important step in diagnosing myopotential oversensing is to confirm its reproducibility using specific provocation maneuvers. Although most maneuvers involve the co-contraction of many muscles, no attempt has been made to assess relevant muscle activities by electromyography. We describe a case with an implantable cardioverter defibrillator (ICD) whose myopotential oversensing was provoked by simultaneous straining and leftward twisting. Simultaneous recordings from real-time ICD telemetry and myopotentials of the rectus abdominis, oblique abdominis, and diaphragm on electromyography during the provocation maneuvers were conducted. It was shown that all three muscles contracted simultaneously during the provocation maneuvers; the diaphragm activity was the main source of noise oversensing, and the twist itself caused oversensing possibly due to the change in the position of the lead. In conclusion, the electromyographic assessment of relevant muscle activities may be useful in assessing each muscle's role and its contribution to myopotential oversensing, especially in a patient whose myopotential oversensing requires complex maneuvers to be provoked.

  12. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    PubMed

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  13. The immediate intervention effects of robotic training in patients after anterior cruciate ligament reconstruction.

    PubMed

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao

    2016-07-01

    [Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training.

  14. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William

    2011-10-01

    This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.

  15. Can surface electromyography improve surgery planning? Electromyographic assessment and intraoperative verification of the nerve bundle entry point location of the gracilis muscle.

    PubMed

    Romaniszyn, Michal; Walega, Piotr; Nowakowski, Michal; Nowak, Wojciech

    2016-06-01

    To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle's body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. On average, the IZ was located 65.5mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10±9.7mm, maximal - 30mm, the difference being statistically significant (p=0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5mm (mean difference 2.8mm, p=0.767). Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads.

    PubMed

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.

  17. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads

    PubMed Central

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948

  18. Psychophysiological patterns during cell phone text messaging: a preliminary study.

    PubMed

    Lin, I-Mei; Peper, Erik

    2009-03-01

    This study investigated the psychophysiological patterns associated with cell phone text messaging (texting). Twelve college students who were very familiar with texting were monitored with surface electromyography (SEMG) from the shoulder (upper trapezius) and thumb (abductor pollicis brevis/opponens pollicis); blood volume pulse (BVP) from the middle finger, temperature from the index finger, and skin conductance (SC) from the palm of the non-texting hand; and respiration from the thorax and abdomen. The counter-balanced procedure consisted of a 2 min pre-baseline, 1 min receiving text messages, 2 min middle baseline, 1 min sending text messages and 2 min post-baseline. The results indicated that all subjects showed significant increases in respiration rate, heart rate, SC, and shoulder and thumb SEMG as compared to baseline measures. Eighty-three percentage of the participants reported hand and neck pain during texting, and held their breath and experienced arousal when receiving text messages. Subjectively, most subjects were unaware of their physiological changes. The study suggests that frequent triggering of these physiological patterns (freezing for stability and shallow breathing) may increase muscle discomfort symptoms. Thus, participants should be trained to inhibit these responses to prevent illness and discomfort.

  19. Masseter and temporalis muscle electromyography findings after lower third molar extraction

    PubMed Central

    Buesa-Bárez, José-María; Martínez-Rodríguez, Natalia; Barona-Dorado, Cristina; Sanz-Alonso, Javier; Cortés-Bretón-Brinkmann, Jorge; Martínez-González, José-María

    2018-01-01

    Background The main clinical application of electromyography is to detect abnormalities in muscle function, to assess muscle activity for purposes of recruitment, and in the biomechanics of movement. Objectives To analyze electromyography (EMG) findings for masticatory muscles during chewing following surgical extraction of lower third molars, and to determine any correlation between pain, inflammation, trismus, and the EMG data registered. Material and Methods This prospective study included 31 patients. Surface EMG was used to study masseter and temporalis muscle function before lower third molar extraction and 72 hours and seven days after surgery. Clinical variables, pain, inflammation, and trismus were registered before and after surgery. Results Studying the area and size of the masticatory muscles, higher values were found for temporalis than masseter muscles, regardless of the surgical side, which points to the greater involvement of the temporalis muscle in mastication. Comparing the side where surgery had been performed with the non-surgical side, a sharp and statistically significant reduction in amplitude and area were noted on the surgical side reflecting major functional affectation. One week after surgery, amplitude and area had almost returned to base-line values, indicating almost complete recovery. While pain decreased progressively after surgery, inflammation peaked at 72 hours, while mouth opening reached a minimum at this time, returning to normality within the week. Conclusions Surgical extraction of lower third molars produces changes to electromyography activity that are more evident during the first hours after surgery and closely related to the intensity of pain suffered and the patient’s inflammatory responses, although they are not related to mouth opening capacity. Key words:Third molar surgery, electromyography, pain, inflammation, trismus, masticatory muscles. PMID:29274163

  20. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  1. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  2. Use of multiple-site performance-contingent SEMG reward programming in pediatric rehabilitation: a retrospective review.

    PubMed

    Bolek, Jeffrey E

    2006-09-01

    We completed a retrospective review of the effectiveness of multi-site, performance-contingent reward programming on functional change in motor performance of 16 treatment resistant children. Patients were previously treated in physical or occupational therapy for head control, standing balance training, sitting and upper extremity use (brachial plexus injury). They then participated in a program that utilized multiple surface electromyography sites the use of which was rewarded with videos for performing the correct constellation of recruitment pattern (e.g., contracting some muscles while relaxing others). Onset of reward was calibrated for each patient and transfer of skill to outside the clinic was encouraged by linking a verbal cue to the correct motor plan. Fourteen of the 16 patients improved. The implications of the use of this technique in the treatment of motor dysfunction is discussed.

  3. Can the calf-raise senior test predict functional fitness in elderly people? A validation study using electromyography, kinematics and strength tests.

    PubMed

    André, Helô-Isa; Carnide, Filomena; Moço, Andreia; Valamatos, Maria-João; Ramalho, Fátima; Santos-Rocha, Rita; Veloso, António

    2018-06-05

    The assessment of the plantar-flexors muscle strength in older adults (OA) is of the utmost importance since they are strongly associated with the performance of fundamental tasks of daily life. The objective was to strengthen the validity of the Calf-Raise-Senior (CRS) test by assessing the biomechanical movement pattern of calf muscles in OA with different levels of functional fitness (FF) and physical activity (PA). Twenty-six OA were assessed with CRS, a FF battery, accelerometry, strength tests, kinematics and electromyography (EMG). OA with the best and worst CRS scores were compared. The association between the scores and EMG pattern of ankle muscles was determined. OA with the best CRS scores presented higher levels of FF, PA, strength, power, speed and range of movement, and a more efficient movement pattern during the test. Subjects who scored more at the CRS test demonstrated the possibility to use a stretch-shortening cycle type of action in the PF muscles to increase power during the movements. OA with different levels of FF can be stratified by the muscular activation pattern of the calf muscles and the scores in CRS test. This study reinforced the validity of CRS for evaluating ankle strength and power in OA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  5. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  6. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  7. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Emg Signal Analysis of Healthy and Neuropathic Individuals

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa

    2017-08-01

    Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.

  9. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  10. Neck surface electromyography as a measure of vocal hyperfunction before and after injection laryngoplasty

    PubMed Central

    Stepp, Cara E.; Heaton, James T.; Jetté, Marie E.; Burns, James A.; Hillman, Robert E.

    2012-01-01

    Objectives The goal of this preliminary study was to determine if neck surface electromyography (sEMG) is sensitive to possible changes in vocal hyperfunction associated with injection laryngoplasty, particularly with respect to alterations in the degree of vocal hyperfunction. Methods Thirteen individuals undergoing office-based injection laryngoplasty for glottal phonatory insufficiency were prospectively studied using a battery of acoustic, aerodynamic, endoscopic, and anterior neck surface electromyographic (sEMG) assessments before the procedure and approximately one week after. Results Anterior neck sEMG was not significantly reduced (p < 0.05) post-procedure; however, perceptual ratings of strain and false vocal fold (FVF) compression were both significantly reduced, reflecting a decrease in vocal hyperfunction. Conclusions The results do not support the use of anterior neck sEMG measures to assess vocal hyperfunction, and place into question the use of some other measures (estimates of anterior-posterior (AP) supraglottal compression, quantitative measures of AP and FVF supraglottal compression, and acoustic vowel rise times) that have been considered reflective of vocal hyperfunction. PMID:21033026

  11. Effect of Levodopa + Carbidopa on the Laryngeal Electromyographic Pattern in Parkinson Disease.

    PubMed

    Noffs, Gustavo; de Campos Duprat, André; Zarzur, Ana Paula; Cury, Rubens Gisbert; Cataldo, Berenice Oliveira; Fonoff, Erich

    2017-05-01

    Vocal impairment is one of the main debilitating symptoms of Parkinson disease (PD). The effect of levodopa on vocal function remains unclear. This study aimed to determine the effect of levodopa on electromyographic patterns of the laryngeal muscle in patients with PD. This is a prospective interventional trial. Nineteen patients with PD-diagnosed by laryngeal electromyography-were enrolled. Cricothyroid and thyroarytenoid (TA) muscle activities were measured at rest and during muscle contraction (phonation), when participants were on and off medication (12 hours after the last levodopa dose). Prevalence of resting hypertonia in the cricothyroid muscle was similar in the off and on states (7 of 19, P = 1.00). Eight patients off medication and four patients on medication had hypertonic TA muscle at rest (P = 0.289). No electromyographic alterations were observed during phonation for either medication states. Despite a tendency for increased rest tracings in the TA muscle when participants were on medication, no association was found between laryngeal electromyography findings and levodopa + carbidopa administration. Copyright © 2017. Published by Elsevier Inc.

  12. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    PubMed Central

    Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying

    2017-01-01

    Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759

  13. Effect of modified bridge exercise on trunk muscle activity in healthy adults: a cross sectional study.

    PubMed

    Yoon, Jeong-Oh; Kang, Min-Hyeok; Kim, Jun-Seok; Oh, Jae-Seop

    This is a cross-sectional study. University research laboratory. Fifteen healthy adults (mean age: 27.47 years) volunteered for this study. The individuals performed standard bridge exercise and modified bridge exercises with right leg-lift (single-leg-lift bridge exercise, single-leg-lift bridge exercise on an unstable surface, and single-leg-lift hip abduction bridge exercise). During the bridge exercises, electromyography of the rectus abdominis, internal oblique, erector spinae, and multifidus muscles was recorded using a wireless surface electromyography system. Two-way repeated-measures analysis of variance (exercise by side) with post hoc pairwise comparisons using Bonferroni correction was used to compare the electromyography data collected from each muscle. Bilateral internal oblique muscle activities showed significantly greater during single-leg-lift bridge exercise (95% confidence interval: right internal oblique=-8.99 to -1.08, left internal oblique=-6.84 to -0.10), single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right internal oblique=-7.32 to -1.78, left internal oblique=-5.34 to -0.99), and single-leg-lift hip abduction bridge exercise (95% confidence interval: right internal oblique=-17.13 to -0.89, left internal oblique=-8.56 to -0.60) compared with standard bridge exercise. Bilateral rectus abdominis showed greater electromyography activity during single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right rectus abdominis=-9.33 to -1.13, left rectus abdominis=-4.80 to -0.64) and single-leg-lift hip abduction bridge exercise (95% confidence interval: right rectus abdominis=-14.12 to -1.84, left rectus abdominis=-6.68 to -0.16) compared with standard bridge exercise. In addition, the right rectus abdominis muscle activity was greater during single-leg-lift hip abduction bridge exercise compared with single-leg-lift bridge exercise on an unstable surface (95% confidence interval=-7.51 to -0.89). For erector spinae, muscle activity was greater in right side compared with left side during all exercises (95% confidence interval: standard bridge exercise=0.19-4.53, single-leg-lift bridge exercise=0.24-10.49, single-leg-lift bridge exercise on an unstable surface=0.74-8.55, single-leg-lift hip abduction bridge exercise=0.47-11.43). There was no significant interaction and main effect for multifidus. Adding hip abduction and unstable conditions to bridge exercises may be useful strategy to facilitate the co-activation of trunk muscles. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Proportional estimation of finger movements from high-density surface electromyography.

    PubMed

    Celadon, Nicolò; Došen, Strahinja; Binder, Iris; Ariano, Paolo; Farina, Dario

    2016-08-04

    The importance to restore the hand function following an injury/disease of the nervous system led to the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to trigger the assistance of the robot. The study investigated methods for the selective estimation of individual finger movements from high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test) using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE), and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be moved. The outcome measures were mean square error (nMSE) between the reference and generated trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR). The offline tests demonstrated that, for the reduced number of electrodes (≤24), the CSP-PE outperformed the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8 electrodes, median MAFA ~ 0.6 vs. 1.1 %, median nMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly in the online tests (median nMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical information about the single finger activity from HD-sEMG, provided in many cases a regression accuracy similar to that of the pattern recognition techniques, but the performance was not consistent across subjects and fingers. The CSP-PE is a method of choice for selective individual finger control with the limited number of electrodes (<24), whereas for the higher resolution of the recording, either method (CPS-PA or LDA) can be used with a similar performance. Despite the abundance of detection points, the simple THR showed to be significantly worse compared to both pattern recognition/regression methods. Nevertheless, THR is a simple method to apply (no training), and it could still give satisfactory performance in some subjects and/or simpler scenarios (e.g., control of selected fingers). These conclusions are important for guiding future developments towards the clinical application of the methods for individual finger control in rehabilitation robotics.

  15. Diagnostic yield of electromyography in children with myopathic disorders.

    PubMed

    Ghosh, Partha S; Sorenson, Eric J

    2014-08-01

    Interpretation of pediatric electromyography interpretation in myopathic disorders is technically challenging. We assessed our electromyographic experience with respect to sensitivity and specificity in pediatric myopathy. We did a retrospective chart review of patients ≤18 years between 2009 and 2013. Two hundred twenty-four electromyographic studies were reviewed with the following referral diagnoses: myopathy, muscle weakness, neuromuscular disorders, myositis, myalgia, myoglobinuria, myasthenia, myotonia, cramps, periodic paralysis, hypotonia, and developmental delay. Only children who had an electromyography and muscle biopsy were included for analysis. Patients with neurogenic electromyography and neuromuscular junction disorders were excluded. Myopathic electromyography was defined as short duration, low amplitude, polyphasic motor unit potentials with rapid recruitment. Seventy-two patients were included (age range, 6 months-18 years). The following observations were made: group A: myopathic electromyography or pathognomonic of muscle disease and biopsy or genetically confirmed myopathy (32 cases); group B: myopathic electromyography but biopsy normal or nondiagnostic (12 cases); group C: normal electromyography but biopsy or genetically confirmed myopathy (three cases, all with metabolic myopathy); and group D: electromyography normal and biopsy normal or nondiagnostic (25 cases). The most common diagnoses were congenital myopathy (seven cases), metabolic myopathy (six cases), muscular dystrophy (six cases), genetically confirmed myopathy (five cases), myopathy, undefined (five cases), and inflammatory myopathy (four cases). Pediatric electromyography was 91% sensitive and 67% specific in myopathic disorders. The metabolic myopathies were commonly missed by electromyography. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  17. Surface electromyography and plantar pressure changes with novel gait training device in participants with chronic ankle instability.

    PubMed

    Feger, Mark A; Hertel, Jay

    2016-08-01

    Rehabilitation is ineffective at restoring normal gait in chronic ankle instability patients. Our purpose was to determine if a novel gait-training device could decrease plantar pressure on the lateral column of the foot in chronic ankle instability patients. Ten chronic ankle instability patients completed 30s trials of baseline and gait-training walking at a self-selected pace while in-shoe plantar pressure and surface electromyography were recorded from their anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius. The gait-training device applied a medially-directed force to the lower leg via elastic bands during the entire gait cycle. Plantar pressure measures of the entire foot and 9 specific regions of the foot as well as surface electromyography root mean square areas were compared between the baseline and gait-training conditions using paired t-tests with a priori level of significance of p≤0.05. The gait-training device decreased pressure time integrals and peak pressures in the lateral midfoot (p=0.003 and p=0.003) and lateral forefoot (p=0.023 and p=0.005), and increased pressure time integrals and peak pressures for the total foot (p=0.030 and p=0.017) and hallux (p=0.005 and p=0.002). The center of pressure was shifted medially during the entire stance phase (p<0.003 for all comparisons) due to increased peroneus longus activity prior to (p=0.002) and following initial contact (p=0.002). The gait-training device decreased pressure on the lateral column of the foot and increased peroneus longus muscle activity. Future research should analyze the efficacy of the gait-training device during gait retraining for chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SURFACE ELECTROMYOGRAPHY OF MASSETER AND TEMPORAL MUSCLES WITH USE PERCENTAGE WHILE CHEWING ON CANDIDATES FOR GASTROPLASTY

    PubMed Central

    dos SANTOS, Andréa Cavalcante; da SILVA, Carlos Antonio Bruno

    2016-01-01

    ABSTRACT Background: Surface electromyography identifies changes in the electrical potential of the muscles during each contraction. The percentage of use is a way to treat values enabling comparison between groups. Aim: To analyze the electrical activity and the percentage of use of masseter and temporal muscles during chewing in candidates for gastric bypass. Methods: It was used Surface Electromyography Miotool 200,400 (Miotec (r), Porto Alegre/RS, Brazil) integrated with Miograph 2.0 software, involving patients between 20-40 years old. Were included data on electrical activity simultaneously and in pairs of temporal muscle groups and masseter at rest, maximum intercuspation and during the chewing of food previously classified. Results: Were enrolled 39 patients (59 women), mean age 27.1+/-5.7. The percentage of use focused on temporal muscle, in a range of 11-20, female literacy (n=11; 47.82) on the left side and 15 (65.21) on the right-hand side. In the male, nine (56.25) at left and 12 (75.00) on the right-hand side. In masseter, also in the range of 11 to 20, female literacy (n=10; 43.48) on the left side and 11 (47.83) on the right-hand side. In the male, nine (56.25) at left and eight (50.00) on the right-hand side. Conclusion: 40-50% of the sample showed electrical activity in muscles (masseter and temporal) with variable values, and after processing into percentage value, facilitating the comparison of load of used electrical activity between the group, as well as usage percentage was obtained of muscle fibers 11-20% values involving, representing a range that is considered as a reference to the group studied. The gender was not a variable. PMID:27683776

  19. [Laryngeal electromyography in diagnosis and treatment of voice disorders].

    PubMed

    García-López, Isabel; Santiago-Pérez, Susana; Peñarrocha-Teres, Julio; del Palacio, Antonio J; Gavilan, Javier

    2012-01-01

    Laryngeal electromyography, together with clinical evaluation, is a valuable tool in voice disorder management. It assesses the integrity of laryngeal nerves and muscles, contributing to the diagnosis of many diseases, especially laryngeal movement disorders. Our purpose was to describe the experience of the first Spanish series with laryngeal electromyography in evaluating voice disorders. A prospective study was designed to evaluate laryngeal movement disorders with laryngeal electromyography. Both the cricothyroid and thyroarytenoid muscles were tested routinely and, in some cases, the posterior cricoarytenoid muscle. The laryngeal electromyography technique and result interpretation were performed by a laryngologist and a neurophysiologist. We included 110 patients, with the most common symptom being dysphonia. Laryngeal electromyography was performed in 85% of cases. Primary diagnosis before electromyography was laryngeal immobility. Positive predictive value for diagnosis in cases of paralysis was 88%. Laryngeal electromyography is a useful adjunct, together with clinical evaluation, for diagnosis and management of motion abnormalities in the larynx in patients who present with dysphonia. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  20. Foot and Ankle Kinematics and Dynamic Electromyography: Quantitative Analysis of Recovery From Peroneal Neuropathy in a Professional Football Player.

    PubMed

    Prasad, Nikhil K; Coleman Wood, Krista A; Spinner, Robert J; Kaufman, Kenton R

    The assessment of neuromuscular recovery after peripheral nerve surgery has typically been a subjective physical examination. The purpose of this report was to assess the value of gait analysis in documenting recovery quantitatively. A professional football player underwent gait analysis before and after surgery for a peroneal intraneural ganglion cyst causing a left-sided foot drop. Surface electromyography (SEMG) recording from surface electrodes and motion parameter acquisition from a computerized motion capture system consisting of 10 infrared cameras were performed simultaneously. A comparison between SEMG recordings before and after surgery showed a progression from disorganized activation in the left tibialis anterior and peroneus longus muscles to temporally appropriate activation for the phase of the gait cycle. Kinematic analysis of ankle motion planes showed resolution from a complete foot drop preoperatively to phase-appropriate dorsiflexion postoperatively. Gait analysis with dynamic SEMG and motion capture complements physical examination when assessing postoperative recovery in athletes.

  1. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography.

    PubMed

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne

    2017-06-01

    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  2. Onset and maximum values of electromyographic amplitude during prone hip extension after neurodynamic technique in patients with lumbosciatic pain: A pilot study.

    PubMed

    Horment-Lara, Giselle; Cruz-Montecinos, Carlos; Núñez-Cortés, Rodrigo; Letelier-Horta, Pablo; Henriquez-Fuentes, Luis

    2016-04-01

    The mechanisms underlying the effects of neurodynamic techniques are still unknown. Therefore, the aim of this study was to provide a starting point for future research on explaining why neurodynamic techniques affect muscular activities in patients with sciatic pain. A double-blind trial was conducted in 12 patients with lumbosciatica. Surface electromyography activity was assessed for different muscles during prone hip extension. Pre- and post-intervention values for muscle activity onset and maximal amplitude signals were determined. There was a significant reduction in the surface electromyography activity of maximal amplitude in the erector spinae and contralateral erector spinae (p < 0.05). Additionally, gluteus maximus (p < 0.05) activity onset was delayed post-intervention. Self-neurodynamic sliding techniques modify muscular activity and onset during prone hip extension, possibly reducing unnecessary adaptations for protecting injured components. Future work will analyze the effects of self-neurodynamic sliding techniques during other physical tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Detection of convulsive seizures using surface electromyography.

    PubMed

    Beniczky, Sándor; Conradsen, Isa; Wolf, Peter

    2018-06-01

    Bilateral (generalized) tonic-clonic seizures (TCS) increase the risk of sudden unexpected death in epilepsy (SUDEP), especially when patients are unattended. In sleep, TCS often remain unnoticed, which can result in suboptimal treatment decisions. There is a need for automated detection of these major epileptic seizures, using wearable devices. Quantitative surface electromyography (EMG) changes are specific for TCS and characterized by a dynamic evolution of low- and high-frequency signal components. Algorithms targeting increase in high-frequency EMG signals constitute biomarkers of TCS; they can be used both for seizure detection and for differentiating TCS from convulsive nonepileptic seizures. Two large-scale, blinded, prospective studies demonstrated the accuracy of wearable EMG devices for detecting TCS with high sensitivity (76%-100%). The rate of false alarms (0.7-2.5/24 h) needs further improvement. This article summarizes the pathophysiology of muscle activation during convulsive seizures and reviews the published evidence on the accuracy of EMG-based seizure detection. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  4. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    PubMed

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  5. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint.

    PubMed

    Delahunt, Eamonn; Monaghan, Kenneth; Caulfield, Brian

    2006-12-01

    The ankle joint requires very precise neuromuscular control during the transition from terminal swing to the early stance phase of the gait cycle. Altered ankle joint arthrokinematics and muscular activity have been cited as potential factors that may lead to an inversion sprain during the aforementioned time periods. However, to date, no study has investigated patterns of muscle activity and 3D joint kinematics simultaneously in a group of subjects with functional instability compared with a noninjured control group during these phases of the gait cycle. To compare the patterns of lower limb 3D joint kinematics and electromyographic activity during treadmill walking in a group of subjects with functional instability with those observed in a control group. Controlled laboratory study. Three-dimensional angular velocities and displacements of the hip, knee, and ankle joints, as well as surface electromyography of the rectus femoris, peroneus longus, tibialis anterior, and soleus muscles, were recorded simultaneously while subjects walked on a treadmill at a velocity of 4 km/h. Before heel strike, subjects with functional instability exhibited a decrease in vertical foot-floor clearance (12.62 vs 22.84 mm; P < .05), as well as exhibiting a more inverted position of the ankle joint before, at, and immediately after heel strike (1.69 degrees , 2.10 degrees , and -0.09 degrees vs -1.43 degrees , -1.43 degrees , and -2.78 degrees , respectively [minus value = eversion]; P < .05) compared with controls. Subjects with functional instability were also observed to have an increase in peroneus longus integral electromyography during the post-heel strike time period (107.91%.millisecond vs 64.53%.millisecond; P < .01). The altered kinematics observed in this study could explain the reason subjects with functional instability experience repeated episodes of ankle inversion injury in situations with only slight or no external provocation. It is hypothesized that the observed increase in peroneus longus activity may be the result of a change in preprogrammed feed-forward motor control.

  6. Channel and feature selection in multifunction myoelectric control.

    PubMed

    Khushaba, Rami N; Al-Jumaily, Adel

    2007-01-01

    Real time controlling devices based on myoelectric singles (MES) is one of the challenging research problems. This paper presents a new approach to reduce the computational cost of real time systems driven by Myoelectric signals (MES) (a.k.a Electromyography--EMG). The new approach evaluates the significance of feature/channel selection on MES pattern recognition. Particle Swarm Optimization (PSO), an evolutionary computational technique, is employed to search the feature/channel space for important subsets. These important subsets will be evaluated using a multilayer perceptron trained with back propagation neural network (BPNN). Practical results acquired from tests done on six subjects' datasets of MES signals measured in a noninvasive manner using surface electrodes are presented. It is proved that minimum error rates can be achieved by considering the correct combination of features/channels, thus providing a feasible system for practical implementation purpose for rehabilitation of patients.

  7. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  8. Spatial factors and muscle spindle input influence the generation of neuromuscular responses to stimulation of the human foot

    NASA Astrophysics Data System (ADS)

    Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.

    2005-05-01

    Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.

  9. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  10. The use of electromyography interference pattern analysis to determine muscle force of the deep digital flexor muscle in healthy and laminitic horses.

    PubMed

    Hardeman, L C; van der Meij, B R; Back, W; van der Kolk, J H; Wijnberg, I D

    2016-01-01

    In equine laminitis, the deep digital flexor muscle (DDFM) appears to have increased muscle force, but evidence-based confirmation is lacking. The purpose of this study was to test if the DDFM of laminitic equines has an increased muscle force detectable by needle electromyography interference pattern analysis (IPA). The control group included six Royal Dutch Sport horses, three Shetland ponies and one Welsh pony [10 healthy, sound adults weighing 411 ± 217 kg (mean ± SD) and aged 10 ± 5 years]. The laminitic group included three Royal Dutch Sport horses, one Friesian, one Haflinger, one Icelandic horse, one Welsh pony, one miniature Appaloosa and six Shetland ponies (14 adults, weight 310 ± 178 kg, aged 13 ± 6 years) with acute/chronic laminitis. The electromyography IPA measurements included firing rate, turns/second (T), amplitude/turn (M) and M/T ratio. Statistical analysis used a general linear model with outcomes transformed to geometric means. The firing rate of the total laminitic group was higher than the total control group. This difference was smaller for the ponies compared to the horses; in the horses, the geometric mean difference of the laminitic group was 1.73 [geometric 95% confidence interval (CI) 1.29-2.32], and in the ponies this value was 1.09 (geometric 95% CI 0.82-1.45). In human medicine, an increased firing rate is characteristic of increased muscle force. Thus, the increased firing rate of the DDFM in the context of laminitis suggests an elevated muscle force. However, this seems to be only a partial effect as in this study, the unchanged turns/second and amplitude/turn failed to prove the recruitment of larger motor units with larger amplitude motor unit potentials in laminitic equids.

  11. The use of surface electromyography as a tool in differentiating temporomandibular disorders from neck disorders.

    PubMed

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Luraghi, Francesca E; Sforza, Chiarella

    2007-11-01

    The aim of this study was to assess the electromyographic characteristics of the masticatory muscles (masseter and temporalis) of patients with either "temporomandibular joint disorder" or "neck pain". Surface electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 38 patients aged 21-67 years who had either (a) temporomandibular joint disorder (24 patients); (b) "neck pain" (13 patients). Ninety-five control, healthy subjects were also examined. During clenching, standardized total muscle activities (electromyographic potentials over time) were significantly different in the three groups: 75 microV/microVs% in the temporomandibular joint disorder patients, 124 microV/microVs% in the neck pain patients, and 95 microV/microVs% in the control subjects (analysis of variance, P<0.001). The temporomandibular joint disorder patients also had significantly (P<0.001) more asymmetric muscle potentials (78%) than either neck pain patients (87%) or control subjects (92%). A linear discriminant function analysis allowed a significant separation between the two patient groups, with a single patient error of 18.2%. Surface electromyographic analysis during clenching allowed to differentiate between patients with a temporomandibular joint disorder and patients with a neck pain problem.

  12. The effect of a hybrid assistive limb® on sit-to-stand and standing patterns of stroke patients

    PubMed Central

    Kasai, Rie; Takeda, Sunao

    2016-01-01

    [Purpose] The Hybrid Assistive Limb® (HAL®) robot suit is a powered exoskeleton that can assist a user’s lower limb movement. The purpose of this study was to assess the effectiveness of HAL® in stroke rehabilitation, focusing on the change of the sit-to-stand (STS) movement pattern and standing posture. [Subjects and Methods] Five stroke patients participated in this study. Single leg HAL® was attached to each subject’s paretic lower limb. The subjects performed STS three times both with and without HAL® use. A tri-axial accelerometer was used to assess the STS movement pattern. Forward-tilt angle (FTA) and the time required for STS were measured with and without HAL® use. Surface electromyography (EMG) of STS and standing were recorded to assess the vastus medialis muscle activities of the paretic limb. [Results] The average FTA without HAL® use was 35° and it improved to 43° with HAL® use. The time required for STS was longer for all subjects with HAL® use (without HAL® use: 3.42 s, with HAL® use: 5.11 s). The integrated EMGs of HAL® use compared to those without HAL®, were 83.6% and 66.3% for STS and standing, respectively. [Conclusion] HAL® may be effective in improving STS and standing patterns of stroke patients. PMID:27390416

  13. Electromyography in the four competitive swimming strokes: a systematic review.

    PubMed

    Martens, Jonas; Figueiredo, Pedro; Daly, Daniel

    2015-04-01

    The aim of this paper is to give an overview on 50 years of research in electromyography in the four competitive swimming strokes (crawl, breaststroke, butterfly, and backstroke). A systematic search of the existing literature was conducted using the combined keywords "swimming" and "EMG" on studies published before August 2013, in the electronic databases PubMed, ISI Web of Knowledge, SPORT discus, Academic Search Elite, Embase, CINAHL and Cochrane Library. The quality of each publication was assessed by two independent reviewers using a custom made checklist. Frequency of topics, muscles studied, swimming activities, populations, types of equipment and data treatment were determined from all selected papers and, when possible, results were compared and contrasted. In the first 20 years of EMG studies in swimming, most papers were published as congress proceedings. The methodological quality was low. Crawl stroke was most often studied. There was no standardized manner of defining swimming phases, normalizing the data or of presenting the results. Furthermore, the variability around the mean muscle activation patterns is large which makes it difficult to define a single pattern applicable to all swimmers in any activity examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients.

    PubMed

    Shin, Hwa Kyung; Cho, Sang Hyun; Jeon, Hye-seon; Lee, Young-Hee; Song, Jun Chan; Jang, Sung Ho; Lee, Chu-Hee; Kwon, Yong Hyun

    2008-09-19

    We investigated the effect of electromyography (EMG)-triggered neuromuscular electrical stimulation (NMES; EMG-stim) on functional recovery of the hemiparetic hand and the related cortical activation pattern in chronic stroke patients. We enrolled 14 stroke patients, who were randomly assigned to the EMG-stim (n=7) or the control groups (n=7). The EMG-stim was applied to the wrist extensor of the EMG-stim group for two sessions (30 min/session) a day, five times per week for 10 weeks. Four functional tests (box and block, strength, the accuracy index, and the on/offset time of muscle contraction) and functional MRI (fMRI) were performed before and after treatment. fMRI was measured at 1.5 T in parallel with timed finger flexion-extension movements at a fixed rate. Following treatment, the EMG-stim group showed a significant improvement in all functional tests. The main cortical activation change with such functional improvement was shifted from the ipsilateral sensorimotor cortex (SMC) to the contralateral SMC. We demonstrated that 10-week EMG-stim can induce functional recovery and change of cortical activation pattern in the hemiparetic hand of chronic stroke patients.

  15. Characterizing the SEMG patterns with myofascial pain using a multi-scale wavelet model through machine learning approaches.

    PubMed

    Lin, Yu-Ching; Yu, Nan-Ying; Jiang, Ching-Fen; Chang, Shao-Hsia

    2018-06-02

    In this paper, we introduce a newly developed multi-scale wavelet model for the interpretation of surface electromyography (SEMG) signals and validate the model's capability to characterize changes in neuromuscular activation in cases with myofascial pain syndrome (MPS) via machine learning methods. The SEMG data collected from normal (N = 30; 27 women, 3 men) and MPS subjects (N = 26; 22 women, 4 men) were adopted for this retrospective analysis. SMEGs were measured from the taut-band loci on both sides of the trapezius muscle on the upper back while he/she conducted a cyclic bilateral backward shoulder extension movement within 1 min. Classification accuracy of the SEMG model to differentiate MPS patients from normal subjects was 77% using template matching and 60% using K-means clustering. Classification consistency between the two machine learning methods was 87% in the normal group and 93% in the MPS group. The 2D feature graphs derived from the proposed multi-scale model revealed distinct patterns between normal subjects and MPS patients. The classification consistency using template matching and K-means clustering suggests the potential of using the proposed model to characterize interference pattern changes induced by MPS. Copyright © 2018. Published by Elsevier Ltd.

  16. Patterns of anterior and posterior muscle chain interactions during high performance long-hang elements in gymnastics.

    PubMed

    von Laßberg, Christoph; Rapp, Walter; Krug, Jürgen

    2014-06-01

    In a prior study with high level gymnasts we could demonstrate that the neuromuscular activation pattern during the "whip-like" leg acceleration phases (LAP) in accelerating movement sequences on high bar, primarily runs in a consecutive succession from the bar (punctum fixum) to the legs (punctum mobile). The current study presents how the neuromuscular activation is represented during movement sequences that immediately follow the LAP by the antagonist muscle chain to generate an effective transfer of momentum for performing specific elements, based on the energy generated by the preceding LAP. Thirteen high level gymnasts were assessed by surface electromyography during high performance elements on high bar and parallel bars. The results show that the neuromuscular succession runs primarily from punctum mobile towards punctum fixum for generating the transfer of momentum. Additionally, further principles of neuromuscular interactions between the anterior and posterior muscle chain during such movement sequences are presented. The findings complement the understanding of neuromuscular activation patterns during rotational movements around fixed axes and will help to form the basis of more direct and better teaching methods regarding earlier optimization and facilitation of the motor learning process concerning fundamental movement requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An Electromyograph Comparison of an Isokenetic Bench Press at Three Speeds.

    ERIC Educational Resources Information Center

    Ridgeway, M.; And Others

    The muscle action potentials (MAP) of the anterior deltoid, pectoralis major, biceps brachii, and the triceps muscle were studied by quantitative electromyography (emg) during a bench press exercise at three controlled speeds. Bipolar surface electrodes with standard placement were employed throughout the study. Eleven volunteer college women…

  18. Central motor control failure in fibromyalgia: a surface electromyography study

    PubMed Central

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-01-01

    Background Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group) and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean ± SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p < 0.01) in the FM group. There were no between-group differences in the results obtained from the electrically elicited contractions. Conclusion The apparent paradox of fewer myoelectrical manifestations of fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control. PMID:19570214

  19. Design and fuzzy logic control of an active wrist orthosis.

    PubMed

    Kilic, Ergin; Dogan, Erdi

    2017-08-01

    People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.

  20. Peak Muscle Activation, Joint Kinematics, and Kinetics during Elliptical and Stepping Movement Pattern on a Precor Adaptive Motion Trainer

    ERIC Educational Resources Information Center

    Rogatzki, Matthew J.; Kernozek, Thomas W.; Willson, John D.; Greany, John F.; Hong, Di-An; Porcari, John P.

    2012-01-01

    Kinematic, kinetic, and electromyography data were collected from the biceps femoris, rectus femoris (RF), gluteus maximus, and erector spinae (ES) during a step and elliptical exercise at a standardized workload with no hand use. Findings depicted 95% greater ankle plantar flexion (p = 0.01), 29% more knee extension (p = 0.003), 101% higher peak…

  1. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    ERIC Educational Resources Information Center

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  2. Modulation of Neck Intermuscular Beta Coherence during Voice and Speech Production

    ERIC Educational Resources Information Center

    Stepp, Cara E.; Hillman, Robert E.; Heaton, James T.

    2011-01-01

    Purpose: The purpose of this study was to better understand neck intermuscular beta coherence (15-35 Hz; NIBcoh) in healthy individuals, with respect to modulation by behavioral tasks. Method: Mean NIBcoh was measured using surface electromyography at 2 anterior neck locations in 10 individuals during normal speech, static nonspeech maneuvers,…

  3. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    PubMed

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  4. Reliability of quadriceps surface electromyography measurements is improved by two vs. single site recordings.

    PubMed

    Balshaw, T G; Fry, A; Maden-Wilkinson, T M; Kong, P W; Folland, J P

    2017-06-01

    The reliability of surface electromyography (sEMG) is typically modest even with rigorous methods, and therefore further improvements in sEMG reliability are desirable. This study compared the between-session reliability (both within participant absolute reliability and between-participant relative reliability) of sEMG amplitude from single vs. average of two distinct recording sites, for individual muscle (IM) and whole quadriceps (WQ) measures during voluntary and evoked contractions. Healthy males (n = 20) performed unilateral isometric knee extension contractions: voluntary maximum and submaximum (60%), as well as evoked twitch contractions on two separate days. sEMG was recorded from two distinct sites on each superficial quadriceps muscle. Averaging two recording sites vs. using single site measures improved reliability for IM and WQ measurements during voluntary (16-26% reduction in within-participant coefficient of variation, CV W ) and evoked contractions (40-56% reduction in CV W ). For sEMG measurements from large muscles, averaging the recording of two distinct sites is recommended as it improves within-participant reliability. This improved sensitivity has application to clinical and research measurement of sEMG amplitude.

  5. Exploration of Force Myography and surface Electromyography in hand gesture classification.

    PubMed

    Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo

    2017-03-01

    Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. An Overview of Laryngeal Muscle Single Fiber Electromyography.

    PubMed

    Bertorini, Tulio E; Sharaf, Aboubakar G

    2015-08-01

    Needle electromyography is an important tool in the diagnosis of neuromuscular diseases and has also been applied successfully in the evaluation of the vocal cord paralysis. Laryngeal electromyography, initially described by Weddell, is used to determine the cause of vocal cord paralysis and to differentiate organic from nonorganic causes of speech disorders. This test allows the diagnosis of lower motor neuron and nerve paralysis as well as myopathies. Laryngeal electromyography also helps to determine the prognosis of paralysis caused by traumatic injury of the laryngeal nerves and is used for guidance during botulinum toxin injection in spasmodic dysphonias. Single fiber electromyography is used to diagnose abnormalities of neuromuscular transmission and is applied in the study the architecture of the motor unit in muscles. This article reviews the techniques of laryngeal muscles single fiber electromyography, provides limited informative data, and discusses its potential value in the evaluation of patients with dysphonia.

  7. The Network Spinal Wave as a Central Pattern Generator.

    PubMed

    Senzon, Simon A; Epstein, Donald M; Lemberger, Daniel

    2016-07-01

    This article explains the research on a unique spinal wave visibly observed in association with network spinal analysis care. Since 1997, the network wave has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. The authors provide a narrative review of the research and a context for the network wave's development. The sEMG research demonstrates that the movement of the musculature of the spine during the wave phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the wave has the mathematical properties of a central pattern generator (CPG). The network wave may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the wave itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development.

  8. The Network Spinal Wave as a Central Pattern Generator

    PubMed Central

    Epstein, Donald M.; Lemberger, Daniel

    2016-01-01

    Abstract Objectives: This article explains the research on a unique spinal wave visibly observed in association with network spinal analysis care. Since 1997, the network wave has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. Methods: The authors provide a narrative review of the research and a context for the network wave's development. Results: The sEMG research demonstrates that the movement of the musculature of the spine during the wave phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the wave has the mathematical properties of a central pattern generator (CPG). Conclusions: The network wave may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the wave itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development. PMID:27243963

  9. Electromyographic Analysis of the Lower Limb Muscles in Low- and High-Handicap Golfers.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João R; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-09-01

    The aim of this study was to compare the electromyographic patterns of the lower limb muscles during a golf swing performed by low- and high-handicap golfers. Ten golfers (5 low- and 5 high-handicap) performed 8 swings using a 7-iron. Surface electromyography (EMG) was recorded for the following lower limb muscles on both sides: biceps femoris, semitendinosus, gluteus maximus, vastus medialis and lateralis, rectus femoris, tibialis anterior, peroneus longus, and gastrocnemius medialis and lateralis. The golf-swing phases were determined by 3-dimensional high-speed video analysis. Compared with the high-handicap golfers, the low-handicap golfers performed the forward swing with a shorter duration of the swing phases, with the exception of the late follow-through, where they exhibited longer duration. Considering the EMG patterns, the low-handicap golfers showed a tendency for the studied muscles to reach an activation peak earlier and presented statistically significant higher muscle activity in some of the lower limb muscles, mainly from the left side. Differences between low- and high-handicap golfers were found in the average duration of swing phases and in the activation level of the lower limbs, with more evidence on muscles from the left side.

  10. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation

    PubMed Central

    Song, Zhibin; Zhang, Songyuan

    2016-01-01

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range. PMID:27775573

  11. Kicking modality during erratic-dynamic and static condition effects the muscular co-activation of attacker.

    PubMed

    Kim, Tae-Whan; Lee, Sang-Cheol; Kil, Se-Kee; Kang, Sung-Chul; Lim, Young-Tae; Kim, Ki-Tae; Panday, Siddhartha Bikram

    2017-05-01

    The purpose of the study was to investigate the effect of different kicking modality, i.e., erratic-dynamic target (EDT) versus static target (ST) on the performance of the roundhouse kick in two groups of taekwondo athletes of different skill level. Three-dimensional analysis and surface electromyography (SEMG) analysis were performed on 12 (Group A: six sub-elite, Group B: six elite) athletes to investigate muscle co-activation pattern under two conditions, i.e., EDT versus ST. In the results, the muscle recruitment ratio of the agonistic muscles was higher for Group A, whereas Group B had higher recruitment ratio for antagonist muscles. Overall, the co-activation index (CI) of hip joints appeared higher in the extensors for Group A, whereas higher CI was observed in flexor muscles for Group B with comparatively higher CI during EDT condition than ST condition. Higher value of CI was observed in flexor muscles of the knee joints among Group A during EDT conditions, in contrast, higher CI in the extensor muscles was observed among Group B during ST conditions. In conclusion, the study confirmed that erratic-dynamic movements of target could change the movement coordination pattern to maintain the joint stability of participants.

  12. sEMG Signal Acquisition Strategy towards Hand FES Control.

    PubMed

    Toledo-Peral, Cinthya Lourdes; Gutiérrez-Martínez, Josefina; Mercado-Gutiérrez, Jorge Airy; Martín-Vignon-Whaley, Ana Isabel; Vera-Hernández, Arturo; Leija-Salas, Lorenzo

    2018-01-01

    Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG) signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES) and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT), was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  13. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.

    PubMed

    Song, Zhibin; Zhang, Songyuan

    2016-10-19

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range.

  14. [Difference analysis of muscle fatigue during the exercises of core stability training].

    PubMed

    Xiao, Jinzhuang; Sun, Jinli; Wang, Hongrui; Yang, Xincai; Zhao, Jinkui

    2017-04-01

    The present study was carried out with the surface electromyography signal of subjects during the time when subjects did the exercises of the 6 core stability trainings. We analyzed the different activity level of surface electromyography signal, and finally got various fatigue states of muscles in different exercises. Thirty subjects completed exercises of 6 core stability trainings, which were prone bridge, supine bridge, unilateral bridge (divided into two trainings, i.e. the left and right sides alternatively) and bird-dog (divided into two trainings, i.e. the left and right sides alternatively), respectively. Each exercise was held on for 1 minute and 2 minutes were given to relax between two exercises in this test. We measured both left and right sides of the body's muscles, which included erector spina, external oblique, rectus abdominis, rectus femoris, biceps femoris, anterior tibial and gastrocnemius muscles. We adopted the frequency domain characteristic value of the surface electromyography signal, i.e . median frequency slope to analyze the muscle fatigue in this study. In the present paper, the results exhibit different fatigue degrees of the above muscles during the time when they did the core stability rehabilitation exercises. It could be concluded that supine bridge and unilateral bridge can cause more fatigue on erector spina muscle, prone bridge caused Gastrocnemius muscle much fatigue and there were statistical significant differences ( P <0.05) between prone bridge and other five rehabilitation exercises in the degree of rectus abdominis muscle fatigue. There were no statistical significant differences ( P >0.05) between all the left and right sides of the same-named muscles in the median frequency slope during all the exercises of the six core stability trainings, i.e. the degree which the various kinds of rehabilitation exercises effected the left and right side of the same-named muscle had no statistical significant difference ( P >0.05). In this research, the conclusion presents quantized guidelines on the effects of core stability trainings on different muscles.

  15. Development and evaluation of a soft wearable weight support device for reducing muscle fatigue on shoulder

    PubMed Central

    Cho, Kyu-Jin

    2017-01-01

    Compensating the weight of human limbs is important in reducing muscle fatigue experienced by manual laborers. In this study, a compact and lightweight soft wearable weight support device was developed and evaluated. The device supports gravitational force on the shoulder at any arm posture, although there are some limitations in its assistive performance. The device actuator consists of a cam-rod structure, a tendon-driven mechanism, and a rubber band. The desired assistive torque is translated to the shoulder joint along a tendon routing structure. Device performance was evaluated by measuring muscle activation in with-assist and without-assist conditions. Muscle activation on the deltoid was measured by surface electromyography. An experimental protocol consisting of a series of exercises was executed with six healthy subjects. The subjects raised and lowered their arm from 0 to 100 degrees for 30 times under eight conditions, which were combined with-assist and without-assist conditions, and holding the horizontal angle of the arm at 0, 30, 60, or 90 degrees against the sagittal plane. Surface electromyography data were pre-processed and analyzed using a root mean square method. When muscle fatigue occurs, the root mean square of the surface electromyography increases nonlinearly. This was calculated using the standard deviation of the root mean square. Three of six subjects showed decreased variation of the root mean square between the exercises in the with-assist condition. One subject’s result was significantly reduced (by about 57.6%) in the with-assist condition. In contrast, two subjects did not show significant difference between measurements taken in the with-assist and without-assist conditions. One subject was dropped from the experiment because the device did not fit the subject’s body. In conclusion, the effectiveness of the soft wearable weight support device in supporting shoulder movements was verified through the decreased variation of muscle activation. PMID:28291825

  16. Development and evaluation of a soft wearable weight support device for reducing muscle fatigue on shoulder.

    PubMed

    Park, Daegeun; Cho, Kyu-Jin

    2017-01-01

    Compensating the weight of human limbs is important in reducing muscle fatigue experienced by manual laborers. In this study, a compact and lightweight soft wearable weight support device was developed and evaluated. The device supports gravitational force on the shoulder at any arm posture, although there are some limitations in its assistive performance. The device actuator consists of a cam-rod structure, a tendon-driven mechanism, and a rubber band. The desired assistive torque is translated to the shoulder joint along a tendon routing structure. Device performance was evaluated by measuring muscle activation in with-assist and without-assist conditions. Muscle activation on the deltoid was measured by surface electromyography. An experimental protocol consisting of a series of exercises was executed with six healthy subjects. The subjects raised and lowered their arm from 0 to 100 degrees for 30 times under eight conditions, which were combined with-assist and without-assist conditions, and holding the horizontal angle of the arm at 0, 30, 60, or 90 degrees against the sagittal plane. Surface electromyography data were pre-processed and analyzed using a root mean square method. When muscle fatigue occurs, the root mean square of the surface electromyography increases nonlinearly. This was calculated using the standard deviation of the root mean square. Three of six subjects showed decreased variation of the root mean square between the exercises in the with-assist condition. One subject's result was significantly reduced (by about 57.6%) in the with-assist condition. In contrast, two subjects did not show significant difference between measurements taken in the with-assist and without-assist conditions. One subject was dropped from the experiment because the device did not fit the subject's body. In conclusion, the effectiveness of the soft wearable weight support device in supporting shoulder movements was verified through the decreased variation of muscle activation.

  17. Magnetic resonance imaging and electromyography as indexes of muscle function

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Duvoisin, Marc R.; Dudley, Gary A.

    1992-01-01

    A hypothesis is tested that exercise-induced magnetic resonance (MR) contrast shifts would relate to electromyography (EMG) amplitude if both measures reflect muscle use during exercise. Both magnetic resonance images (MRI) and EMG data were obtained for separate eccentric (ECC) and cocentric (CON) exercise of increasing intensity for seven subjects 30-32 yr old. CON and ECC actions caused increased integrated EMG (IEMG) and T2 values which were strongly related with relative resistance. The rate of increase and absolute value of both T2 and IEMG were found to be greater for CON than for ECC actions. For both actions IEMG and T2 were correlated. Data obtained suggest that surface IEMG accurately reflects the contractile behavior of muscle and exercise-induced increases in MRI T2 values reflect certain processes that scale with muscle use.

  18. Experiences in the creation of an electromyography database to help hand amputated persons.

    PubMed

    Atzori, Manfredo; Gijsberts, Arjan; Heynen, Simone; Hager, Anne-Gabrielle Mittaz; Castellimi, Claudio; Caputo, Barbara; Müller, Henning

    2012-01-01

    Currently, trans-radial amputees can only perform a few simple movements with prosthetic hands. This is mainly due to low control capabilities and the long training time that is required to learn controlling them with surface electromyography (sEMG). This is in contrast with recent advances in mechatronics, thanks to which mechanical hands have multiple degrees of freedom and in some cases force control. To help improve the situation, we are building the NinaPro (Non-Invasive Adaptive Prosthetics) database, a database of about 50 hand and wrist movements recorded from several healthy and currently very few amputated persons that will help the community to test and improve sEMG-based natural control systems for prosthetic hands. In this paper we describe the experimental experiences and practical aspects related to the data acquisition.

  19. Simplifying the diagnosis of 4 common voiding conditions using uroflow/electromyography, electromyography lag time and voiding history.

    PubMed

    Van Batavia, Jason P; Combs, Andrew J; Hyun, Grace; Bayer, Agnes; Medina-Kreppein, Daisy; Schlussel, Richard N; Glassberg, Kenneth I

    2011-10-01

    Noninvasive uroflowmetry with simultaneous electromyography is useful to triage cases of lower urinary tract symptoms into 4 urodynamically defined conditions, especially when incorporating short and long electromyography lag times in the analysis. We determined the prevalence of these 4 conditions at a single referral institution and the usefulness of uroflowmetry with simultaneous electromyography and electromyography lag time to confirm the diagnosis, guide treatment and monitor response. We retrospectively reviewed the records of 100 consecutive normal children who presented with persistent lower urinary tract symptoms, underwent uroflowmetry with electromyography as part of the initial evaluation and were diagnosed with 1 of 4 conditions based on certain uroflowmetry/electromyography features. The conditions included 1) dysfunctional voiding--active pelvic floor electromyography during voiding with or without staccato flow, 2a) idiopathic detrusor overactivity disorder-A--a quiet pelvic floor during voiding and shortened lag time (less than 2 seconds), 2b) idiopathic detrusor overactivity disorder-B--a quiet pelvic floor with a normal lag time, 3) detrusor underutilization disorder--volitionally deferred voiding with expanded bladder capacity but a quiet pelvic floor, and 4) primary bladder neck dysfunction--prolonged lag time (greater than 6 seconds) and a depressed, right shifted uroflowmetry curve with a quiet pelvic floor during voiding. Treatment was tailored to the underlying condition in each patient. The group consisted of 50 males and 50 females with a mean age of 8 years (range 3 to 18). Dysfunctional voiding was more common in females (p <0.05) while idiopathic detrusor overactivity disorder-B and primary bladder neck dysfunction were more common in males (p <0.01). With treatment uroflowmetry parameters normalized for all types. Electromyography lag time increased in idiopathic detrusor overactivity disorder-A cases and decreased in primary bladder neck dysfunction cases. Noninvasive uroflowmetry with simultaneous electromyography offers an excellent alternative to invasive urodynamics to diagnose 4 urodynamically defined conditions. It identifies the most appropriate therapy for the specific condition and objectively monitors the treatment response. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery.

    PubMed

    Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T

    2014-08-01

    To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Effect of ski simulator training on kinematic and muscle activation of the lower extremities

    PubMed Central

    Moon, Jeheon; Koo, Dohoon; Kim, Kitae; Shin, Insik; Kim, Hyeyoung; Kim, Jinhae

    2015-01-01

    [Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at “K” Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group’s extension muscles and the biceps femoris group’s flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue. PMID:26357449

  2. Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation

    PubMed Central

    Kauppi, Jukka-Pekka; Hahne, Janne; Müller, Klaus-Robert; Hyvärinen, Aapo

    2015-01-01

    Classifying multivariate electromyography (EMG) data is an important problem in prosthesis control as well as in neurophysiological studies and diagnosis. With modern high-density EMG sensor technology, it is possible to capture the rich spectrospatial structure of the myoelectric activity. We hypothesize that multi-way machine learning methods can efficiently utilize this structure in classification as well as reveal interesting patterns in it. To this end, we investigate the suitability of existing three-way classification methods to EMG-based hand movement classification in spectrospatial domain, as well as extend these methods by sparsification and regularization. We propose to use Fourier-domain independent component analysis as preprocessing to improve classification and interpretability of the results. In high-density EMG experiments on hand movements across 10 subjects, three-way classification yielded higher average performance compared with state-of-the art classification based on temporal features, suggesting that the three-way analysis approach can efficiently utilize detailed spectrospatial information of high-density EMG. Phase and amplitude patterns of features selected by the classifier in finger-movement data were found to be consistent with known physiology. Thus, our approach can accurately resolve hand and finger movements on the basis of detailed spectrospatial information, and at the same time allows for physiological interpretation of the results. PMID:26039100

  3. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2015-12-01

    The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  4. Relationship between Kinematics, F2 Slope and Speech Intelligibility in Dysarthria Due to Cerebral Palsy

    ERIC Educational Resources Information Center

    Rong, Panying; Loucks, Torrey; Kim, Heejin; Hasegawa-Johnson, Mark

    2012-01-01

    A multimodal approach combining acoustics, intelligibility ratings, articulography and surface electromyography was used to examine the characteristics of dysarthria due to cerebral palsy (CP). CV syllables were studied by obtaining the slope of F2 transition during the diphthong, tongue-jaw kinematics during the release of the onset consonant,…

  5. Biofeedback Treatment of Paradoxical Vocal Fold Motion and Respiratory Distress in an Adolescent Girl

    ERIC Educational Resources Information Center

    Warnes, Emily; Allen, Keith D.

    2005-01-01

    In this investigation, we evaluated the effectiveness of surface electromyography (EMG) biofeedback to treat paradoxical vocal fold motion in a 16-year-old girl. EMG biofeedback training occurred once per week over the course of 10 weeks. In a changing criterion design, muscle tension showed systematic changes that corresponded with changes in the…

  6. Abdominal muscle activity during a standing long jump.

    PubMed

    Okubo, Yu; Kaneoka, Koji; Shiina, Itsuo; Tatsumura, Masaki; Miyakawa, Shumpei

    2013-08-01

    Experimental laboratory study. To measure the activation patterns (onset and magnitude) of the abdominal muscles during a standing long jump using wire and surface electromyography. Activation patterns of the abdominal muscles, especially the deep muscles such as the transversus abdominis (TrA), have yet to be examined during full-body movements such as jumping. Thirteen healthy men participated. Wire electrodes were inserted into the TrA with the guidance of ultrasonography, and surface electrodes were attached to the skin overlying the rectus abdominis (RA) and external oblique (EO). Electromyographic signals and video images were recorded while each subject performed a standing long jump. The jump task was divided into 3 phases: preparation, push-off, and float. For each muscle, activation onset relative to the onset of the RA and normalized muscle activation levels (percent maximum voluntary contraction) were analyzed during each phase. Comparisons between muscles and phases were assessed using 2-way analyses of variance. The onset times of the TrA and EO relative to the onset of the RA were -0.13 ? 0.17 seconds and -0.02 ? 0.07 seconds, respectively. Onset of TrA activation was earlier than that of the EO. The activation levels of all 3 muscles were significantly greater during the push-off phase than during the preparation and float phases. Consistent with previously published trunk-perturbation studies in healthy persons, the TrA was activated prior to the RA and EO. Additionally, the highest muscle activation levels were observed during the push-off phase.

  7. Muscle coordination in cycling: effect of surface incline and posture.

    PubMed

    Li, L; Caldwell, G E

    1998-09-01

    The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.

  8. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography

    PubMed Central

    Zamunér, Antonio R.; Catai, Aparecida M.; Martins, Luiz E. B.; Sakabe, Daniel I.; Silva, Ester Da

    2013-01-01

    Background The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. Objectives To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output () using two mathematical models and to compare the results to those of the visual method. Method Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between and oxygen uptake (); 2) the linear-linear model, based on fitting the curves to the set of data (Lin-Lin ); 3) a bi-segmental linear regression of Hinkley' s algorithm applied to HR (HMM-HR), (HMM- ), and sEMG data (HMM-RMS). Results There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-Lin , HMM-HR, HMM-CO2, and HMM-RMS. Conclusion The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of , HR responses, and sEMG. PMID:24346296

  9. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    PubMed Central

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  10. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    PubMed

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  11. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography.

    PubMed

    Zamunér, Antonio R; Catai, Aparecida M; Martins, Luiz E B; Sakabe, Daniel I; Da Silva, Ester

    2013-01-01

    The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output (VCO2) using two mathematical models and to compare the results to those of the visual method. Ten sedentary middle-aged men (53.9 ± 3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between VCO2 and oxygen uptake (VO2); 2) the linear-linear model, based on fitting the curves to the set of VCO2 data (Lin-LinVCO2); 3) a bi-segmental linear regression of Hinkley's algorithm applied to HR (HMM-HR), VCO2 (HMM-VCO2), and sEMG data (HMM-RMS). There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinVCO2, HMM-HR, HMM-VCO2, and HMM-RMS. The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of VCO2, HR responses, and sEMG.

  12. Laryngeal Electromyography Techniques and Clinical Use.

    PubMed

    Kimaid, Paulo Andre Teixeira; Crespo, Agrício Nubiato; Moreira, Ana Lucila; Wolf, Aline Epiphanio; França, Marcondes Cavalcante

    2015-08-01

    Laryngeal electromyography is considered a valuable diagnostic tool for voice disorders. The technique, described almost 70 years ago, evolved 3 decades later, mainly because of the growing interest of laryngologists and speech pathologists. In the authors' opinion, the reduced number of neurophysiologists involved in laryngeal electromyography groups is, at some instance, related to the difficulty to start the learning process and the multidisciplinary approach the field requires. This review highlights the anatomy and physiology needed to perform laryngeal electromyography and its clinical usefulness in the new field known as neurolaryngology.

  13. Effects of ethyl chloride spray on pain and parameters of needle electromyography in the upper extremity.

    PubMed

    Moon, Young-Eun; Kim, Sang-Hyun

    2014-10-01

    The aim of this study was to compare the effects of ethyl chloride and placebo sprays for reducing pain induced by needle electromyography and changes in parameters of the motor unit action potential during needle electromyography of the upper extremity. Sixty patients were randomized into the ethyl chloride or placebo spray groups. In both groups, spray was applied just before needle electromyography of the flexor carpi radialis, and a visual analog scale to evaluate the pain of needle electromyography and a five-point Likert scale for patient satisfaction and preference for reexamination were compared between the two groups. Then, changes in the amplitude, phases, turns, and duration of the motor unit action potential during needle electromyography of the biceps brachii were compared before and after spraying in each group. The visual analog scale was significantly lower, and patient satisfaction and preference for reexamination were significantly higher in the ethyl chloride spray group. Among the parameters of the motor unit action potential, there were no significant changes except for an increased duration after spraying with ethyl chloride. Ethyl chloride spray can effectively reduce pain, but it must be used with caution because it may affect parameters of the motor unit action potential during needle electromyography.

  14. Analysis of prosody in finger braille using electromyography.

    PubMed

    Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    2006-01-01

    Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.

  15. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.

    PubMed

    Caldas, A L; Machado-Pinheiro, W; Souza, L B; Motta-Ribeiro, G C; David, I A

    2012-09-01

    In the Stroop matching task, a Stroop word is compared to a colored bar. The origin of the conflict presented by this task is a topic of current debate. In an effort to disentangle nonresponse and response conflicts, we recorded electromyography (EMG) and event-related potentials (ERPs) while participants performed the task. The N450 component was sensitive to the relationship of color surfaces, regardless of the response, suggesting the participation of nonresponse conflict. Incompatible arrays (e.g., incongruent Stroop stimuli during "same" responses) presented a substantial amount of double EMG activation and slower EMG latencies, suggesting the participation of response conflict. We propose that both response and nonresponse conflicts are sources of these effects. The combined use of the EMG and ERP techniques played an important role in elucidating the conflicts immersed in the Stroop matching task. Copyright © 2012 Society for Psychophysiological Research.

  16. Influence of the Perceived Taste Intensity of Chemesthetic Stimuli on Swallowing Parameters Given Age and Genetic Taste Differences in Healthy Adult Women

    ERIC Educational Resources Information Center

    Pelletier, Cathy A.; Steele, Catriona M.

    2014-01-01

    Purpose: This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Method: Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled…

  17. Tongue Pressure and Submental Surface Electromyography Measures during Noneffortful and Effortful Saliva Swallows in Healthy Women

    ERIC Educational Resources Information Center

    Yeates, Erin M.; Steele, Catriona M.; Pelletier, Cathy A.

    2010-01-01

    Purpose: The effortful swallow, a compensatory technique frequently employed by speech-language pathologists for their patients with dysphagia, is still not fully understood in terms of how it modifies the swallow. In particular, although age-related changes are known to reduce maximum isometric tongue pressure, it is not known whether age affects…

  18. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.

    PubMed

    Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A

    2018-02-05

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  19. Surface electromyography in animals: A systematic review

    PubMed Central

    Valentin, Stephanie; Zsoldos, Rebeka R.

    2017-01-01

    The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. PMID:26763600

  20. Surface electromyography in animal biomechanics: A systematic review.

    PubMed

    Valentin, Stephanie; Zsoldos, Rebeka R

    2016-06-01

    The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    PubMed Central

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  2. New method of neck surface electromyography for the evaluation of tongue-lifting activity.

    PubMed

    Manda, Y; Maeda, N; Pan, Q; Sugimoto, K; Hashimoto, Y; Tanaka, Y; Kodama, N; Minagi, S

    2016-06-01

    Elevation of the posterior part of the tongue is important for normal deglutition and speech. The purpose of this study was to develop a new surface electromyography (EMG) method to non-invasively and objectively evaluate activity in the muscles that control lifting movement in the posterior tongue. Neck surface EMG (N-EMG) was recorded using differential surface electrodes placed on the neck, 1 cm posterior to the posterior border of the mylohyoid muscle on a line orthogonal to the lower border of the mandible. Experiment 1: Three healthy volunteers (three men, mean age 37·7 years) participated in an evaluation of detection method of the posterior tongue lifting up movement. EMG recordings from the masseter, temporalis and submental muscles and N-EMG revealed that i) N-EMG was not affected by masseter muscle EMG and ii) N-EMG activity was not observed during simple jaw opening and tongue protrusion, revealing the functional difference between submental surface EMG and N-EMG. Experiment 2: Seven healthy volunteers (six men and one woman, mean age 27·9 years) participated in a quantitative evaluation of muscle activity. Tongue-lifting tasks were perfor-med, exerting a prescribed force of 20, 50, 100 and 150 gf with visual feedback. For all subjects, a significant linear relationship was observed bet-ween the tongue-lifting force and N-EMG activity (P < 0·01). These findings indicate that N-EMG can be used to quantify the force of posterior tongue lifting and could be useful to evaluate the effect of tongue rehabilitation in future studies. © 2016 John Wiley & Sons Ltd.

  3. Comparison of the effects of vapocoolant spray and topical anesthetic cream on pain during needle electromyography in the medial gastrocnemius.

    PubMed

    Moon, Young-Eun; Kim, Sang-Hyun; Choi, Won-Hyeok

    2013-05-01

    To compare the effects of a vapocoolant spray and an eutectic mixture of local anesthetics (EMLA) cream in reducing pain during needle electromyography examination. Randomized controlled trial. Physical medicine and rehabilitation department of a university hospital. Adults who underwent needle electromyography (N=99) were randomized to 1 of 2 experimental groups or the control group. Two patients dropped out during the study. In the experimental groups, vapocoolant spray or EMLA cream were applied before needle electromyography. In the control group, needle electromyography was performed without pretreatment. Intensity of pain associated with needle electromyography was assessed using a 100-mm visual analog scale (VAS). Patient satisfaction and preference for repeated use were measured using a 5-point Likert scale. VAS score for pain intensity was significantly lower in the spray group (31.9; 95% confidence interval [CI], 22.0-41.7) compared with the control group (52.9; 95% CI, 45.9-60.0; P=.002), whereas there was no significant difference between the EMLA cream group (42.4; 95% CI, 34.2-50.7) and the control group. Patient satisfaction and preference for repeated use were higher in the spray group than the EMLA group. Vapocoolant spray was more effective than EMLA cream in reducing pain during needle electromyography. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Motor unit number estimation based on high-density surface electromyography decomposition.

    PubMed

    Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun

    2016-09-01

    To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Effects of Achilles tendon vibration, surface and visual conditions on lower leg electromyography in young adults with and without recurrent ankle sprains.

    PubMed

    Lubetzky, Anat V; Price, Robert; McCoy, Sarah W

    2016-07-01

    Functional ankle instability is associated with decreased ankle muscle function. Compliant surfaces and eyes-closed training are commonly used for rehabilitation and prevention of ankle sprains. Brief Achilles tendon vibration is commonly used in the study of postural control. To test the level of activation of tibialis anterior (TIB) and fibularis longus (FIB), bilateral Achilles tendon vibration was applied for the middle 20 s in a series of 60-s trials, when 10 healthy young adults and 10 adults with history of repeated ankle sprains were standing bipedal: on floor, on memory foam, or on a Both Sides Up (BOSU) ball, with eyes open, and on floor and foam with eyes closed. Differences in Integrated surface electromyography (IEMG) of TIB and FIB were significant for both groups pre, during, and post vibration (Friedman Tests, p < 0.001 for all). In both groups, the highest IEMG for TIB was obtained during vibration when standing on foam with eyes closed, whereas the highest IEMG for FIB was obtained during vibration when standing on the BOSU. Bipedal stance on BOSU and brief Achilles tendon vibration may be a useful intervention when a session's goal is to facilitate lower leg muscles activation. Future research should explore training effects as well as the effect of FIB tendon vibration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of the antigravitary modification of the myotension of asset (MAGMA) therapy on myogenic cranio-cervical-mandibular dysfunction: a longitudinal surface electromyography analysis.

    PubMed

    D'Attilio, Michele; Di Meo, Silvio; Perinetti, Giuseppe; Filippi, Maria Rita; Tecco, Simona; D'Alconzo, Francesco; Festa, Felice

    2003-01-01

    This study was aimed at evaluating the effects of a novel physiotherapy machine called MAGMA (AntiGravitary Modification of the Myotensions of Asset) on postural and masticatory muscles of subjects with myogenic cranio-cervical-mandibular dysfunction (CMD), by using surface electromyography (sEMG). Fifteen subjects, nine males and six females (mean age 27.6 years), with CMD were included in the study. The bilaterally monitored muscles were: masseter, anterior and posterior temporalis, digastric, posterior cervical, sternocleidomastoid, and upper and lower trapezius. All muscles were monitored at rest, with a second record of maximal voluntary clenching (MVC) for both the masseter and anterior temporalis. Patients were subjected to MAGMA therapy for one session/week of 30 min over ten weeks. The surface EMG activity was recorded twice, at the baseline and at the end of the therapy. After MAGMA therapy, the sEMG activity at rest of the monitored muscles was significantly better when compared to the baseline; the only exception was the anterior and posterior temporalis muscles which did not improve. On the contrary, with the MVC, all the monitored muscles (masseter and anterior temporalis) significantly improved their sEMG activity. Although more investigations are needed, these results indicate that the use of such antigravitary therapy can provide a tool for resolving myogenic CMD.

  7. Inter-individual variability in the patterns of responses for electromyography and mechanomyography during cycle ergometry using an RPE-clamp model.

    PubMed

    Cochrane-Snyman, Kristen C; Housh, Terry J; Smith, Cory M; Hill, Ethan C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O

    2016-09-01

    To examine inter-individual variability versus composite models for the patterns of responses for electromyography (EMG) and mechanomyography (MMG) versus time relationships during moderate and heavy cycle ergometry using a rating of perceived exertion (RPE) clamp model. EMG amplitude (amplitude root-mean-square, RMS), EMG mean power frequency (MPF), MMG-RMS, and MMG-MPF were collected during two, 60-min rides at a moderate (RPE at the gas exchange threshold; RPEGET) and heavy (RPE at 15 % above the GET; RPEGET+15 %) intensity when RPE was held constant (clamped). Composite (mean) and individual responses for EMG and MMG parameters were compared during each 60-min ride. There was great inter-individual variability for each EMG and MMG parameters at RPEGET and RPEGET+15 %. Composite models showed decreases in EMG-RMS (r (2) = -0.92 and R (2) = 0.96), increases in EMG-MPF (R (2) = 0.90), increases in MMG-RMS (r (2) = 0.81 and 0.55), and either no change or a decrease (r (2) = 0.34) in MMG-MPF at RPEGET and RPEGET+15 %, respectively. The results of the present study indicated that there were differences between composite and individual patterns of responses for EMG and MMG parameters during moderate and heavy cycle ergometry at a constant RPE. Thus, composite models did not represent the unique muscle activation strategies exhibited by individual responses when cycling in the moderate and heavy intensity domains when using an RPE-clamp model.

  8. Detection of early symptoms of cumulativetrauma disorders among mothers of handicapped children: a pilot study

    PubMed Central

    Kinali, Gulsah; Üçsular, Ferda Dokuztuğ

    2018-01-01

    [Purpose] This study aimed to establish a scientific and clinical basis for the development of a method for the early diagnosis of cumulative trauma disorders experienced by mothers of disabled children. [Subjects and Methods] Ten volunteer mothers who came to a rehabilitation centre for the treatment of their children were included in this study. Surface electromyography measurements were taken during maximum isometric contraction through the extensor muscle motor point of the wrist of the mothers, and hand grip strength was measured. [Results] In the electromyography measurements, the mean electromyogram signal value obtained from the wrist extensor muscle motor point of the mothers of the healthy children was 0.3 ± 0.08 mV and the crude handgrip strength was 28.5 ± 2.08 kg. In mothers of rehabilitated children, the crude hand grip strength was 7.0 ± 1.1 kg, and the mean electromyogram signal value from the extender muscle motor point was 0.1 ± 0.02 mV. There was a significant difference between the mothers with healthy and disabled children with respect to handgrip strength and electromyography. [Conclusion] The result obtained may be important in the development of health protection programs. Further research may lead to the development of protective rehabilitation programs and the improvement of social rights for mothers with disabled children. PMID:29545677

  9. Following ergonomics guidelines decreases physical and cardiovascular workload during cleaning tasks.

    PubMed

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen; Holtermann, Andreas; Madeleine, Pascal

    2012-01-01

    The aim was to investigate the effect of ergonomics guidelines on muscular activity, postural and cardiovascular load during cleaning. Eighteen cleaners performed 10 min of cleaning tasks in two locations; three min in a laboratory and seven min in a lecture room. All participants performed the task with or without focusing on ergonomics guidelines (ergonomics/non-ergonomics session). Bipolar surface electromyography was recorded bilaterally from upper trapezius and erector spinae muscles. A tri-axial accelerometer package was mounted on the low back (L5-S1) to measure postural changes, and the cardiovascular load was estimated by electrocardiogram. Ergonomics sessions resulted in lower muscular load, a more complex pattern of muscular activity, lower range of motion and angular velocity of the trunk as well as lower cardiovascular load compared with non-ergonomics sessions (p < 0.05). The study highlighted the multiple musculoskeletal and cardiovascular benefits of following ergonomics guidelines during cleaning tasks. This study investigated the effects of following instructive ergonomics guidelines during cleaning tasks (daily curriculum of cleaning including mopping, sweeping, changing trash bins and cleaning of desks and blackboards). Following the ergonomics guidelines reduces the general workload and induces a more complex pattern of muscular activity. The study contributes with novel knowledge concerning ergonomics guidelines and work techniques.

  10. Surface electromyographic electrode pair with built-in buffer-amplifiers.

    PubMed

    Fujisawa, M; Uchida, K; Yamada, Y; Ishibashi, K

    1990-03-01

    By means of a surface electrode with an operational amplifier, a new electrode unit suitable for an electromyographic-biofeedback apparatus and for portable electromyography used outside a Faraday cage was developed. The operational amplifier, which has an output impedance lower than 10 ohms, functions as an efficient buffer amplifier and is able to protect the EMG signals from background noises. This new electrode unit is small (32 x 12 x 5 mm), waterproof, and inexpensive. Because its structure is simple, it can be built in any laboratory.

  11. Using facial electromyography to detect preserved emotional processing in disorders of consciousness: A proof-of-principle study.

    PubMed

    Fiacconi, Chris M; Owen, Adrian M

    2016-09-01

    To examine whether emotional functioning can be observed in patients who are behaviourally non-responsive using peripheral markers of emotional functioning. We tested two patients, both diagnosed as being in a vegetative state (VS) following hypoxia secondary to cardiac arrest. Thirty-seven healthy participants with no history of neurological illness served as a control group. The activity of two facial muscles (zygomaticus major, corrugator supercilii) was measured using facial electromyography (EMG) to probe for patterned responses that differentiate between auditorily presented joke and non-joke stimuli in VS patients. One of the two VS patients we tested demonstrated greater zygomatic and reduced corrugator activity in response to jokes compared with non-jokes. Critically, these responses followed the pattern and temporal profile of muscle activity observed in our healthy control sample. Despite their behaviorally non-responsive profile, some patients diagnosed as VS appear to retain some aspects of emotional experience. Our findings represent, to our knowledge, the first demonstration that a patient diagnosed as VS can exhibit intact emotional responses to humor as assessed by facial EMG. Therefore, our approach may constitute a feasible bedside tool capable of providing novel insight into the mental and emotional lives of patients who are behaviourally non-responsive. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Turning Electromyography Reports Upside Down: A Pilot Study Surveying Referring Providers

    PubMed Central

    Shenoy, Anant M.; Baquis, Kate G.; Baquis, George D.

    2016-01-01

    Providers are expressing a desire for more efficient ways to retrieve relevant clinical data from the Electronic Health Record. In an effort to improve our Electromyography and Nerve Conduction Study reports, we surveyed referring providers on the effects of having the IMPRESSION at the start of the report. Our survey respondents felt that using this format for an Electromyography and Nerve Conduction Study report significantly improved the quality of the report while saving them time and/or mouse clicks when interpreting the report. Electro diagnosticians might consider using this format for their Electromyography and Nerve Conduction Study reports to improve referring provider satisfaction. PMID:27708744

  13. Intraoperative laryngeal electromyography in children with vocal fold immobility: a simplified technique.

    PubMed

    Scott, Andrew R; Chong, Peter Siao Tick; Randolph, Gregory W; Hartnick, Christopher J

    2008-01-01

    The primary objective of this study was to determine whether a simplified technique for intraoperative laryngeal electromyography was feasible using standard nerve integrity monitoring electrodes and audiovisual digital recording equipment. Our secondary objective was to determine if laryngeal electromyography data provided any additional information that significantly influenced patient management. Between February 2006 and February 2007, 10 children referred to our institution with vocal fold immobility underwent intraoperative laryngeal electromyography of the thyroarytenoid muscles. A retrospective chart review of these 10 patients was performed after institutional review board approval. Standard nerve integrity monitoring electrodes can be used to perform intraoperative laryngeal electromyography of the thyroarytenoid muscles in children. In 5 of 10 cases reviewed, data from laryngeal electromyography recordings meaningfully influenced the care of children with vocal fold immobility and affected clinical decision-making, sometimes altering management strategies. In the remaining 5 children, data supported clinical impressions but did not alter treatment plans. Two children with idiopathic bilateral vocal fold paralysis initially presented with a lack of electrical activity on one or both sides but went on to develop motor unit action potentials that preceded recovery of motion in both vocal folds. Our findings suggest that standard nerve monitoring equipment can be used to perform intraoperative laryngeal electromyography and that electromyographic data can assist clinicians in the management of complex patients. Additionally, there may be a role for the use of serial intraoperative measurements in predicting recovery from vocal fold paralysis in the pediatric age group.

  14. Investigating Facial Electromyography as an Indicator of Cognitive Workload

    DTIC Science & Technology

    2017-02-22

    Investigating Facial Electromyography as an Indicator of Cognitive Workload 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Symposium on Aviation Psychology (ISAP) 9 – 11 May 2017 14. ABSTRACT Facial electromyography (fEMG) is an electromyographic measurement technique... cognitive workload. In the current study, two task-irrelevant facial muscles, corrugator supercilli and lateral frontalis, were monitored in real- time to

  15. Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-Inspired Robotic Hand for Prosthetic Applications

    PubMed Central

    Fani, Simone; Bianchi, Matteo; Jain, Sonal; Pimenta Neto, José Simões; Boege, Scott; Grioli, Giorgio; Bicchi, Antonio; Santello, Marco

    2016-01-01

    Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human–robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the highest coherence with hand movements. Our results represent a first step toward a more effective and intuitive control of myoelectric hand prostheses. PMID:27799908

  16. The effect on lower spine muscle activation of walking on a narrow beam in virtual reality.

    PubMed

    Antley, Angus; Slater, Mel

    2011-02-01

    To what extent do people behave in immersive virtual environments as they would in similar situations in a physical environment? There are many ways to address this question, ranging from questionnaires, behavioral studies, and the use of physiological measures. Here, we compare the onsets of muscle activity using surface electromyography (EMG) while participants were walking under three different conditions: on a normal floor surface, on a narrow ribbon along the floor, and on a narrow platform raised off the floor. The same situation was rendered in an immersive virtual environment (IVE) Cave-like system, and 12 participants did the three types of walking in a counter-balanced within-groups design. The mean number of EMG activity onsets per unit time followed the same pattern in the virtual environment as in the physical environment-significantly higher for walking on the platform compared to walking on the floor. Even though participants knew that they were in fact really walking at floor level in the virtual environment condition, the visual illusion of walking on a raised platform was sufficient to influence their behavior in a measurable way. This opens up the door for this technique to be used in gait and posture related scenarios including rehabilitation.

  17. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  18. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  19. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    PubMed Central

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2017-01-01

    Objective The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions. PMID:26402920

  20. The effect of yoga on puborectalis paradox.

    PubMed

    Dolk, A; Holmström, B; Johansson, C; Frostell, C; Nilsson, B Y

    1991-08-01

    Nine patients with severe defaecation difficulties primarily considered to be due to puborectalis dysfunction (puborectalis paradox), verified by electromyography (EMG) of the striated anal sphincter muscles, were offered training in Yogic techniques of relaxation and muscle control in order to change the activity of the pelvic floor muscles during attempted defaecation. Five patients completed the training program of 20 2-hour sessions and were re-examined clinically and with EMG. One patient regained a normal EMG pattern but none of the patients improved clinically.

  1. Comparison of hamstring muscle behavior for anterior cruciate ligament (ACL) patient and normal subject during local marching

    NASA Astrophysics Data System (ADS)

    Amineldin@Aminudin, Nurul Izzaty Bt.; Rambely, A. S.

    2014-09-01

    This study aims to investigate the hamstring muscle activity after the surgery by carrying out an electromyography experiment on the hamstring and to compare the behavior of the ACL muscle activity between ACL patient and control subject. Electromyography (EMG) is used to study the behavior of muscles during walking activity. Two hamstring muscles involved which are semitendinosus and bicep femoris. The EMG data for both muscles were recorded while the subject did maximum voluntary contraction (MVC) and marching. The study concluded that there were similarities between bicep femoris of the ACL and control subjects. The analysis showed that the biceps femoris muscle of the ACL subject had no abnormality and the pattern is as normal as the control subject. However, ACL patient has poor semitendinosus muscle strength compared to that of control subject because the differences of the forces produced. The force of semitendinosus value for control subject was two times greater than that of the ACL subject as the right semitendinosus muscle of ACL subject was used to replace the anterior cruciate ligament (ACL) that was injured.

  2. Quantifying Contributions of the Cricopharyngeus to Upper Esophageal Sphincter Pressure Changes by Means of Intramuscular Electromyography and High-Resolution Manometry

    PubMed Central

    Jones, Corinne A.; Hammer, Michael J.; Hoffman, Matthew R.; McCulloch, Timothy M.

    2014-01-01

    Objectives We sought to determine whether the association between cricopharyngeus muscle activity and upper esophageal sphincter pressure may change in a task-dependent fashion. We hypothesized that more automated tasks related to swallow or airway protection would yield a stronger association than would more volitional tasks related to tidal breathing or voice production. Methods Six healthy adult subjects underwent simultaneous intramuscular electromyography of the cricopharyngeus muscle and high-resolution manometry of the upper esophageal sphincter. Correlation coefficients were calculated to characterize the association between the time-linked series. Results Cricopharyngeus muscle activity was most strongly associated with upper esophageal sphincter pressure during swallow and effortful exhalation tasks (r = 0.77 and 0.79, respectively; P < .01). The association was also less variable during swallow and effortful exhalation. Conclusions These findings suggest a greater coupling for the more automatic tasks, and may suggest less coupling and more flexibility for the more volitional, voice-related tasks. These findings support the important role of central patterning for respiratory- and swallow-related tasks. PMID:24633943

  3. Electrotherapy: yesterday, today and tomorrow.

    PubMed

    Tiktinsky, R; Chen, L; Narayan, P

    2010-07-01

    The use of electrotherapy has been part of physical therapy treatment for the past few decades. There have been numerous modalities used such as TENS, interferential, diathermy, magnetic therapy, ultrasound, laser and surface electromyography to name a few. There has been an upsurge in the past decade of new and innovative modalities. There needs to be extensive research on each of these electrotherapy devices to determine the proper use of each device.

  4. Electromyographic and cephalometric correlation with the predominant masticatory movement.

    PubMed

    Coelho-Ferraz, Maria Julia P; Berzin, Fausto; Amorim, Cesar Ferreira; Romano, Fabio Lourenco; de Paula Queluz, Dagmar

    2010-01-01

    This study aimed to evaluate the chewing muscular dynamics and correlate the side of the masticatory movement that is more vertical and/or more horizontal established by the photomeasurement Masticatory Functional Angle (MFA) to the muscular activity behavior, showed in the surface electromyography and in the radiographic images. Seventeen people were selected of both genders, with the average age of 25 years, without signs or apparent symptoms of masticatory muscular disorders. The teleradiographies were done in lateral norm and surface electromyography of the masseter muscles, anterior portion of temporal and supra-hyoids in rest position and maximal bite. The bite force measured with a metallic transducer that was connected to a force sensor (Strain Gauge) to measure the deformation of the material model SF4 (EMG SYSTEM DO BRASIL). A mandibular goniometer of the EMG System of Brazil was used to measure the opening size. The comparison and correlation were established between the groups with MFA>5 degrees and MFA<5 degrees by the test "t" of Student or test of Mann-Whitney conform the distribution was normal or not, respectively. The results showed significant differences between groups, although without sexual dimorphism, to masseter muscle in maximal bite. In conclusion, the anatomic-physiological aspects of temporomandibular disorders are related to the asymmetrical mandible function.

  5. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Surface electromyography studies in standing position confirm that ankle strategy remains disturbed even following successful treatment of patients with a history of sciatica

    PubMed Central

    Huber, Juliusz; Lisiński, Przemysław; Ciesielska, Jagoda; Kulczyk, Aleksandra; Lipiec, Joanna; Bandosz, Agata

    2016-01-01

    [Purpose] It is hypothesized that ankle strategy can be changed in patients with a history of sciatica. The aim of this study was to detect residual disturbances following successful treatment. [Subjects and Methods] In patients with a history of sciatica (N=11) and pseudo-sciatica (N=9), differences in muscle activity were recorded with bilateral surface polyelectromyography and stability measurements (center of foot pressure sway and center of spectrum) in normal standing and tandem positions. Results were compared with recordings in healthy people (N=9) to identify abnormalities in electromyographic and postural studies. [Results] Increased amplitude of electromyographic recordings from the gastrocnemius and extensor digiti muscles on the affected side was detected more in patients with a history of sciatica than pseudo-sciatica syndromes in tandem position. Fewer amplitude fluctuations were observed in both positions preferably in patients following sciatica. Changes in center of foot pressure sway and center of spectrum during balance platform studies were detected in normal standing position in this group of patients. No similar abnormalities in electromyographic and postural studies were detected in healthy people. [Conclusion] Sciatica and pseudo-sciatica evoke persistent disturbances in activity of muscles responsible for ankle strategy. Electromyography differentiates the two groups of patients better than postural studies. PMID:27065544

  7. The Relationship Between Submental Surface Electromyography and Hyo-Laryngeal Kinematic Measures of Mendelsohn Maneuver Duration

    PubMed Central

    Azola, Alba M.; Greene, Lindsey R.; Taylor-Kamara, Isha; Macrae, Phoebe; Anderson, Cheryl

    2015-01-01

    Purpose The Mendelsohn Maneuver (MM) is a commonly prescribed technique that is taught to individuals with dysphagia to improve swallowing ability. Due to cost and safety concerns associated with videofluoroscopy (VFS) use, submental surface electromyography (ssEMG) is commonly used in place of VFS to train the MM in clinical and research settings. However, it is unknown whether ssEMG accurately reflects the prolonged hyo-laryngeal movements required for execution of the MM. The primary goal of this study was to examine the relationship among ssEMG duration, duration of laryngeal vestibule closure, and duration of maximum hyoid elevation during MM performance. Method Participants included healthy adults and patients with dysphagia due to stroke. All performed the MM during synchronous ssEMG and VFS recording. Results Significant correlations between ssEMG duration and VFS measures of hyo-laryngeal kinematic durations during MM performance ranged from very weak to moderate. None of the correlations in the group of stroke patients reached statistical significance. Conclusion Clinicians and researchers should consider that the MM involves novel hyo-laryngeal kinematics that may be only moderately represented with ssEMG. Thus, there is a risk that these target therapeutic movements are not consistently being trained. PMID:26426312

  8. High Quality Acquisition of Surface Electromyography - Conditioning Circuit Design

    NASA Astrophysics Data System (ADS)

    Shobaki, Mohammed M.; Malik, Noreha Abdul; Khan, Sheroz; Nurashikin, Anis; Haider, Samnan; Larbani, Sofiane; Arshad, Atika; Tasnim, Rumana

    2013-12-01

    The acquisition of Surface Electromyography (SEMG) signals is used for many applications including the diagnosis of neuromuscular diseases, and prosthesis control. The diagnostic quality of the SEMG signal is highly dependent on the conditioning circuit of the SEMG acquisition system. This paper presents the design of an SEMG conditioning circuit that can guarantee to collect high quality signal with high SNR such that it is immune to environmental noise. The conditioning circuit consists of four stages; consisting of an instrumentation amplifier that is used with a gain of around 250; 4th order band pass filter in the 20-500Hz frequency range as the two initial stages. The third stage is an amplifier with adjustable gain using a variable resistance; the gain could be changed from 1000 to 50000. In the final stage the signal is translated to meet the input requirements of data acquisition device or the ADC. Acquisition of accurate signals allows it to be analyzed for extracting the required characteristic features for medical and clinical applications. According to the experimental results, the value of SNR for collected signal is 52.4 dB which is higher than the commercial system, the power spectrum density (PSD) graph is also presented and it shows that the filter has eliminated the noise below 20 Hz.

  9. Neuromuscular response amplitude to mechanical stimulation using large-array surface electromyography in participants with and without chronic low back pain.

    PubMed

    Pagé, Isabelle; Nougarou, François; Descarreaux, Martin

    2016-04-01

    The present study aimed to compare the neuromuscular response under various mechanical stimulations of the lumbar spine in participants with and without chronic low back pain (cLBP). Four mechanical stimulations, characterized by forces ranging from 75 to 225N, were delivered using a servo-controlled linear actuator motor to the L3 spinous process of 25 healthy participants and 26 participants with cLBP. Lumbar neuromuscular responses were recorded using 64-electrodes large surface electromyography arrays. Between-group differences in the dose-response relationship (neuromuscular response amplitude according to each force level) were assessed using mixed model ANOVAs. No differences between groups were shown (all p values>.05). A significant linear relationship was observed between forces and neuromuscular response amplitudes (p<.001) indicating an increase in response amplitudes with increasing stimulation force. Responses were observed throughout the lumbar region with highest response amplitudes in the vicinity of the contacted vertebra. The neuromuscular response amplitude triggered by localized lumbar mechanical stimulations does not differ between participants with and without cLBP. Moreover, even though stimulations were delivered at specific spinal segment, a neuromuscular response, although rapidly decreasing, was observed in areas distant from the contact site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study.

    PubMed

    Vasudevan, John M; Logan, Andrew; Shultz, Rebecca; Koval, Jeffrey J; Roh, Eugene Y; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  11. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    PubMed Central

    Shultz, Rebecca; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis. PMID:27403454

  12. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study

    PubMed Central

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-01-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  13. Embroidered Electromyography: A Systematic Design Guide.

    PubMed

    Shafti, Ali; Ribas Manero, Roger B; Borg, Amanda M; Althoefer, Kaspar; Howard, Matthew J

    2017-09-01

    Muscle activity monitoring or electromyography (EMG) is a useful tool. However, EMG is typically invasive, expensive and difficult to use for untrained users. A possible solution is textile-based surface EMG (sEMG) integrated into clothing as a wearable device. This is, however, challenging due to 1) uncertainties in the electrical properties of conductive threads used for electrodes, 2) imprecise fabrication technologies (e.g., embroidery, sewing), and 3) lack of standardization in design variable selection. This paper, for the first time, provides a design guide for such sensors by performing a thorough examination of the effect of design variables on sEMG signal quality. Results show that imprecisions in digital embroidery lead to a trade-off between low electrode impedance and high manufacturing consistency. An optimum set of variables for this trade-off is identified and tested with sEMG during a variable force isometric grip exercise with n = 12 participants, compared with conventional gel-based electrodes. Results show that thread-based electrodes provide a similar level of sensitivity to force variation as gel-based electrodes with about 90% correlation to expected linear behavior. As proof of concept, jogging leggings with integrated embroidered sEMG are made and successfully tested for detection of muscle fatigue while running on different surfaces.

  14. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  15. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    PubMed

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  16. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    PubMed

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  17. Influence of lower body pressure support on the walking patterns of healthy children and adults.

    PubMed

    Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A

    2012-11-01

    The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.

  18. Immediate effects of neuromuscular joint facilitation intervention after anterior cruciate ligament reconstruction.

    PubMed

    Wang, Lei

    2016-07-01

    [Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.

  19. Muscle activation behavior in a swimming exergame: Differences by experience and gaming velocity.

    PubMed

    Soltani, Pooya; Figueiredo, Pedro; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2017-11-01

    The effects of playing intensity and prior exergame and sport experience on the activation patterns of upper limb muscles during a swimming exergame were investigated. Surface electromyography of Biceps Brachii, Triceps Brachii, Latissimus Dorsi, Upper Trapezius, and Erector Spinae of twenty participants was recorded, and the game play was divided into normal and fast. Mean muscle activation, normalized to maximum voluntary isometric contraction (MVIC), ranged from 4.9 to 95.2%MVIC and differed between normal and fast swimming for all techniques (p<0.05), except for Latissimus Dorsi during backstroke. After normalizing the %MVIC to playing velocity, selective behaviors were observed between muscles which were sufficient for pragmatic game play. Moreover, prior exergame and real sport experience did not have any effect on the muscle activation changes between normal and fast swimming. These behaviors are likely to happen when players understand the game mechanics, even after a short exposure. Such evaluation might help in adjusting the physical demands of sport exergames, for safe and meaningful experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluating the Relationship Between Muscle Activation and Spine Kinematics Through Wavelet Coherence.

    PubMed

    Hay, Dean C; Wachowiak, Mark P; Graham, Ryan B

    2016-10-01

    Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).

  1. The relationship between preoperative needle electromyography findings and muscle power restoration after surgery in severe carpal tunnel syndrome patients.

    PubMed

    Hara, Yuki; Nishiura, Yasumasa; Ochiai, Naoyuki; Murai, Shinji; Yamazaki, Masashi

    2017-05-01

    Needle electromyography provides essential information about the functional aspects of the muscle. But little attention has been given in the literature to needle electromyography examinations in carpal tunnel syndrome. We examined the relationship between preoperative needle electromyography findings and functional recovery of the abductor pollicis brevis (APB) muscle in severe carpal tunnel syndrome patients. The subjects of this study were 49 patients, 58 hands, who fit the following 5 criteria: (1) idiopathic carpal tunnel syndrome; (2) pre-op MMT grade of the APB muscle was M0 or M1; (3) APB-CMAP (compound muscle action potential) was not evoked in a median nerve conduction study; (4) needle electromyography of the APB muscle had been done; (5) underwent carpal tunnel release only. The patients were divided into two groups according to the results of pre-op needle electromyography: voluntary motor unit potential of the APB muscle was evoked [MUP(+) group]or not [MUP(-) group]. We evaluated APB muscle strength at one year after surgery, and patient satisfaction and functional evaluations (CTSI-FS) at more than one year after. The APB muscle recovery rate to M3 or higher was 100% in the MUP(+) group, and 57% in the MUP(-) group. Patient satisfaction was also high and functional recovery was sufficient in the MUP(+) group. No patients requested a second opponensplasty. Our findings suggest that post-op restoration of thumb function relates to whether or not the MUP ofthe APB muscle is evoked. Single-stage opponensplasty may be unnecessary if the MUP of the APB muscle is; evoked. Needle electromyography is therefore useful in consideration for opponensplasty. Level Ⅲ, case-control study. Copyright © 2017. Published by Elsevier B.V.

  2. Temporary-tattoo for long-term high fidelity biopotential recordings

    NASA Astrophysics Data System (ADS)

    Bareket, Lilach; Inzelberg, Lilah; Rand, David; David-Pur, Moshe; Rabinovich, David; Brandes, Barak; Hanein, Yael

    2016-05-01

    Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming.

  3. Temporary-tattoo for long-term high fidelity biopotential recordings

    PubMed Central

    Bareket, Lilach; Inzelberg, Lilah; Rand, David; David-Pur, Moshe; Rabinovich, David; Brandes, Barak; Hanein, Yael

    2016-01-01

    Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming. PMID:27169387

  4. Urinary Retention

    MedlinePlus

    ... Electromyography . Electromyography uses special sensors to measure the electrical activity of the muscles and nerves in and ... Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive ...

  5. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    PubMed

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Kinematics, muscular activity and propulsion in gopher snakes

    PubMed

    Moon; Gans

    1998-10-01

    Previous studies have addressed the physical principles and muscular activity patterns underlying terrestrial lateral undulation in snakes, but not the mechanism by which muscular activity produces curvature and propulsion. In this study, we used synchronized electromyography and videography to examine the muscular basis and propulsive mechanism of terrestrial lateral undulation in gopher snakes Pituophis melanoleucus affinis. Specifically, we used patch electrodes to record from the semispinalis, longissimus dorsi and iliocostalis muscles in snakes pushing against one or more pegs. Axial bends propagate posteriorly along the body and contact the pegs at or immediately posterior to an inflection of curvature, which then reverses anterior to the peg. The vertebral column bends broadly around a peg, whereas the body wall bends sharply and asymmetrically around the anterior surface of the peg. The epaxial muscles are always active contralateral to the point of contact with a peg; they are activated slightly before or at the point of maximal convexity and deactivated variably between the inflection point and the point of maximal concavity. This pattern is consistent with muscular shortening and the production of axial bends, although variability in the pattern indicates that other muscles may affect the mechanics of the epaxial muscles. The kinematic and motor patterns in snakes crawling against experimentally increased drag indicated that forces are produced largely by muscles that are active in the axial bend around each peg, rather than by distant muscles from which the forces might be transmitted by connective tissues. At each point of force exertion, the propulsive mechanism of terrestrial lateral undulation may be modeled as a type of cam-follower, in which continuous bending of the trunk around the peg produces translation of the snake.

  7. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study.

    PubMed

    Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas

    2017-12-01

    So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.

  8. A comparison of lumbopelvic motion patterns and erector spinae behavior between asymptomatic subjects and patients with recurrent low back pain during pain-free periods.

    PubMed

    Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo

    2015-02-01

    The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  9. Gender influence on fatigability of back muscles during intermittent isometric contractions: a study of neuromuscular activation patterns.

    PubMed

    Larivière, Christian; Gravel, Denis; Gagnon, Denis; Gardiner, Phillip; Bertrand Arsenault, A; Gaudreault, Nathaly

    2006-11-01

    Gender difference in the fatigability of muscles can be attributed to muscle mass (or strength) and associated level of vascular occlusion, substrate utilization, muscle composition, and neuromuscular activation patterns. The purpose of this study was to assess the role of neuromuscular activation patterns to explain gender differences in back muscle fatigability during intermittent isometric tasks. Sixteen males and 15 females performed maximal voluntary contractions (Strength) and a fatigue test to exhaustion (fatigue criterion=time to exhaustion), while standing in a static dynamometer measuring L5/S1 extension moment. The fatigue test consisted of repetitions of an 8-s cycle (1.5 s ramp to reach 40% of maximal voluntary contraction +5s plateau at 40% of maximal voluntary contraction +1.5s rest). Surface electromyography signals were collected bilaterally from 4 back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). Males were stronger (P<0.05) than females (316, SD 82>196, SD 25 Nm) but showed significantly shorter time-to-exhaustion values (7.1, SD 5.2<13.0, SD 6.1 min.), the latter result being corroborated by electromyographic indices of fatigue. However, the gender effect on time to exhaustion disappeared when accounting for Strength, thus supporting the muscle mass hypothesis. Among the various electromyographic indices computed to assess neuromuscular activation patterns, the amount of alternating activity between homolateral and between contralateral muscles showed a gender effect (females>males). These results support the muscle mass hypothesis as well as the neuromuscular activation hypothesis to explain gender differences in back muscle fatigability.

  10. Neuromuscular activation patterns during treadmill walking after space flight

    NASA Technical Reports Server (NTRS)

    Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.

    1997-01-01

    Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.

  11. Effects of breathing maneuver and sitting posture on muscle activity in inspiratory accessory muscles in patients with chronic obstructive pulmonary disease

    PubMed Central

    2012-01-01

    Background To determine the influence of breathing maneuver and sitting posture on tidal volume (TV), respiratory rate (RR), and muscle activity of the inspiratory accessory muscles in patients with chronic obstructive pulmonary disease (COPD). Methods Twelve men with COPD participated in the study. Inductive respiratory plethysmography and surface electromyography were used to simultaneously measure TV, RR, and muscle activity of the inspiratory accessory muscles [the scalenus (SM), sternocleidomastoid (SCM), and pectoralis major (PM) muscles] during quiet natural breathing (QB) and pursed-lips breathing (PLB) in three sitting postures: neutral position (NP), with armm support (WAS), and with arm and head support (WAHS). Results Two-way repeated-measures analysis of variance was employed. In a comparison of breathing patterns, PLB significantly increased TV and decreased RR compared to QB. Muscle activity in the SM and SCM increased significantly in PLB compared to QB. In a comparison of sitting postures, the muscle activity of the SM, SCM, and PM increased in the forward-leaning position. Conclusions The results suggest that in COPD, PLB induced a favorable breathing pattern (increased TV and reduced RR) compared to QB. Additionally, WAS and WAHS positions increased muscle activity of the inspiratory accessory muscles during inspiration versus NP. Differential involvement of accessory respiratory muscles can be readily studied in COPD patients, allowing monitoring of respiratory load during pulmonary rehabilitation. PMID:22958459

  12. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study With Electromyography Time-Series Analysis During Maximal Sprinting.

    PubMed

    Schuermans, Joke; Danneels, Lieven; Van Tiggelen, Damien; Palmans, Tanneke; Witvrouw, Erik

    2017-05-01

    With their unremittingly high incidence rate and detrimental functional repercussions, hamstring injuries remain a substantial problem in male soccer. Proximal neuromuscular control ("core stability") is considered to be of key importance in primary and secondary hamstring injury prevention, although scientific evidence and insights on the exact nature of the core-hamstring association are nonexistent at present. The muscle activation pattern throughout the running cycle would not differ between participants based on injury occurrence during follow-up. Case-control study; Level of evidence, 3. Sixty amateur soccer players participated in a multimuscle surface electromyography (sEMG) assessment during maximal acceleration to full-speed sprinting. Subsequently, hamstring injury occurrence was registered during a 1.5-season follow-up period. Hamstring, gluteal, and trunk muscle activity time series during the airborne and stance phases of acceleration were evaluated and statistically explored for a possible causal association with injury occurrence and absence from sport during follow-up. Players who did not experience a hamstring injury during follow-up had significantly higher amounts of gluteal muscle activity during the front swing phase ( P = .027) and higher amounts of trunk muscle activity during the backswing phase of sprinting ( P = .042). In particular, the risk of sustaining a hamstring injury during follow-up lowered by 20% and 6%, with a 10% increment in normalized muscle activity of the gluteus maximus during the front swing and the trunk muscles during the backswing, respectively ( P < .024). Muscle activity of the core unit during explosive running appeared to be associated with hamstring injury occurrence in male soccer players. Higher amounts of gluteal and trunk muscle activity during the airborne phases of sprinting were associated with a lower risk of hamstring injuries during follow-up. Hence, the present results provide a basis for improved, evidence-based rehabilitation and prevention, particularly focusing on increasing neuromuscular control of the gluteal and trunk muscles during sport-specific activities (eg, sprint drills, agility drills).

  13. Modern Theories of Pelvic Floor Support : A Topical Review of Modern Studies on Structural and Functional Pelvic Floor Support from Medical Imaging, Computational Modeling, and Electromyographic Perspectives.

    PubMed

    Peng, Yun; Miller, Brandi D; Boone, Timothy B; Zhang, Yingchun

    2018-02-12

    Weakened pelvic floor support is believed to be the main cause of various pelvic floor disorders. Modern theories of pelvic floor support stress on the structural and functional integrity of multiple structures and their interplay to maintain normal pelvic floor functions. Connective tissues provide passive pelvic floor support while pelvic floor muscles provide active support through voluntary contraction. Advanced modern medical technologies allow us to comprehensively and thoroughly evaluate the interaction of supporting structures and assess both active and passive support functions. The pathophysiology of various pelvic floor disorders associated with pelvic floor weakness is now under scrutiny from the combination of (1) morphological, (2) dynamic (through computational modeling), and (3) neurophysiological perspectives. This topical review aims to update newly emerged studies assessing pelvic floor support function among these three categories. A literature search was performed with emphasis on (1) medical imaging studies that assess pelvic floor muscle architecture, (2) subject-specific computational modeling studies that address new topics such as modeling muscle contractions, and (3) pelvic floor neurophysiology studies that report novel devices or findings such as high-density surface electromyography techniques. We found that recent computational modeling studies are featured with more realistic soft tissue constitutive models (e.g., active muscle contraction) as well as an increasing interest in simulating surgical interventions (e.g., artificial sphincter). Diffusion tensor imaging provides a useful non-invasive tool to characterize pelvic floor muscles at the microstructural level, which can be potentially used to improve the accuracy of the simulation of muscle contraction. Studies using high-density surface electromyography anal and vaginal probes on large patient cohorts have been recently reported. Influences of vaginal delivery on the distribution of innervation zones of pelvic floor muscles are clarified, providing useful guidance for a better protection of women during delivery. We are now in a period of transition to advanced diagnostic and predictive pelvic floor medicine. Our findings highlight the application of diffusion tensor imaging, computational models with consideration of active pelvic floor muscle contraction, high-density surface electromyography, and their potential integration, as tools to push the boundary of our knowledge in pelvic floor support and better shape current clinical practice.

  14. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    PubMed

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  15. Muscle coordination, activation and kinematics of world-class and elite breaststroke swimmers during submaximal and maximal efforts.

    PubMed

    Olstad, Bjørn Harald; Vaz, João Rocha; Zinner, Christoph; Cabri, Jan M H; Kjendlie, Per-Ludvik

    2017-06-01

    The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.

  16. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  17. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography

    PubMed Central

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics. PMID:26069968

  18. Quality-of-Life Outcomes Following Surface Electromyography Biofeedback as an Adjunct to Pelvic Floor Muscle Training for Urinary Incontinence: A Case Report.

    PubMed

    Hill, Alexandra; Alappattu, Meryl

    2017-05-01

    A non-invasive treatment for urinary incontinence (UI) is surface electromyography (sEMG) biofeedback with pelvic floor muscle (PFM) training. A lack of consensus and evidence exists on the Quality of Life (QoL) outcomes following sEMG biofeedback using surface electrodes at the perineum compared to the more invasive intravaginal probe. This case report examines QoL using sEMG biofeedback at the perineum with PFM training for UI. Single subject case report. The patient was a 61-year-old woman diagnosed with UI. Her chief complaints were nocturia, urine leakage with urgency, and urine leakage with sneezing and coughing. Physical therapy (PT) treatment focused on behavioral modification, PFM strengthening with and without sEMG biofeedback, and therapeutic exercises with PFM contractions. At four weeks from baseline, the patient's PFM strength increased from 2/5 to 4/5 based on the Modified Laycock Scale. Her PFM endurance contraction improved from two seconds to ten seconds. The International Continence Impact Questionnaire - Urinary Incontinence Short Form (ICIQ-UI SF) score decreased from 6 to 0, the Incontinence Impact Questionnaire - Short Form (IIQ-7) score decreased from 14.3 to 0, and the 3 Incontinence Questions (3IQ) responses did not change. The outcomes from this case report demonstrate a brief course of PT treatment consisting of perineal sEMG biofeedback in conjunction with PFM training demonstrated clinically meaningful improvements in incontinence-related QoL, in addition to improvements in motor function in a woman with mixed UI and nocturia.

  19. Surface electromyography analysis of blepharoptosis correction by transconjunctival incisions.

    PubMed

    Tu, Lung-Chen; Wu, Ming-Chya; Chu, Hsueh-Liang; Chiang, Yi-Pin; Kuo, Chih-Lin; Li, Hsing-Yuan; Chang, Chia-Ching

    2016-06-01

    Upper eyelid movement depends on the antagonistic actions of orbicularis oculi muscle and levator aponeurosis. Blepharoptosis is an abnormal drooping of upper eyelid margin with the eye in primary position of gaze. Transconjunctival incisions for upper eyelid ptosis correction have been a well-developed technique. Conventional prognosis however depends on clinical observations and lacks of quantitatively analysis for the eyelid muscle controlling. This study examines the possibility of using the assessments of temporal correlation in surface electromyography (SEMG) as a quantitative description for the change of muscle controlling after operation. Eyelid SEMG was measured from patients with blepharoptosis preoperatively and postoperatively, as well as, for comparative study, from young and aged normal subjects. The data were analyzed using the detrended fluctuation analysis method. The results show that the temporal correlation of the SEMG signals can be characterized by two indices associated with the correlation properties in short and long time scales demarcated at 3ms, corresponding to the time scale of neural response. Aging causes degradation of the correlation properties at both time scales, and patient group likely possess more serious correlation degradation in long-time regime which was improved moderately by the ptosis corrections. We propose that the temporal correlation in SEMG signals may be regarded as an indicator for evaluating the performance of eyelid muscle controlling in postoperative recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    PubMed Central

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high. PMID:22438703

  1. Hand motion classification using a multi-channel surface electromyography sensor.

    PubMed

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  2. Electromyography of the quadriceps in patellofemoral pain with patellar subluxation.

    PubMed

    Mohr, Karen J; Kvitne, Ronald S; Pink, Marilyn M; Fideler, Bradley; Perry, Jacquelin

    2003-10-01

    This study compared muscle activity and timing of gait phases during functional activities in 13 subjects with patellofemoral pain associated with lateral subluxation and in 11 subjects with healthy knees. Fine wire electromyography recorded activity in the vastus lateralis and vastus medialis oblique during walking and ascending and descending stairs. Subjects were filmed to divide the activities into phases and determine timing. The vastus medialis oblique and vastus lateralis had similar patterns during all activities. Subjects with patellofemoral pain had significantly increased activity in the vastus medialis oblique and vastus lateralis compared with the healthy subjects during the most demanding phases of the gait cycle, suggesting a generalized quadriceps weakness in the patients with patellofemoral pain. Timing differences were seen in walking and stair ascending with the subjects with patellofemoral pain spending significantly more time in stance compared with the healthy subjects. This may be an attempt to reduce the load on weak quadriceps. These data reflect a generalized quadriceps muscle weakness, rather than the prevailing theory of quadriceps muscle imbalance as an etiology of patellofemoral pain. Therefore, we support the practice of strengthening the entire quadriceps muscle group, rather than attempting to specifically target the vastus medialis oblique.

  3. The role of emotion in learning trustworthiness from eye-gaze: Evidence from facial electromyography

    PubMed Central

    Manssuer, Luis R.; Pawling, Ralph; Hayes, Amy E.; Tipper, Steven P.

    2016-01-01

    Gaze direction can be used to rapidly and reflexively lead or mislead others’ attention as to the location of important stimuli. When perception of gaze direction is congruent with the location of a target, responses are faster compared to when incongruent. Faces that consistently gaze congruently are also judged more trustworthy than faces that consistently gaze incongruently. However, it’s unclear how gaze-cues elicit changes in trust. We measured facial electromyography (EMG) during an identity-contingent gaze-cueing task to examine whether embodied emotional reactions to gaze-cues mediate trust learning. Gaze-cueing effects were found to be equivalent regardless of whether participants showed learning of trust in the expected direction or did not. In contrast, we found distinctly different patterns of EMG activity in these two populations. In a further experiment we showed the learning effects were specific to viewing faces, as no changes in liking were detected when viewing arrows that evoked similar attentional orienting responses. These findings implicate embodied emotion in learning trust from identity-contingent gaze-cueing, possibly due to the social value of shared attention or deception rather than domain-general attentional orienting. PMID:27153239

  4. Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling

    PubMed Central

    Zhang, J.; Heidlauf, T.; Sartori, M.; Besier, T.; Röhrle, O.; Lloyd, D.

    2016-01-01

    This paper proposes methods and technologies that advance the state of the art for modelling the musculoskeletal system across the spatial and temporal scales; and storing these using efficient ontologies and tools. We present population-based modelling as an efficient method to rapidly generate individual morphology from only a few measurements and to learn from the ever-increasing supply of imaging data available. We present multiscale methods for continuum muscle and bone models; and efficient mechanostatistical methods, both continuum and particle-based, to bridge the scales. Finally, we examine both the importance that muscles play in bone remodelling stimuli and the latest muscle force prediction methods that use electromyography-assisted modelling techniques to compute musculoskeletal forces that best reflect the underlying neuromuscular activity. Our proposal is that, in order to have a clinically relevant virtual physiological human, (i) bone and muscle mechanics must be considered together; (ii) models should be trained on population data to permit rapid generation and use underlying principal modes that describe both muscle patterns and morphology; and (iii) these tools need to be available in an open-source repository so that the scientific community may use, personalize and contribute to the database of models. PMID:27051510

  5. The risk of hematoma following extensive electromyography of the lumbar paraspinal muscles

    PubMed Central

    London, Zachary; Quint, Douglas J.; Haig, Andrew J.; Yamakawa, Karen S. J.

    2012-01-01

    Introduction The purpose of this study is to provide a controlled trial looking at the risk of paraspinal hematoma formation following extensive paraspinal muscle electromyography. Methods 54 subjects ages 55-80 underwent MRI of the lumbar spine before or shortly after electromyography using the paraspinal mapping technique. A neuroradiologist, blinded to the temporal relationship between the EMG and MRI, reviewed the MRIs to look for hematomas in or around the paraspinal muscles. Results Two MRIs demonstrated definite paraspinal hematomas, while 10 were found to have possible hematomas. All hematomas were < 15 mm, and none were close to any neural structures. There was no relationship between MRI evidence of hematoma and either the timing of the EMG or the use of aspirin or other non-steroidal anti-inflammatory drugs. Discussion Paraspinal electromyography can be considered safe in the general population and those taking non-steroidal anti-inflammatory drugs. PMID:22644875

  6. [The role of laryngeal electromyography in the diagnosis of vocal cord movement disorders].

    PubMed

    Bach, Ádám; Sztanó, Balázs; Kiss, József Géza; Volk, Gerd Fabian; Müller, Andreas; Pototschnig, Claus; Rovó, László

    2018-02-01

    The development of the therapeutic possibilities of vocal cord immobility necessitated the parallel renewal of diagnostic methods. In the last years, laryngeal electromyography, which was first introduced more than 70 years ago, has been re-discovered. After reviewing the international literature and their own experience, the authors present the indications, technical requirements, method and, particularly, the evaluation of the results of this procedure. Laryngeal electromyography makes the differentiation between mechanical fixation and immobility with neurological origin of the vocal folds possible. In case of laryngeal paralysis/paresis it also evaluates objectively the severity of neural injury, the prognosis of the disease and the necessity of any glottis-widening procedure. The widespread application of dynamic rehabilitation interventions is not conceivable without the routine application of laryngeal electromyography, so this sensitive diagnostic tool has to be introduced in all laryngological centers. Orv Hetil. 2018; 159(8): 303-311.

  7. Guiding Intramuscular Diaphragm Injections Using Real-time Ultrasound & Electromyography

    PubMed Central

    Sarwal, Aarti; Cartwright, Michael S.; Mitchell, Erin; Williams, Koudy; Walker, Francis O.; Childers, Martin K.

    2014-01-01

    Introduction We describe a unique method that combines ultrasound and electromyography to guide intramuscular diaphragm injections in anesthetized large animals. Methods Ultrasound was used to visualize the diaphragm on each side of spontaneously breathing, anesthetized beagle dogs and cynomolgus macaques. An electromyography needle was introduced and directed by ultrasound to confirm that the needle entered the muscular portion of the diaphragm, and methylene blue was injected. Injection accuracy was confirmed upon necropsy by tracking the spread of methylene blue. Results All methylene blue injections were confirmed to have been placed appropriately into the diaphragm. Conclusions This study demonstrates the feasibility and accuracy of using ultrasound and EMG to guide injections and to reduce complications associated with conventional blind techniques. Ultrasound guidance can be used for clinical electromyography of the diaphragm. Future applications may include targeted diaphragm injections with gene replacement therapy in neuromuscular diseases. PMID:25354257

  8. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  9. Recognition of hand movements in a trans-radial amputated subject by sEMG.

    PubMed

    Atzori, Manfredo; Muller, Henning; Baechler, Micheal

    2013-06-01

    Trans-radially amputated persons who own a myoelectric prosthesis have currently some control via surface electromyography (sEMG). However, the control systems are still limited (as they include very few movements) and not always natural (as the subject has to learn to associate movements of the muscles with the movements of the prosthesis). The Ninapro project tries helping the scientific community to overcome these limits through the creation of electromyography data sources to test machine learning algorithms. In this paper the results gained from first tests made on an amputated subject with the Ninapro acquisition protocol are detailed. In agreement with neurological studies on cortical plasticity and on the anatomy of the forearm, the amputee produced stable signals for each movement in the test. Using a k-NN classification algorithm, we obtain an average classification rate of 61.5% on all 53 movements. Successively, we simplify the task reducing the number of movements to 13, resulting in no misclassified movements. This shows that for fewer movements a very high classification accuracy is possible without the subject having to learn the movements specifically.

  10. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    PubMed

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  11. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.

    PubMed

    Bulea, Thomas C; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H; Contreras-Vidal, Jose L

    2013-07-26

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.

  12. Analysis of endodontist posture utilizing cinemetry, surface electromyography and ergonomic checklists.

    PubMed

    Onety, Geraldo Celso da Silva; Leonel, Daniel Vilela; Saquy, Paulo César; Silva, Gabriel Pádua da; Ferreira, Bruno; Varise, Tiago Gilioli; Sousa, Luiz Gustavo de; Verri, Edson Donizetti; Siéssere, Selma; Semprini, Marisa; Nepomuceno, Victor Rodrigues; Regalo, Simone Cecilio Hallak

    2014-01-01

    The postural risk factors for dentists include the ease of vision in the workplace, cold, vibration and mechanical pressure in tissues, incorrect posture, functional fixity, cognitive requirements and work-related organizational and psychosocial factors. The objective was to analyze the posture of endodontists at the workplace. Eighteen right-handed endodontists aged 25 to 60 years (34±3) participated in the study. Electromyography, kinemetry, ergonomic scales (RULA and Couto's checklist) and biophotogrammetry were used to analyze the posture of endodontists during root canal treatment of the maxillary right first and second molars using rotary and manual instrumentation. The variations observed in the electromyographic activities during the performance of rotary and manual techniques suggest that the fibers of the longissimus region, anterior and medium deltoid, medium trapezium, biceps, triceps brachii, brachioradialis and short thumb abductor muscles underwent adaptations to provide more accurate functional movements. Computerized kinemetry and biophotogrammetry showed that, as far as posture is concerned, rotary technique was more demanding than the manual technique. In conclusion, the group of endodontists evaluated in this study exhibited posture disorders regardless of whether the rotary or manual technique was used.

  13. Electromyography data for non-invasive naturally-controlled robotic hand prostheses

    PubMed Central

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804

  14. Uterine electromyography and light-induced fluorescence in the management of term and preterm labor.

    PubMed

    Garfield, R E; Maul, H; Maner, W; Fittkow, C; Olson, G; Shi, L; Saade, G R

    2002-01-01

    Understanding the physiology of the uterus and cervix during term and preterm parturition is crucial for developing methods to control their function and is essential to solving clinical problems related to labor. To date, only crude, inaccurate, and subjective methods are used to assess changes in uterine and cervical function in pregnancy. In the past several years, we have developed noninvasive methods to quantitatively evaluate the uterus and cervix based on recording of uterine electrical signals from the abdominal surface (uterine electromyography) and measurement of light-induced fluorescence (LIF) of cervical collagen (Collascope), respectively. Both methods are rapid and allow immediate assessment of uterine contractility and cervical ripening. Studies in animals and humans indicated that uterine and cervical performance can be monitored successfully during pregnancy using those approaches and that these techniques can be used during labor to better define management in a variety of conditions associated with labor. The potential benefits of the proposed instrumentation and methods include reducing the rate of preterm delivery, improving maternal and perinatal outcome, monitoring treatment, decreasing cesarean rate and providing research methods to understand uterine and cervical function.

  15. The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: A pilot study.

    PubMed

    Jeon, Somyung; Kim, Young; Jung, Kyoungsim; Chung, Yijung

    2017-01-01

    The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.

  16. A Subthreshold Digital Library Using a Dynamic-Threshold Metal-Oxide Semiconductor (DTMOS) and Transmission Gate Logic

    DTIC Science & Technology

    2014-09-01

    electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG) applications that operate using thermoelectrically generated energy...semiconductor ECG electrocardiography EEG electroencephalography EMG electromyography FY15 fiscal year 2015 IC integrated circuit MOSFETs

  17. Long-term outcome of accessory nerve to suprascapular nerve transfer in obstetric brachial plexus lesion: functional, morphological, and electrophysiological results.

    PubMed

    Gmeiner, Matthias; Topakian, Raffi; Göschl, Manuel; Wurm, Sarah; Holzinger, Anita; van Ouwerkerk, Willem J R; Holl, Kurt

    2015-09-01

    An accessory to suprascapular nerve (XIN-SSN) transfer is considered in patients with obstetric brachial plexus lesion who fail to recover active shoulder external rotation. The aim of this study was to evaluate the quality of extraplexal suprascapular nerve neurotization and to perform a detailed analysis of the infraspinatus muscle (IM) and shoulder external rotation. A XIN-SSN transfer was performed in 14 patients between 2000 and 2007. Patients had been operated at the age of 3.7 ± 2.8 years. Follow-up examinations were conducted up to 8.5 ± 2.5 years. Magnetic resonance imaging was performed to investigate muscle trophism. Fatty muscle degeneration of the IM was classified according to the Goutallier classification. We conducted nerve conduction velocity studies of the suprascapular nerve and needle electromyography of the IM to assess pathologic spontaneous activity and interference patterns. Active glenohumeral shoulder external rotation and global shoulder function were evaluated using the Mallet score. Postoperatively, growth of the IM increased equally on the affected and unaffected sides, although significant differences of muscle thickness persisted over time. There was only grade 1 or 2 fatty degeneration pre- and postoperatively. Electromyography of the IM revealed a full interference pattern in all except one patient, and there was no pathological spontaneous activity. Glenohumeral external rotation as well as global shoulder function increased significantly. Our results indicate that the anastomosis after XIN-SSN transfer is functional and that successful reinnervation of the infraspinatus muscle may enable true glenohumeral active external rotation.

  18. Laryngeal Electromyography is Helpful for Cardiovocal Syndrome.

    PubMed

    Akbulut, Sevtap; Inan, Rahsan; Demir, Mehmet Gökhan; Cakan, Dogan

    2016-01-01

    Laryngeal electromyography is used in the evaluation of vocal cord paralysis to confirm the diagnosis, to guide the diagnostic work-up for etiology, to provide prognostic information and to help choose the correct treatment for the patient. Cardiovocal syndrome is characterised by vocal cord paralysis due to a cardiovascular disease. A wide spectrum of conditions can result in this syndrome. Here we present a case of cardiovocal syndrome in association with primary pulmonary hypertension. Laryngeal electromyography was used to guide the work-up of differential diagnosis and also for further intervention with respect to vocal cord paralysis in this patient.

  19. Laryngeal Electromyography for Prognosis of Vocal Fold Paralysis.

    PubMed

    Pardo-Maza, Adriana; García-Lopez, Isabel; Santiago-Pérez, Susana; Gavilán, Javier

    2017-01-01

    This study aimed to determine the value of laryngeal electromyography in the prognosis of vocal fold paralysis. This is a retrospective descriptive study. This study included 80 patients diagnosed with unilateral or bilateral vocal fold paralysis on flexible laryngoscopy between 2002 and 2014 in a tertiary medical center. Laryngeal electromyography using a standardized protocol was performed; the outcome measures were classified and analyzed into two groups according to the degree of injury. Group 1 included patients with mild to moderate injury, and group 2 included patients with severe to complete injury. Prognosis was correlated with vocal fold motion recovery status with a minimum of 6 months of follow-up since the symptoms onset using positive and negative predictive values. Sixty patients showed acute or chronic recurrent laryngeal neuropathy in laryngeal electromyography. Twelve of 41 patients included in group 1 recovered motion, and 30 of 35 patients included in group 2 did not recover, resulting in 88.2% of positive predictive value and 35.7% of negative predictive value. Our data confirm that laryngeal electromyography is a useful clinical tool in predicting poor recovery in patients with vocal fold paralysis. It allows identification of candidates for early intervention. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Scientific Accomplishments for ARL Brain Structure-Function Couplings Research on Large-Scale Brain Networks from FY11-FY13 (DSI Final Report)

    DTIC Science & Technology

    2014-03-01

    streamlines) from two types of diffusion weighted imaging scans, diffusion tensor imaging ( DTI ) and diffusion spectrum imaging (DSI). We examined...individuals. Importantly, the results also showed that this effect was greater for the DTI method than the DSI method. This suggested that DTI can better...compared to level surface walking. This project combines experimental EEG data and electromyography (EMG) data recorded from seven muscles of the leg

  1. The punctum fixum-punctum mobile model: a neuromuscular principle for efficient movement generation?

    PubMed

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the "punctum fixum-punctum mobile model" that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements.

  2. The Punctum Fixum-Punctum Mobile Model: A Neuromuscular Principle for Efficient Movement Generation?

    PubMed Central

    von Laßberg, Christoph; Rapp, Walter

    2015-01-01

    According to the “punctum fixum–punctum mobile model” that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements. PMID:25822498

  3. Whole-body vibration induces distinct reflex patterns in human soleus muscle.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Cidem, Mehmet; Türker, Kemal S

    2017-06-01

    The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9±5.3msvs. 43.8±3.6 and 44.1±4.2ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8±2.4ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessment of Emotional Expressions after Full-Face Transplantation.

    PubMed

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Barçın, Nur Ebru; Tombak, Kadriye; Çolak, Ömer Halil

    2017-01-01

    We assessed clinical features as well as sensory and motor recoveries in 3 full-face transplantation patients. A frequency analysis was performed on facial surface electromyography data collected during 6 basic emotional expressions and 4 primary facial movements. Motor progress was assessed using the wavelet packet method by comparison against the mean results obtained from 10 healthy subjects. Analyses were conducted on 1 patient at approximately 1 year after face transplantation and at 2 years after transplantation in the remaining 2 patients. Motor recovery was observed following sensory recovery in all 3 patients; however, the 3 cases had different backgrounds and exhibited different degrees and rates of sensory and motor improvements after transplant. Wavelet packet energy was detected in all patients during emotional expressions and primary movements; however, there were fewer active channels during expressions in transplant patients compared to healthy individuals, and patterns of wavelet packet energy were different for each patient. Finally, high-frequency components were typically detected in patients during emotional expressions, but fewer channels demonstrated these high-frequency components in patients compared to healthy individuals. Our data suggest that the posttransplantation recovery of emotional facial expression requires neural plasticity.

  5. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    PubMed

    Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.

  6. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  7. [Recognition of walking stance phase and swing phase based on moving window].

    PubMed

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  8. The association between knee joint biomechanics and neuromuscular control and moderate knee osteoarthritis radiographic and pain severity.

    PubMed

    Astephen Wilson, J L; Deluzio, K J; Dunbar, M J; Caldwell, G E; Hubley-Kozey, C L

    2011-02-01

    The objective of this study was to determine the association between biomechanical and neuromuscular factors of clinically diagnosed mild to moderate knee osteoarthritis (OA) with radiographic severity and pain severity separately. Three-dimensional gait analysis and electromyography were performed on a group of 40 participants with clinically diagnosed mild to moderate medial knee OA. Associations between radiographic severity, defined using a visual analog radiographic score, and pain severity, defined with the pain subscale of the WOMAC osteoarthritis index, with knee joint kinematics and kinetics, electromyography patterns of periarticular knee muscles, BMI and gait speed were determined with correlation analyses. Multiple linear regression analyses of radiographic and pain severity were also explored. Statistically significant correlations between radiographic severity and the overall magnitude of the knee adduction moment during stance (r²=21.4%, P=0.003) and the magnitude of the knee flexion angle during the gait cycle (r²=11.4%, P=0.03) were found. Significant correlations between pain and gait speed (r²=28.2%, P<0.0001), the activation patterns of the lateral gastrocnemius (r²=16.6%, P=0.009) and the medial hamstring (r²=10.3%, P=0.04) during gait were found. The combination of the magnitude of the knee adduction moment during stance and BMI explained a significant portion of the variability in radiographic severity (R(2)=27.1%, P<0.0001). No multivariate model explained pain severity better than gait speed alone. This study suggests that some knee joint biomechanical variables are associated with structural knee OA severity measured from radiographs in clinically diagnosed mild to moderate levels of disease, but that pain severity is only reflected in gait speed and neuromuscular activation patterns. A combination of the knee adduction moment and BMI better explained structural knee OA severity than any individual factor alone. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Corticospinal excitability measurements using transcranial magnetic stimulation are valid with intramuscular electromyography.

    PubMed

    Summers, Rebekah L S; Chen, Mo; Kimberley, Teresa J

    2017-01-01

    Muscular targets that are deep or inaccessible to surface electromyography (sEMG) require intrinsic recording using fine-wire electromyography (fEMG). It is unknown if fEMG validly record cortically evoked muscle responses compared to sEMG. The purpose of this investigation was to establish the validity and agreement of fEMG compared to sEMG to quantify typical transcranial magnetic stimulation (TMS) measures pre and post repetitive TMS (rTMS). The hypotheses were that fEMG would demonstrate excellent validity and agreement compared with sEMG. In ten healthy volunteers, paired pulse and cortical silent period (CSP) TMS measures were collected before and after 1200 pulses of 1Hz rTMS to the motor cortex. Data were simultaneously recorded with sEMG and fEMG in the first dorsal interosseous. Concurrent validity (r and rho) and agreement (Tukey mean-difference) were calculated. fEMG quantified corticospinal excitability with good to excellent validity compared to sEMG data at both pretest (r = 0.77-0.97) and posttest (r = 0.83-0.92). Pairwise comparisons indicated no difference between sEMG and fEMG for all outcomes; however, Tukey mean-difference plots display increased variance and questionable agreement for paired pulse outcomes. CSP displayed the highest estimates of validity and agreement. Paired pulse MEP responses recorded with fEMG displayed reduced validity, agreement and less sensitivity to changes in MEP amplitude compared to sEMG. Change scores following rTMS were not significantly different between sEMG and fEMG. fEMG electrodes are a valid means to measure CSP and paired pulse MEP responses. CSP displays the highest validity estimates, while caution is warranted when assessing paired pulse responses with fEMG. Corticospinal excitability and neuromodulatory aftereffects from rTMS may be assessed using fEMG.

  10. Optimal Normalization Tests for Muscle Activation of the Levator Scapulae, Pectoralis Minor, and Rhomboid Major: An Electromyography Study Using Maximum Voluntary Isometric Contractions.

    PubMed

    Castelein, Birgit; Cagnie, Barbara; Parlevliet, Thierry; Danneels, Lieven; Cools, Ann

    2015-10-01

    To identify maximum voluntary isometric contraction (MVIC) test positions for the deeper-lying scapulothoracic muscles (ie, levator scapulae, pectoralis minor, rhomboid major), and to provide a standard set of a limited number of test positions that generate an MVIC in all scapulothoracic muscles. Cross-sectional study. Physical and rehabilitation medicine department. Healthy subjects (N=21). Not applicable. Mean peak electromyographic activity from levator scapulae, pectoralis minor, and rhomboid major (investigated with fine-wire electromyography) and from upper trapezius, middle trapezius, lower trapezius, and serratus anterior (investigated with surface electromyography) during the performance of 12 different MVICs. The results indicated that various test positions generated similar high mean electromyographic activity and that no single test generated maximum activity for a specific muscle in all subjects. The results of this study support using a series of test positions for normalization procedures rather than a single exercise to increase the likelihood of recruiting the highest activity in the scapulothoracic muscles. A standard set of 5 test positions was identified as being sufficient for generating an MVIC of all scapulothoracic muscles: seated T, seated U 135°, prone T-thumbs up, prone V-thumbs up, and supine V-thumbs up. A standard set of test positions for normalization of scapulothoracic electromyographic data that also incorporates the levator scapulae, pectoralis minor, and rhomboid major muscles is 1 step toward a more comprehensive understanding of normal and abnormal muscle function of these muscles and will help to standardize the presentation of scapulothoracic electromyographic muscle activity. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. A systematic review of surface electromyography analyses of the bench press movement task.

    PubMed

    Stastny, Petr; Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models.

  12. Quality-of-Life Outcomes Following Surface Electromyography Biofeedback as an Adjunct to Pelvic Floor Muscle Training for Urinary Incontinence: A Case Report

    PubMed Central

    Hill, Alexandra; Alappattu, Meryl

    2018-01-01

    Background A non-invasive treatment for urinary incontinence (UI) is surface electromyography (sEMG) biofeedback with pelvic floor muscle (PFM) training. A lack of consensus and evidence exists on the Quality of Life (QoL) outcomes following sEMG biofeedback using surface electrodes at the perineum compared to the more invasive intravaginal probe. This case report examines QoL using sEMG biofeedback at the perineum with PFM training for UI. Study Design Single subject case report Case Description The patient was a 61-year-old woman diagnosed with UI. Her chief complaints were nocturia, urine leakage with urgency, and urine leakage with sneezing and coughing. Physical therapy (PT) treatment focused on behavioral modification, PFM strengthening with and without sEMG biofeedback, and therapeutic exercises with PFM contractions. Outcomes At four weeks from baseline, the patient’s PFM strength increased from 2/5 to 4/5 based on the Modified Laycock Scale. Her PFM endurance contraction improved from two seconds to ten seconds. The International Continence Impact Questionnaire – Urinary Incontinence Short Form (ICIQ-UI SF) score decreased from 6 to 0, the Incontinence Impact Questionnaire – Short Form (IIQ-7) score decreased from 14.3 to 0, and the 3 Incontinence Questions (3IQ) responses did not change. Discussion The outcomes from this case report demonstrate a brief course of PT treatment consisting of perineal sEMG biofeedback in conjunction with PFM training demonstrated clinically meaningful improvements in incontinence-related QoL, in addition to improvements in motor function in a woman with mixed UI and nocturia. PMID:29375282

  13. A Practical Strategy for sEMG-Based Knee Joint Moment Estimation During Gait and Its Validation in Individuals With Cerebral Palsy

    PubMed Central

    Kwon, Suncheol; Stanley, Christopher J.; Kim, Jung; Kim, Jonghyun; Damiano, Diane L.

    2013-01-01

    Individuals with cerebral palsy have neurological deficits that may interfere with motor function and lead to abnormal walking patterns. It is important to know the joint moment generated by the patient’s muscles during walking in order to assist the suboptimal gait patterns. In this paper, we describe a practical strategy for estimating the internal moment of a knee joint from surface electromyography (sEMG) and knee joint angle measurements. This strategy requires only isokinetic knee flexion and extension tests to obtain a relationship between the sEMG and the knee internal moment, and it does not necessitate comprehensive laboratory calibration, which typically requires a 3-D motion capture system and ground reaction force plates. Four estimation models were considered based on different assumptions about the functions of the relevant muscles during the isokinetic tests and the stance phase of walking. The performance of the four models was evaluated by comparing the estimated moments with the gold standard internal moment calculated from inverse dynamics. The results indicate that an optimal estimation model can be chosen based on the degree of cocontraction. The estimation error of the chosen model is acceptable (normalized root-mean-squared error: 0.15–0.29, R: 0.71–0.93) compared to previous studies (Doorenbosch and Harlaar, 2003; Doorenbosch and Harlaar, 2004; Doorenbosch, Joosten, and Harlaar, 2005), and this strategy provides a simple and effective solution for estimating knee joint moment from sEMG. PMID:22410952

  14. Postural Re-Education of Scoliosis - State of the Art (Mini-review).

    PubMed

    Borysov, Maksym; Moramarco, Marc; Sy, Ng; Lee, Sang G

    2016-01-01

    A new development of correcting exercises has been derived from the original Schroth program in 2010 and the preliminary results have been published that year. Since then the program has been applied in some centers worldwide. As the original Schroth program was the only program so far to improve many signs and symptoms of scoliosis besides the angle of curvature (Cobb angle) it was interesting to look for the preliminary results of the recent development of scoliosis pattern specific corrective exercises derived from the original program, to see if similar effects can be achieved with this less complicated method. A manual search in Pubmed was conducted, using the key words, Schroth, rehabilitation, and idiopathic scoliosis. Three papers have been found describing the short-term results of this new development today called Schroth Best Practice program (SBP). The papers were reviewed and analyzed with respect to the outcome parameters used. Outcome parameters were Angle of Trunk Rotation (ATR), Vital Capacity (VC), surface topography, electromyography, stabilometry and Cobb angle before and after a course of treatment. There was a significant improvement of all parameters after the application of this new program in all the three papers in the short- to mid-term. Scoliosis corrective exercises are supported by two randomized controlled trials (RCT) and should regularly be applied in mild scoliosis at risk for progression. Unspecific exercises such as Yoga, Dobomed cannot be regarded as effective as exercises using a well defined scoliosis pattern specific corrective routine.

  15. The effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the Musculus brachiocephalicus and the Musculus extensor carpi radialis in horses

    PubMed Central

    Zellner, Antonia; Bockstahler, Barbara; Peham, Christian

    2017-01-01

    Background information The present study aimed to investigate the effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. 19 horses and ponies of different breeds (body weight: 496±117 kg), gender (8 mares, 10 geldings and 3 stallions) and ages (14.9±6.9 years old) were analysed without Kinesio Tape (“no tape”), with Kinesio Tape (muscle facilitation application on both muscles of both sides, “with tape”) and immediately after Kinesio Taping (“post tape”) through kinematic motion analysis and surface electromyography on a treadmill at the walk (speed: 1.5±0.1 m/s) and trot (speed: 3.1±0.3 m/s). Results The results of the surface electromyography (maximum muscle activity at the walk and trot) and the kinematic motion analysis (maximum stride length and maximum height of the forelimbs flight arc at the walk and trot) showed that there were no significant differences between "no tape", "with tape" and "post tape". Conclusion To sum up, Kinesio Taping on the M. brachiocephalicus and the M. extensor carpi radialis does not affect (in a positive or negative manner) the trajectory of the forelimb or the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. PMID:29166657

  16. The influence of digital filter type, amplitude normalisation method, and co-contraction algorithm on clinically relevant surface electromyography data during clinical movement assessments.

    PubMed

    Devaprakash, Daniel; Weir, Gillian J; Dunne, James J; Alderson, Jacqueline A; Donnelly, Cyril J

    2016-12-01

    There is a large and growing body of surface electromyography (sEMG) research using laboratory-specific signal processing procedures (i.e., digital filter type and amplitude normalisation protocols) and data analyses methods (i.e., co-contraction algorithms) to acquire practically meaningful information from these data. As a result, the ability to compare sEMG results between studies is, and continues to be challenging. The aim of this study was to determine if digital filter type, amplitude normalisation method, and co-contraction algorithm could influence the practical or clinical interpretation of processed sEMG data. Sixteen elite female athletes were recruited. During data collection, sEMG data was recorded from nine lower limb muscles while completing a series of calibration and clinical movement assessment trials (running and sidestepping). Three analyses were conducted: (1) signal processing with two different digital filter types (Butterworth or critically damped), (2) three amplitude normalisation methods, and (3) three co-contraction ratio algorithms. Results showed the choice of digital filter did not influence the clinical interpretation of sEMG; however, choice of amplitude normalisation method and co-contraction algorithm did influence the clinical interpretation of the running and sidestepping task. Care is recommended when choosing amplitude normalisation method and co-contraction algorithms if researchers/clinicians are interested in comparing sEMG data between studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Suppression of stimulus artifact contaminating electrically evoked electromyography.

    PubMed

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z; Zhou, Ping

    2014-01-01

    Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using Savitzky-Golay filtering, estimation of the artifact contaminated region with Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel's M wave recording using a linear electrode array. The developed method can suppress stimulus artifacts contaminating M wave recordings.

  18. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    PubMed

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  19. Accuracy of the surface electromyography RMS processing for the diagnosis of myogenous temporomandibular disorder.

    PubMed

    Berni, Kelly Cristina dos Santos; Dibai-Filho, Almir Vieira; Pires, Paulo Fernandes; Rodrigues-Bigaton, Delaine

    2015-08-01

    Due to the multifactor etiology of temporomandibular disorder (TMD), the precise diagnosis remains a matter of debate and validated diagnostic tools are needed. The aim was to determine the accuracy of surface electromyography (sEMG) activity, assessed in the amplitude domain by the root mean square (RMS), in the diagnosis of TMD. One hundred twenty-three volunteers were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and distributed into two groups: women with myogenous TMD (n=80) and women without TMD (n=43). The volunteers were then submitted to sEMG evaluation of the anterior temporalis, masseter and suprahyoid muscles at rest and during maximum voluntary teeth clenching (MVC) on parafilm. The accuracy, sensitivity and specificity of the muscle activity were analyzed. Differences between groups were found in all muscles analyzed at rest as well as in the masseter and suprahyoid muscles during MVC on parafilm. Moderate accuracy (AUC: 0.74-0.84) of the RMS sEMG was found in all muscles regarding the diagnosis of TMD at rest and in the suprahyoid muscles during MVC on parafilm. Moreover, sensitivity ranging from 71.3% to 80% and specificity from 60.5% to 76.6%. In contrast, RMS sEMG did not exhibit acceptable degrees of accuracy in the other masticatory muscles during MVC on parafilm. It was concluded that the RMS sEMG is a complementary tool for clinical diagnosis of the myogenous TMD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study.

    PubMed

    Aslani, Navid; Noroozi, Siamak; Davenport, Philip; Hartley, Richard; Dupac, Mihai; Sewell, Philip

    2018-06-01

    Traditional shoulder range of movement (ROM) measurement tools suffer from inaccuracy or from long experimental setup times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a 'frozen' shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291 ± 538 deg 2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg 2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace. Graphical abstract The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. The assessment tool consists of an IMU sensor, an EMG sensor, a microcontroller and a Bluetooth module. The assessment tool was attached to subjects arm. Individuals were instructed to move their arms with the elbow fully extended. They were then asked to provide the maximal voluntary elevation envelope of the arm in 3D space in multiple attempts starting from a small movement envelope going to the biggest possible in four consecutive circuits. The results showed that there was an average ROM surface area of 27291 ± 538 deg2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace.

  1. Hamstring Muscle Use in Females During Hip-Extension and the Nordic Hamstring Exercise: An fMRI Study.

    PubMed

    Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J

    2018-04-23

    Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P < .001), semitendinosus and semimembranosus (P = .001) than that of biceps femoris short head (BF ShortHead ). During the Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P < .001) and BF LongHead (P = .001). Conclusion While both exercises involve high levels of semitendinosus activation in women, the Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.

  2. Effect of head and limb orientation on trunk muscle activation during abdominal hollowing in chronic low back pain.

    PubMed

    Parfrey, Kevin; Gibbons, Sean G T; Drinkwater, Eric J; Behm, David G

    2014-02-22

    Individuals with chronic low back pain (CLBP) have altered activations patterns of the anterior trunk musculature when performing the abdominal hollowing manœuvre (attempt to pull umbilicus inward and upward towards the spine). There is a subgroup of individuals with CLBP who have high neurocognitive and sensory motor deficits with associated primitive reflexes (PR). The objective of the study was to determine if orienting the head and extremities to positions, which mimic PR patterns would alter anterior trunk musculature activation during the hollowing manoeuvre. This study compared surface electromyography (EMG) of bilateral rectus abdominis (RA), external oblique (EO), and internal obliques (IO) of 11 individuals with CLBP and evident PR to 9 healthy controls during the hollowing manoeuvre in seven positions of the upper quarter. Using magnitude based inferences it was likely (>75%) that controls had a higher ratio of left IO:RA activation with supine (cervical neutral), asymmetrical tonic neck reflex (ATNR) left and right, right cervical rotation and cervical extension positions. A higher ratio of right IO:RA was detected in the cervical neutral and ATNR left position for the control group. The CLBP group were more likely to show higher activation of the left RA in the cervical neutral, ATNR left and right, right cervical rotation and cervical flexion positions as well as in the cervical neutral and cervical flexion position for the right RA. Individuals with CLBP and PR manifested altered activation patterns during the hollowing maneuver compared to healthy controls and that altering cervical and upper extremity position can diminish the group differences. Altered cervical and limb positions can change the activation levels of the IO and EO in both groups.

  3. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    PubMed

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain.

    PubMed

    Silfies, Sheri P; Mehta, Rupal; Smith, Sue S; Karduna, Andrew R

    2009-07-01

    To investigate alterations in trunk muscle timing patterns in subgroups of patients with mechanical low back pain (MLBP). Our hypothesis was that subjects with MLBP would demonstrate delayed muscle onset and have fewer muscles functioning in a feedforward manner than the control group. We further hypothesized that we would find differences between subgroups of our patients with MLBP, grouped according to diagnosis (segmental instability and noninstability). Case-control. Laboratory. Forty-three patients with chronic MLBP (25 instability, 18 noninstability) and 39 asymptomatic controls. Not applicable. Surface electromyography was used to measure onset time of 10 trunk muscles during a self-perturbation task. Trunk muscle onset latency relative to the anterior deltoid was calculated and the number of muscles functioning in feedforward determined. Activation timing patterns (P<.01; eta=.50; 1-beta=.99) and number of muscles functioning in feedforward (P=.02; eta=.30; 1-beta=.83) were statistically different between patients with MLBP and controls. The control group activated the external oblique, lumbar multifidus, and erector spinae muscles in a feedforward manner. The heterogeneous MLBP group did not activate the trunk musculature in feedforward, but responded with significantly delayed activations. MLBP subgroups demonstrated significantly different timing patterns. The noninstability MLBP subgroup activated trunk extensors in a feedforward manner, similar to the control group, but significantly earlier than the instability subgroup. Lack of feedforward activation of selected trunk musculature in patients with MLBP may result in a period of inefficient muscular stabilization. Activation timing was more impaired in the instability than the noninstability MLBP subgroup. Training specifically for recruitment timing may be an important component of the rehabilitation program.

  5. Using Laryngeal Electromyography to Differentiate Presbylarynges from Paresis

    ERIC Educational Resources Information Center

    Stager, Sheila V.; Bielamowicz, Steven A.

    2010-01-01

    Purpose: Differential diagnosis of patients over 64 years of age reporting hoarseness is challenging. Laryngeal electromyography (LEMG) was used to determine the status of the recurrent and superior laryngeal nerves. The authors hypothesized that individuals with hoarseness but normal LEMG would have measures similar to those of patients from…

  6. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    PubMed Central

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra‐class correlation coefficients ranged between 0.63—0.99 and 0.39–0.95, respectively). In Experiment II, ∼40% of the MUs could be tracked before and after the training intervention and training‐induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders. PMID:28032343

  7. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    PubMed

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  8. Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis).

    PubMed

    Patel, Biren A; Larson, Susan G; Stern, Jack T

    2012-01-01

    Some non-human primates use digitigrade hand postures when walking slowly on the ground. As a component of an extended limb, a digitigrade posture can help minimize wrist joint moments thereby requiring little force production directly from wrist flexors (and/or from the assistance of finger flexors) to maintain limb posture. As a consequence, less active muscle volume would be required from these anti-gravity muscles and overall metabolic costs associated with locomotion could be reduced. To investigate whether the use of digitigrade hand postures during walking in primates entails minimal use of anti-gravity muscles, this study examined electromyography (EMG) patterns in both the wrist and finger flexor muscles in facultatively digitigrade olive baboons (Papio anubis) across a range of speeds. The results demonstrate that baboons can adopt a digitigrade hand posture when standing and moving at slow speeds without requiring substantial EMG activity from distal anti-gravity muscles. Higher speed locomotion, however, entails increasing EMG activity and is accompanied by a dynamic shift to a more palmigrade-like limb posture. Thus, the ability to adopt a digitigrade hand posture by monkeys is an adaptation for ground living, but it was never co-opted for fast locomotion. Rather, digitigrady in primates appears to be related to energetic efficiency for walking long distances.

  9. Transversus abdominis is part of a global not local muscle synergy during arm movement.

    PubMed

    Morris, S L; Lay, B; Allison, G T

    2013-10-01

    The trunk muscle transversus abdominis (TrA) is thought to be controlled independently of the global trunk muscles. Methodological issues in the 1990s research such as unilateral electromyography and a limited range of arm movements justify a re-examination of this theory. The hypothesis tested is that TrA bilateral co-contraction is a typical muscle synergy during arm movement. The activity of 6 pairs of trunk and lower limb muscles was recorded using bilateral electromyography during anticipatory postural adjustments (APAs) associated with the arm movements. The integrated APA electromyographical signals were analyzed for muscle synergy using Principle Component Analysis. TrA does not typically bilaterally co-contract during arm movements (1 out of 6 participants did). APA muscle activity of all muscles during asymmetrical arm movements typically reflected a direction specific diagonal pattern incorporating a twisting motion to transfer energy from the ground up. This finding is not consistent with the hypothesis that TrA plays a unique role providing bilateral, feedforward, multidirectional stiffening of the spine. This has significant implications to the theories underlying the role of TrA in back pain and in the training of isolated bilateral co-contraction of TrA in the prophylaxis of back pain. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Smartphone form factors: Effects of width and bottom bezel on touch performance, workload, and physical demand.

    PubMed

    Lee, Seul Chan; Cha, Min Chul; Hwangbo, Hwan; Mo, Sookhee; Ji, Yong Gu

    2018-02-01

    This study aimed at investigating the effect of two smartphone form factors (width and bottom bezel) on touch behaviors with one-handed interaction. User experiments on tapping tasks were conducted for four widths (67, 70, 72, and 74 mm) and five bottom bezel levels (2.5, 5, 7.5, 10, and 12.5 mm). Task performance, electromyography, and subjective workload data were collected to examine the touch behavior. The success rate and task completion time were collected as task performance measures. The NASA-TLX method was used to observe the subjective workload. The electromyogram signals of two thumb muscles, namely the first dorsal interosseous and abductor pollicis brevis, were observed. The task performances deteriorated with increasing width level. The subjective workload and electromyography data showed similar patterns with the task performances. The task performances of the bottom bezel devices were analyzed by using three different evaluation criteria. The results from these criteria indicated that tasks became increasingly difficult as the bottom bezel level decreased. The results of this study provide insights into the optimal range of smartphone form factors for one-handed interaction, which could contribute to the design of new smartphones. Copyright © 2017. Published by Elsevier Ltd.

  11. Value of Laryngeal Electromyography in Spasmodic Dysphonia Diagnosis and Therapy.

    PubMed

    Yang, Qingwen; Xu, Wen; Li, Yun; Cheng, Liyu

    2015-07-01

    To investigate the role of laryngeal electromyography (LEMG) in the diagnosis and treatment of spasmodic dysphonia (SD). The clinical manifestations, characteristics of motor unit potentials (MUPs), recruitment potentials, and laryngeal nerve evoked potentials (EPs) in LEMG, as well as the changes after botulinum toxin (BTX) treatment, were analyzed in 39 patients with adductor SD. The main clinical manifestations were a strained voice and phonation interruptions; in addition, the patients displayed hyper-adducted vocal folds during phonation. LEMG revealed significantly increased amplitudes of the thyroarytenoid muscle MUPs. The recruitment potentials were in a dense bunch, discharging full interference patterns with significantly increased amplitudes; the mean and maximum amplitude of recruitment potentials were 3090 μV and 5000 μV, respectively. The amplitude of EPs of thyroarytenoid muscle increased significantly; the mean and maximum amplitudes were 10.3 mV and 26.3 mV, respectively. After BTX was injected, the LEMG revealed denervation changes, and the EPs weakened or disappeared in the injected muscle. SD could be diagnosed, and the therapeutic efficacy of SD treatments could be evaluated based on clinical characteristics combined with LEMG characteristics. The increased amplitudes of the recruitment potentials and EPs of the thyroarytenoid muscle were the characteristic indexes. After BTX was injected, denervated potential characteristics appeared in the muscles. © The Author(s) 2015.

  12. Analog Front-Ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition EMBC 2015.

    PubMed

    Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo

    2015-01-01

    Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.

  13. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    PubMed

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0.01). Deviations in muscular activity between injured and non-injured sides and between antagonistic muscular activity within injured as compared to non-injured sides indicated specific alterations in sensorimotor control of the lower limb in individuals with ACL rupture. Also, correlations between deviating muscular activity and specific altered movement patterns were suggested as indications of altered sensorimotor control. We therefore advocate that quantitative assessments of altered movement patterns should be considered in ACL-rehabilitation.

  14. Quantitative analysis of surface electromyography during epileptic and nonepileptic convulsive seizures.

    PubMed

    Beniczky, Sándor; Conradsen, Isa; Moldovan, Mihai; Jennum, Poul; Fabricius, Martin; Benedek, Krisztina; Andersen, Noémi; Hjalgrim, Helle; Wolf, Peter

    2014-07-01

    To investigate the characteristics of sustained muscle activation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), as compared to voluntary muscle activation. The main goal was to find surface electromyography (EMG) features that can distinguish between convulsive epileptic seizures and convulsive PNES. In this case-control study, surface EMG was recorded from the deltoid muscles during long-term video-electroencephalography (EEG) monitoring in 25 patients and in 21 healthy controls. A total of 46 clinical episodes were recorded: 28 generalized tonic-clonic seizures (GTCS) from 14 patients with epilepsy, and 18 convulsive PNES from 12 patients (one patient had both GTCS and PNES). The healthy controls were simulating GTCS. To quantitatively characterize the signals we calculated the following parameters: root mean square (RMS) of the amplitude, median frequency (MF), coherence, and duration of the seizures, of the clonic EMG discharges, and of the silent periods between the cloni. Based on wavelet analysis, we distinguished between a low-frequency component (LF 2-8 Hz) and a high-frequency component (HF 64-256 Hz). Duration of the seizure, and separation between the tonic and the clonic phases distinguished at group-level but not at individual level between convulsive PNES and GTCS. RMS, temporal dynamics of the HF/LF ratio, and the evolution of the silent periods differentiated between epileptic and nonepileptic convulsive seizures at the individual level. A combination between HF/LF ratio and RMS separated all PNES from the GTCS. A blinded review of the EMG features distinguished correctly between GTCS and convulsive PNES in all cases. The HF/LF ratio and the RMS of the PNES were smaller compared to the simulated seizures. In addition to providing insight into the mechanism of muscle activation during convulsive PNES, these results have diagnostic significance, at the individual level. Surface EMG features can accurately distinguish convulsive epileptic from nonepileptic psychogenic seizures, even in PNES cases without rhythmic clonic movements. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  15. Recurrent laryngeal nerve recovery patterns assessed by serial electromyography.

    PubMed

    Paniello, Randal C; Park, Andrea M; Bhatt, Neel K; Al-Lozi, Muhammad

    2016-03-01

    Following acute injury to the recurrent laryngeal nerve (RLN), laryngeal electromyography (LEMG) is increasingly being used to determine prognosis for recovery. The LEMG findings change during the recovery process, but the timing of these changes is not well described. In this canine study, LEMGs were obtained serially following model RLN injuries. Animal Study. Thirty-six canine RLNs underwent crush (n = 6), complete transection with reanastomosis (n = 6), half-transection half-crush (n = 5), cautery (n = 5), stretch (n = 5), inferior crush (n = 4), or inferior transection with reanastomosis (n = 5) injuries. Injuries were performed 5 cm from cricoid or were 5 cm further inferior. Under light sedation, LEMG of thyroarytenoid muscles was performed monthly for 6 months following injury. At 6 months, spontaneous and induced vocal fold motion was assessed. Except for the stretch injury, the remaining groups showed very similar recovery patterns. Fibrillation potentials (FPs) and/or positive sharp waves (PSWs; signs of bad prognosis) were seen in all cases at 1 month and lasted on average for 2.26 months (range = 1-4 months). Motor unit potentials of at least 2+ (scale = 0-4+; signs of good prognosis) were seen beginning at 3.61 months (range = 2-6 months). The stretch injury was less severe, with 3 of 5 showing no FPs/PSWs at 1 month; all recovered full mobility. Ten of the 36 thyroarytenoid muscles (27.8%) had 1 electromyograph showing both bad prognosis and good prognosis signs simultaneously at 2 to 4 months postinjury. LEMG can be used to predict RNL recovery, but timing is important and LEMG results earlier than 3 months may overestimate a negative prognosis. NA Laryngoscope, 126:651-656, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Genetic and Early Clinical Manifestations of Females Heterozygous for Duchenne/Becker Muscular Dystrophy.

    PubMed

    Papa, Riccardo; Madia, Francesca; Bartolomeo, Domenico; Trucco, Federica; Pedemonte, Marina; Traverso, Monica; Broda, Paolo; Bruno, Claudio; Zara, Federico; Minetti, Carlo; Fiorillo, Chiara

    2016-02-01

    Female carriers of Duchenne muscular dystrophy (DMD), although usually asymptomatic, develop muscle weakness up to 17% of the time, and a third present cardiac abnormalities or cognitive impairment. Clinical features of DMD carriers during childhood are poorly known. We describe a cohort of pediatric DMD carriers, providing clinical, genetic, and histopathologic features, with a mean follow-up of 7 years. Fifteen females with a DMD mutation (age range 5 to 18 years) were included. Seven patients (46%) presented with clinically evident symptoms and signs such as limb girdle weakness, abnormal gait, and exercise intolerance. The other eight patients (53%) were evaluated because of an incidental finding of elevated level of creatine kinase. Creatine kinase level was elevated in all, ranging from 392 to 13,000 U/L. Calf hypertrophy was observed in eight patients (53%). No patient developed respiratory or cardiac involvement. The most frequent complication was scoliosis (46%). Four patients (29%) also presented minor learning disabilities or behavioral problems. We performed electromyography in half of patients, showing myopathic pattern in four (53%). Muscle biopsy revealed a mosaic reduction of dystrophin in nine available cases. DMD gene mutations were mostly deletions (71%), resulting in loss of reading frame in five patients (36%). The three patients who experienced the most severe disease course were affected either by a nonsense or frameshift mutation. Our analysis suggests that DMD gene mutations may be suspected in a female child with persistently elevated levels of creatine kinase. Evidence of scoliosis, calf hypertrophy, or myopathic pattern at electromyography may also be helpful, and muscle biopsy is always indicative. DMD carriers should be followed for subtle orthopedic and psychiatric complications during childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An electrophysiologic study of female ejaculation.

    PubMed

    Shafik, Ahmed; Shafik, Ismail A; El Sibai, Olfat; Shafik, Ali A

    2009-01-01

    Opinions vary over whether female ejaculation exists or not. We investigated the hypothesis that female orgasm is not associated with ejaculation. Thirty-eight healthy women were studied. The study comprised of glans clitoris electrovibration with simultaneous recording of vaginal and uterine pressures as well as electromyography of corpus cavernous and ischio- and bulbo-cavernosus muscles. Glans clitoris electrovibration was continued until and throughout orgasm. Upon glans clitoris electrovibration, vaginal and uterine pressures as well as corpus cavernous electromyography diminished until a full erection occurred when the silent cavernosus muscles were activated. At orgasm, the electromyography of ischio-and bulbo-cavernosus muscles increased intermittently. The female orgasm was not associated with the appearance of fluid coming out of the vagina or urethra.

  18. Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

    PubMed Central

    Bulea, Thomas C.; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H.; Contreras-Vidal, Jose L.

    2013-01-01

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG. PMID:23912203

  19. The relationship between RMS electromyography and thickness change in the skeletal muscles.

    PubMed

    Kian-Bostanabad, Sharareh; Azghani, Mahmood-Reza

    2017-05-01

    The knowledge of muscle function may affect prescribing medications and physical treatments. Recently, ultrasound and electromyography (EMG) have been used to assess the skeletal muscles activity. The relationship between these methods has been reported in numerous articles qualitatively. In this paper, the relationship between EMG root-mean-square (RMS) and ultrasound data of muscle thickness has been investigated using Response Surface Methodology in the muscles separately and together and predictive models reported. Results show that to assess the relationship between the changes of thickness and activity (EMG) in muscles, we can use quadratic model for the rectus femoris, tibialis anterior, transverse abdominal, biceps brachii and brachialis muscles (R 2 =0.624-0.891) and linear model for the internal and external oblique abdominal, lumbar multifidus and deep cervical flexor muscles (R 2 =0.348-0.767). Due to the high correlation coefficient for the equations in the bulky muscles, it seems that the correlation between EMG RMS and ultrasound data of muscle thickness on the bulky muscles is higher than the flat muscles. This relationship may depend more on the type of activity than the type of muscle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.

    PubMed

    Gui, Kai; Liu, Honghai; Zhang, Dingguo

    2017-11-01

    Robotic exoskeletons for physical rehabilitation have been utilized for retraining patients suffering from paraplegia and enhancing motor recovery in recent years. However, users are not voluntarily involved in most systems. This paper aims to develop a locomotion trainer with multiple gait patterns, which can be controlled by the active motion intention of users. A multimodal human-robot interaction (HRI) system is established to enhance subject's active participation during gait rehabilitation, which includes cognitive HRI (cHRI) and physical HRI (pHRI). The cHRI adopts brain-computer interface based on steady-state visual evoked potential. The pHRI is realized via admittance control based on electromyography. A central pattern generator is utilized to produce rhythmic and continuous lower joint trajectories, and its state variables are regulated by cHRI and pHRI. A custom-made leg exoskeleton prototype with the proposed multimodal HRI is tested on healthy subjects and stroke patients. The results show that voluntary and active participation can be effectively involved to achieve various assistive gait patterns.

  1. Reversal of the sleep-wake cycle by heroin self-administration in rats.

    PubMed

    Coffey, Alissa A; Guan, Zhiwei; Grigson, Patricia S; Fang, Jidong

    2016-05-01

    The goal of this study was to examine how heroin self-administration, abstinence, and extinction/reinstatement affect circadian sleep-wake cycles and the associated sleep architecture. We used electroencephalography (EEG) and electromyography (EMG) to measure sleep patterns in male Sprague-Dawley rats over 16 trials of heroin self-administration (acquisition), 14 days of abstinence, and a single day of extinction and drug-induced reinstatement. Rats self-administering heroin showed evidence of reversed (diurnal) patterns of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep throughout acquisition. During abstinence, their wake and NREM sleep patterns were immediately restored to the normal nocturnal distribution. REM patterns remained inverted for the first 3-6 days of abstinence in heroin self-administering rats. The single extinction/reinstatement test was without effect. These data suggest that heroin may have the ability to affect circadian distribution of sleep and wakefulness, either indirectly, where animals shift their sleep-wake cycle to allow for drug taking, or directly, through wake-promoting actions or actions at circadian oscillators in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men.

    PubMed

    Ramsook, Andrew H; Molgat-Seon, Yannick; Schaeffer, Michele R; Wilkie, Sabrina S; Camp, Pat G; Reid, W Darlene; Romer, Lee M; Guenette, Jordan A

    2017-05-01

    Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can be explained largely by an awareness of increased neural respiratory drive, as measured indirectly using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine whether improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle electromyography (EMG) activity. Twenty-five young, healthy, recreationally active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 wk of randomly assigned pressure threshold IMT or sham control (SC) training. The IMT group ( n = 12) performed 30 inspiratory efforts twice daily against a 30-repetition maximum intensity. The SC group ( n = 13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0-10 Borg scale. Sternocleidomastoid and scalene EMG was measured using surface electrodes, whereas EMGdi was measured using a multipair esophageal electrode catheter. IMT significantly improved MIP (pre: -138 ± 45 vs. post: -160 ± 43 cmH 2 O, P < 0.01), whereas the SC intervention did not. Dyspnea was significantly reduced at the highest equivalent work rate (pre: 7.6 ± 2.5 vs. post: 6.8 ± 2.9 Borg units, P < 0.05), but not in the SC group, with no between-group interaction effects. There were no significant differences in respiratory muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles. NEW & NOTEWORTHY Exertional dyspnea intensity is thought to reflect an increased awareness of neural respiratory drive, which is measured indirectly using diaphragmatic electromyography (EMGdi). We examined the effects of inspiratory muscle training (IMT) on dyspnea, EMGdi, and EMG of accessory inspiratory muscles. IMT significantly reduced submaximal dyspnea intensity ratings but did not change EMG of any inspiratory muscles. Improvements in exertional dyspnea following IMT may be the result of nonphysiological factors or physiological adaptations unrelated to neural respiratory drive. Copyright © 2017 the American Physiological Society.

  3. Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men

    PubMed Central

    Molgat-Seon, Yannick; Schaeffer, Michele R.; Wilkie, Sabrina S.; Camp, Pat G.; Reid, W. Darlene; Romer, Lee M.

    2017-01-01

    Inspiratory muscle training (IMT) has consistently been shown to reduce exertional dyspnea in health and disease; however, the physiological mechanisms remain poorly understood. A growing body of literature suggests that dyspnea intensity can be explained largely by an awareness of increased neural respiratory drive, as measured indirectly using diaphragmatic electromyography (EMGdi). Accordingly, we sought to determine whether improvements in dyspnea following IMT can be explained by decreases in inspiratory muscle electromyography (EMG) activity. Twenty-five young, healthy, recreationally active men completed a detailed familiarization visit followed by two maximal incremental cycle exercise tests separated by 5 wk of randomly assigned pressure threshold IMT or sham control (SC) training. The IMT group (n = 12) performed 30 inspiratory efforts twice daily against a 30-repetition maximum intensity. The SC group (n = 13) performed a daily bout of 60 inspiratory efforts against 10% maximal inspiratory pressure (MIP), with no weekly adjustments. Dyspnea intensity was measured throughout exercise using the modified 0–10 Borg scale. Sternocleidomastoid and scalene EMG was measured using surface electrodes, whereas EMGdi was measured using a multipair esophageal electrode catheter. IMT significantly improved MIP (pre: −138 ± 45 vs. post: −160 ± 43 cmH2O, P < 0.01), whereas the SC intervention did not. Dyspnea was significantly reduced at the highest equivalent work rate (pre: 7.6 ± 2.5 vs. post: 6.8 ± 2.9 Borg units, P < 0.05), but not in the SC group, with no between-group interaction effects. There were no significant differences in respiratory muscle EMG during exercise in either group. Improvements in dyspnea intensity ratings following IMT in healthy humans cannot be explained by changes in the electrical activity of the inspiratory muscles. NEW & NOTEWORTHY Exertional dyspnea intensity is thought to reflect an increased awareness of neural respiratory drive, which is measured indirectly using diaphragmatic electromyography (EMGdi). We examined the effects of inspiratory muscle training (IMT) on dyspnea, EMGdi, and EMG of accessory inspiratory muscles. IMT significantly reduced submaximal dyspnea intensity ratings but did not change EMG of any inspiratory muscles. Improvements in exertional dyspnea following IMT may be the result of nonphysiological factors or physiological adaptations unrelated to neural respiratory drive. PMID:28255085

  4. Contraction induced h reflexes in the diagnosis of cervical radiculopathy.

    PubMed

    Bodofsky, Elliot B; Campellone, Joseph V; Cohen, Stephen J; Caten, Holly N; Schindelheim, Adam M

    2015-06-01

    To determine whether Contraction Induced H Reflexes (CIHR) can accurately detect cervical radiculopathy. Comparison of CIHR results with Needle Electromyography at academic outpatient Electromyography/Nerve Conduction laboratories. Participants were all patients over 18 with a needle electromyography diagnosis of cervical radiculopathy. Patients were tested for CIHR in at least two upper extremity muscles in electromyographically proven myotomes bilaterally. Patients were requested to perform a moderate contraction while stimulus was applied proximally (elbow or Erb's point). Outcome measures included H Reflex onset latency and side-to-side latency differences. These were compared against previously established normal values. Overall, 10 of 15 patients who met criteria for cervical radiculopathy showed CIHR abnormalities (sensitivity = 67%; 95% confidence interval, 43-91). Counting each side and level separately, CIHR identified 16/27 radiculopathies (sensitivity = 59.2%; 95% confidence interval, 40.6-77.8). Contraction Induced H Reflexes identified 1 possible radiculopathy not seen on electromyography (specificity = 98%; 95% confidence interval, 95-100). Contraction induced H Reflexes have a sensitivity and specificity for cervical radiculopathy similar to the resting Gastroc-Soleus H Reflex.

  5. [Design of an embedded stroke rehabilitation apparatus system based on Linux computer engineering].

    PubMed

    Zhuang, Pengfei; Tian, XueLong; Zhu, Lin

    2014-04-01

    A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

  6. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  7. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  8. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites

    PubMed Central

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-01-01

    Background The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. Objectives The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Patients and Methods Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Results Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. Conclusions The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs). PMID:27826403

  9. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites.

    PubMed

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-09-01

    The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs).

  10. Differences in Knee and Hip Adduction and Hip Muscle Activation in Runners With and Without Iliotibial Band Syndrome.

    PubMed

    Baker, Robert L; Souza, Richard B; Rauh, Mitchell J; Fredericson, Michael; Rosenthal, Michael D

    2018-04-26

    Iliotibial band syndrome has been associated with altered hip and knee kinematics in runners. Previous studies have recommended further research on neuromuscular factors at the hip. The frontal plane hip muscles have been a strong focus in strength comparison but not for electromyography investigation. To compare hip surface electromyography, and frontal plane hip and knee kinematics, in runners with and without iliotibial band syndrome. Observational cross-sectional study. Thirty participants were tested for motion capture at the hip and knee and muscle activation in the lateral and posterior hip. Biomechanics research laboratory within a university. Thirty subjects were recruited consisting of 15 injured runners with iliotibial band syndrome and 15 gender-, age-, and body mass index-matched controls. In each group, 8 were male runners and 7 were female runners. Inclusion criteria for the injured group were pain within 2 months related to iliotibial band syndrome and a positive Noble compression test. Participants were excluded if they reported other lower extremity diagnoses within the last year or active lower extremity or low back pain not related to iliotibial band syndrome. Controls were excluded if they reported a history of iliotibial band syndrome. Convenience sampling was used based on referrals from local running clinics and orthopedic clinics. Three-dimensional motion capture was performed with 10 high-speed cameras synchronized with wireless surface electromyography during a 30-minute run. The first data point was at 3 minutes, using a constant speed of 2.74 meters per second. A second data point was at 30 minutes, using a self-selected pace by the participant to allow for a challenging run until completion at 30 minutes. Motion capture was reported as peak kinematic values from heel strike to peak knee flexion for hip adduction and knee adduction. Surface electromyography was reported as a percentage of maximal voluntary contraction for the gluteus maximus, gluteus medius and tensor fascia latae muscles. Injured runners demonstrated increased knee adduction compared with control runners at 30 minutes (P = .002, control = -1.48°, injured = 3.74°). Tensor fasciae latae muscle activation in injured runners was increased compared with control runners at 3 minutes (P = .017, control = 7% maximal voluntary isometric contraction, injured = 11% maximal voluntary isometric contraction). The results of this study suggest that lateral knee pain in runners localized to the distal iliotibial band is associated with increased knee adduction at 30 minutes. Increased tensor fasciae latae muscle activation at three minutes is noted, but more investigation is needed to better understand the clinical meaning. These findings are consistent with but not conclusive evidence supporting the theory that neuromuscular factors of the hip muscles may contribute to increased knee adduction in runners with iliotibial band syndrome. We advise caution using these findings to support treatments intended to modify tensor fasciae latae activation, given the small differences of 4% in muscle activation. Increased knee adduction in runners at 30 minutes was over 5° and beyond the minimal detectable difference. Additional research is needed to confirm whether the degree of knee adduction changes earlier versus later in a run and whether fatigue is a clinically relevant factor. To be determined. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery

    NASA Astrophysics Data System (ADS)

    Ariffin, Muhammad Shahimi; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    An investigation of khatrah technique in archery was carried out. An electromyography (EMG) experiment was conducted towards six wrist muscles which are flexor carpi radialis, extensor carpi ulnaris and extensor digitorum communis for both arms. The maximum voluntary contraction (MVC) and activity data were recorded. The bow arm produced a higher muscle force compared to draw arm muscles during release phase. However, the muscle forces produced by bow arm had a consistency in term of pattern throughout the phases. In conclusion, the forces generated by the professional archer produced a force benchmark at the wrist joint to alleviate the risk of injury.

  12. Reversible man-in-the-barrel syndrome in myasthenia gravis

    PubMed Central

    Shah, Poornima A; Wadia, Pettarusp Murzban

    2016-01-01

    Man-in-the-barrel syndrome (MBS) is an uncommon presentation due to bilateral, predominantly proximal muscle weakness that has not been described to be associated with myasthenia gravis. We describe a case of myasthenia gravis presenting as MBS. Additionally, he had significant wasting of the deltoids bilaterally with fibrillations on electromyography (EMG) at rest and brief duration (3-6 ms) bi/triphasic motor unit potentials (MUPs) on submaximal effort apart from a decremental response on repetitive nerve stimulation (RNS) at 2 Hz. While electrophysiology is an important tool in the diagnosis of myasthenia gravis, pathological EMG patterns do not exclude the diagnosis of myasthenia gravis. PMID:27011638

  13. Investigation of Physiological Properties of Nerves and Muscles Using Electromyography

    ERIC Educational Resources Information Center

    Roe, Seán M.; Johnson, Christopher D.; Tansey, Etain A.

    2014-01-01

    The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in…

  14. Use of GDNF-Releasing Nanofiber Nerve Guide Conduits for the Repair of Conus Medullaris/Cauda Equina Injury in the Nonhuman Primate

    DTIC Science & Technology

    2013-10-01

    Electromyography (EMG) recordings of the external anal sphincter were obtained pre- operatively as baseline records. The external anal sphincter muscle was chosen...Lee U, Chang HH, Christe KL, Havton LA. Evoked voiding contractions and corresponding urethral sphincter electromyography in non-human primates differ

  15. A Controlled Clinical Trial for Stuttering in Persons Aged 9 to 14 Years.

    ERIC Educational Resources Information Center

    Craig, Ashley; And Others

    1996-01-01

    This paper presents results of a controlled trial of 3 child stuttering treatment strategies in 97 subjects. All 3 treatments (electromyography feedback, intensive smooth speech, and home-based smooth speech) were very successful in the long term for 70% of the group, with electromyography and home-based treatment appearing to be especially…

  16. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  17. Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration

    PubMed Central

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M.; Downes, Sandra; Reid, Adam J.

    2015-01-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  18. NON-INVASIVE 3D FACIAL ANALYSIS AND SURFACE ELECTROMYOGRAPHY DURING FUNCTIONAL PRE-ORTHODONTIC THERAPY: A PRELIMINARY REPORT

    PubMed Central

    Tartaglia, Gianluca M.; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F.

    2009-01-01

    Objectives: Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. Material and Methods: The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. Results: The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Conclusions: Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles. PMID:19936531

  19. Suppression of Stimulus Artifact Contaminating Electrically Evoked Electromyography

    PubMed Central

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z.; Zhou, Ping

    2013-01-01

    Background Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. Objectives The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. Methods The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using the Savitzky-Golay filtering, estimation of the artifact contaminated region with the Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. Results The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel’s M wave recording using the linear electrode array. Conclusions The developed method can suppress stimulus artifacts contaminating M wave recordings. PMID:24419021

  20. Non-invasive 3D facial analysis and surface electromyography during functional pre-orthodontic therapy: a preliminary report.

    PubMed

    Tartaglia, Gianluca M; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F

    2009-01-01

    Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles.

  1. Towards the application of one-dimensional sonomyography for powered upper-limb prosthetic control using machine learning models.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Koo, Terry K

    2013-02-01

    The inherent properties of surface electromyography limit its potential for multi-degrees of freedom control. Our previous studies demonstrated that wrist angle could be predicted by muscle thickness measured from B-mode ultrasound, and hence, it could be an alternative signal for prosthetic control. However, an ultrasound imaging machine is too bulky and expensive. We aim to utilize a portable A-mode ultrasound system to examine the feasibility of using one-dimensional sonomyography (i.e. muscle thickness signals detected by A-mode ultrasound) to predict wrist angle with three different machine learning models - (1) support vector machine (SVM), (2) radial basis function artificial neural network (RBF ANN), and (3) back-propagation artificial neural network (BP ANN). Feasibility study using nine healthy subjects. Each subject performed wrist extension guided at 15, 22.5, and 30 cycles/minute, respectively. Data obtained from 22.5 cycles/minute trials was used to train the models and the remaining trials were used for cross-validation. Prediction accuracy was quantified by relative root mean square error (RMSE) and correlation coefficients (CC). Excellent prediction was noted using SVM (RMSE = 13%, CC = 0.975), which outperformed the other methods. It appears that one-dimensional sonomyography could be an alternative signal for prosthetic control. Clinical relevance Surface electromyography has inherent limitations that prohibit its full functional use for prosthetic control. Research that explores alternative signals to improve prosthetic control (such as the one-dimensional sonomyography signals evaluated in this study) may revolutionize powered prosthesis design and ultimately benefit amputee patients.

  2. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  3. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    PubMed

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  4. Surface electromyography as a screening method for evaluation of dysphagia and odynophagia

    PubMed Central

    Vaiman, Michael; Eviatar, Ephraim

    2009-01-01

    Objective Patients suspected of having swallowing disorders, could highly benefit from simple diagnostic screening before being referred to specialist evaluations. The article analyzes various instrumental methods of dysphagia assessment, introduces surface electromyography (sEMG) to carry out rapid assessment of such patients, and debates proposed suggestions for sEMG screening protocol in order to identify abnormal deglutition. Data sources Subject related books and articles from 1813 to 2007 were obtained through library search, MEDLINE (1949–2007) and EMBASE (1975–2007). Methods Specifics steps for establishing the protocol for applying the technique for screening purposes (e.g., evaluation of specific muscles), the requirements for diagnostic sEMG equipment, the sEMG technique itself, and defining the tests suitable for assessing deglutition (e.g., saliva, normal, and excessive swallows and uninterrupted drinking of water) are presented in detail. SEMG is compared with other techniques in terms of cost, timing, involvement of radiation, etc. Results According to the published data, SEMG of swallowing is a simple and reliable method for screening and preliminary differentiation among dysphagia and odynophagia of various origins. This noninvasive radiation-free examination has a low level of discomfort, and is simple, time-saving and inexpensive to perform. The major weakness of the method seems to be inability for precise diagnostic of neurologically induced dysphagia. Conclusion With standardization of the technique and an established normative database, sEMG might serve as a reliable screening method for optimal patient management but cannot serve for proper investigation of neurogenic dysphagia. PMID:19232090

  5. [Changes of masseter muscle asymmetry due to unilateral mastication after intervention: a electromyographic analysis].

    PubMed

    Wang, Yun; Teng, Chen; Wang, Meng-Ya

    2015-04-01

    To explore the effect of intervention with unilateral mastication on masseter muscle asymmetry. Forty-three subjects (19 males and 24 females, mean age 20.0∓0.5 years) with unilateral chewing were divided into group A0 with motivation and without intervention, group A1 with motivation and intervention, group B0 without motivation or intervention, and group B1 without motivation but with intervention. In groups A0 and A1, the motivation was removed and groups A1 and group B1 received interventions. Surface electromyography was recorded using surface electromyography in all the subjects in mandible postural position (MPP), with maximum clenching in intercuspal position (ICP) and during chewing. The sEMG of the left and right masseter muscle were separately recorded to assess the asymmetry index of the masseter muscles (ASMM) and its changes after intervention. In groupA0, the ASMM at MPP, during maximum clenching and chewing had no obvious changes after removal of the motivation. In group A1, the ASMM at MPP, during maximum clenching and chewing were obviously decreased after intervention. In group B0, the ASMM at MPP and during maximum clenching showed no obvious changes but ASMM during chewing significantly increased after removal of the motivation. In group B1, the ASMM at MPP, during maximum clenching and chewing all decreased obviously after intervention. Interventions can significantly improve the bilateral symmetry of the masseter muscles in subjects with unilateral chewing, and the motivation for unilateral chewing should be removed before intervention.

  6. Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps.

    PubMed

    Zhu, Mingxing; Yu, Bin; Yang, Wanzhang; Jiang, Yanbing; Lu, Lin; Huang, Zhen; Chen, Shixiong; Li, Guanglin

    2017-11-21

    Swallowing is a continuous process with substantive interdependencies among different muscles, and it plays a significant role in our daily life. The aim of this study was to propose a novel technique based on high-density surface electromyography (HD sEMG) for the evaluation of normal swallowing functions. A total of 96 electrodes were placed on the front neck to acquire myoelectric signals from 12 healthy subjects while they were performing different swallowing tasks. HD sEMG energy maps were constructed based on the root mean square values to visualize muscular activities during swallowing. The effects of different volumes, viscosities, and head postures on the normal swallowing process were systemically investigated by using the energy maps. The results showed that the HD sEMG energy maps could provide detailed spatial and temporal properties of the muscle electrical activity, and visualize the muscle contractions that closely related to the swallowing function. The energy maps also showed that the swallowing time and effort was also explicitly affected by the volume and viscosity of the bolus. The concentration of the muscular activities shifted to the opposite side when the subjects turned their head to either side. The proposed method could provide an alternative method to physiologically evaluate the dynamic characteristics of normal swallowing and had the advantage of providing a full picture of how different muscle activities cooperate in time and location. The findings from this study suggested that the HD sEMG technique might be a useful tool for fast screening and objective assessment of swallowing disorders or dysphagia.

  7. Surface Facial Electromyography, Skin Conductance, and Self-Reported Emotional Responses to Light- and Season-Relevant Stimuli in Seasonal Affective Disorder

    PubMed Central

    Lindsey, Kathryn Tierney; Rohan, Kelly J.; Roecklein, Kathryn A.; Mahon, Jennifer N.

    2011-01-01

    Background Learned associations between depressive behavior and environmental stimuli signaling low light availability and winter season may play a role in seasonal affective disorder (SAD). The purpose of this study was to determine whether light and season environmental cues elicit emotional responses that are distinct in individuals with SAD. Methods Twenty-four currently depressed SAD participants were compared to 24 demographically-matched controls with no depression history on emotional responses to outdoor scenes captured under two light intensity (i.e., clear, sunny vs. overcast sky) and three season (i.e., summer with green leaves, fall with autumn foliage, and winter with bare trees) conditions. Emotion measures included surface facial electromyography (EMG) activity in the corrugator supercilii and zygomaticus major muscle regions, skin conductance, and self-reported mood state on the Profile of Mood States Depression–Dejection Subscale. Results Light intensity was a more salient cue than season in determining emotional reactions among SAD participants. Relative to controls, SAD participants displayed more corrugator activity, more frequent significant skin conductance responses (SCR), greater SCR magnitude, and more self-reported depressed mood in response to overcast stimuli and less corrugator activity, lower SCR magnitude, and less self-reported depressed mood in response to sunny stimuli. Limitations Study limitations include the single, as opposed to repeated, assessment and the lack of a nonseasonal depression group. Conclusions These findings suggest that extreme emotional reactivity to light-relevant stimuli may be a correlate of winter depression; and future work should examine its potential onset or maintenance significance. PMID:21600661

  8. [A field study on the work load and muscle fatigue at neck-shoulder in female sewing machine operators by using surface electromyography].

    PubMed

    Zhang, Fei-ruo; Wang, Sheng; He, Li-hua; Zhang, Ying; Wu, Shan-shan; Li, Jing-yun; Hu, Guang-yi; Ye, Kang-ping

    2011-03-01

    To study neck and shoulder work-related muscle fatigue of female sewing machine operators. 18 health female sewing machine operators without musculoskeletal disorders work in Beijing garment industry factory as volunteers in participate of this study. The maximal voluntary contraction (MVC) and 20% MVC of bilateral upper trapezium and cervical erectors spinae was tested before sewing operations, then the whole 20 time windows (1 time window = 10 min) sewing machine operations was monitored and the surface electromyography (sEMG) signals simultaneously was recorded after monitoring the 20%MVC was tested. Use amplitude analysis method to reduction recorded EMG signals. During work, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezium (LUT) and right upper trapezium (RUT) respectively was 6.78 ± 1.05, 6.94 ± 1.12, 5.68 ± 2.56 and 6.47 ± 3.22, work load of right is higher than the left; static load analysis indicated the value of RMS(20%MVC) before work was higher than that value after work, the increase of right CES and UT RMS(20%MVC) was more; the largest 20%MVE of bilateral CES occurred at 20th time window, and that of bilateral UT happened at 16th. The work load of female sewing machine operators is sustained "static" load, and work load of right neck-shoulder is higher than left, right neck-shoulder muscle is more fatigable and much serious once fatigued.

  9. What makes an art expert? Emotion and evaluation in art appreciation.

    PubMed

    Leder, Helmut; Gerger, Gernot; Brieber, David; Schwarz, Norbert

    2014-01-01

    Why do some people like negative, or even disgusting and provocative artworks? Art expertise, believed to influence the interplay among cognitive and emotional processing underlying aesthetic experience, could be the answer. We studied how art expertise modulates the effect of positive-and negative-valenced artworks on aesthetic and emotional responses, measured with self-reports and facial electromyography (EMG). Unsurprisingly, emotionally-valenced art evoked coherent valence as well as corrugator supercilii and zygamoticus major activations. However, compared to non-experts, experts showed attenuated reactions, with less extreme valence ratings and corrugator supercilii activations and they liked negative art more. This pattern was also observed for a control set of International Affective Picture System (IAPS) pictures suggesting that art experts show general processing differences for visual stimuli. Thus, much in line with the Kantian notion that an aesthetic stance is emotionally distanced, art experts exhibited a distinct pattern of attenuated emotional responses.

  10. [Features of peripheral nerve injuries in workers exposed to vibration: an analysis of 197 cases].

    PubMed

    Situ, J; Lin, C M; Qin, Z H; Zhu, D X; Lin, H; Zhang, F F; Zhang, J J

    2016-12-20

    Objective: To investigate the features of peripheral nerve injuries in workers exposed to vibration. Methods: A total of 197 male workers [median age: 34 years (21 - 50 years) ; median working years of vibration exposure: 7.3 years (1 - 20 years) ] engaged in grinding in an enterprise were enrolled. Their clinical data and electromyography results were analyzed to investigate the features of peripheral nerve impairment. Results: Of all workers, 96 (48.73%) had abnormal electromyography results. Of all workers, 88 (44.7%) had simple mild median nerve injury in the wrist, who accounted for 91.7% (88/96) of all workers with abnormal electromy-ography results. Six workers had ulnar nerve injury, superficial radial nerve injury, or/and superficial peroneal nerve injury and accounted for 6.3% of all workers with abnormal electromyography results. Of all workers, 88 had a reduced amplitude of median nerve sensory transduction, and 28 had slowed median nerve sensory transduction. A total of 46 workers were diagnosed with occupational hand-arm vibration disease and hospitalized for treatment. They were followed up for more than 4 months after leaving their jobs, and most of them showed improvements in neural electromyography results and returned to a normal state. Conclusion: Workers exposed to vibration have a high incidence rate of nerve injury in the hand, mainly sensory function impairment at the distal end of the median nerve, and all injuries are mild peripheral nerve injuries. After leaving the vibration job and being treated, most workers can achieve improvements and return to a normal state.

  11. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography.

    PubMed

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez.

  12. Tibial and fibular nerves evaluation using intraoperative electromyography in rats.

    PubMed

    Nepomuceno, André Coelho; Politani, Elisa Landucci; Silva, Eduardo Guandelini da; Salomone, Raquel; Longo, Marco Vinicius Losso; Salles, Alessandra Grassi; Faria, José Carlos Marques de; Gemperli, Rolf

    2016-08-01

    To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.

  13. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.

    PubMed

    Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha

    2016-08-01

    Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.

  14. Influence of pelvic asymmetry and idiopathic scoliosis in adolescents on postural balance during sitting.

    PubMed

    Jung, Ji-Yong; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Bok, Soo-Kyung; Kim, Bong-Ok; Kim, Jung-Ja

    2015-01-01

    The effects of pelvic asymmetry and idiopathic scoliosis on postural balance during sitting were studied by measuring inclination angles, pressure distribution, and electromyography. Participants were classified into a control group, pelvic asymmetry group, scoliosis group, and scoliosis with pelvic asymmetry and then performed anterior, posterior, left, and right pelvic tilting while sitting on the unstable board for 5 seconds to assess their postural balance. Inclination and obliquity angles between the groups were measured by an accelerometer located on the unstable board. Pressure distribution (maximum force and peak pressure) was analyzed using a capacitive seat sensor. In addition, surface electrodes were attached to the abdominal and erector spinae muscles of each participant. Inclination and obliquity angles increased more asymmetrically in participants with both pelvic asymmetry and scoliosis than with pelvic asymmetry or scoliosis alone. Maximum forces and peak pressures of each group showed an asymmetrical pressure distribution caused by the difference in height between the left and right pelvis and curve type of the patients' spines when performing anterior, posterior, left, and right pelvic tilting while sitting. Muscle contraction patterns of external oblique, thoracic erector spinae, lumbar erector spinae, and lumbar multifidus muscles may be influenced by spine curve type and region of idiopathic scoliosis. Asymmetrical muscle activities were observed on the convex side of scoliotic patients and these muscle activity patterns were changed by the pelvic asymmetry. From these results, it was confirmed that pelvic asymmetry and idiopathic scoliosis cause postural asymmetry, unequal weight distribution, and muscular imbalance during sitting.

  15. Immediate effects of plantar inputs on the upper half muscles and upright posture: a preliminary study.

    PubMed

    Ciuffolo, Fabio; Ferritto, Anna L; Muratore, Filippo; Tecco, Simona; Testa, Mauro; D'Attilio, Michele; Festa, Felice

    2006-01-01

    This purpose of this study was to investigate the immediate effects of plantar inputs on both the upper half muscle activity (anterior temporal, masseter, digastric, sternocleidomastoid, upper and lower trapezius, cervical) and the body posture, by means of electromyography (EMG) and vertical force platform, respectively. Twenty four (24) healthy adults, between the ages of 24 and 31 years (25.3 +/- 1.9), with no history of craniomandibular disorder or systemic musculoskeletal dysfunction, were randomly divided into two groups: test group (fourteen subjects) and control group (ten subjects). A first recording session (TO) measured the baseline EMG and postural patterns of both groups. After this session, the test group wore test shoes with insoles that stimulated the plantar surfaces, while the control group wore placebo shoes. After one hour, a second set of measurements (T1) were performed. Significant differences between the groups at baseline were observed in the left anterior temporal, left cervical, and left upper trapezius, as well as at T1 in the left anterior temporal and right upper trapezius (p < 0.05). Within-test group analysis showed a significant increase of the right upper trapezius activity (p < 0.05), whereas no changes were found by within-control group analysis. Lower risk of asymmetric muscle patterns and postural blindness in the test group compared to the control group was observed. Further studies are warranted to investigate the short and long-term effects of this type of insole, in patients with both craniomandibular-cervical and lower extremity disorders.

  16. Age and Electromyographic Frequency Alterations during Walking in Children with Cerebral Palsy

    PubMed Central

    Lauer, Richard T.; Pierce, Samuel R.; Tucker, Carole A.; Barbe, Mary F.; Prosser, Laura A.

    2009-01-01

    The use of surface electromyography (sEMG) recorded during ambulation has provided valuable insight into motor development and changes with age in the pediatric population. However, no studies have reported sEMG differences with age in the children with cerebral palsy (CP). In this study, data from 50 children were divided retrospectively into four groups, representing either an older (above the age of 7 years) or younger (below the age of 7 years) age group with either typical development (TD) or CP. Data were analyzed from 16 children in the younger age group with TD, and eight in the older age group with TD. Data were also available from 14 in the younger age group with CP, and 12 in the older age group with CP. SEMG signals from the rectus femoris (RF) and medial hamstring (MH) were analyzed using wavelet techniques to examine time-frequency content. RF muscle activity was statistically different between all groups (p<0.001), with an elevated instantaneous mean frequency (IMNF) in the older TD group than the younger TD group, an elevated IMNF in the younger CP group than the older CP group, and elevated IMNF in both CP groups compared to both TD groups. Activity for the MH muscle followed the same pattern except for the CP young and old group comparison, which indicated no difference. The results indicate that differences in neuromuscular activation exist between younger and older groups of children with both TD and CP, and may provide new insight into muscle activity pattern changes during the development of walking. PMID:19854058

  17. Diaphragm depth in normal subjects.

    PubMed

    Shahgholi, Leili; Baria, Michael R; Sorenson, Eric J; Harper, Caitlin J; Watson, James C; Strommen, Jeffrey A; Boon, Andrea J

    2014-05-01

    Needle electromyography (EMG) of the diaphragm carries the potential risk of pneumothorax. Knowing the approximate depth of the diaphragm should increase the test's safety and accuracy. Distances from the skin to the diaphragm and from the outer surface of the rib to the diaphragm were measured using B mode ultrasound in 150 normal subjects. When measured at the lower intercostal spaces, diaphragm depth varied between 0.78 and 4.91 cm beneath the skin surface and between 0.25 and 1.48 cm below the outer surface of the rib. Using linear regression modeling, body mass index (BMI) could be used to predict diaphragm depth from the skin to within an average of 1.15 mm. Diaphragm depth from the skin can vary by more than 4 cm. When image guidance is not available to enhance accuracy and safety of diaphragm EMG, it is possible to reliably predict the depth of the diaphragm based on BMI. Copyright © 2013 Wiley Periodicals, Inc.

  18. Outcomes following kinesthetic feedback for gait training in a direct access environment: a case report on social wellness in relation to gait impairment.

    PubMed

    Blievernicht, Jessica; Sullivan, Kate; Erickson, Mark R

    2012-05-01

    The purpose of this case report was to describe the outcomes following the use of kinesthetic feedback as a primary intervention strategy for gait training. The plan of care for this 22-year-old female addressed the patient's social wellness goal of "walking more normally," using motor learning principles. At initial examination, the patient demonstrated asymmetries for gait kinematics between the left and right lower extremity (analyzed using video motion analysis), pattern of force distribution at the foot, and activation of specific lower extremity muscles (as measured by surface electromyography). Interventions for this patient consisted of neuromuscular and body awareness training, with an emphasis on kinesthetic feedback. Weekly sessions lasted 30-60 minutes over 4 weeks. The patient was prescribed a home program of walking 30-60 minutes three times/week at a comfortable pace while concentrating on gait correction through kinesthetic awareness of specific deviations. Following intervention, the patient's gait improved across all objective measures. She reported receiving positive comments from others regarding improved gait and a twofold increase in her walking confidence. Outcomes support a broadened scope of practice that incorporates previously unreported integration of a patient's social wellness goals into patient management.

  19. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface

    PubMed Central

    Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A.

    2015-01-01

    Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses. PMID:18303804

  20. Individuals with chronic low back pain demonstrate delayed onset of the back muscle activity during prone hip extension.

    PubMed

    Suehiro, Tadanobu; Mizutani, Masatoshi; Ishida, Hiroshi; Kobara, Kenichi; Osaka, Hiroshi; Watanabe, Susumu

    2015-08-01

    Prone hip extension (PHE) is commonly used in the evaluation of the stability of the lumbopelvic region. There is little evidence of difference in muscle activity onset timing between healthy individuals and individuals with chronic low back pain (CLBP) during PHE. The purpose of this study was to determine if individuals with and without CLBP differ in the onset time of the trunk and hip extensor muscles activity during PHE. The participants were 20 patients with CLBP and 20 healthy individuals. Electromyography data of the erector spinae, multifidus, gluteus maximus, and semitendinosus were collected during PHE using a surface electromyograph. Relative differences in the onset times between each muscle and the prime mover (i.e., the semitendinosus) were calculated. The onsets of the bilateral multifidus and contralateral erector spinae were significantly delayed in the CLBP group compared with the healthy group (p<0.001), despite the onset timings of leg movement not being significantly different between the groups. The onset times of the gluteus maximus and ipsilateral erector spinae showed no significant differences between the groups. These results suggest that individuals with CLBP use an altered, and possibly inadequate, trunk muscle recruitment pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Gluteus medius coactivation response in field hockey players with and without low back pain.

    PubMed

    Bussey, Melanie D; Kennedy, James E; Kennedy, Gavin

    2016-01-01

    To examine the effect of prolonged standing on gluteus medius coactivation and to observe whether the changes in gluteus medius coactivation over time were related to the development of low back pain in elite female field hockey players. Prospective cohort design. Participants were 39 elite female field hockey players (14 with a history of low back pain). Before the prolonged stand, maximal hip abduction strength, side bridge hold endurance and hip abduction range of motion were measured bilaterally. Surface electromyography was collected from the gluteus medius for coactivation analysis during a prolonged stand for 70 min. Low back pain was rated every 10 min on a visual analogue scale. Fourteen of 39 participants developed low back pain. The Time effect was significant for gluteus medius coactivation response (p = 0.003) and visual analogue scale score (p < 0.001). There were no significant group × time interactions. Yet athletes who developed pain had higher coactivation for the majority of the stand task. While female field hockey players have high agonist-antagonist coactivation patterns during prolonged standing, stand task is a useful tool to predict low back pain occurrence in players with and without history of pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Asymmetry of neck motion and activation of the cervical paraspinal muscles during prone neck extension in subjects with unilateral posterior neck pain.

    PubMed

    Park, Kyue-Nam; Kwon, Oh-Yun; Kim, Su-Jung; Kim, Si-Hyun

    2017-01-01

    Although unilateral posterior neck pain (UPNP) is more prevalent than central neck pain, little is known about how UPNP affects neck motion and the muscle activation pattern during prone neck extension. To investigate whether deviation in neck motion and asymmetry of activation of the bilateral cervical paraspinal muscles occur during prone neck extension in subjects with UPNP compared to subjects without UPNP. This study recruited 20 subjects with UPNP and 20 age- and sex-matched control subjects without such pain. Neck motion and muscle onset time during prone neck extension were measured using a three-dimensional motion-analysis system and surface electromyography. The deviation during prone neck extension was greater in the UPNP group than in the controls (p < 0.05). Compared with the controls, cervical extensor muscle activation in the UPNP group was significantly delayed on the painful side during prone neck extension (p < 0.05). Subjects with UPNP showed greater asymmetry of neck motion and muscle activation during prone neck extension compared with the controls. This suggests that UPNP has specific effects on neck motion asymmetry and the functions of the cervical extensors, triggering a need for specific evaluation and exercises in the management of patients with UPNP.

  3. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces

    PubMed Central

    Hyong, In Hyouk; Kang, Jong Ho

    2013-01-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected. PMID:24259884

  4. Fasciculations in nerve and muscle disorders - A prospective study of muscle ultrasound compared to electromyography.

    PubMed

    Johansson, M T; Ellegaard, H R; Tankisi, H; Fuglsang-Frederiksen, A; Qerama, E

    2017-11-01

    We examined the clinical utility of muscle ultrasound (MUS) in detecting fasciculations in patients with nerve and muscle disorders (NMD) and investigated the impact on diagnostic sensitivity when combining electromyography (EMG) and MUS. We included 58 consecutive patients suspected to have NMD and 38 healthy subjects (HS). Patients and HS underwent MUS in 14 skeletal and two bulbar muscles and the video recordings of the MUS were anonymised. Only patients underwent EMG. The follow-up diagnoses were: 15 Amyotrophic lateral sclerosis (ALS), 15 polyneuropathy, 14 patients had other diagnoses (disease-control group) and 14 patients had no pathological findings. MUS detected more muscles with fasciculations among ALS patients compared to all other groups. In ALS patients, the dominating pattern of fasciculations was continuous (45%). More proximal muscles showed fasciculations among ALS patients compared to all other patient groups. MUS was more sensitive than EMG in detecting fasciculations (58% vs. 48%). When combining the two methods, the sensitivity in detecting fasciculations increased to 65%. Fasciculations in nine muscles could predict the ALS diagnosis with high sensitivity and specificity. MUS is a sensitive tool in detecting fasciculations in patients with NMD and performs well compared to EMG in diagnosing ALS. MUS may add valuable information in the clinic, especially in diagnosing ALS. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex.

    PubMed

    Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K

    2012-08-01

    The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.

  6. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  7. The Efficacy of Two Treatment Techniques for Children with Spastic Cerebral Palsy as Measured by Electromyography and Thermal Information. [Final Report.

    ERIC Educational Resources Information Center

    Finn, David Michael

    Two techniques to normalize muscle tone were evaluated with nine infants and young children with cerebral palsy who were enrolled in the Rural Infant Stimulation Environment (RISE) Program, near Tuscaloosa, Alabama. Electromyography (EMG) and skin temperature data were used to assess the effects of trunk rotation and slow rolling on a ball. EMG…

  8. Corticospinal excitability measurements using transcranial magnetic stimulation are valid with intramuscular electromyography

    PubMed Central

    2017-01-01

    Objectives Muscular targets that are deep or inaccessible to surface electromyography (sEMG) require intrinsic recording using fine-wire electromyography (fEMG). It is unknown if fEMG validly record cortically evoked muscle responses compared to sEMG. The purpose of this investigation was to establish the validity and agreement of fEMG compared to sEMG to quantify typical transcranial magnetic stimulation (TMS) measures pre and post repetitive TMS (rTMS). The hypotheses were that fEMG would demonstrate excellent validity and agreement compared with sEMG. Materials and methods In ten healthy volunteers, paired pulse and cortical silent period (CSP) TMS measures were collected before and after 1200 pulses of 1Hz rTMS to the motor cortex. Data were simultaneously recorded with sEMG and fEMG in the first dorsal interosseous. Concurrent validity (r and rho) and agreement (Tukey mean-difference) were calculated. Results fEMG quantified corticospinal excitability with good to excellent validity compared to sEMG data at both pretest (r = 0.77–0.97) and posttest (r = 0.83–0.92). Pairwise comparisons indicated no difference between sEMG and fEMG for all outcomes; however, Tukey mean-difference plots display increased variance and questionable agreement for paired pulse outcomes. CSP displayed the highest estimates of validity and agreement. Paired pulse MEP responses recorded with fEMG displayed reduced validity, agreement and less sensitivity to changes in MEP amplitude compared to sEMG. Change scores following rTMS were not significantly different between sEMG and fEMG. Conclusion fEMG electrodes are a valid means to measure CSP and paired pulse MEP responses. CSP displays the highest validity estimates, while caution is warranted when assessing paired pulse responses with fEMG. Corticospinal excitability and neuromodulatory aftereffects from rTMS may be assessed using fEMG. PMID:28231250

  9. Vibration parameters affecting vibration-induced reflex muscle activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir

    2017-03-01

    To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.

  10. Loadcell supports for a dynamic force plate. [using piezoelectric tranducers and electromyography to study human gait

    NASA Technical Reports Server (NTRS)

    Keller, C. W.; Musil, L. M.; Hagy, J. L.

    1975-01-01

    An apparatus was developed to accurately measure components of force along three mutually perpendicular axes, torque, and the center of pressure imposed by the foot of a subject walking over its surface. The data obtained were used to supplement high-speed motion picture and electromyographic (EMG) data for in-depth studies of normal or abnormal human gait. Significant features of the design (in particular, the mechanisms used to support the loadcell transducers) are described. Results of the development program and typical data obtained with the device are presented and discussed.

  11. Reflex muscle contraction in anterior shoulder instability.

    PubMed

    Wallace, D A; Beard, D J; Gill, R H; Eng, B; Carr, A J

    1997-01-01

    Reduced proprioception may contribute to recurrent anterior shoulder instability. Twelve patients with unilateral shoulder instability were investigated for evidence of deficient proprioception with an activated pneumatic cylinder and surface electromyography electrodes; the contralateral normal shoulder was used as a control. The latency between onset of movement and the detection of muscle contraction was used as an index of proprioception. No significant difference in muscle contraction latency was detected between the stable and unstable shoulders, suggesting that there was no significant defect in muscular reflex activity. This study does not support the use proprioception-enhancing physiotherapy in the treatment of posttraumatic anterior shoulder instability.

  12. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-12-01

    The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

  13. Epidermal electronics for electromyography: An application to swallowing therapy.

    PubMed

    Constantinescu, Gabriela; Jeong, Jae-Woong; Li, Xinda; Scott, Dylan K; Jang, Kyung-In; Chung, Hyun-Joong; Rogers, John A; Rieger, Jana

    2016-08-01

    Head and neck cancer treatment alters the anatomy and physiology of patients. Resulting swallowing difficulties can lead to serious health concerns. Surface electromyography (sEMG) is used as an adjuvant to swallowing therapy exercises. sEMG signal collected from the area under the chin provides visual biofeedback from muscle contractions and is used to help patients perform exercises correctly. However, conventional sEMG adhesive pads are relatively thick and difficult to effectively adhere to a patient's altered chin anatomy, potentially leading to poor signal acquisition in this population. Here, the emerging technology of epidermal electronics is introduced, where ultra-thin geometry allows for close contouring of the chin. The two objectives of this study were to (1) assess the potential of epidermal electronics technology for use with swallowing therapy and (2) assess the significance of the reference electrode placement. This study showed comparative signals between the new epidermal sEMG patch and the conventional adhesive patches used by clinicians. Furthermore, an integrated reference yielded optimal signal for clinical use; this configuration was more robust to head movements than when an external reference was used. Improvements for future iterations of epidermal sEMG patches specific to day-to-day clinical use are suggested. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Motor unit number estimation and quantitative needle electromyography in stroke patients.

    PubMed

    Kouzi, Ioanna; Trachani, Eftichia; Anagnostou, Evangelos; Rapidi, Christina-Anastasia; Ellul, John; Sakellaropoulos, George C; Chroni, Elisabeth

    2014-12-01

    To evaluate the effect of upper motor neuron damage upon motor units' function by means of two separate and supplementary electrophysiological methods. The abductor digiti minimi muscle of the non-paretic and the paretic side was studied in forty-six stroke patients with (a) motor unit number estimation (MUNE) - adapted multiple point stimulation method and (b) computerized quantitative needle electromyography (EMG) assessing the configuration of voluntary recruited motor unit potentials. Main outcome comparisons were focused on differences between non-paretic and paretic side. On the affected hands mean MUNE value was significantly lower and mean area of the surface recorded single motor unit potentials was significantly larger than the corresponding ones on the non-paretic hands. EMG findings did not reveal remarkable differences between the two sides. Neither severity nor chronicity of stroke was related to MUNE or EMG parameters. MUNE results, which suggested reduced motor unit numbers in stroke patients, in conjunction with the normal EMG features in these same muscles has given rise to different interpretations. In a clinical setting, reinnervation type changes in the EMG similar to that occurring in neuronopathies or axonal neuropathies should not be expected in muscles with central neurogenic lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Dental Implants – Perceiving Patients’ Satisfaction in Relation to Clinical and Electromyography Study on Implant Patients

    PubMed Central

    Saha, Soumendra

    2015-01-01

    The aim of this study is to evaluate the satisfaction of patients with posterior implants in relation to the clinical success criteria and surface electromyography (sEMG) findings of the masseter and temporalis muscles. Total 42 subjects were investigated. Twenty one subjects with posterior dental implants were interviewed using a questionnaire and the clinical success criteria were determined based on The International Congress of Oral Implantologists. The myofunction of the masticatory muscles were assessed using sEMG (21 subjects) and compared to the control group of subjects without implants (21 subjects). Out of 21 subjects, all were satisfied with the aesthetics of their implant. Twenty of them (95.2%) were satisfied with its function and stability. As for clinical criteria, 100% (50) of the implants were successful with no pain, mobility or exudates. sEMG findings showed that patients have significantly lower (p<0.01) basal or resting median power frequency but with muscle burst. During chewing, control subjects showed faster chewing action. There was no difference in reaction and recovery time of clenching for both groups. In conclusion, the satisfaction of implant patients was high, and which was in relation to the successful clinical success criteria and sEMG findings. PMID:26465146

  16. The effect of movement and load on the dynamic coupling of abdominal electromyography.

    PubMed

    King, Adam C

    2018-05-14

    This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Is there any change in pelvic floor electromyography during the first 6 months after radical retropubic prostatectomy?

    PubMed

    Hacad, Claudia R; Glazer, Howard I; Zambon, João Paulo C; Burti, Juliana S; Almeida, Fernando G

    2015-03-01

    The aim of this study is to determine electromyographic pelvic floor muscles activity during the first 6 months post RRP and its relationship to urinary continence. Thirty-eight men (mean age of 63.1 ± 5.7 year) with prostate cancer scheduled for open radical retropubic prostatectomy were evaluated. pelvic radiotherapy, systemic or neurologic diseases, pre-operative International Prostate Symptoms Score (IPSS) >7 and OABq ≥8. Surface electromyography (sEMG) evaluation, IPSS, Urinary Distress Inventory, Incontinence Impact Questionnaire, and Overactive Bladder Questionnaire-short form were applied before and at 1, 3, and 6 months after RRP. Six months after surgery, 18 men (47.4 %) presented urinary leakage. The sEMG evaluations within the first 6 months presented changes in fast contraction amplitude (p = 0.006), rest amplitude after fast contraction (p = 0.04), 10 s sustained contraction mean amplitude (p = 0.024) and final rest amplitude (p = 0.011). We observed that continent and incontinent patients as a group presented electromyographic changes during the first 6 months after radical prostatectomy that could be justified by the denervation/reinnervation of the external urethral sphincter. This finding is consistent with the adaptation of the pelvic floor musculature to the new urethral sphincter condition following surgery.

  18. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    PubMed

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  19. Electromyography function, disability degree, and pain in leprosy patients undergoing neural mobilization treatment.

    PubMed

    Véras, Larissa Sales Téles; Vale, Rodrigo Gomes de Souza; Mello, Danielli Braga de; Castro, José Adail Fonseca de; Lima, Vicente; Trott, Alexis; Dantas, Estélio Henrique Martin

    2012-02-01

    This study aimed to evaluate the effect of the neural mobilization technique on electromyography function, disability degree, and pain in patients with leprosy. A sample of 56 individuals with leprosy was randomized into an experimental group, composed of 29 individuals undergoing treatment with neural mobilization, and a control group of 27 individuals who underwent conventional treatment. In both groups, the lesions in the lower limbs were treated. In the treatment with neural mobilization, the procedure used was mobilization of the lumbosacral roots and sciatic nerve biased to the peroneal nerve that innervates the anterior tibial muscle, which was evaluated in the electromyography. Analysis of the electromyography function showed a significant increase (p<0.05) in the experimental group in both the right (Δ%=22.1, p=0.013) and the left anterior tibial muscles (Δ%=27.7, p=0.009), compared with the control group pre- and post-test. Analysis of the strength both in the movement of horizontal extension (Δ%right=11.7, p=0.003/Δ%left=27.4, p=0.002) and in the movement of back flexion (Δ%right=31.1; p=0.000/Δ%left=34.7, p=0.000) showed a significant increase (p<0.05) in both the right and the left segments when comparing the experimental group pre- and post-test. The experimental group showed a significant reduction (p=0.000) in pain perception and disability degree when the pre- and post-test were compared and when compared with the control group in the post-test. Leprosy patients undergoing the technique of neural mobilization had an improvement in electromyography function and muscle strength, reducing disability degree and pain.

  20. A systematic review of surface electromyography analyses of the bench press movement task

    PubMed Central

    Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID:28170449

  1. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  2. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    NASA Astrophysics Data System (ADS)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  3. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  4. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  5. Altered trunk muscle recruitment patterns during lifting in individuals in remission from recurrent low back pain.

    PubMed

    Suehiro, Tadanobu; Ishida, Hiroshi; Kobara, Kenichi; Osaka, Hiroshi; Watanabe, Susumu

    2018-04-01

    Changes in the recruitment pattern of trunk muscles may contribute to the development of recurrent or chronic symptoms in people with low back pain (LBP). However, the recruitment pattern of trunk muscles during lifting tasks associated with a high risk of LBP has not been clearly determined in recurrent LBP. The present study aimed to investigate potential differences in trunk muscles recruitment patterns between individuals with recurrent LBP and asymptomatic individuals during lifting. The subjects were 25 individuals with recurrent LBP and 20 asymptomatic individuals. Electromyography (EMG) was used to measure onset time, EMG amplitude, overall activity of abdominal muscles, and overall activity of back muscles during a lifting task. The onsets of the transversus abdominis/internal abdominal oblique and multifidus were delayed in the recurrent LBP group despite remission from symptoms. Additionally, the EMG amplitudes of the erector spinae, as well as the overall activity of abdominal muscles or back muscles, were greater in the recurrent LBP group. No differences in EMG amplitude of the external oblique, transversus abdominis/internal abdominal oblique, and multifidus were found between the groups. Our findings indicate the presence of an altered trunk muscle recruitment pattern in individuals with recurrent LBP during lifting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography

    PubMed Central

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    Introduction An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. Objective The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. Materials and methods The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. Results The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. Conclusion This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. Significance The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. PMID:28260954

  7. Electromyography as a recording system for eyeblink conditioning with functional magnetic resonance imaging.

    PubMed

    Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F

    2002-10-01

    This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.

  8. Muscle activation when performing the chest press and shoulder press on a stable bench vs. a Swiss ball.

    PubMed

    Uribe, Brandon P; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A; Khamoui, Andy V; Nguyen, Diamond

    2010-04-01

    The aim of this study was to examine the effects of a stable surface (bench) vs. an unstable surface (Swiss ball) on muscle activation when performing the dumbbell chest press and shoulder press. Sixteen healthy men (24.19 +/- 2.17 years) performed 1 repetition maximum (1RM) tests for the chest press and shoulder press on a stable surface. A minimum of 48 hours post 1RM, subjects returned to perform 3 consecutive repetitions each of the chest press and shoulder press at 80% 1RM under 4 different randomized conditions (chest press on bench, chest press on Swiss ball, shoulder press on bench, shoulder press on Swiss ball). Electromyography was used to assess muscle activation of the anterior deltoid, pectoralis major, and rectus abdominus. The results revealed no significant difference in muscle activation between surface types for either exercise. This suggests that using an unstable surface neither improves nor impairs muscle activation under the current conditions. Coaches and other practitioners can expect similar muscle activation when using a Swiss ball vs. a bench.

  9. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients

    PubMed Central

    Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla

    2014-01-01

    Objective To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25–67) and conventional physiotherapy with a mean age of 49 years (range: 43–59). Both groups were submitted to a twelve-week program of two sessions weekly. Results After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217), Oswestry Disability Index (p-value = 0.0112), range of motion of trunk extension (p-value = 0.0320), trunk flexion muscle strength (p-value = 0.0459), hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. PMID:25818817

  10. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients.

    PubMed

    Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla

    2015-01-01

    To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25-67) and conventional physiotherapy with a mean age of 49 years (range: 43-59). Both groups were submitted to a twelve-week program of two sessions weekly. After the intervention, significant improvements were observed regarding the Lequesne index (p-value=0.0217), Oswestry Disability Index (p-value=0.0112), range of motion of trunk extension (p-value=0.0320), trunk flexion muscle strength (p-value=0.0459), hip extension and abduction muscle strength (p-value=0.0062 and p-value=0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  11. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation.

    PubMed

    Sun, Wentao; Zhu, Jinying; Jiang, Yinlai; Yokoi, Hiroshi; Huang, Qiang

    2018-01-01

    Estimating muscle force by surface electromyography (sEMG) is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2) extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  12. Circumferential urinary sphincter surface electromyography: A novel diagnostic method for intrinsic sphincter deficiency.

    PubMed

    Heesakkers, John; Gerretsen, Reza; Izeta, Ander; Sievert, Karl-Dietrich; Farag, Fawzy

    2016-02-01

    The diagnosis of intrinsic sphincter deficiency (ISD) in patients with stress urinary incontinence (SUI) is not well established. We explored the possibility of applying a new tool: minimally invasive circumferential sphincter surface electromyography (CSS-EMG) to assess the muscular integrity of the urethral sphincter in patients with SUI/ISD. CSS-EMG of the urethral sphincter and urodynamic studies were performed in 44 women with SUI. A urethral pressure profile (UPP) was measured in four directions. Maximal urethral closure pressure (MUCP) <40 cm/H2 O or the presence of SUI without urethral hypermobility was used to define ISD. Twenty-one patients had urodynamic SUI, 23 had no SUI and 12 patients had ISD. The mean average rectified value (ARV) of the motor unit action potential (MUAP), an indicator of the strength of urethral rhabdosphincter, was estimated. ARV measured in the 12 o'clock quadrant during maximal contraction was the only CSS-EMG parameter that had significant predictive value for ISD. With an increase in the 12 o'clock ARV value, the likelihood of ISD decreases (Odds Ratio 0.36 95% confidence interval 0.67-0.92). In the ROC curve with ARV measured in the 12 o'clock quadrant during maximal contraction, the explained area was 0.794 (P = 0.02); implying that ARV measured at the 12 o'clock quadrant during maximal contraction was able to predict ISD significantly. Myogenic changes of the urethral sphincter that contribute to ISD can be assessed with CSS-EMG. This new concept for assessing the functionality of the female urethral sphincter may assist with better understanding of the pathophysiology, the diagnosis and the treatment of SUI. © 2014 Wiley Periodicals, Inc.

  13. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  14. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography

    PubMed Central

    Botter, Alberto; Bourguignon, Mathieu; Jousmäki, Veikko; Hari, Riitta

    2015-01-01

    Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic “macroscopic” monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91–95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19–27% stronger for HD-sEMG than for “macroscopic” monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability. PMID:26354317

  15. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    PubMed

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    PubMed Central

    2011-01-01

    Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG) signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2) values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracy combined with very short training times. PMID:21943179

  17. Use of GDNF-Releasing Nanofiber Nerve Guide Conduits for the Repair of Conus medullaris/Cauda Equina Injury in the Non-Human Primate

    DTIC Science & Technology

    2011-10-01

    Cauda equina, non-human primate, ventral root. neural repair, electromyography , magnetic resonance imaging 16. SECURITY CLASSIFICATION OF: 17...of a guidance channel without GDNF release and a peripheral nerve graft to bridge the tissue gap. A comprehensive set of electrodiagnostic, imaging ... Electromyography (EMG) recordings of the external anal sphincter are obtained pre-operatively as baseline records. The external anal sphincter muscle

  18. Guiding intramuscular diaphragm injections using real-time ultrasound and electromyography.

    PubMed

    Sarwal, Aarti; Cartwright, Michael S; Mitchell, Erin; Williams, Koudy; Walker, Francis O; Childers, Martin K

    2015-02-01

    We describe a unique method that combines ultrasound and electromyography to guide intramuscular diaphragm injections in anesthetized large animals. Ultrasound was used to visualize the diaphragm on each side of spontaneously breathing, anesthetized beagle dogs and cynomolgus macaques. An electromyography (EMG) needle was introduced and directed by ultrasound to confirm that the needle entered the muscular portion of the diaphragm, and methylene blue was injected. Injection accuracy was confirmed upon necropsy by tracking the spread of methylene blue. All methylene blue injections were confirmed to have been placed appropriately into the diaphragm. This study demonstrates the feasibility and accuracy of using ultrasound and EMG to guide injections and to reduce complications associated with conventional blind techniques. Ultrasound guidance can be used for clinical EMG of the diaphragm. Future applications may include targeted diaphragm injections with gene replacement therapy in neuromuscular diseases. © 2014 Wiley Periodicals, Inc.

  19. Office-based endoscopic botulinum toxin injection in laryngeal movement disorders.

    PubMed

    Kaderbay, A; Righini, C A; Castellanos, P F; Atallah, I

    2018-06-01

    Botulinum toxin injection is widely used for the treatment of laryngeal movement disorders. Electromyography-guided percutaneous injection is the technique most commonly used to perform intralaryngeal botulinum toxin injection. We describe an endoscopic approach for intralaryngeal botulinum toxin injection under local anaesthesia without using electromyography. A flexible video-endoscope with an operating channel is used. After local anaesthesia of the larynx by instillation of lidocaine, a flexible needle is inserted into the operating channel in order to inject the desired dose of botulinum toxin into the vocal and/or vestibular folds. Endoscopic botulinum toxin injection under local anaesthesia is a reliable technique for the treatment of laryngeal movement disorders. It can be performed by any laryngologist without the need for electromyography. It is easy to perform for the operator and comfortable for the patient. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality.

    PubMed

    Kempen, Jiska C E; Doorenbosch, Caroline A M; Knol, Dirk L; de Groot, Vincent; Beckerman, Heleen

    2016-11-01

    Limited walking ability is an important problem for patients with multiple sclerosis. A better understanding of how gait impairments lead to limited walking ability may help to develop more targeted interventions. Although gait classifications are available in cerebral palsy and stroke, relevant knowledge in MS is scarce. The aims of this study were: (1) to identify distinctive gait patterns in patients with MS based on a combined evaluation of kinematics, gait features, and muscle activity during walking and (2) to determine the clinical relevance of these gait patterns. This was a cross-sectional study of 81 patients with MS of mild-to-moderate severity (Expanded Disability Status Scale [EDSS] median score=3.0, range=1.0-7.0) and an age range of 28 to 69 years. The patients participated in 2-dimensional video gait analysis, with concurrent measurement of surface electromyography and ground reaction forces. A score chart of 73 gait items was used to rate each gait analysis. A single rater performed the scoring. Latent class analysis was used to identify gait classes. Analysis of the 73 gait variables revealed that 9 variables could distinguish 3 clinically meaningful gait classes. The 9 variables were: (1) heel-rise in terminal stance, (2) push-off, (3) clearance in initial swing, (4) plantar-flexion position in mid-swing, (5) pelvic rotation, (6) arm-trunk movement, (7) activity of the gastrocnemius muscle in pre-swing, (8) M-wave, and (9) propulsive force. The EDSS score and gait speed worsened in ascending classes. Most participants had mild-to-moderate limitations in walking ability based on their EDSS scores, and the number of walkers who were severely limited was small. Based on a small set of 9 variables measured with 2-dimensional clinical gait analysis, patients with MS could be divided into 3 different gait classes. The gait variables are suggestive of insufficient ankle push-off. © 2016 American Physical Therapy Association.

  1. Age-related changes in human posture control: Motor coordination tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.

  2. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.

    PubMed

    James, Darren C; Farmer, Laura J; Sayers, Jason B; Cook, David P; Mileva, Katya N

    2015-05-01

    The net contribution of all muscles that act about a joint can be represented as an internal joint moment profile. This approach may be advantageous when studying footwear-induced perturbations during walking since the contribution of the smaller deeper muscles that cross the ankle joint cannot be evaluated with surface electromyography. Therefore, the present study aimed to advance the understanding of FitFlop™ footwear interaction by investigating lower extremity joint moment, and kinematic and centre of pressure profiles during gait. 28 healthy participants performed 5 walking trials in 3 conditions: a FitFlop™ sandal, a conventional sandal and an athletic trainer. Three-dimensional ankle joint, and sagittal plane knee and hip joint moments, as well as corresponding kinematics and centre of pressure trajectories were evaluated. FitFlop™ differed significantly to both the conventional sandal and athletic trainer in: average anterior position of centre of pressure trajectory (P<0.0001) and peak hip extensor moment (P=0.001) during early stance; average medial position of centre of pressure trajectory during late stance; peak ankle dorsiflexion and corresponding range of motion; peak plantarflexor moment and total negative work performed at the ankle (all P<0.0001). The present findings demonstrate that FitFlop™ footwear significantly alters the gait pattern of wearers. An anterior displacement of the centre of pressure trajectory during early stance is the primary response to the destabilising effect of the mid-sole technology, and this leads to reductions in sagittal plane ankle joint range of motion and corresponding kinetics. Future investigations should consider the clinical implications of these findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Nonlinear Analysis of an Unstable Bench Press Bar Path and Muscle Activation.

    PubMed

    Lawrence, Michael A; Leib, Daniel J; Ostrowski, Stephanie J; Carlson, Lara A

    2017-05-01

    Lawrence, MA, Leib, DJ, Ostrowski, SJ, and Carlson, LA. Nonlinear analysis of an unstable bench press bar path and muscle activation. J Strength Cond Res 31(5): 1206-1211, 2017-Unstable resistance exercises are typically performed to improve the ability of stabilizing muscles to maintain joint integrity under a load. The purpose of this study was to examine the effects of an unstable load (as provided by a flexible barbell and a load suspended by elastic bands) on the bar path, the primary musculature, and stabilizing musculature while bench pressing using nonlinear analyses. Fifteen resistance-trained men (age 24.2 ± 2.7 years, mass 84.1 ± 12.0 kg, height 1.77 ± 0.05 m, 9.9 ± 3.4 years of lifting experience, and bench press 1 repetition maximum (RM) 107.5 ± 25.9 kg) volunteered for this study. Subjects pressed 2 sets of 5 repetitions in both stable (total load 75% 1RM) and unstable (total load 60% 1RM) conditions using a standard barbell and a flexible Earthquake bar, respectively. Surface electromyography was used to detect muscle activity of primary movers (pectoralis major, anterior deltoid, and triceps) and bar stabilizing musculature (latissimus dorsi, middle and posterior deltoid, biceps brachii, and upper trapezius). During the unstable condition, the bar moved in more ways and was less predictable in the mediolateral and anteroposterior directions. However, the muscle activation patterns of all muscles were more constrained with the unstable barbell. These findings suggest that the unstable condition was more challenging to control, but subjects controlled the instability by contracting their muscles in a more stable pattern or "staying tight" throughout the exercise.

  4. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    PubMed

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

    PubMed

    Trevino, Michael A; Herda, Trent J; Fry, Andrew C; Gallagher, Philip M; Vardiman, John P; Mosier, Eric M; Miller, Jonathan D

    2016-08-01

    It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo. Copyright © 2016 the American Physiological Society.

  6. A comparative study of two shovel designs.

    PubMed

    Degani, A; Asfour, S S; Waly, S M; Koshy, J G

    1993-10-01

    In the present study a modified shovel design with two perpendicular shafts is presented. This modified, two-shaft shovel was compared with a regular shovel. The modified shovel was evaluated and tested in a controlled laboratory environment using surface electromyography recorded from the lumbar paraspinal muscles. The new shovel design was also tested in a field study using ratings of perceived exertion. The results indicate that there was a significant reduction in EMG values of the lumbar paraspinal muscles and a consistent reduction in perceived exertion ratings while the modified shovel was being used for removing dirt in digging trenches up to 90 cm in depth.

  7. The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces.

    PubMed

    Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim

    2016-09-01

    Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.

  8. Electromyographic monitoring for prevention of phrenic nerve palsy in second-generation cryoballoon procedures.

    PubMed

    Franceschi, Frédéric; Koutbi, Linda; Gitenay, Edouard; Hourdain, Jérome; Maille, Baptiste; Trévisan, Lory; Deharo, Jean-Claude

    2015-04-01

    Electromyography-guided phrenic nerve (PN) monitoring using a catheter positioned in a hepatic vein can aid in preventing phrenic nerve palsy (PNP) during cryoballoon ablation for atrial fibrillation. We wanted to evaluate the feasibility and efficacy of PN monitoring during procedures using second-generation cryoballoons. This study included 140 patients (43 women) in whom pulmonary vein isolation was performed using a second-generation cryoballoon. Electromyography-guided PN monitoring was performed by pacing the right PN at 60 per minute and recording diaphragmatic compound motor action potential (CMAP) via a quadripolar catheter positioned in a hepatic vein. If a 30% decrease in CMAP amplitude was observed, cryoapplication was discontinued with forced deflation to avoid a PNP. Monitoring was unfeasible in 8 of 140 patients (5.7%), PNP occurred in 1. Stable CMAP amplitudes were achieved before ablation in 132 of 140 patients (94.3%). In 18 of 132 patients (13.6%), a 30% decrease in CMAP amplitude occurred and cryoablation was discontinued. Each time, recovery of CMAP amplitude took <60 s. In 9 of 18 cases, a second cryoapplication in the same pulmonary vein was safely performed. We observed no PNP or complication related to electromyography-guided PN monitoring. Electromyography-guided PN monitoring using a catheter positioned in a hepatic vein seems feasible and effective to prevent PNP during cryoballoon ablation using second-generation cryoballoon. © 2015 American Heart Association, Inc.

  9. Handgrip Strength Related to Long-Term Electromyography: Application for Assessing Functional Decline in Parkinson Disease.

    PubMed

    Jones, Gareth R; Roland, Kaitlyn P; Neubauer, Noelannah A; Jakobi, Jennifer M

    2017-02-01

    To determine which clinical measures of physical function (ie, gait, balance, and grip strength) best represent long-term electromyography in persons with Parkinson disease (PD) compared with those without PD. Cross-sectional study. Local community. A sample (N=37) of men and women with PD (n=23) and those without PD (n=14), living independently at home, older than 50 years of age, from the local community. Not applicable. Measures of gait, balance, and grip strength were completed, and electromyography was examined in biceps brachii, triceps brachii, vastus lateralis, and biceps femoris during a 6.5-hour day. Muscle activity was quantified through burst in electromyography (>2% of the normalized maximum voluntary exertion with a continuous activity period of >0.1s). Stepwise multiple regression models were used to determine the proportion of variance in burst characteristics explained by clinical measures of physical function in PD. Grip strength was the best predictor of muscle activity in persons with PD (R 2 =.17-.33; P<.04), whereas gait characteristics explained muscle activity in healthy controls (R 2 =.40-.82; P<.04). Grip strength could serve as an effective clinical assessment tool to determine changes in muscle activity, which is a precursor to functional loss in persons with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Recovery of brachial plexus lesions resulting from heavy backpack use: A follow-up case series

    PubMed Central

    2011-01-01

    Background Brachial plexus lesions as a consequence of carrying a heavy backpack have been reported, but the typical clinical course and long-term consequences are not clear. Here we evaluated the clinical course and pattern of recovery of backpack palsy (BPP) in a large series of patients. Methods Thirty-eight consecutive patients with idiopathic BPP were identified from our population of 193,450 Finnish conscripts by means of computerised register. A physiotherapist provided instructions for proper hand use and rehabilitative exercises at disease onset. The patients were followed up for 2 to 8 years from the diagnosis. We also searched for genetic markers of hereditary neuropathy with pressure palsies. Mann-Whitney U-test was used to analyze continuous data. The Fischer's exact test was used to assess two-way tables. Results Eighty percent of the patients recovered totally within 9 months after the onset of weakness. Prolonged symptoms occurred in 15% of the patients, but daily activities were not affected. The weight of the carried load at the symptom onset significantly affected the severity of the muscle strength loss in the physiotherapeutic testing at the follow-up. The initial electromyography did not predict recovery. Genetic testing did not reveal de novo hereditary neuropathy with pressure palsies. Conclusions The prognosis of BPP is favorable in the vast majority of cases. Electromyography is useful for diagnosis. To prevent brachial plexus lesions, backpack loads greater than 40 kg should be avoided. PMID:21429232

  11. Alterations in cervical muscle activity in functional and stressful tasks in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Darnell, R; Jimmieson, N L; Souvlis, T

    2008-06-01

    This study determined differences between computer workers with varying levels of neck pain in terms of work stressors, employee strain, electromyography (EMG) amplitude and heart rate response to various tasks. Participants included 85 workers (33, no pain; 38, mild pain; 14, moderate pain) and 22 non-working controls. Work stressors evaluated were job demands, decision authority, and social support. Heart rate was recorded during three tasks: copy-typing, typing with superimposed stress and a colour word task. Measures included electromyography signals from the sternocleidomastoid (SCM), anterior scalene (AS), cervical extensor (CE) and upper trapezius (UT) muscles bilaterally. Results showed no difference between groups in work stressors or employee strain measures. Workers with and without pain had higher measured levels of EMG amplitude in SCM, AS and CE muscles during the tasks than controls (all P < 0.02). In workers with neck pain, the UT had difficulty in switching off on completion of tasks compared with controls and workers without pain. There was an increase in heart rate, perceived tension and pain and decrease in accuracy for all groups during the stressful tasks with symptomatic workers producing more typing errors than controls and workers without pain. These findings suggest an altered muscle recruitment pattern in the neck flexor and extensor muscles. Whether this is a consequence or source of the musculoskeletal disorder cannot be determined from this study. It is possible that workers currently without symptoms may be at risk of developing a musculoskeletal disorder.

  12. The muscular basis of aerial ventilation of the primitive lung of Amia calva.

    PubMed

    Deyst, K A; Liem, K F

    1985-02-01

    Anatomical analysis, electromyography, pressure recordings, high-speed X-ray and light movies of the mechanism of air ventilation in Amia calva reveal that aerial ventilation proceeds by the action of a specialized pulse pump. The interhyoideus muscle is the dominant muscle being active during both the preparatory phase and the final, prolonged compressive phase during which new air is forced into the lung. Amia retains a relatively large residual volume in the lung and does not repeat inhalation. It often expels excess air from the buccal cavity after the lung has been fully reinflated. The pressure, kinematic and air flow patterns during air ventilation in Amia closely resemble those of the air breath in the lungfish Protopterus. We hypothesize that the basically similar electromyographic profiles of homologous muscles so characteristic for the air ventilation mechanism of Protopterus and Amia reflect a homologous anatomical as well as functional neuromuscular pattern, which has had a common and early evolutionary origin among the Teleostomi.

  13. Modulation of weight off-loading level over body-weight supported locomotion training.

    PubMed

    Wang, Ping; Low, K H; Lim, Peter A C; McGregor, A H

    2011-01-01

    With the evolution of robotic systems to facilitate overground walking rehabilitation, it is important to understand the effect of robotic-aided body-weight supported loading on lower limb muscle activity, if we are to optimize neuromotor recovery. To achieve this objective, we have collected and studied electromyography (EMG) data from key muscles in the lower extremity from healthy subjects walking over a wide range of body-weight off-loading levels as provided by a bespoke gait robot. By examining the impact of body-weight off-loading, it was found that muscle activation patterns were sensitive to the level of off-loading. In addition, a large off-loading might introduce disturbance of muscle activation pattern, led to a wider range of motion in terms of dorsiflexion/plantarflexion. Therefore, any future overground training machine should be enhanced to exclude unnecessary effect of body off-loading in securing the sustaining upright posture and providing assist-as-needed BWS over gait rehabilitation. © 2011 IEEE

  14. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    PubMed Central

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  15. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity.

    PubMed

    Carmichael, M S; Warburton, V L; Dixen, J; Davidson, J M

    1994-02-01

    To determine the psychophysiological correlates of hormonal response during sexual activity, systolic blood pressure (SBP), anal electromyography (EMG), and anal photoplethysmography (APG) were monitored continuously throughout testing in 13 women and 10 men. Each subject completed two or more tests of self-stimulation to 5 min beyond orgasm. Blood samples were obtained continuously for measurement of oxytocin (OT) levels. In both men and women, very high positive correlations were observed between the percentage change in levels from baseline through orgasm of: OT and SBP; OT and EMG intensity prior to and during orgasm; APG and EMG. The number of anal contractions and duration of orgasm were also highly correlated. Two patterns of orgasm were defined by the presence or absence of a quiescent period between orgasmic contractions. EMG and APG amplitudes correlated with the pattern of orgasm. Subjective orgasm intensity correlated significantly with increased levels of OT in multiorgasmic women only. The positive correlations between measures are consistent with a possible functional role for OT in human sexual response.

  16. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography.

    PubMed

    Youn, Wonkeun; Kim, Jung

    2010-11-01

    Mechanomyography (MMG) is the muscle surface oscillations that are generated by the dimensional change of the contracting muscle fibers. Because MMG reflects the number of recruited motor units and their firing rates, just as electromyography (EMG) is influenced by these two factors, it can be used to estimate the force exerted by skeletal muscles. The aim of this study was to demonstrate the feasibility of MMG for estimating the elbow flexion force at the wrist under an isometric contraction by using an artificial neural network in comparison with EMG. We performed experiments with five subjects, and the force at the wrist and the MMG from the contributing muscles were recorded. It was found that MMG could be utilized to accurately estimate the isometric elbow flexion force based on the values of the normalized root mean square error (NRMSE = 0.131 ± 0.018) and the cross-correlation coefficient (CORR = 0.892 ± 0.033). Although MMG can be influenced by the physical milieu/morphology of the muscle and EMG performed better than MMG, these experimental results suggest that MMG has the potential to estimate muscle forces. These experimental results also demonstrated that MMG in combination with EMG resulted in better performance estimation in comparison with EMG or MMG alone, indicating that a combination of MMG and EMG signals could be used to provide complimentary information on muscle contraction.

  17. Continuous monitoring of sonomyography, electromyography and torque generated by normal upper arm muscles during isometric contraction: sonomyography assessment for arm muscles.

    PubMed

    Shi, Jun; Zheng, Yong-Ping; Huang, Qing-Hua; Chen, Xin

    2008-03-01

    The aim of this study is to demonstrate the feasibility of using the continuous signals about the thickness and pennation angle changes of muscles detected in real-time from ultrasound images, named as sonomyography (SMG), to characterize muscles under isometric contraction, along with synchronized surface electromyography (EMG) and generated torque signals. The right biceps brachii muscles of seven normal young adult subjects were tested. We observed that exponential functions could well represent the relationships between the normalized EMG root-mean-square (RMS) and the torque, the RMS and the muscle deformation SMG, and the RMS and the pennation angle SMG for the data of the contraction phase, with exponent coefficients of 0.0341 +/- 0.0148 (Mean SD), 0.0619 +/- 0.0273, and 0.0266 +/- 0.0076, respectively. In addition, the preliminary results also demonstrated linear relationships between the normalized torque and the muscle deformation as well as the pennation angle with the ratios of 9 .79 +/- 3.01 and 2.02 +/- 0.53, respectively. The overall mean R2 for the regressions was approximately 0.9 and the overall mean relative root mean square error (RRMSE) smaller than 15%. The potential values of SMG together with EMG to provide a more comprehensive assessment for the muscle functions should be further investigated with more subjects and more muscle groups.

  18. Discrete vs. Continuous Mapping of Facial Electromyography for Human-Machine-Interface Control: Performance and Training Effects

    PubMed Central

    Cler, Meredith J.; Stepp, Cara E.

    2015-01-01

    Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and “click”. One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor’s velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053

  19. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    PubMed

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  20. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  1. Assessment of Dry Epidermal Electrodes for Long-Term Electromyography Measurements

    PubMed Central

    Peters, Keshia M.; Milovanovic, Ivana; Kuang, Irene; Yang, Zeyu; Lu, Nanshu; Steele, Katherine M.

    2018-01-01

    Commercially available electrodes can only provide quality surface electromyography (sEMG) measurements for a limited duration due to user discomfort and signal degradation, but in many applications, collecting sEMG data for a full day or longer is desirable to enhance clinical care. Few studies for long-term sEMG have assessed signal quality of electrodes using clinically relevant tests. The goal of this research was to evaluate flexible, gold-based epidermal sensor system (ESS) electrodes for long-term sEMG recordings. We collected sEMG and impedance data from eight subjects from ESS and standard clinical electrodes on upper extremity muscles during maximum voluntary isometric contraction tests, dynamic range of motion tests, the Jebsen Taylor Hand Function Test, and the Box & Block Test. Four additional subjects were recruited to test the stability of ESS signals over four days. Signals from the ESS and traditional electrodes were strongly correlated across tasks. Measures of signal quality, such as signal-to-noise ratio and signal-to-motion ratio, were also similar for both electrodes. Over the four-day trial, no significant decrease in signal quality was observed in the ESS electrodes, suggesting that thin, flexible electrodes may provide a robust tool that does not inhibit movement or irritate the skin for long-term measurements of muscle activity in rehabilitation and other applications. PMID:29677129

  2. Activation time analysis and electromyographic fatigue in patients with temporomandibular disorders during clenching.

    PubMed

    Pitta, Natássia Condilo; Nitsch, Gabriel Silva; Machado, Mariana Barcellos; de Oliveira, Anamaria Siriani

    2015-08-01

    The use of surface electromyography (SEMG) is controversial in the diagnosis and subsequent treatment of temporomandibular disorders (TMD), although there is some evidence that the pattern of the masticatory muscles in TMD patients differs from controls. The aim of this study was to compare relative time of mandibular elevator muscle activation at different levels of activity and median frequency (MF) during sustained clenching. Twenty-two women, aged between 18 and 48years, volunteered to participate in the study. The TMD group had 14 participants diagnosed as group Ia muscle disorders (RDC/TMD). The control group had eight healthy individuals. SEMG records were obtained from masseter and temporal muscles during 10s of sustained clenching. Normalized SEMG amplitudes were classified as minimal, moderate and maximal and time of activation in each level of activity was calculated and compared using two-way ANOVA (groups versus time). A slope of the linear regression line that fits MF values over time was calculated as a fatigue index for elevator muscles. Only the temporal muscles of the TMD group showed longer activation time at moderate and minimal activity levels compared to controls. Fatigue indexes were greater for the TMD group compared to controls. Results showed motor control strategies during sustained clenching that differentiate controls from TMD patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Electromyographic analyses of the erector spinae muscles during golf swings using four different clubs.

    PubMed

    Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C

    2018-04-01

    The purpose of this study was to compare the electromyography (EMG) patterns of the thoracic and lumbar regions of the erector spinae (ES) muscle during the golf swing whilst using four different golf clubs. Fifteen right-handed male golfers performed a total of twenty swings in random order using the driver, 4-iron, 7-iron and pitching-wedge. Surface EMG was recorded from the lead and trail sides of the thoracic and lumbar regions of the ES muscle (T8, L1 and L5 lateral to the spinous-process). Three-dimensional high-speed video analysis was used to identify the backswing, forward swing, acceleration, early and late follow-through phases of the golf swing. No significant differences in muscle-activation levels from the lead and trail sides of the thoracic and lumbar regions of the ES muscle were displayed between the driver, 4-iron, 7-iron and pitching-wedge (P > 0.05). The highest mean thoracic and lumbar ES muscle-activation levels were displayed in the forward swing (67-99% MVC) and acceleration (83-106% MVC) phases of the swing for all clubs tested. The findings from this study show that there were no significant statistical differences between the driver, 4-iron, 7-iron and pitching-wedge when examining muscle activity from the thoracic and lumbar regions of the ES muscle.

  4. Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending.

    PubMed

    Spolaor, Fabiola; Sawacha, Zimi; Guarneri, Gabriella; Del Din, Silvia; Avogaro, Angelo; Cobelli, Claudio

    2016-12-01

    Diabetic peripheral neuropathy (DPN) causes motor control alterations during daily life activities. Tripping during walking or stair climbing is the predominant cause of falls in the elderly subjects with DPN and without (NoDPN). Surface Electromyography (sEMG) has been shown to be a valid tool for detecting alterations of motor functions in subjects with DPN. This study aims at investigating the presence of functional alterations in diabetic subjects during stair climbing and at exploring the relationship between altered muscle activation and temporal parameter. Lower limb muscle activities, temporal parameters and speed were evaluated in 50 subjects (10 controls, 20 with DPN, 20 without DPN), while climbing up and down a stair, using sEMG, three-dimentional motion capture and force plates. Magnitude and timing of sEMG linear envelopes peaks were extracted. Level walking was used as reference condition for the comparison with step negotiation. sEMG, speed and temporal parameters revealed significant differences among all groups of patients. Results showed an association between earlier activation of lower limb muscles and reduced speed in subjects with DPN. Speed and temporal parameters significantly correlated with sEMG (p<0.05). The findings of this study are encouraging and could be used to improve rehabilitation programs aiming at reducing falls risk in diabetic subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology.

    PubMed

    Naik, Ganesh R; Selvan, S Easter; Arjunan, Sridhar P; Acharyya, Amit; Kumar, Dinesh K; Ramanujam, Arvind; Nguyen, Hung T

    2018-03-01

    Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.

  6. Is the foot striking pattern more important than barefoot or shod conditions in running?

    PubMed

    Shih, Yo; Lin, Kuan-Lun; Shiang, Tzyy-Yuang

    2013-07-01

    People have advocated barefoot running, claiming that it is better suited to human nature. Humans usually run barefoot using a forefoot strike and run shod using a heel strike. The striking pattern was thought to be a key factor that contributes to the benefit of barefoot running. The purpose of this study is to use scientific data to prove that the striking pattern is more important than barefoot or shod conditions for runners on running injuries prevention. Twelve habitually male shod runners were recruited to run under four varying conditions: barefoot running with a forefoot strike, barefoot running with a heel strike, shod running with a forefoot strike, and shod running with a heel strike. Kinetic and kinematic data and electromyography signals were recorded during the experiments. The results showed that the lower extremity can gain more compliance when running with a forefoot strike. Habitually shod runners can gain more shock absorption by changing the striking pattern to a forefoot strike when running with shoes and barefoot conditions. Habitually shod runners may be subject to injuries more easily when they run barefoot while maintaining their heel strike pattern. Higher muscle activity in the gastrocnemius was observed when running with a forefoot strike, which may imply a greater training load on the muscle and a tendency for injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Prospective evaluation of the clinical utility of laryngeal electromyography.

    PubMed

    Ingle, John W; Young, VyVy N; Smith, Libby J; Munin, Micheal C; Rosen, Clark A

    2014-12-01

    To prospectively evaluate the clinical utility of laryngeal electromyography (LEMG) STUDY DESIGN: Prospective observational study. The study involved 50 consecutive patients referred for LEMG. Laryngologists initially indicated diagnoses and treatment plans under the assumption of no access to LEMG. Patients then underwent LEMG by blinded examiners. LEMG results were reviewed by each patient's laryngologist. Diagnoses and treatment plans were either maintained or altered based on the LEMG results. The diagnosis changed 10% (5/50) of the time and treatment plans were altered 36% (18/50) of the time based on information provided by LEMG. Observational periods were eliminated in 13/50 patients based on LEMG, moving them to permanent treatment. LEMG allowed the differentiation between joint fixation and bilateral paralysis in three patients. Previously unrecognized superior laryngeal neuropathies were identified in three patients. Laryngeal electromyography often provides clinically useful information that typically leads to a more accurate diagnosis and a more appropriate, expedited treatment plan. 2b. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Accuracy of electromyography needle placement in cadavers: non-guided vs. ultrasound guided.

    PubMed

    Boon, Andrea J; Oney-Marlow, Theresa M; Murthy, Naveen S; Harper, Charles M; McNamara, Terrence R; Smith, Jay

    2011-07-01

    Accuracy of needle electromyography is typically ensured by use of anatomical landmarks and auditory feedback related to voluntary activation of the targeted muscle; however, in certain clinical situations, landmarks may not be palpable, auditory feedback may be limited or not present, and targeting a specific muscle may be more critical. In such settings, image guidance might significantly enhance accuracy. Two electromyographers with different levels of experience examined 14 muscles in each of 4 fresh-frozen cadaver lower limbs. Each muscle was tested a total of eight times; four fine wires were inserted without ultrasound (US) guidance and four were inserted under US guidance. Overall accuracy as well as accuracy rates for the individual electromyographers were calculated. Non-guided needle placement was significantly less accurate than US-guided needle placement, particularly in the hands of less experienced electromyographers, supporting the use of real-time US guidance in certain challenging situations in the electromyography laboratory. Copyright © 2011 Wiley Periodicals, Inc.

  9. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.

    PubMed

    Akdogan, Erhan; Shima, Keisuke; Kataoka, Hitoshi; Hasegawa, Masaki; Otsuka, Akira; Tsuji, Toshio

    2012-09-01

    This paper proposes the cybernetic rehabilitation aid (CRA) based on the concept of direct teaching using tactile feedback with electromyography (EMG)-based motor skill evaluation. Evaluation and teaching of motor skills are two important aspects of rehabilitation training, and the CRA provides novel and effective solutions to potentially solve the difficulties inherent in these two processes within a single system. In order to evaluate motor skills, EMG signals measured from a patient are analyzed using a log-linearized Gaussian mixture network that can classify motion patterns and compute the degree of similarity between the patient's measured EMG patterns and the desired pattern provided by the therapist. Tactile stimulators are used to convey motion instructions from the therapist or the system to the patient, and a rehabilitation robot can also be integrated into the developed prototype to increase its rehabilitation capacity. A series of experiments performed using the developed prototype demonstrated that the CRA can work as a human-human, human-computer and human-machine system. The experimental results indicated that the healthy (able-bodied) subjects were able to follow the desired muscular contraction levels instructed by the therapist or the system and perform proper joint motion without relying on visual feedback.

  10. Electromyography variables during the golf swing: a literature review.

    PubMed

    Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan

    2012-12-01

    The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  12. Segmentation of ECG from Surface EMG Using DWT and EMD: A Comparison Study

    NASA Astrophysics Data System (ADS)

    Shahbakhti, Mohammad; Heydari, Elnaz; Luu, Gia Thien

    2014-10-01

    The electrocardiographic (ECG) signal is a major artifact during recording the surface electromyography (SEMG). Removal of this artifact is one of the important tasks before SEMG analysis for biomedical goals. In this paper, the application of discrete wavelet transform (DWT) and empirical mode decomposition (EMD) for elimination of ECG artifact from SEMG is investigated. The focus of this research is to reach the optimized number of decomposed levels using mean power frequency (MPF) by both techniques. In order to implement the proposed methods, ten simulated and three real ECG contaminated SEMG signals have been tested. Signal-to-noise ratio (SNR) and mean square error (MSE) between the filtered and the pure signals are applied as the performance indexes of this research. The obtained results suggest both techniques could remove ECG artifact from SEMG signals fair enough, however, DWT performs much better and faster in real data.

  13. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    PubMed Central

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  14. Electromyography of 3 scapular muscles: a comparative analysis of the cuff link device and a standard push-up.

    PubMed

    Tucker, W Steven; Campbell, Brian M; Swartz, Erik E; Armstrong, Charles W

    2008-01-01

    The Cuff Link is a closed kinetic chain rehabilitation apparatus for the upper extremity. Limited research has established its effectiveness to elicit muscle activation of the scapular muscles. To determine if scapular muscle activation differs in response to 2 upper extremity closed kinetic chain exercises: Cuff Link and standard push-up. A single-group, repeated-measures design. Controlled laboratory. Twenty-eight healthy individuals (13 women: age = 19.69 +/- 1.55 years, height = 167.44 +/- 9.52 cm, mass = 61.00 +/- 8.79 kg; 15 men: age = 22.00 +/- 3.91 years, height = 181.44 +/- 6.60 cm, mass = 82.36 +/- 13.23 kg) with no history of shoulder or low back injury volunteered to participate in this study. Participants performed 10 trials of complete revolutions on the Cuff Link and 10 full-weight-bearing push-ups. We controlled trial velocity and randomized order. Trunk and shoulder positions were normalized to the participant's height. Using surface electromyography, we recorded muscle activity of the serratus anterior, middle trapezius, and lower trapezius. Rectified and smoothed electromyography data for the serratus anterior, middle trapezius, and lower trapezius were normalized as a percentage of the maximal voluntary isometric contractions (%MVIC). Mean muscle activity of the serratus anterior, middle trapezius, and lower trapezius. We used paired-samples t tests to analyze the mean data for each condition. The alpha level was adjusted to .016 to avoid a type I error. Middle trapezius %MVIC was greater during push-ups (27.01 +/- 20.40%) than during use of the Cuff Link (11.49 +/- 9.46%) (P = .001). Lower trapezius %MVIC was greater during push-ups (36.07 +/- 18.99%) than during use of the Cuff Link (16.29 +/- 8.64%) (P = .001). There was no difference in %MVIC for the serratus anterior between conditions. The push-up demonstrated greater middle trapezius and lower trapezius activation levels compared with the Cuff Link. However, the push-up had a high participant failure rate. Because serratus anterior activation levels were similar, the Cuff Link may be an appropriate alternative for individuals lacking the upper body strength to perform a push-up.

  15. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    PubMed

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike for the healthy participants. Finally, healthy participants exhibited changes in all electromyographic parameters during the repetitive muscle actions despite successfully completing all contractions with only a slight reduction in force. Thus, caution is warranted when quantifying muscular fatigue via motor unit firing rates and other electromyographic parameters since the parameters changed despite successful completing of all contractions with only a moderate reduction in strength in healthy subjects.

  16. Relationship Between Laryngeal Electromyography and Video Laryngostroboscopy in Vocal Fold Paralysis.

    PubMed

    Maamary, Joel A; Cole, Ian; Darveniza, Paul; Pemberton, Cecilia; Brake, Helen Mary; Tisch, Stephen

    2017-09-01

    The objective of this study was to better define the relationship of laryngeal electromyography and video laryngostroboscopy in the diagnosis of vocal fold paralysis. Retrospective diagnostic cohort study with cross-sectional data analysis METHODS: Data were obtained from 57 patients with unilateral vocal fold paralysis who attended a large tertiary voice referral center. Electromyographic findings were classified according to recurrent laryngeal nerve, superior laryngeal nerve, and high vagal/combined lesions. Video laryngostroboscopy recordings were classified according to the position of the immobile fold into median, paramedian, lateral, and a foreshortened/hooded vocal fold. The position of the paralyzed vocal fold was then analyzed according to the lesion as determined by electromyography. The recurrent laryngeal nerve was affected in the majority of cases with left-sided lesions more common than right. Vocal fold position differed between recurrent laryngeal and combined vagal lesions. Recurrent laryngeal nerve lesions were more commonly associated with a laterally displaced immobile fold. No fold position was suggestive of a combined vagal lesion. The inter-rater reliability for determining fold position was high. Laryngeal electromyography is useful in diagnosing neuromuscular dysfunction of the larynx and best practice recommends its continued implementation along with laryngostroboscopy. While recurrent laryngeal nerve lesions are more likely to present with a lateral vocal fold, this does not occur in all cases. Such findings indicate that further unknown mechanisms contribute to fold position in unilateral paralysis. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach

    PubMed Central

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P.

    2015-01-01

    To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (−8.2%) compared to SL (−5.3%) and MH (−7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1–8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia. PMID:26441679

  18. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an "hypoxic to normoxic recovery" approach.

    PubMed

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2015-01-01

    To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2%) compared to SL (-5.3%) and MH (-7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.

  19. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-01-19

    To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, p<0.05). Not all of the subjects reached a steady-state gait pattern within the two sessions, in contrast to a previous study using a weaker robotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Relationship between lower limb position and pelvic floor muscle surface electromyography activity in menopausal women: a prospective observational study

    PubMed Central

    Halski, Tomasz; Ptaszkowski, Kuba; Słupska, Lucyna; Dymarek, Robert; Paprocka-Borowicz, Małgorzata

    2017-01-01

    Objectives In physiotherapeutic practice, special attention is being given to the reciprocal anatomical, physiological, and biomechanical relationship of the pelvis and the structures connected to it. However, the scientific literature shows mainly the theoretical information about their mutual connections. The lack of information about these relations from a practical aspect coupled with the paucity of scientific papers on the impact of posture changes on the pelvic floor led the authors to conduct this study. The primary aim of this study was to compare the resting and functional bioelectrical activities of pelvic floor muscles (PFMs) depending on three different positions of the lower limbs (positions A, B, and C) in the supine position. Materials and methods This was a prospective observational study evaluating resting and functional activities of the PFM depending on the position of the lower limbs. The study was carried out at the Department and Clinic of Urology, University Hospital in Wroclaw, Poland and the target group were women in the menopausal period. Bioelectrical activity of PFM was recorded using a surface electromyographic instrument in the supine position. Results of the values obtained in A, B, and C positions were compared using a one-way analysis of variance. Results In position A, the average resting surface electromyography (sEMG) activity of PFM was 6.9±2.6 µV; in position B, the result was 6.9±2.5 µV and in position C, the resting sEMG activity was 5.7±1.8 µV (P=0.0102). The results of the functional bioelectrical activity of PFM were as follows: position A – 20.3±11.8 µV, position B – 19.9±10.6 µV, and position C – 25.3±10.9 µV (P=0.0104). Conclusion The results showed that in the supine position, the PFM achieved the lowest resting activity and the highest functional activity. Therefore, the supine position can be recommended for the diagnosis and therapy of weakened PFM. PMID:28115836

  1. Eversion Strength and Surface Electromyography Measures With and Without Chronic Ankle Instability Measured in 2 Positions.

    PubMed

    Donnelly, Lindsy; Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2017-07-01

    Individuals with chronic ankle instability (CAI) have demonstrated strength deficits compared to healthy controls; however, the influence of ankle position on force measures and surface electromyography (sEMG) activation of the peroneus longus and brevis has not been investigated. The purpose of this study was to compare sEMG amplitudes of the peroneus longus and brevis and eversion force measures in 2 testing positions, neutral and plantarflexion, in groups with and without CAI. Twenty-eight adults (19 females, 9 males) with CAI and 28 healthy controls (19 females, 9 males) participated. Hand-held dynamometer force measures were assessed during isometric eversion contractions in 2 testing positions (neutral, plantarflexion) while surface sEMG amplitudes of the peroneal muscles were recorded. Force measures were normalized to body mass, and sEMG amplitudes were normalized to a resting period. The group with CAI demonstrated less force when compared to the control group ( P < .001) in both the neutral and plantarflexion positions: neutral position, CAI: 1.64 Nm/kg and control: 2.10 Nm/kg) and plantarflexion position, CAI: 1.40 Nm/kg and control: 1.73 Nm/kg). There were no differences in sEMG amplitudes between the groups or muscles ( P > .05). Force measures correlated with both muscles' sEMG amplitudes in the healthy group (neutral peroneus longus: r = 0.42, P = .03; plantarflexion peroneus longus: r = 0.56, P = .002; neutral peroneus brevis: r = 0.38, P = .05; plantarflexion peroneus longus: r = 0.40, P = .04), but not in the group with CAI ( P > .05). The group with CAI generated less force when compared to the control group during both testing positions. There was no selective activation of the peroneal muscles with testing in both positions, and force output and sEMG activity was only related in the healthy group. Clinicians should assess eversion strength and implement strength training exercises in different sagittal plane positions and evaluate for other pathologies that may contribute to reduced eversion strength in patients with CAI. Level III, cross-sectional.

  2. Recurrent intractable hiccups treated by cervical phrenic nerve block under electromyography: report of a case.

    PubMed

    Sa, Young Jo; Song, Dae Heon; Kim, Jae Jun; Kim, Young Du; Kim, Chi Kyung; Moon, Seok Whan

    2015-11-01

    Intractable or persistent hiccups require intensive or invasive treatments. The use of a phrenic nerve block or destructive treatment for intractable hiccups has been reported to be a useful and discrete method that might be valuable to patients with this distressing problem and for whom diverse management efforts have failed. We herein report a successful treatment using a removable and adjustable ligature for the phrenic nerve in a patient with recurrent and intractable hiccups, which was employed under the guidance of electromyography.

  3. Muscle Activation Patterns in Infants with Myelomeningocele Stepping on a Treadmill

    PubMed Central

    Sansom, Jennifer K.; Teulier, Caroline; Smith, Beth A.; Moerchen, Victoria; Muraszko, Karin; Ulrich, Beverly D.

    2013-01-01

    Purpose To characterize how infants with myelomeningocele (MMC) activate lower limb muscles over the first year of life, without practice, while stepping on a motorized treadmill. Methods Twelve infants with MMC were tested longitudinally at 1, 6, 12 months. Electromyography (EMG) was used to collect data from the tibialis anterior (TA), lateral gastrocnemius (LG), rectus femoris (RF), biceps femoris (BF). Results Across the first year, infants showed no EMG activity for ~50% of the stride cycle w/poor rhythmicity and timing of muscles, when activated. Single muscle activation predominated; agonist-antagonist co-activation was low. Probability of individual muscle activity across the stride decreased w/age. Conclusions Infants with MMC show high variability in timing and duration of muscle activity, few complex combinations, and very little change over time. PMID:23685739

  4. Laryngeal reinnervation featuring refined nerve-muscle pedicle implantation evaluated via electromyography and use of coronal images.

    PubMed

    Sanuki, Tetsuji; Yumoto, Eiji; Nishimoto, Kohei; Kodama, Narihiro; Kodama, Haruka; Minoda, Ryosei

    2015-04-01

    To evaluate the long-term efficacy of laryngeal reinnervation via refined nerve-muscle pedicle (NMP) flap implantation combined with arytenoid adduction to treat unilateral vocal fold paralysis (UVFP), employing laryngeal electromyography (LEMG), coronal imaging, and phonatory function assessment. Case series with chart review. University hospital. We retrospectively reviewed 12 UVFP patients who underwent refined NMP implantation with arytenoid adduction. Videostroboscopy, phonatory functional analysis, LEMG, and coronal imaging were performed before and 2 years after surgery. In LEMG analysis, a 4-point scale was employed to grade motor unit (MU) recruitment: 4+ reflected no recruitment, 3+ greatly decreased recruitment, 2+ moderately decreased recruitment, and 1+ mildly decreased activity, associated with less than the full interference pattern. Coronal images were assessed in terms of differences in thickness and the vertical positions of the vocal folds. Phonatory function improved significantly after operation in all patients. In terms of LEMG findings, the preoperative MU recruitment scores were 1+ in no patients, 2+ in 4 patients, 3+ in 1 patient, and 4+ in 7 patients. Postoperative MU recruitment results were 1+ in 6 patients, 2+ in 5 patients, 3+ in 1 patient, and 4+ in no patients. Thinning of the affected fold during phonation was evident preoperatively in 9 of 10 patients. The affected and healthy folds were equal in volume in 4 of 9 patients postoperatively. The LEMG findings and coronal imaging suggest that NMP implantation may have enabled successful reinnervation of the laryngeal muscles of UVFP patients. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  5. Clinical and molecular genetic characterisation of a family segregating autosomal dominant retinitis pigmentosa and sensorineural deafness.

    PubMed

    Kenna, P; Mansergh, F; Millington-Ward, S; Erven, A; Kumar-Singh, R; Brennan, R; Farrar, G J; Humphries, P

    1997-03-01

    To characterise clinically a large kindred segregating retinitis pigmentosa and sensorineural hearing impairment in an autosomal dominant pattern and perform genetic linkage studies in this family. Extensive linkage analysis in this family had previously excluded the majority of loci shown to be involved in the aetiologies of RP, some other forms of inherited retinal degeneration, and inherited deafness. Members of the family were subjected to detailed ophthalmic and audiological assessment. In addition, some family members underwent skeletal muscle biopsy, electromyography, and electrocardiography. Linkage analysis using anonymous microsatellite markers was performed on DNA samples from all living members of the pedigree. Patients in this kindred have a retinopathy typical of retinitis pigmentosa in addition to a hearing impairment. Those members of the pedigree examined demonstrated a subclinical myopathy, as evidence by abnormal skeletal muscle histology, electromyography, and electrocardiography. LOD scores of Zmax = 3.75 (theta = 0.10), Zmax = 3.41 (theta = 0.10), and Zmax = 3.25 (theta = 0.15) respectively were obtained with the markers D9S118, D9S121, and ASS, located on chromosome 9q34-qter, suggesting that the causative gene in this family may lie on the long arm (q) of chromosome 9. These data indicate that the gene responsible for the phenotype in this kindred is located on chromosome 9 q. These data, together with evidence that a murine deafness gene is located in a syntenic area of the mouse genome, should direct the research community to consider this area as a candidate region for retinopathy and/or deafness genes.

  6. Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines

    PubMed Central

    Gruss, Sascha; Treister, Roi; Werner, Philipp; Traue, Harald C.; Crawcour, Stephen; Andrade, Adriano; Walter, Steffen

    2015-01-01

    Background The clinically used methods of pain diagnosis do not allow for objective and robust measurement, and physicians must rely on the patient’s report on the pain sensation. Verbal scales, visual analog scales (VAS) or numeric rating scales (NRS) count among the most common tools, which are restricted to patients with normal mental abilities. There also exist instruments for pain assessment in people with verbal and / or cognitive impairments and instruments for pain assessment in people who are sedated and automated ventilated. However, all these diagnostic methods either have limited reliability and validity or are very time-consuming. In contrast, biopotentials can be automatically analyzed with machine learning algorithms to provide a surrogate measure of pain intensity. Methods In this context, we created a database of biopotentials to advance an automated pain recognition system, determine its theoretical testing quality, and optimize its performance. Eighty-five participants were subjected to painful heat stimuli (baseline, pain threshold, two intermediate thresholds, and pain tolerance threshold) under controlled conditions and the signals of electromyography, skin conductance level, and electrocardiography were collected. A total of 159 features were extracted from the mathematical groupings of amplitude, frequency, stationarity, entropy, linearity, variability, and similarity. Results We achieved classification rates of 90.94% for baseline vs. pain tolerance threshold and 79.29% for baseline vs. pain threshold. The most selected pain features stemmed from the amplitude and similarity group and were derived from facial electromyography. Conclusion The machine learning measurement of pain in patients could provide valuable information for a clinical team and thus support the treatment assessment. PMID:26474183

  7. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.

    PubMed

    Hu, Xiao-Ling; Tong, Raymond Kai-yu; Ho, Newmen S K; Xue, Jing-jing; Rong, Wei; Li, Leonard S W

    2015-09-01

    Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke. To compare the rehabilitation effectiveness achieved by NMES robot-assisted wrist training and that by robot-assisted training. This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training. The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P < .05). Significant improvement in ARAT was achieved in the NMES robot group (P < .05) but absent in the robot group. NMES robot-assisted training showed better performance in releasing muscle co-contraction than the robot-assisted across the training sessions (P < .05). The NMES robot-assisted wrist training was more effective than the pure robot. The additional NMES application in the treatment could bring more improvements in the distal motor functions and faster rehabilitation progress. © The Author(s) 2014.

  8. Quantification of functional hand grip using electromyography and inertial sensor-derived accelerations: clinical implications.

    PubMed

    Martin-Martin, Jaime; Cuesta-Vargas, Antonio I

    2014-12-11

    Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements. Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove. Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors. Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity. Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.

  9. Bilateral neuromuscular and force differences during a plyometric task.

    PubMed

    Ball, Nick B; Scurr, Joanna C

    2009-08-01

    The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p < 0.01). No significant differences were present in the contactpost40ms phase (p > 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p < 0.01). No significant differences were found for within-leg normalized electromyography for the contact40ms phases and contactpost40ms phase (p > 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.

  10. Kinematics and muscle activity of the head, lumbar and knee joints during 180° turning and sitting down task in older adults.

    PubMed

    Kuo, Fang-Chuan; Hong, Chang-Zern; Liau, Ben-Yi

    2014-01-01

    The "180° turning and sitting down task" is a very conscious movement that requires focusing on turning at the exact moment, and very few studies address on this topic in older adults. The purpose of the study was to compare kinematics and electromyography of the head, lumbar and knee joints during 180°turning in older and young adults. Twenty older adults and 20 younger adults were assessed. A 16-channel telemetry electromyography system with electrogoniometers and an inclinometer were used to record the head, lumbar and knee joint kinematic and electromyography data during the 180° turning. This movement had been further divided into 4 phases (braking, mid-stance, swing, and terminal loading) for analysis. There were significant differences in the joint displacement and muscular activity among the different phases. Comparison between groups showed that the older adults group had less lateral lumbar flexion, less knee flexion and lower velocity of the head and knee flexion compared to young adults during turning. The electromyography data of the left biceps femoris, left gastrocnemius and left erector spinae muscles in the older adults group showed significantly higher levels than in the young adults. Older adults need to adjust velocities of moving joints and increase the extensor synergy muscles of the back and the stance leg to provide posture stability. Kinematics and neuromuscular modulations of the head, lumbar and knee are required according to the various phases of the turn movements and change with aging. © 2013.

  11. Comparison of six electromyography acquisition setups on hand movement classification tasks

    PubMed Central

    Pizzolato, Stefano; Tagliapietra, Luca; Cognolato, Matteo; Reggiani, Monica; Müller, Henning

    2017-01-01

    Hand prostheses controlled by surface electromyography are promising due to the non-invasive approach and the control capabilities offered by machine learning. Nevertheless, dexterous prostheses are still scarcely spread due to control difficulties, low robustness and often prohibitive costs. Several sEMG acquisition setups are now available, ranging in terms of costs between a few hundred and several thousand dollars. The objective of this paper is the relative comparison of six acquisition setups on an identical hand movement classification task, in order to help the researchers to choose the proper acquisition setup for their requirements. The acquisition setups are based on four different sEMG electrodes (including Otto Bock, Delsys Trigno, Cometa Wave + Dormo ECG and two Thalmic Myo armbands) and they were used to record more than 50 hand movements from intact subjects with a standardized acquisition protocol. The relative performance of the six sEMG acquisition setups is compared on 41 identical hand movements with a standardized feature extraction and data analysis pipeline aimed at performing hand movement classification. Comparable classification results are obtained with three acquisition setups including the Delsys Trigno, the Cometa Wave and the affordable setup composed of two Myo armbands. The results suggest that practical sEMG tests can be performed even when costs are relevant (e.g. in small laboratories, developing countries or use by children). All the presented datasets can be used for offline tests and their quality can easily be compared as the data sets are publicly available. PMID:29023548

  12. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery.

    PubMed

    Maul, H; Maner, W L; Olson, G; Saade, G R; Garfield, R E

    2004-05-01

    The study was conducted to investigate whether the strength of uterine contractions monitored invasively by intrauterine pressure catheter could be determined from transabdominal electromyography (EMG) and to estimate whether EMG is a better predictor of true labor compared to tocodynamometry (TOCO). Uterine EMG was recorded from the abdominal surface in laboring patients simultaneously monitored with an intrauterine pressure catheter (n = 13) or TOCO (n = 24). Three to five contractions per patient and corresponding electrical bursts were randomly selected and analyzed (integral of intrauterine pressure; integral, frequency, amplitude of contraction curve on TOCO; burst energy for EMG). The Mann-Whitney test, Spearman correlation and receiver operator characteristics (ROC) analysis were used as appropriate (significance was assumed at a value of p < 0.05). EMG correlated strongly with intrauterine pressure (r = 0.764; p = 0.002). EMG burst energy levels were significantly higher in patients who delivered within 48 h compared to those who delivered later (median [25%/75%]: 96,640 [26,520-322,240] vs. 2960 [1560-10,240]; p < 0.001), whereas none of the TOCO parameters were different. In addition, burst energy levels were highly predictive of delivery within 48 h (AUC = 0.9531; p < 0.0001). EMG measurements correlated strongly with the strength of contractions and therefore may be a valuable alternative to invasive measurement of intrauterine pressure. Unlike TOCO, transabdominal uterine EMG can be used reliably to predict labor and delivery.

  13. Multi-modal myocontrol: Testing combined force- and electromyography.

    PubMed

    Nowak, Markus; Eiband, Thomas; Castellini, Claudio

    2017-07-01

    Myocontrol, that is control of prostheses using bodily signals, has proved in the decades to be a surprisingly hard problem for the scientific community of assistive and rehabilitation robotics. In particular, traditional surface electromyography (sEMG) seems to be no longer enough to guarantee dexterity (i.e., control over several degrees of freedom) and, most importantly, reliability. Multi-modal myocontrol is concerned with the idea of using novel signal gathering techniques as a replacement of, or alongside, sEMG, to provide high-density and diverse signals to improve dexterity and make the control more reliable. In this paper we present an offline and online assessment of multi-modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol. A total number of twenty sEMG and FMG sensors were used simultaneously, in several combined configurations, to predict opening/closing of the hand and activation of two degrees of freedom of the wrist of ten intact subjects. The analysis was targeted at determining the optimal sensor combination and control parameters; the experimental results indicate that sEMG sensors alone perform worst, yielding a nRMSE of 9.1%, while mixing FMG and sEMG or using FMG only reduces the nRMSE to 5.2-6.6%. To validate these results, we engaged the subject with median performance in an online goal-reaching task. Analysis of this further experiment reveals that the online behaviour is similar to the offline one.

  14. Comparison of six electromyography acquisition setups on hand movement classification tasks.

    PubMed

    Pizzolato, Stefano; Tagliapietra, Luca; Cognolato, Matteo; Reggiani, Monica; Müller, Henning; Atzori, Manfredo

    2017-01-01

    Hand prostheses controlled by surface electromyography are promising due to the non-invasive approach and the control capabilities offered by machine learning. Nevertheless, dexterous prostheses are still scarcely spread due to control difficulties, low robustness and often prohibitive costs. Several sEMG acquisition setups are now available, ranging in terms of costs between a few hundred and several thousand dollars. The objective of this paper is the relative comparison of six acquisition setups on an identical hand movement classification task, in order to help the researchers to choose the proper acquisition setup for their requirements. The acquisition setups are based on four different sEMG electrodes (including Otto Bock, Delsys Trigno, Cometa Wave + Dormo ECG and two Thalmic Myo armbands) and they were used to record more than 50 hand movements from intact subjects with a standardized acquisition protocol. The relative performance of the six sEMG acquisition setups is compared on 41 identical hand movements with a standardized feature extraction and data analysis pipeline aimed at performing hand movement classification. Comparable classification results are obtained with three acquisition setups including the Delsys Trigno, the Cometa Wave and the affordable setup composed of two Myo armbands. The results suggest that practical sEMG tests can be performed even when costs are relevant (e.g. in small laboratories, developing countries or use by children). All the presented datasets can be used for offline tests and their quality can easily be compared as the data sets are publicly available.

  15. Mcconnell's patellar taping does not alter knee and hip muscle activation differences during proprioceptive exercises: A randomized placebo-controlled trial in women with patellofemoral pain syndrome.

    PubMed

    Araújo, Cynthia Gobbi Alves; de Souza Guerino Macedo, Christiane; Ferreira, Daiene; Shigaki, Leonardo; da Silva, Rubens A

    2016-12-01

    The purpose of this study was to assess the effect of patellar taping on muscle activation of the knee and hip muscles in women with Patellofemoral Pain Syndrome during five proprioceptive exercises. Forty sedentary women with syndrome were randomly allocated in two groups: Patellar Taping (based in McConnell) and Placebo (vertical taping on patella without any stretching of lateral structures of the knee). Volunteers performed five proprioceptive exercises randomly: Swing apparatus, Mini-trampoline, Bosu balance ball, Anteroposterior sway on a rectangular board and Mediolateral sway on a rectangular board. All exercises were performed in one-leg stance position with injured knee at flexion of 30° during 15s. Muscle activation was measured by surface electromyography across Vastus Medialis, Vastus Lateralis and Gluteus medius muscles. Maximal voluntary contraction was performed for both hip and knee muscles in order to normalize electromyography signal relative to maximum effort during the exercises. ANOVA results reported no significant interaction (P>0.05) and no significant differences (P>0.05) between groups and intervention effects in all exercise conditions. Significant differences (P<0.01) were only reported between muscles, where hip presented higher activity than knee muscles. Patellar taping is not better than placebo for changes in the muscular activity of both hip and knee muscles during proprioceptive exercises. ClinicalTrials.gov NCT02322515. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Beauty in the eye of the beholder: Using facial electromyography to examine the association between eating disorder symptoms and perceptions of emaciation among undergraduate women.

    PubMed

    Dodd, Dorian R; Velkoff, Elizabeth A; Forrest, Lauren N; Fussner, Lauren M; Smith, April

    2017-06-01

    Thin-ideal internalization, drive for thinness, and over-evaluation of the importance of thinness are associated with eating disorders (EDs). However, little research has examined to what extent perceptions of emaciation are also associated with ED symptoms. In the present study, 80 undergraduate women self-reported on ED symptomatology and perceptions of emaciated, thin, and overweight female bodies. While participants viewed images of these different body types, facial electromyography was used to measure activation of facial muscles associated with disgust reactions. Emaciated and overweight bodies were rated negatively and elicited facial responses consistent with disgust. Further, ED symptomatology was associated with pronounced aversion to overweight bodies (assessed via self-report pleasantness ratings), and attenuated negative affect to emaciated bodies (assessed via facial electromyography). The latter association was significant even when controlling for self-reported perceptions of emaciation, suggesting that psychophysiological methods in ED research may provide valuable information unavailable via self-report. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Validity and Reliability of Surface Electromyography in the Assessment of Primary Muscle Tension Dysphonia.

    PubMed

    Khoddami, Seyyedeh Maryam; Talebian, Saeed; Izadi, Farzad; Ansari, Noureddin Nakhostin

    2017-05-01

    The study aims to evaluate the reliability and the discriminative validity of surface electromyography (sEMG) in the assessment of patients with primary muscle tension dysphonia (MTD). The study design is cross-sectional. Fifteen patients with primary MTD (mean age: 34.07 ± 10.99 years) and 15 healthy volunteers (mean age: 34.53 ± 10.63 years) were included. All participants underwent evaluation of sEMG to record the electrical activity of the thyrohyoid and cricothyroid muscles. The outcome measures were the root mean square (RMS), activity peak, duration, and time to the peak activity, which were obtained during /a/ and /i/ prolongation for test-retest reliability. The test-retest reliability was good to excellent for the RMS and peak activity measures (intraclass correlation coefficient [agreement] [ICC agreement ] = 0.49-0.98). The reliability for the activity duration was poor to excellent (ICC agreement  = 0.19-0.9). Poor test-retest reliability was found for the time to peak measure (ICC agreement  = 0.15-0.37). The standard error of measurement for all sEMG measures was between 0.41 and 2.05. The smallest detectable change (SDC) was calculated between 1.13 and 5.66. The highest SDC values were obtained for the peak and the lowest SDCs were documented for the duration (5.66 and 1.13, respectively). All sEMG measures were not able to discriminate between the MTD patients and healthy subjects (P > 0.05). The sEMG is a reliable tool to measure the RMS, the peak activity, and the activity duration in primary MTD. However, it is not able to discriminate the patients with primary MTD from healthy subjects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography

    PubMed Central

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  19. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    PubMed

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    PubMed Central

    Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen

    2018-01-01

    The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737

  1. A Methodological Approach to Quantifying Plyometric Intensity.

    PubMed

    Jarvis, Mark M; Graham-Smith, Phil; Comfort, Paul

    2016-09-01

    Jarvis, MM, Graham-Smith, P, and Comfort, P. A Methodological approach to quantifying plyometric intensity. J Strength Cond Res 30(9): 2522-2532, 2016-In contrast to other methods of training, the quantification of plyometric exercise intensity is poorly defined. The purpose of this study was to evaluate the suitability of a range of neuromuscular and mechanical variables to describe the intensity of plyometric exercises. Seven male recreationally active subjects performed a series of 7 plyometric exercises. Neuromuscular activity was measured using surface electromyography (SEMG) at vastus lateralis (VL) and biceps femoris (BF). Surface electromyography data were divided into concentric (CON) and eccentric (ECC) phases of movement. Mechanical output was measured by ground reaction forces and processed to provide peak impact ground reaction force (PF), peak eccentric power (PEP), and impulse (IMP). Statistical analysis was conducted to assess the reliability intraclass correlation coefficient and sensitivity smallest detectable difference of all variables. Mean values of SEMG demonstrate high reliability (r ≥ 0.82), excluding ECC VL during a 40-cm drop jump (r = 0.74). PF, PEP, and IMP demonstrated high reliability (r ≥ 0.85). Statistical power for force variables was excellent (power = 1.0), and good for SEMG (power ≥0.86) excluding CON BF (power = 0.57). There was no significant difference (p > 0.05) in CON SEMG between exercises. Eccentric phase SEMG only distinguished between exercises involving a landing and those that did not (percentage of maximal voluntary isometric contraction [%MVIC] = no landing -65 ± 5, landing -140 ± 8). Peak eccentric power, PF, and IMP all distinguished between exercises. In conclusion, CON neuromuscular activity does not appear to vary when intent is maximal, whereas ECC activity is dependent on the presence of a landing. Force characteristics provide a reliable and sensitive measure enabling precise description of intensity in plyometric exercises. The present findings provide coaches and scientists with an insightful and precise method of measuring intensity in plyometrics, which will allow for greater control of programming variables.

  2. Is the timed loaded standing test a valid measure of back muscle endurance in people with vertebral osteoporosis?

    PubMed

    Newman, M; Newman, R; Hughes, T; Vadher, K; Barker, K L

    2018-04-01

    Timed loaded standing (TLS) is a suggested measure of back muscle endurance for people with vertebral osteoporosis. Surface electromyography revealed back muscles work harder and fatigue during TLS. The test end-point and total time were associated with back fatigue. The findings help demonstrate the concurrent validity of the TLS test. The TLS test is suggested as a measure of back muscle endurance for patients with vertebral osteoporosis. However, to date, no study has demonstrated that TLS does measure back extensor or erector spinae (ES) muscle endurance. We used surface electromyography (sEMG) to investigate the performance of the thoracic ES muscles during TLS. Thirty-six people with vertebral osteoporosis with a mean age of 71.6 (range 45-86) years participated. sEMG recordings were made of the ES at T3 and T12 bilaterally during quiet standing (QS) and TLS. The relative (%) change in sEMG amplitude between conditions was compared. Fatigue was evaluated by analysing the change in median frequency (MF) of the sEMG signal during TLS, and the correlation between maximal TLS time and rate of MF decline was examined. Activity in the ES increased significantly during TLS at all electrode locations. During TLS, the MF declined at a mean rate of -24.2% per minute (95% C.I. -26.5 to -21.9%). The MF slope and test time were strongly correlated (r 2  = 0.71), and at test end, the final MF dropped to an average 89% (95% C.I. 85 to 93%) of initial MF. Twenty-eight participants (78%) reported fatigue was the main reason for stopping, and for eight (22%), it was pain. This study demonstrates that TLS challenges the ES muscles in the thoracic region and results in ES fatigue. Endurance time and the point at which the TLS test ends are strongly related to ES fatigue.

  3. Changes in Locomotor Muscle Activity After Treadmill Training in Subjects With Incomplete Spinal Cord Injury

    PubMed Central

    Gorassini, Monica A.; Norton, Jonathan A.; Nevett-Duchcherer, Jennifer; Roy, Francois D.; Yang, Jaynie F.

    2009-01-01

    Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury. PMID:19073799

  4. Muscle recruitment and coordination with an ankle exoskeleton.

    PubMed

    Steele, Katherine M; Jackson, Rachel W; Shuman, Benjamin R; Collins, Steven H

    2017-07-05

    Exoskeletons have the potential to assist and augment human performance. Understanding how users adapt their movement and neuromuscular control in response to external assistance is important to inform the design of these devices. The aim of this research was to evaluate changes in muscle recruitment and coordination for ten unimpaired individuals walking with an ankle exoskeleton. We evaluated changes in the activity of individual muscles, cocontraction levels, and synergistic patterns of muscle coordination with increasing exoskeleton work and torque. Participants were able to selectively reduce activity of the ankle plantarflexors with increasing exoskeleton assistance. Increasing exoskeleton net work resulted in greater reductions in muscle activity than increasing exoskeleton torque. Patterns of muscle coordination were not restricted or constrained to synergistic patterns observed during unassisted walking. While three synergies could describe nearly 95% of the variance in electromyography data during unassisted walking, these same synergies could describe only 85-90% of the variance in muscle activity while walking with the exoskeleton. Synergies calculated with the exoskeleton demonstrated greater changes in synergy weights with increasing exoskeleton work versus greater changes in synergy activations with increasing exoskeleton torque. These results support the theory that unimpaired individuals do not exclusively use central pattern generators or other low-level building blocks to coordinate muscle activity, especially when learning a new task or adapting to external assistance, and demonstrate the potential for using exoskeletons to modulate muscle recruitment and coordination patterns for rehabilitation or performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Task-specific kinetic finger tremor affects the performance of carrom players.

    PubMed

    Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine

    2016-01-01

    We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P < 0.001), but not during the resting state (P = 0.067). Pre-execution tremor amplitude correlated with angular deviation (r = 0.45, P = 0.007). For the first time, we document a task-specific kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.

  6. Stimulated-single fiber electromyography monitoring of anti-sense induced changes in experimental autoimmune myasthenia gravis.

    PubMed

    Boneva, Neli; Hamra-Amitay, Yasmine; Wirguin, Itzhak; Brenner, Talma

    2006-05-01

    The neuromuscular weakness associated with myasthenia gravis (MG) can be transiently relieved by pharmacological inhibitors of acetylcholinesterase (AChE). Here, we expand the anticholinesterase repertoire to include 2'-O-methyl-protected antisense oligonucleotides targeted to AChE mRNA (EN101). Using stimulated-single fiber electromyography, we show that EN101 treatment of rats with experimental autoimmune myasthenia gravis (EAMG), improved the mean consecutive difference (MCD) and blocking for 24h. This treatment was more efficient than pyridostigmine and was accompanied by marked improvement in stamina and clinical profile.

  7. sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand

    PubMed Central

    Jiang, Yinlai; Togane, Masami; Lu, Baoliang; Yokoi, Hiroshi

    2017-01-01

    One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals' signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal. PMID:28220058

  8. Reliability of a portable device for the detection of sleep bruxism.

    PubMed

    Deregibus, Andrea; Castroflorio, Tommaso; Bargellini, Andrea; Debernardi, Cesare

    2014-11-01

    The aim of the study was to assess the repeatability in detecting sleep bruxism (SB) episodes by combined surface electromyography and heart rate (HR) signals recorded by a compact portable device (Bruxoff®). SB episodes are preceded by a sudden HR change. Thus, HR detection increases the precision of automatic detection of SB. Ten healthy subjects (five women and five men; 30.2 ± 11.02 years) were selected for the study. Rhythmic masseter muscle activities, constituting the basic pattern of SB, were detected during three nights of recording during three different weeks with the Bruxoff device. The two-way ANOVA was not significant for SB episodes per night, SB episodes per hour, and heart frequency: no significant differences were observed during the three different nights of recording for each of the abovementioned variables (P > 0.05). The intraclass correlation coefficient showed a good reproducibility for SB episodes per night (69 %), SB per hour (74 %), and heart frequency (82 %). A poor reproducibility was revealed for the number of masseter contractions (53 %). The Pearson analysis showed the absence of a significant correlation between the number of masseter contractions per night and the number of SB episodes per night (r = -0.02, P = 0.91). The Bruxoff device showed a good reproducibility of measurements of sleep bruxism episodes over time. These findings are important in the light of the need for simple and reliable portable devices for the diagnosis of SB both in the clinical and research settings.

  9. Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals.

    PubMed

    Kristiansen, M; Madeleine, P; Hansen, E A; Samani, A

    2015-02-01

    The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury.

    PubMed

    Stahl, Victoria A; Hayes, Heather B; Buetefisch, Cathrin M; Wolf, Steven L; Trumbower, Randy D

    2015-03-01

    The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here, we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand.

  11. Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury

    PubMed Central

    Stahl, Victoria; Hayes, Heather B; Buetefisch, Cathrin; Wolf, Steven L; Trumbower, Randy D

    2014-01-01

    The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography (EMG) from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand. PMID:25511164

  12. Evaluating biomechanics of user-selected sitting and standing computer workstation.

    PubMed

    Lin, Michael Y; Barbir, Ana; Dennerlein, Jack T

    2017-11-01

    A standing computer workstation has now become a popular modern work place intervention to reduce sedentary behavior at work. However, user's interaction related to a standing computer workstation and its differences with a sitting workstation need to be understood to assist in developing recommendations for use and set up. The study compared the differences in upper extremity posture and muscle activity between user-selected sitting and standing workstation setups. Twenty participants (10 females, 10 males) volunteered for the study. 3-D posture, surface electromyography, and user-reported discomfort were measured while completing simulated tasks with each participant's self-selected workstation setups. Sitting computer workstation associated with more non-neutral shoulder postures and greater shoulder muscle activity, while standing computer workstation induced greater wrist adduction angle and greater extensor carpi radialis muscle activity. Sitting computer workstation also associated with greater shoulder abduction postural variation (90th-10th percentile) while standing computer workstation associated with greater variation for should rotation and wrist extension. Users reported similar overall discomfort levels within the first 10 min of work but had more than twice as much discomfort while standing than sitting after 45 min; with most discomfort reported in the low back for standing and shoulder for sitting. These different measures provide understanding in users' different interactions with sitting and standing and by alternating between the two configurations in short bouts may be a way of changing the loading pattern on the upper extremity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. LIMITED HIP AND KNEE FLEXION DURING LANDING IS ASSOCIATED WITH INCREASED FRONTAL PLANE KNEE MOTION AND MOMENTS

    PubMed Central

    Pollard, Christine D.; Sigward, Susan M.; Powers, Christopher M.

    2009-01-01

    Background It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored. Methods Subjects consisted of fifty-eight female club soccer players (age range: 11 to 20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion). Findings Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P< 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35). Interpretation Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury. PMID:19913961

  14. Reorganization of muscle activity in patients with chronic temporomandibular disorders.

    PubMed

    Mapelli, Andrea; Zanandréa Machado, Bárbara Cristina; Giglio, Lucia Dantas; Sforza, Chiarella; De Felício, Cláudia Maria

    2016-12-01

    To investigate whether reorganization of muscle activity occurs in patients with chronic temporomandibular disorders (TMD) and, if so, how it is affected by symptomatology severity. Surface electromyography (sEMG) of masticatory muscles was made in 30 chronic TMD patients, diagnosed with disc displacement with reduction (DDR) and pain. Two 15-patient subgroups, with moderate (TMDmo) and severe (TMDse) signs and symptoms, were compared with a control group of 15 healthy subjects matched by age. The experimental tasks were: a 5s inter-arch maximum voluntary clench (MVC); right and left 15s unilateral gum chewing tests. Standardized sEMG indices characterizing masseter and temporalis muscles activity were calculated, and a comprehensive functional index (FI) was introduced to quantitatively summarize subjects' overall performance. Mastication was also clinically evaluated. During MVC, TMDse patients had a significantly larger asymmetry of temporalis muscles contraction. Both TMD groups showed reduced coordination between masseter and temporalis muscles' maximal contraction, and their muscular activity distribution shifted significantly from masseter to temporalis muscles. During chewing, TMDse patients recruited the balancing side muscles proportionally more than controls, specifically the masseter muscle. When comparing right and left side chewing, the muscles' recruitment pattern resulted less symmetric in TMD patients, especially in TMDse. Overall, the functional index of both TMDmo and TMDse patients was significantly lower than that obtained by controls. Chronic TMD patients, specifically those with severe symptomatology, showed a reorganized activity, mainly resulting in worse functional performances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Altered muscular activation during prone hip extension in women with and without low back pain.

    PubMed

    Arab, Amir M; Ghamkhar, Leila; Emami, Mahnaz; Nourbakhsh, Mohammad R

    2011-08-14

    Altered movement pattern has been associated with the development of low back pain (LBP). The purpose of this study was to investigate the activity pattern of the ipsilateral erector spinae (IES) and contralateral erectorspinae (CES), gluteus maximus (GM) and hamstring (HAM) muscles during prone hip extension (PHE) test in women with and without LBP. A cross-sectional non-experimental design was used. Convenience sample of 20 female participated in the study. Subjects were categorized into two groups: with LBP (n = 10) and without LBP (n = 10). The electromyography (EMG) signal amplitude of the tested muscles during PHE (normalized to maximum voluntary electrical activity (MVE)) was measured in the dominant lower extremity in all subjects. Statistical analysis revealed greater normalized EMG signal amplitude in women with LBP compared to non-LBP women. There was significant difference in EMG activity of the IES (P = 0.03) and CES (P = 0.03) between two groups. However, no significant difference was found in EMG signals of the GM (P = 0.11) and HAM (P = 0.14) among two groups. The findings of this study demonstrated altered activation pattern of the lumbo-pelvic muscles during PHE in the women with chronic LBP. This information is important for investigators using PHE as either an evaluation tool or a rehabilitation exercise.

  16. Proximal muscle weakness as a result of osteomalacia associated with celiac disease: a case report.

    PubMed

    Oz, B; Akan, O; Kocyigit, H; Gürgan, H A

    2016-02-01

    A 24-year-old woman suffering from back and hip pain with difficulty in walking was reported. She had proximal muscle weakness. Laboratory findings led to the diagnosis of osteomalacia. Positivity of antibodies strengthened suspicion of celiac disease. In patients with proximal muscle weakness, osteomalacia should be considered in differential diagnosis even in a young woman. A 24-year-old woman suffering from back pain, bilateral hip pain, and difficulty in walking was reported. Her symptoms had started in the first trimester of pregnancy. In her physical examination, proximal muscle weakness and waddling gait pattern were determined. Her lumbar spine and hip MRI revealed no obvious pathological findings. Electromyography showed a myophatic pattern. Physical examination, normal values of creatine kinase, and muscle biopsy were supplied to exclude the diagnosis of primer muscle diseases. Laboratory findings led to the diagnosis of osteomalacia with normal renal function. Gastrointestinal symptoms and positivity of anti-gliadin and anti-endomysium antibodies strengthened the suspicion of celiac disease as a cause of the osteomalacia. The diagnosis of celiac disease was confirmed with duodenal mucosal biopsy. In patients with proximal muscle weakness and waddling gait pattern, osteomalacia should be considered in differential diagnosis even in a young woman and underlying disease should be investigated.

  17. Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes.

    PubMed

    Gintof, Chris; Konow, Nicolai; Ross, Callum F; Sanford, Christopher P J

    2010-06-01

    Intra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, gamma-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw-tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.

  18. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  19. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  20. Do Performers' Experience and Sex Affect Their Performance?

    PubMed

    Emmanuel, Jacobs; Nathalie, Roussel; Van Caekenberghe, Ine; Cassiers, Edith; Van den Dries, Luc; Rutgeerts, Jonas; Gielen, Jan; Hallemans, Ann

    2017-04-01

    This cross-sectional study aimed at developing a biomechanical method to objectify voluntary and unpredictable movements, using an automated three-dimensional motion capture system and surface electromyography. Fourteen experienced theater performers were tested while executing the old man exercise, wherein they have to walk like an old man, building up a sustained high intensive muscular activity and tremor. Less experienced performed showed a different kinematics of movement, a slower speed of progression and more variable EMG signals at higher intensity. Female performers also differed from males in movement kinematics and muscular activity. The number of the trial only influenced the speed of progression. The performers showed results which could be well placed within the stages of learning and the degrees of freedom problem.

  1. Wireless electronic-tattoo for long-term high fidelity facial muscle recordings

    NASA Astrophysics Data System (ADS)

    Inzelberg, Lilah; David Pur, Moshe; Steinberg, Stanislav; Rand, David; Farah, Maroun; Hanein, Yael

    2017-05-01

    Facial surface electromyography (sEMG) is a powerful tool for objective evaluation of human facial expressions and was accordingly suggested in recent years for a wide range of psychological and neurological assessment applications. Owing to technical challenges, in particular the cumbersome gelled electrodes, the use of facial sEMG was so far limited. Using innovative facial temporary tattoos optimized specifically for facial applications, we demonstrate the use of sEMG as a platform for robust identification of facial muscle activation. In particular, differentiation between diverse facial muscles is demonstrated. We also demonstrate a wireless version of the system. The potential use of the presented technology for user-experience monitoring and objective psychological and neurological evaluations is discussed.

  2. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.

    PubMed

    Bradley, Nina S; Solanki, Dhara; Zhao, Dawn

    2005-12-01

    New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.

  3. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    PubMed

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  4. Effects of therapy on masseter activity and chewing kinematics in patients with unilateral posterior crossbite.

    PubMed

    Piancino, Maria Grazia; Falla, Deborah; Merlo, Andrea; Vallelonga, Teresa; de Biase, Corrado; Dalessandri, Domenico; Debernardi, Cesare

    2016-07-01

    To describe the effects of therapy on masseter activity and chewing kinematic in patients with unilateral posterior crossbite (UPC). Fifty children (age: mean ± SD: 9.1 ± 2.3 years) with UPC (34 on the right side, 16 on the left side) and twenty children (age: 9.5 ± 2.6 years) with normal occlusion were selected for the study. The mandibular motion and the muscular activity during chewing soft and hard boli were simultaneously recorded, before and after correction with function generating bite, after a mean treatment time of 7.3 ± 2.4 months plus the retention time of 5-6 months. The percentage of reverse cycles and the percent difference between ipsilateral and contralateral peaks of the masseter electromyography envelopes were computed. Before therapy, the percentage of reverse cycles during chewing on the crossbite side was greater in patients than in controls (P<0.001) and significantly reduced after therapy (P<0.001) towards the reference normal value (soft bolus; pre: 57 ± 30%, post:12 ± 17%; hard bolus; pre: 65 ± 34%, post: 12 ± 13%; reference value: soft bolus 4 ± 2%, hard bolus 5 ± 3%). Before therapy the percent difference between electromyography envelope peaks in patients was lower than in controls (P<0.01) and significantly increased after therapy (P<0.05) becoming similar to the reference normal value. The correction induced a normal-like coordination of masseter muscles activity together with a significant reduction of the reverse chewing patterns. The previous altered muscular activation corresponded to the altered kinematics of reverse chewing cycles that might be considered a useful indicator of the severity of the masticatory function involvement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments

    PubMed Central

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123

  7. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2017-01-01

    The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Repetitive nerve stimulation and single-fiber electromyography in the evaluation of patients with suspected myasthenia gravis or Lambert-Eaton myasthenic syndrome: Review of recent literature.

    PubMed

    Chiou-Tan, Faye Y; Gilchrist, James M

    2015-09-01

    Our aim in this study was to provide an updated literature review of electrodiagnostic testing in myasthenia gravis and Lambert-Eaton myasthenic syndrome. A systematic review of the recent literature was performed using the following key words: myasthenia gravis (MG); Lambert-Eaton myasthenic syndrome (LEMS); electromyography (EMG); repetitive nerve stimulation (RNS); single-fiber electromyography (SFEMG); nerve conduction study; and normative values. Several articles supported testing of facial, bulbar, and respiratory muscles in the diagnosis of neuromuscular junction (NMJ) disorders, including muscle-specific kinase antibody (MuSK)-seropositive MG. Several articles supported use of concentric needle EMG as an alternative to SFEMG jitter in disorders of neuromuscular transmission. A limited number of articles addressed measurement of area (vs. amplitude) decrement in RNS and decreasing the threshold of post-exercise facilitation. Electrodiagnostic testing continues to be useful for diagnosis of MG and LEMS, although the quality of the evidence is not great. This literature review summarizes RNS and jitter measurement of facial and respiratory muscles and use of concentric needle EMG for SFEMG. © 2015 American Association of Neuromuscular and Electrodiagnostic Medicine.

  9. Identification of first-stage labor arrest by electromyography in term nulliparous women after induction of labor.

    PubMed

    Vasak, Blanka; Graatsma, Elisabeth M; Hekman-Drost, Elske; Eijkemans, Marinus J; Schagen van Leeuwen, Jules H; Visser, Gerard H A; Jacod, Benoit C

    2017-07-01

    Worldwide induction and cesarean delivery rates have increased rapidly, with consequences for subsequent pregnancies. The majority of intrapartum cesarean deliveries are performed for failure to progress, typically in nulliparous women at term. Current uterine registration techniques fail to identify inefficient contractions leading to first-stage labor arrest. An alternative technique, uterine electromyography has been shown to identify inefficient contractions leading to first-stage arrest of labor in nulliparous women with spontaneous onset of labor at term. The objective of this study was to determine whether this finding can be reproduced in induction of labor. Uterine activity was measured in 141 nulliparous women with singleton term pregnancies and a fetus in cephalic position during induced labor. Electrical activity of the myometrium during contractions was characterized by its power density spectrum. No significant differences were found in contraction characteristics between women with induced labor delivering vaginally with or without oxytocin and women with arrested labor with subsequent cesarean delivery. Uterine electromyography shows no correlation with progression of labor in induced labor, which is in contrast to spontaneous labor. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Food-borne botulism cases in Van region in eastern Turkey: importance of electromyography in the diagnosis.

    PubMed

    Anlar, O; Irmak, H; Tombul, T; Akdeniz, H; Caksen, H; Kose, D; Ceylan, A

    2003-09-01

    Food-borne botulism is an acute form of poisoning that results from ingestion of a toxin produced by Clostridium botulinum. Botulism toxin causes its major effect by blocking neuromuscular transmission in autonomic and motor nerve terminals. In this study, we present the features of eleven cases of food-borne botulism admitted to our hospital in 2001. All of the cases were caused by home-prepared foods; green beans. In these cases, the main symptoms and signs were generalized muscular weakness, dry mouth, dysphagia, disponea and diplopia. Electrophysiological studies were performed on four patients. Motor conduction studies showed that compound muscle action potentials were decreased with normal latencies and conduction velocities. The needle electromyography showed signs of denervation potentials like fibrillation and positive waves in four patients. Repetitive nerve stimulation with high frequency (20 Hz) induced an increment close to 100% in the amplitudes in 2 of 4 patients. Although toxin could not be detected in the patients, the electromyographic findings supported our diagnosis. We concluded that electromyography has an important role in diagnosis of botulism, especially in the condition that serologic tests are negative or cannot be performed.

  11. Muscle activity and head kinematics in unconstrained movements in subjects with chronic neck pain; cervical motor dysfunction or low exertion motor output?

    PubMed

    Vikne, Harald; Bakke, Eva Sigrid; Liestøl, Knut; Engen, Stian R; Vøllestad, Nina

    2013-11-04

    Chronic neck pain after whiplash associated disorders (WAD) may lead to reduced displacement and peak velocity of neck movements. Dynamic neck movements in people with chronic WAD are also reported to display altered movement patterns such as increased irregularity, which is suggested to signify impaired motor control. As movement irregularity is strongly related to the velocity and displacement of movement, we wanted to examine whether the increased irregularity in chronic WAD could be accounted for by these factors. Head movements were completed in four directions in the sagittal plane at three speeds; slow (S), preferred (P) and maximum (M) in 15 men and women with chronic WAD and 15 healthy, sex and age-matched control participants. Head kinematics and measures of movement smoothness and symmetry were calculated from position data. Surface electromyography (EMG) was recorded bilaterally from the sternocleidomastoid and splenius muscles and the root mean square (rms) EMG amplitude for the accelerative and decelerative phases of movement were analyzed. The groups differed significantly with regard to movement velocity, acceleration, displacement, smoothness and rmsEMG amplitude in agonist and antagonist muscles for a series of comparisons across the test conditions (range 17-121%, all p-values < 0.05). The group differences in peak movement velocity and acceleration persisted after controlling for movement displacement. Controlling for differences between the groups in displacement and velocity abolished the difference in measures of movement smoothness and rmsEMG amplitude. Simple, unconstrained head movements in participants with chronic WAD are accomplished with reduced velocity and displacement, but with normal muscle activation levels and movement patterns for a given velocity and displacement. We suggest that while reductions in movement velocity and displacement are robust changes and may be of clinical importance in chronic WAD, movement smoothness of unconstrained head movements is not.

  12. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    PubMed

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Relationship of moderate and low isometric lumbar extension through architectural and muscular activity variables: a cross sectional study

    PubMed Central

    2013-01-01

    Background No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Methods Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Results Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. Conclusion There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity. PMID:24252273

  14. Quantitative Evaluation of Electrodes for External Urethral Sphincter Electromyography during Bladder-to-Urethral Guarding Reflex

    PubMed Central

    Steward, James E.; Clemons, Jessica D.; Zaszczurynski, Paul J.; Butler, Robert S.; Damaser, Margot S.; Jiang, Hai-Hong

    2009-01-01

    Purpose Accuracy in the recording of external urethral sphincter (EUS) electromyography (EMG) is an important goal in the quantitative evaluation of urethral function. This study aim was to quantitatively compare electrode recordings taken during tonic activity and leak point pressure (LPP) testing. Methods Several electrodes, including the surface electrode (SE), concentric electrode (CE), and wire electrode (WE), were placed on the EUS singly and simultaneously in six female Sprague-Dawley rats under urethane anesthesia. The bladder was filled via a retropubic catheter while LPP testing and EUS EMG recording were done. Quantitative baseline correction of the EUS EMG signal was performed to reduce baseline variation. Amplitude and frequency of one-second samples of the EUS EMG signal were measured before LPP (tonic activity) and during peak LPP activity. Results The SE, CE, and WE signals demonstrated tonic activity before LPP and an increase in activity during LPP, suggesting that the electrodes accurately recorded EUS activity during tonic activity and during the bladder-to-EUS guarding reflex, regardless of the size or location of detection areas. SE recordings required significantly less baseline correction than both CE and WE recordings. The activity in CE-recorded EMG was significantly higher than that of the SE and WE both in single and simultaneous recordings. Conclusions These electrodes may be suitable for testing EUS EMG activity. The SE signal had significantly less baseline variation and the CE detected local activity more sensitively than the other electrodes, which may provide insight into choosing an appropriate electrode for EUS EMG recording. PMID:19680661

  15. On-the-Field Resistance-Tubing Exercises for Throwers: An Electromyographic Analysis

    PubMed Central

    Myers, Joseph B; Pasquale, Maria R; Laudner, Kevin G; Sell, Timothy C; Bradley, James P; Lephart, Scott M

    2005-01-01

    Context: Athletes who throw commonly use rubber-tubing resistance exercises in the field setting to assist with warm-up before throwing. Yet no researchers have described which muscles are being activated or which exercises are most effective during rubber-tubing exercises used by throwers for warm-up. Objective: To describe the effectiveness of 12 rubber-tubing resistance exercises commonly used by throwers in activating the shoulder muscles important for throwing. Design: Descriptive research design. Setting: An applied biomechanics research laboratory. Patients or Other Participants: Fifteen physically active male subjects with no history of shoulder injury. Main Outcome Measure(s): Subjects randomly performed 12 rubber-tubing resistance exercises while we assessed muscle activation of the subscapularis, supraspinatus, teres minor, and rhomboid major by indwelling electromyography. Activation of the sternal portion of the pectoralis major, anterior deltoid, middle deltoid, latissimus dorsi, serratus anterior, biceps brachii, triceps brachii, lower trapezius, and infraspinatus muscles was assessed by surface electromyography. Results: Performance of 7 exercises (external rotation at 90° of abduction, throwing deceleration, humeral flexion, humeral extension, low scapular rows, throwing acceleration, and scapular punch) resulted in the highest level of muscle activation of all muscles tested. Conclusions: These 7 exercises exhibited moderate activation (>20% maximal voluntary isometric contraction) in each muscle of the rotator cuff, the primary humeral movers, and the scapular stabilizer muscles. The results suggest that these exercises are most effective in activating the muscles important to the throwing motion and may be beneficial for throwers during their prethrowing warm-up routine. PMID:15902319

  16. A musculoskeletal foot model for clinical gait analysis.

    PubMed

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  17. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    PubMed

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Shoulder Muscle Activation Levels During the Push-Up-Plus Exercise on Stable and Unstable Surfaces.

    PubMed

    Torres, Rafaela J B; Pirauá, André L T; Nascimento, Vinícius Y S; Dos Santos, Priscila S; Beltrão, Natália B; de Oliveira, Valéria M A; Pitangui, Ana Carolina R; de Araújo, Rodrigo C

    2017-07-01

    The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA-MT and UT-LT pairs). No significant differences were observed in TB-BB and AD-PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.

  19. A stretchable and flexible system for skin-mounted measurement of motion tracking and physiological signals.

    PubMed

    Pinghung Wei; Raj, Milan; Yung-Yu Hsu; Morey, Briana; DePetrillo, Paolo; McGrane, Bryan; Xianyan Wang; Lin, Monica; Keen, Bryan; Papakyrikos, Cole; Lowe, Jared; Ghaffari, Roozbeh

    2014-01-01

    In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 μm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.

  20. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

Top