Sample records for surface elevation wse

  1. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  2. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew

    2008-10-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.

  3. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  4. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  5. Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts.

    PubMed

    Yamamoto, Mahito; Nakaharai, Shu; Ueno, Keiji; Tsukagoshi, Kazuhito

    2016-04-13

    Transition metal oxides show much promise as effective p-type contacts and dopants in electronics based on transition metal dichalcogenides. Here we report that atomically thin films of under-stoichiometric tungsten oxides (WOx with x < 3) grown on tungsten diselenide (WSe2) can be used as both controlled charge transfer dopants and low-barrier contacts for p-type WSe2 transistors. Exposure of atomically thin WSe2 transistors to ozone (O3) at 100 °C results in self-limiting oxidation of the WSe2 surfaces to conducting WOx films. WOx-covered WSe2 is highly hole-doped due to surface electron transfer from the underlying WSe2 to the high electron affinity WOx. The dopant concentration can be reduced by suppressing the electron affinity of WOx by air exposure, but exposure to O3 at room temperature leads to the recovery of the electron affinity. Hence, surface transfer doping with WOx is virtually controllable. Transistors based on WSe2 covered with WOx show only p-type conductions with orders of magnitude better on-current, on/off current ratio, and carrier mobility than without WOx, suggesting that the surface WOx serves as a p-type contact with a low hole Schottky barrier. Our findings point to a simple and effective strategy for creating p-type devices based on two-dimensional transition metal dichalcogenides with controlled dopant concentrations.

  6. Automatic Calibration of Global Flow Routing Model Parameters in the Amazon Basin Using Virtual SWOT Data

    NASA Astrophysics Data System (ADS)

    Mouffe, Melodie; Getirana, Augusto; Ricci, Sophie; Lion, Christine; Biancamaria, Sylvian; Boone, Aaron; Mognard, Nelly; Rogel, Philippe

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) wide swath altimetry mission will provide measurements of water surface elevations (WSE) at a global scale. The aim of this study is to investigate the potential of these satellite data for the calibration of the hydrological model HyMAP, over the Amazon river basin. Since SWOT has not yet been launched, synthetical observations are used to calibrate the river bed depth and width, the Manning coefficient and the baseflow concentration time. The calibration process stands in the minimization of a cost function using an evolutionnary, global and multi-objective algorithm that describes the difference between the simulated and the observed WSE. We found that the calibration procedure is able to retrieve an optimal set of parameters such that it brings the simulated WSE closer to the observation. Still with a global calibration procedure where a uniform correction is applied, the improvement is limited to a mean correction over the catchment and the simulation period. We conclude that in order to benefit from the high resolution and complete coverage of the SWOT mission, the calibration process should be achieved sequentially in time over sub-domains as observations become available.

  7. Thinning History of the Weddell Sea Embayment Using in situ 14C Exposure Ages from the Lassiter Coast

    NASA Astrophysics Data System (ADS)

    Nichols, K. A.; Johnson, J.; Goehring, B. M.; Balco, G.

    2017-12-01

    We present a suite of in situ 14C cosmogenic nuclide exposure ages from nunataks at the Lassiter Coast in West Antarctica on the west side of the Weddell Sea Embayment (WSE) to constrain the thinning history of the Ronne-Filchner Ice Shelf. Constraints on past ice extents in the WSE remain relatively understudied, despite the WSE draining 22% of the Antarctic Ice Sheet (AIS). Information lacking includes unambiguous geological evidence for the maximum Last Glacial Maximum (LGM) ice thickness and the timing of subsequent ice retreat in key peripheral locations. Past studies using long-lived cosmogenic nuclides have shown that, due to the cold-based nature of the AIS, inheritance of nuclide concentrations from previous periods of exposure is a common problem. We utilised the cosmogenic nuclide 14C to circumvent the issue of inheritance. The short half-life of 14C means measured concentrations are largely insensitive to inheritance, as relatively short periods of ice cover (20-30 kyr) result in significant 14C decay. Furthermore, samples saturated in 14C will demonstrate that their location was above the maximum LGM thickness of the ice sheet and exposed for at least the past ca. 35 kyr. Preliminary results from four samples indicate elevations between 63 and 360 m above the present-day ice surface elevations were deglaciated between 7 and 6 ka. With little exposed rock above these elevations (ca. 70 m), this may indicate that the locality was entirely covered by ice during the LGM. Additional 14C measurements will form a full elevation transect of samples to decipher the post-LGM thinning history of ice at this location.

  8. Layer Control of WSe2 via Selective Surface Layer Oxidation.

    PubMed

    Li, Zhen; Yang, Sisi; Dhall, Rohan; Kosmowska, Ewa; Shi, Haotian; Chatzakis, Ioannis; Cronin, Stephen B

    2016-07-26

    We report Raman and photoluminescence spectra of mono- and few-layer WSe2 and MoSe2 taken before and after exposure to a remote oxygen plasma. For bilayer and trilayer WSe2, we observe an increase in the photoluminescence intensity and a blue shift of the photoluminescence peak positions after oxygen plasma treatment. The photoluminescence spectra of trilayer WSe2 exhibit features of a bilayer after oxygen plasma treatment. Bilayer WSe2 exhibits features of a monolayer, and the photoluminescence of monolayer WSe2 is completely absent after the oxygen plasma treatment. These changes are observed consistently in more than 20 flakes. The mechanism of the changes observed in the photoluminescence spectra of WSe2 is due to the selective oxidation of the topmost layer. As a result, N-layer WSe2 is reduced to N-1 layers. Raman spectra and AFM images taken from the WSe2 flakes before and after the oxygen treatment corroborate these findings. Because of the low kinetic energy of the oxygen radicals in the remote oxygen plasma, the oxidation is self-limiting. By varying the process duration from 1 to 10 min, we confirmed that the oxidation will only affect the topmost layer of the WSe2 flakes. X-ray photoelectron spectroscopy shows that the surface layer WOx of the sample can be removed by a quick dip in KOH solution. Therefore, this technique provides a promising way of controlling the thickness of WSe2 layer by layer.

  9. Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Ueno, Keiji; Tsukagoshi, Kazuhito

    2018-04-01

    The photogating effect is a photocurrent generation mechanism that leads to marked responsivity in two-dimensional (2D) semiconductor-based devices. A key step to promote the photogating effect in a 2D semiconductor is to integrate it with a high density of charge traps. Here, we show that self-limiting surface oxides on atomically thin WSe2 can serve as effective electron traps to facilitate p-type photogating. By examining the gate-bias-induced threshold voltage shift of a p-type transistor based on single-layer WSe2 with surface oxide, the electron trap density and the trap rate of the oxide are determined to be >1012 cm-2 and >1010 cm-2 s-1, respectively. White-light illumination on an oxide-covered 4-layer WSe2 transistor leads to the generation of photocurrent, the magnitude of which increases with the hole mobility. During illumination, the photocurrent evolves on a timescale of seconds, and a portion of the current persists even after illumination. These observations indicate that the photogenerated electrons are trapped deeply in the surface oxide and effectively gate the underlying WSe2. Owing to the pronounced photogating effect, the responsivity of the oxide-covered WSe2 transistor is observed to exceed 3000 A/W at an incident optical power of 1.1 nW, suggesting the effectiveness of surface oxidation in facilitating the photogating effect in 2D semiconductors.

  10. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.

    PubMed

    Zhang, Yi; Ugeda, Miguel M; Jin, Chenhao; Shi, Su-Fei; Bradley, Aaron J; Martín-Recio, Ana; Ryu, Hyejin; Kim, Jonghwan; Tang, Shujie; Kim, Yeongkwan; Zhou, Bo; Hwang, Choongyu; Chen, Yulin; Wang, Feng; Crommie, Michael F; Hussain, Zahid; Shen, Zhi-Xun; Mo, Sung-Kwan

    2016-04-13

    High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.

  11. Electronic structure, surface doping, and optical response in epitaxial WSe 2 thin films

    DOE PAGES

    Zhang, Yi; Ugeda, Miguel M.; Jin, Chenhao; ...

    2016-03-14

    High quality WSe 2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe 2/BLG. We observe that a bilayer of WSe 2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct–indirect band gap crossover to trilayer WSe 2. In the monolayer limit, WSe 2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observedmore » among all the MX 2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe 2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Lastly, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.« less

  12. Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2

    NASA Astrophysics Data System (ADS)

    Khosravi, Ava; Addou, Rafik; Smyth, Christopher M.; Yue, Ruoyu; Cormier, Christopher R.; Kim, Jiyoung; Hinkle, Christopher L.; Wallace, Robert M.

    2018-02-01

    Covalent p-type doping of WSe2 thin films grown by molecular beam epitaxy and WSe2 exfoliated from bulk crystals is achieved via remote nitrogen plasma exposure. X-ray photoelectron and Raman spectroscopies indicate covalently bonded nitrogen in the WSe2 lattice as well as tunable nitrogen concentration with N2 plasma exposure time. Furthermore, nitrogen incorporation induces compressive strain on the WSe2 lattice after N2 plasma exposure. Finally, atomic force microscopy and scanning tunneling microscopy reveal that N2 plasma treatment needs to be carefully tuned to avoid any unwanted strain or surface damage.

  13. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    NASA Astrophysics Data System (ADS)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  14. Growth and surface topography of WSe{sub 2} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  15. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions.

    PubMed

    Chen, H; Rygiewicz, P T; Johnson, M G; Harmon, M E; Tian, H; Tang, J W

    2008-01-01

    Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.

  16. Effect of magnetron sputtering parameters and stress state of W film precursors on WSe2 layer texture by rapid selenization.

    PubMed

    Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng

    2016-11-04

    Tungsten diselenide (WSe 2 ) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe 2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe 2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe 2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe 2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe 2 film texture. Based on the stress state of the W film, a model for growth of the WSe 2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe 2 film.

  17. Effect of magnetron sputtering parameters and stress state of W film precursors on WSe2 layer texture by rapid selenization

    PubMed Central

    Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng

    2016-01-01

    Tungsten diselenide (WSe2) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe2 film texture. Based on the stress state of the W film, a model for growth of the WSe2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe2 film. PMID:27812031

  18. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  19. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE PAGES

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng; ...

    2017-07-06

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  20. Simulation approach for optimization of ZnO/c-WSe{}_{2} heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Shihua; Li, Qiannan; Chi, Dan; Meng, Xiuqing; He, Lü

    2017-04-01

    Taking into account defect density in WSe{}2, interface recombination between ZnO and WSe{}2, we presented a simulation study of ZnO/crystalline WSe{}2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe{}2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0× {10}11 cm{}-2) in c-WSe{}2 and large trap cross-section (> 1.0 × 10{}-10 cm{}2) have serious impact on solar cell efficiency. A thin p-WSe{}2 layer is intentionally inserted between ZnO layer and c-WSe{}2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe{}2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  1. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.

  2. A drifting GPS buoy for retrieving effective riverbed bathymetry

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  3. AirSWOT flights and field campaigns for the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Pavelsky, T.; Lettenmaier, D. P.; Gleason, C. J.; Pietroniro, A.; Applejohn, A.; Arvesen, J. C.; Bjella, K.; Carter, T.; Chao, R.; Cooley, S. W.; Cooper, M. G.; Cretaux, J. F.; Douglass, T.; Faria, D.; Fayne, J.; Fiset, J. M.; Goodman, S.; Hanna, B.; Harlan, M.; Langhorst, T.; Marsh, P.; Moreira, D. M.; Minear, J. T.; Onclin, C.; Overstreet, B. T.; Peters, D.; Pettit, J.; Pitcher, L. H.; Russell, M.; Spence, C.; Topp, S.; Turner, K. W.; Vimal, S.; Wilcox, E.; Woodward, J.; Yang, D.; Zaino, A.

    2017-12-01

    Some 50% of Canada and 80% of Alaska is thought to be underlain by permafrost, influencing the hydrology, ecology and carbon cycles of Arctic-Boreal landscapes. This influence includes enhanced presence of millions of lakes and wetlands, which release trace gases while supporting critical ecosystems and traditional subsistence economies. Permafrost is challenging to infer from remote sensing and difficult to sample in the field. A series of 2017 AirSWOT flights flown for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) will study whether small variations in water surface elevations (WSEs) of Arctic-Boreal lakes are sensitive to presence and/or disturbance of permafrost. AirSWOT is an experimental NASA airborne radar designed to map WSE and a precursor to SWOT, a forthcoming NASA/CNES/CSA satellite mission to map WSE globally with launch in 2021. The ABoVE AirSWOT flight experiments adopted long flight lines of the broader ABoVE effort to traverse broad spatial gradients of permafrost, climate, ecology, and geology. AirSWOT acquisitions consisted of long (1000s of kilometers) strips of Ka-band interferometric radar imagery, and high resolution visible/NIR imagery and DEMs from a digital Cirrus CIR camera. Intensive AirSWOT mapping and ground-based GPS field surveys were conducted at 11 field sites for eight study areas of Canada and Alaska: 1) Saint-Denis, Redberry Lake, North Saskatchewan River (Saskatchewan); 2) Peace-Athabasca Delta (Alberta); 3) Slave River Delta (N.W.T.); 4) Canadian Shield (Yellowknife area, Daring Lake, N.W.T.); 5) Mackenzie River (Inuvik-Tuktoyaktuk corridor, N.W.T.); 6) Old Crow Flats (Yukon Territory); 7) Sagavanirktok River (Alaska); 8) Yukon Flats (Alaska). Extensive ground campaigns were conducted by U.S. and Canadian collaborators to collect high quality surveys of lake WSE, river WSE and discharge, and shoreline locations. Field experiments included traditional and novel GPS surveying methods, including custom-built GPS buoys that float or drift upon water surfaces. Other ABoVE flight packages flown along AirSWOT lines included LVIS, AVIRIS, UAVSAR and AirMOSS. Processing and integration of ABoVE remote sensing and field datasets may provide new scientific insights about the influence of permafrost on surface water hydrology, over broad spatial scales.

  4. Unassisted HI photoelectrolysis using n-WSe2 solar absorbers.

    PubMed

    McKone, James R; Potash, Rebecca A; DiSalvo, Francis J; Abruña, Héctor D

    2015-06-07

    Molybdenum and tungsten diselenide are among the most robust and efficient semiconductor materials for photoelectrochemistry, but they have seen limited use for integrated solar energy storage systems. Herein, we report that n-type WSe2 photoelectrodes can facilitate unassisted aqueous HI electrolysis to H2(g) and HI3(aq) when placed in contact with a platinum counter electrode and illuminated by simulated sunlight. Even in strongly acidic electrolyte, the photoelectrodes are robust and operate very near their maximum power point. We have rationalized this behavior by characterizing the n-WSe2|HI/HI3 half cell, the Pt|HI/H2||HI3/HI|Pt full cell, and the n-WSe2 band-edge positions. Importantly, specific interactions between the n-WSe2 surface and aqueous iodide significantly shift the semiconductor's flatband potential and allow for unassisted HI electrolysis. These findings exemplify the important role of interfacial chemical reactivity in influencing the energetics of semiconductor-liquid junctions and the resulting device performance.

  5. A Spatially Based Area–Time Inundation Index Model Developed to Assess Habitat Opportunity in Tidal–Fluvial Wetlands and Restoration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Diefenderfer, Heida L.; Ward, Duane L.

    The hydrodynamics of tidal wetland areas in the lower Columbia River floodplain and estuary directly affect habitat opportunity for endangered salmonid fishes. Physical and biological structures and functions in the system are directly affected by inundation patterns influenced by tidal cycles, hydropower operations, river discharge, upriver water withdrawals, climate, and physical barriers such as dikes, culverts, and tide gates. Ongoing ecosystem restoration efforts are intended to increase the opportunity for salmon to access beneficial habitats by hydrologically reconnecting main-stem river channels and diked areas within the historical floodplain. To address the need to evaluate habitat opportunity, a geographic information system-basedmore » Area-Time Inundation Index Model (ATIIM) was developed. The ATIIM integrates in situ or modeled hourly water-surface elevation (WSE) data and advanced terrain processing of high-resolution elevation data. The ATIIM uses a spatially based wetted-area algorithm to determine site average bankfull elevation, two- and three-dimensional inundation extent, and other site metrics. Hydrological process metrics such as inundation frequency, duration, maximum area, and maximum frequency area can inform evaluation of proposed restoration sites; e.g., determine trade-offs between WSE and habitat opportunity, contrast alternative restoration designs, predict impacts of altered flow regimes, and estimate nutrient and biomass fluxes. In an adaptive management framework, this model can be used to provide standardized site comparisons and effectiveness monitoring of changes in the developmental trajectories of restoration sites. Results are presented for 11 wetlands representative of tidal marshes, tidal forested wetlands, and restoration sites.« less

  6. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  7. Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.

    PubMed

    Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan

    2017-01-24

    To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

  8. Controlling the surface photovoltage on WSe2 by surface chemical modification

    NASA Astrophysics Data System (ADS)

    Liu, Ro-Ya; Ozawa, Kenichi; Terashima, Naoya; Natsui, Yuto; Feng, Baojie; Ito, Suguru; Chen, Wei-Chuan; Cheng, Cheng-Maw; Yamamoto, Susumu; Kato, Hiroo; Chiang, Tai-Chang; Matsuda, Iwao

    2018-05-01

    The surface photovoltage (SPV) effect is key to the development of opto-electronic devices such as solar-cells and photo-detectors. For the prototypical transition metal dichalcogenide WSe2, core level and valence band photoemission measurements show that the surface band bending of pristine cleaved surfaces can be readily modified by adsorption with K (an electron donor) or C60 (an electron acceptor). Time-resolved pump-probe photoemission measurements reveal that the SPV for pristine cleaved surfaces is enhanced by K adsorption, but suppressed by C60 adsorption, and yet the SPV relaxation time is substantially shortened in both cases. Evidently, adsorbate-induced electronic states act as electron-hole recombination centers that shorten the carrier lifetime.

  9. Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Sun Gyu; Youn, Jong Won; Lee, Yongjun; Kim, Jeongyong; Joo, Jinsoo

    2018-05-01

    Two-dimensional (2D) semiconducting MoS2 and WSe2 flakes grown by chemical vapor deposition were mechanically hybridized. A hexagonal boron nitride (h-BN) dielectric flake was inserted between MoS2 and WSe2 flakes to investigate the nanoscale optical properties of 2D van der Waals hybrid nanostructures. The fabricated MoS2/WSe2 and MoS2/h-BN/WSe2 van der Waals hybrid nanostructures were loaded on a periodic gold nanopost (Au-NPo) array to study energy and charge transfer effects at the surface plasmon resonance (SPR) condition. Nanoscale photoluminescence (PL) spectra of the 2D hybrid nanostructures were measured using a high-resolution laser confocal microscope (LCM). A shift of the LCM PL peak of the MoS2/WSe2 n-p hybrid nanostructures was observed owing to the charge transfer. In contrast, the shift of the LCM PL peak of the MoS2/h-BN/WSe2 n-insulator-p hybrid nanostructure was not considerable, as the inserted h-BN dielectric layer prevented the charge transfer. The intensity of the LCM PL peak of the MoS2/h-BN/WSe2 hybrid nanostructure considerably increased once the nanostructure was loaded on the Au-NPo array, owing to the energy transfer between the 2D materials and the Au-NPo array at the SPR condition, which was confirmed by the increase in the LCM Raman intensity.

  10. Nanoscale doping heterogeneity in few-layer WSe2 exfoliated onto noble metals revealed by correlated SPM and TERS imaging

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep; Krayev, Andrey; Wong, Joeson; Robinson, A. Edward; Sherrott, Michelle C.; Wang, Shuo; Liu, Gang-Yu; Terrones, Mauricio; Atwater, Harry A.

    2018-07-01

    While extensive research effort has been devoted to the study of the 2D semiconductor–insulator interfaces in transition metal dichalcogenides (TMDCs), there is little knowledge about the electronic quality of the semiconductor–metal interface in the atomically thin limit. Here, we present the first correlated nanoscale mapping of the interface of atomically thin WSe2 with noble metals using co-localized scanning probe microscopy and tip-enhanced optical spectroscopy (TEOS), such as tip-enhanced Raman spectroscopy (TERS). Nanoscale maps of the topography, surface potential, Raman spectra, and the photocurrent amplitude of the WSe2/metal interfaces reveal striking results. Specifically, correlations between surface potential, resonant Raman signatures and photocurrents that indicate the presence of inhomogeneities within interfacial electronic properties, which we attribute to variations in the local doping of the WSe2 likely caused by intrinsic compositional fluctuations or defects. Our results suggest that local electrostatic variations at a lateral scale of 10–100 nm are present even in the highest quality of TMDC crystals and must be considered towards understanding of all interfacial phenomena, particularly in device applications that rely on the buried metal–semiconductor junction interface.

  11. Data Assimilation of AirSWOT and Synthetically Derived SWOT Observations of Water Surface Elevation in a Multichannel River

    NASA Astrophysics Data System (ADS)

    Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.

    2017-12-01

    Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.

  12. Towards SWOT data assimilation for hydrology : automatic calibration of global flow routing model parameters in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.

    2011-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference between SWOT observations and modeled WSE using a perturbed set of parameters. Different formulations of the objective function were used, especially to account for SWOT observation errors, as well as various sets of calibration parameters.

  13. The Acoustoelectric and Electric Characterization of Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Preciado, Edwin Sabas

    The acoustoelectric effect in single-layer molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) is studied in a hybrid setup. Such effects, which rely on the transfer of momentum from surface acoustic waves (SAWs), are generated on the surface of lithium niobate (LiNbO3) to the carriers in MoS2 and WSe2, resulting in an attenuation and velocity shift of the wave and giving rise to an acoustoelectric current. This dissertation examines the feasibility of integrating high-quality, single-layer MoS2 and WSe2 onto LiNbO3 to ultimately fabricate and characterize a hybrid chip that combines the functionality of a field-effect transistor (FET) and SAW device. MoS2 and WSe2 were synthesized by chemical vapor deposition (CVD) directly onto a chemically-reduced LiNbO3 substrate. LiNbO3 is a ferroelectric material that offers a unique blend of piezoelectric and birefringent properties, yet it lacks both optical activity and semiconductor transport. The prototypical device exhibits electrical characteristics that are competitive with MoS2 and WSe2 devices on silicon. These results demonstrate both a sound-driven battery and an acoustic photodetector, and ultimately open directions to non-invasive investigation of electrical properties of single-layer films. The experiments reveal close agreement between transport measurements utilizing conventional contacts and SAW spectroscopy. This approach will set forth the possibility of contact-free transport characterization of two-dimensional (2D) transition metal dichalcogenides (TMD) films, avoiding such concerns as the role of charge transfer at contacts as an artifact of such measurements.

  14. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  15. Unassisted HI photoelectrolysis using n-WSe 2 solar absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, James R.; Potash, Rebecca A.; DiSalvo, Francis J.

    Molybdenum and tungsten diselenide are among the most robust and efficient semiconductor materials for photoelectrochemistry, but they have seen limited use for integrated solar energy storage systems. Herein, we report that n-type WSe 2 photoelectrodes can facilitate unassisted aqueous HI electrolysis to H 2(g) and HI 3(aq) when placed in contact with a platinum counter electrode and illuminated by simulated sunlight. Even in strongly acidic electrolyte, the photoelectrodes are robust and operate very near their maximum power point. We have rationalized this behavior by characterizing the n-WSe 2|HI/HI 3 half cell, the Pt|HI/H 2||HI 3/HI|Pt full cell, and the n-WSemore » 2 band-edge positions. Importantly, specific interactions between the n-WSe 2 surface and aqueous iodide significantly shift the semiconductor’s flatband potential and allow for unassisted HI electrolysis. These findings exemplify the important role of interfacial chemical reactivity in influencing the energetics of semiconductor-liquid junctions and the resulting device performance.« less

  16. One dimensional metallic edges in atomically thin WSe2 induced by air exposure

    NASA Astrophysics Data System (ADS)

    Addou, Rafik; Smyth, Christopher M.; Noh, Ji-Young; Lin, Yu-Chuan; Pan, Yi; Eichfeld, Sarah M.; Fölsch, Stefan; Robinson, Joshua A.; Cho, Kyeongjae; Feenstra, Randall M.; Wallace, Robert M.

    2018-04-01

    Transition metal dichalcogenides are a unique class of layered two-dimensional (2D) crystals with extensive promising applications. Tuning the electronic properties of low-dimensional materials is vital for engineering new functionalities. Surface oxidation is of particular interest because it is a relatively simple method of functionalization. By means of scanning probe microscopy and x-ray photoelectron spectroscopy, we report the observation of metallic edges in atomically thin WSe2 monolayers grown by chemical vapor deposition on epitaxial graphene. Scanning tunneling microscopy shows structural details of WSe2 edges and scanning tunneling spectroscopy reveals the metallic nature of the oxidized edges. Photoemission demonstrates that the formation of metallic sub-stoichiometric tungsten oxide (WO2.7) is responsible for the high conductivity measured along the edges. Ab initio calculations validate the susceptibility of WSe2 nanoribbon edges to oxidation. The zigzag terminated edge exhibits metallic behavior prior the air-exposure and remains metallic after oxidation. Comprehending and exploiting this property opens a new opportunity for application in advanced electronic devices.

  17. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors.

    PubMed

    Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong

    2018-05-30

    In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.

  18. Substitutional Electron and Hole Doping of WSe2 : Synthesis, Electrical Characterization, and Observation of Band-to-Band Tunneling

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Chuang, H. J.; Koehler, M. R.; Combs, N.; Patchen, A.; Zhou, Z. X.; Mandrus, D.

    2017-03-01

    Transition-metal dichalcogenides (TMDs) such as MoS2 , MoSe2 , and WSe2 have emerged as promising two-dimensional semiconductors. Many anticipated applications of these materials require both p -type and n -type TMDs with long-term doping stability. Here, we report on the synthesis of substitutionally doped WSe2 crystals using Nb and Re as p - and n -type dopants, respectively. Hall coefficient and gate-dependent transport measurements reveal drastically different doping properties between nominally 0.5% Nb- and 0.5% Re-doped WSe2 . While 0.5% Nb-doped WSe2 (WSe2∶Nb ) is degenerately hole doped with a nearly temperature-independent carrier density of approximately 1019 cm-3 , electrons in 0.5% Re-doped WSe2 (WSe2 ∶Re ) are largely trapped in localized states below the mobility edge and exhibit thermally activated behavior. Charge transport in both WSe2∶Nb and WSe2 ∶Re is found to be limited by Coulomb scattering from ionized impurities. Furthermore, we fabricate vertical van der Waals-junction diodes consisting of multilayers of WSe2∶Nb and WSe2 ∶Re . Finally, we demonstrate reverse rectifying behavior as a direct proof of band-to-band tunneling in our WSe2∶Nb /WSe2∶Re diodes.

  19. Raman and Brillouin scattering studies of bulk 2H-WSe2

    NASA Astrophysics Data System (ADS)

    Akintola, K.; Andrews, G. T.; Curnoe, S. H.; Koehler, M. R.; Keppens, V.

    2015-10-01

    Raman and Brillouin spectroscopy were used to probe optic and acoustic phonons in bulk 2H-WSe2. Raman spectra collected under different polarization conditions allowed assignment of spectral peaks to various first- and second-order processes. In contrast to some previous studies, a Raman peak at  ˜259 cm-1was found not to be due to the A1g mode but to a second-order process involving phonons at either the M or K point of the Brillouin zone. Resonance effects due to excitons were also observed in the Raman spectra. Brillouin spectra of 2H-WSe2 contain a single peak doublet arising from a Rayleigh surface mode propagating with a velocity of 1340+/- 20 m s-1. This value is comparable to that estimated from Density Functional Theory calculations and also to those for the transition metal diselenides 2H-TaSe2 and 2H-NbSe2. Unlike these two materials, however, peaks arising from scattering via the elasto-optic mechanism were not observed in Brillouin spectra of WSe2 despite its lower opacity.

  20. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01902a

  1. Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films

    DOE PAGES

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...

    2016-09-12

    Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less

  2. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yue, Ruoyu; Nie, Yifan; Walsh, Lee A.; Addou, Rafik; Liang, Chaoping; Lu, Ning; Barton, Adam T.; Zhu, Hui; Che, Zifan; Barrera, Diego; Cheng, Lanxia; Cha, Pil-Ryung; Chabal, Yves J.; Hsu, Julia W. P.; Kim, Jiyoung; Kim, Moon J.; Colombo, Luigi; Wallace, Robert M.; Cho, Kyeongjae; Hinkle, Christopher L.

    2017-12-01

    The limited grain size (<200 nm) for transition metal dichalcogenides (TMDs) grown by molecular beam epitaxy (MBE) reported in the literature thus far is unsuitable for high-performance device applications. In this work, the fundamental nucleation and growth behavior of WSe2 is investigated through a detailed experimental design combined with on-lattice, diffusion-based first principles kinetic modeling to enable large area TMD growth. A three-stage adsorption-diffusion-attachment mechanism is identified and the adatom stage is revealed to play a significant role in the nucleation behavior. To limit the nucleation density and promote 2D layered growth, it is necessary to have a low metal flux in conjunction with an elevated substrate temperature. At the same time, providing a Se-rich environment further limits the formation of W-rich nuclei which suppresses vertical growth and promotes 2D growth. The fundamental understanding gained through this investigation has enabled an increase of over one order of magnitude in grain size for WSe2 thus far, and provides valuable insight into improving the growth of other TMD compounds by MBE and other growth techniques such as chemical vapor deposition (CVD).

  3. Magnetron sputtering fabrication and photoelectric properties of WSe2 film solar cell device

    NASA Astrophysics Data System (ADS)

    Mao, Xu; Zou, Jianpeng; Li, Hongchao; Song, Zhengqi; He, Siru

    2018-06-01

    Tungsten diselenide (WSe2) films with different growing orientations exhibit diverse photoelectric properties. The WSe2 film with C-axis⊥substrate texture has been prepared and applied to thin-film solar cells. W nanofilms with a thickness of 270 nm were deposited onto the Mo bottom electrode and then heat-treated in selenium vapor to synthesize WSe2 films with a thickness of 1 μm. ZnO films were deposited onto WSe2 films to form a P-N junction and ITO films were deposited subsequently as the conductive layer. X-ray diffractometry, scanning electron microscopy and UV-vis-NIR spectro-analysis instrument were employed to analyze the phase composition, optical absorptivity and micromorphology of WSe2 films and the WSe2 solar cell device. WSe2 films exhibit excellent photoelectric performance with an optical absorption coefficient greater than 105 cm-1 across the visible spectrum. The calculated direct and indirect band gap of the WSe2 films is 1.48 eV and 1.25 eV, respectively. With the application of standard glass/Mo/WSe2/ZnO/ITO/Ag device structure, the open-circuit voltage of the battery device is 82 mV. The short-circuit current density is 2.98 mA/cm2 and the filling factor is 0.32. The photoelectric conversion efficiency of the WSe2 film solar cell device is 0.79%.

  4. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2

    PubMed Central

    Wang, Fang; Wang, Junyong; Guo, Shuang; Zhang, Jinzhong; Hu, Zhigao; Chu, Junhao

    2017-01-01

    The interlayer interaction of vertically stacked heterojunctions is very sensitive to the interlayer spacing, which will affect the coupling between the monolayers and allow band structure modulation. Here, with the aid of density functional theory (DFT) calculations, an interesting phenomenon is found that MoS2-WS2, MoS2-WSe2, and WS2-WSe2 heterostructures turn into direct-gap semiconductors from indirect-gap semiconductors with increasing the interlayer space. Moreover, the electronic structure changing process with interlayer spacing of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 is different from each other. With the help of variable-temperature spectral experiment, different electronic transition properties of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 have been demonstrated. The transition transformation from indirect to direct can be only observed in the MoS2-WS2 heterostructure, as the valence band maximum (VBM) at the Γ point in the MoS2-WSe2 and WS2-WSe2 heterostructure is less sensitive to the interlayer spacing than those from the MoS2-WS2 heterostructure. The present work highlights the significance of the temperature tuning in interlayer coupling and advance the research of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 based device applications. PMID:28303932

  5. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.

    PubMed

    Wang, Jue; Xie, Fang; Cao, Xuan-Hao; An, Si-Cong; Zhou, Wu-Xing; Tang, Li-Ming; Chen, Ke-Qiu

    2017-01-25

    By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe 2 nanoribbons. The results show that the armchair WSe 2 nanoribbons have much higher ZT values than zigzag WSe 2 nanoribbons. The ZT values of armchair WSe 2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe 2 nanoribbons. We also find that the ZT values of WSe 2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe 2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.

  6. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  7. Anisotropy of electrical resistivity in PVT grown WSe2-x crystals

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.

    2018-05-01

    Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.

  8. Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy.

    PubMed

    Apte, Amey; Kochat, Vidya; Rajak, Pankaj; Krishnamoorthy, Aravind; Manimunda, Praveena; Hachtel, Jordan A; Idrobo, Juan Carlos; Syed Amanulla, Syed Asif; Vashishta, Priya; Nakano, Aiichiro; Kalia, Rajiv K; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2018-04-24

    Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe 2 ) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe 2 and WSe 2 regions. Applying a bending strain blue-shifted the MoSe 2 and WSe 2 A 1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe 2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe 2 -rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe 2 monolayer containing nanoscopic WSe 2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe 2 matrix and WSe 2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe 2 , indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe 2 over the unalloyed counterparts.

  9. Two-step growth of two-dimensional WSe 2/MoSe 2 heterostructures

    DOE PAGES

    Gong, Yongji; Lei, Sidong; Lou, Jun; ...

    2015-08-03

    Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe 2 was synthesized first and followed by an epitaxial growth of WSe 2 on the edge and on the top surface of MoSe 2. Compared to previously reported one-stepmore » growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe 2/MoSe 2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe 2/WSe 2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe 2/MoSe 2 bilayer and the exposed MoSe 2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less

  10. Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.

    PubMed

    Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras

    2018-05-01

    New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    NASA Astrophysics Data System (ADS)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  12. Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain.

    PubMed

    Godkar, Praful B; Gordon, Richard K; Ravindran, Arippa; Doctor, Bhupendra P

    2004-08-01

    Aqueous extracts of Celastrus paniculatus (CP) seed have been reported to improve learning and memory in rats. In addition, these extracts were shown to have antioxidant properties, augmented endogenous antioxidant enzymes, and decreased lipid peroxidation in rat brain. However, water soluble extracts of CP seed (CP-WSE) have not been evaluated for their neuroprotective effects. In the study reported here, we used enriched forebrain primary neuronal cell (FBNC) cultures to study the neuroprotective effects of three CP-WSE extracts (a room temperature, WF; a hot water, HF; and an acid, AF) on glutamate-induced toxicity. FBNC were pre-treated with the CP-WSE and then with glutamate to evaluate the protection afforded against excitatory amino acid-induced toxicity. The criteria for neuroprotection were based on the effects of CP-WSE on a mitochondrial function test following glutamate-induced neurotoxicity. Pre-treatment of neuronal cells with CP-WSE significantly attenuated glutamate-induced neuronal death. To understand the molecular mechanism of action of CP-WSE, we conducted electrophysiological studies using patch-clamp techniques on N-methyl-D-aspartate (NMDA)-activated whole-cell currents in FBNC. WSE significantly and reversibly inhibited whole-cell currents activated by NMDA. The results suggest that CP-WSE protected neuronal cells against glutamate-induced toxicity by modulating glutamate receptor function.

  13. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Petter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. Session I and II

  14. A new U.S.-Canada Collaboration to build SWOT Calibration/Validation and Science Capacity for Northern Rivers and Wetlands

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Gleason, C. J.; Pietroniro, A.; Fiset, J. M.

    2016-12-01

    The NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) satellite mission holds strong promise to be a transformational mission for land surface hydrology in much the same way that conventional radar altimetry transformed physical oceanography following the launch of Seasat in 1978. However, to achieve this potential key pre-launch tasks remain, including 1) establishing benchmark monitoring sites, standardized measurement protocols, and international partnerships for quality calibration/validation of SWOT hydrology products; 2) demonstration that SWOT inundation area mapping for rivers, lakes, and wetlands is feasible; 3) demonstration that quality SWOT discharge retrievals for large rivers are feasible; and 4) demonstration of exciting new science from SWOT-like measurements. To these ends we present a new U.S.-Canada partnership to establish new SWOT calibration/validation sites, collect unique "SWOT-like" field and remote sensing datasets, conduct phenomenology studies of potentially important impacts (vegetation, sedimentary deposits, ice, and wind) on SWOT backscatter and water surface elevation (WSE) retrievals; and to gain scientific knowledge of the impact of permafrost on the form, hydraulics, and water surface elevations of northern rivers and lakes. This U.S-Canada partnership will establish scientifically interesting calibration/validation sites along three to four major Canadian rivers (current candidates: Saskatchewan, Athabasca, Arctic Red, Slave/Peace, or Ottawa Rivers). Field sites will be selected optimize scientific impact, logistics, and location inside the nominal planned orbits of the SWOT Fast Sampling Phase.

  15. Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange

    NASA Astrophysics Data System (ADS)

    Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.

    2015-03-01

    Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.

  16. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  17. Ingestion of lead from ammunition and lead concentrations in white-tailed sea eagles (Haliaeetus albicilla) in Sweden.

    PubMed

    Helander, B; Axelsson, J; Borg, H; Holm, K; Bignert, A

    2009-10-15

    In this study we show for the first time that lead poisoning from ammunition is a significant mortality factor for white-tailed sea eagle (WSE) (Haliaeetus albicilla) in Sweden. We analyzed 118 WSEs collected between 1981 and 2004 from which both liver and kidney samples could be taken. A total of 22% of all eagles examined had elevated (>6 microg/gd.w.) lead concentrations, indicating exposure to leaded ammunition, and 14% of the individuals had either liver or kidney lead concentrations diagnostic of lethal lead poisoning (>20 microg/gd.w.). Lead concentrations in liver and kidney were significantly correlated. In individuals with lead levels <6 microg/g, concentrations were significantly higher in kidney than in liver; in individuals with lead levels >20 microg/g, concentrations were significantly higher in liver. The lead isotope ratios indicate that the source of lead in individuals with lethal concentrations is different from that of individuals exhibiting background concentrations of lead (<6 microg/gd.w.) There were no significant sex or age differences in lead concentrations. A study from the Baltic reported in principle no biomagnification of lead, but background lead concentrations in WSE liver in this study were still four to >10 times higher than concentrations reported for Baltic fish from the same time period. In contrast to other biota there was no decrease in lead concentrations in WSE over the study period. The proportion of lead poisoned WSE remained unchanged over the study period, including two years after a partial ban of lead shot was enforced in 2002 for shallow wetlands. The use of lead in ammunition poses a threat to all raptors potentially feeding on shot game or offal. The removal of offal from shot game and alternatives to leaded ammunition needs to be implemented in order to prevent mortality from lead in raptors and scavengers.

  18. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  19. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures.

    PubMed

    Johnson, Alex D; Cheng, Fei; Tsai, Yutsung; Shih, Chih-Kang

    2017-07-12

    We have investigated how the photoluminescence (PL) of WSe 2 is modified when coupled to Ag plasmonic structures at low temperature. Chemical vapor deposition (CVD) grown monolayer WSe 2 flakes were transferred onto a Ag film and a Ag nanotriangle array that had a 1.5 nm Al 2 O 3 capping layer. Using low-temperature (7.5 K) micro-PL mapping, we simultaneously observed enhancement of the defect-bound exciton emission and quenching of the band edge exciton emission when the WSe 2 was on a plasmonic structure. The enhancement of the defect-bound exciton emission was significant with enhancement factors of up to ∼200 for WSe 2 on the nanotriangle array when compared to WSe 2 on a 1.5 nm Al 2 O 3 capped Si substrate with a 300 nm SiO 2 layer. The giant enhancement of the luminescence from the defect-bound excitons is understood in terms of the Purcell effect and increased light absorption. In contrast, the surprising result of luminescence quenching of the bright exciton state on the same plasmonic nanostructure is due to a rather unique electronic structure of WSe 2 : the existence of a dark state below the bright exciton state.

  20. Stability of the tungsten diselenide and silicon carbide heterostructure against high energy proton exposure

    NASA Astrophysics Data System (ADS)

    Walker, Roger C.; Shi, Tan; Jariwala, Bhakti; Jovanovic, Igor; Robinson, Joshua A.

    2017-10-01

    Single layers of tungsten diselenide (WSe2) can be used to construct ultra-thin, high-performance electronics. Additionally, there has been considerable progress in controlled and direct growth of single layers on various substrates. Based on these results, high-quality WSe2-based devices that approach the limit of physical thickness are now possible. Such devices could be useful for space applications, but understanding how high-energy radiation impacts the properties of WSe2 and the WSe2/substrate interface has been lacking. In this work, we compare the stability against high energy proton radiation of WSe2 and silicon carbide (SiC) heterostructures generated by mechanical exfoliation of WSe2 flakes and by direct growth of WSe2 via metal-organic chemical vapor deposition (MOCVD). These two techniques produce WSe2/SiC heterostructures with distinct differences due to interface states generated during the MOCVD growth process. This difference carries over to differences in band alignment from interface states and the ultra-thin nature of the MOCVD-grown material. Both heterostructures are not susceptible to proton-induced charging up to a dose of 1016 protons/cm2, as measured via shifts in the binding energy of core shell electrons and a decrease in the valence band offset. Furthermore, the MOCVD-grown material is less affected by the proton exposure due to its ultra-thin nature and a greater interaction with the substrate. These combined effects show that the directly grown material is suitable for multi-year use in space, provided that high quality devices can be fabricated from it.

  1. Evidence for a substantial West Antarctic ice sheet contribution to meltwater pulses and abrupt global sea level rise

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.

    2015-12-01

    During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.

  2. Ultrafast Growth of High-Quality Monolayer WSe2 on Au.

    PubMed

    Gao, Yang; Hong, Yi-Lun; Yin, Li-Chang; Wu, Zhangting; Yang, Zhiqing; Chen, Mao-Lin; Liu, Zhibo; Ma, Teng; Sun, Dong-Ming; Ni, Zhenhua; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2017-08-01

    The ultrafast growth of high-quality uniform monolayer WSe 2 is reported with a growth rate of ≈26 µm s -1 by chemical vapor deposition on reusable Au substrate, which is ≈2-3 orders of magnitude faster than those of most 2D transition metal dichalcogenides grown on nonmetal substrates. Such ultrafast growth allows for the fabrication of millimeter-size single-crystal WSe 2 domains in ≈30 s and large-area continuous films in ≈60 s. Importantly, the ultrafast grown WSe 2 shows excellent crystal quality and extraordinary electrical performance comparable to those of the mechanically exfoliated samples, with a high mobility up to ≈143 cm 2 V -1 s -1 and ON/OFF ratio up to 9 × 10 6 at room temperature. Density functional theory calculations reveal that the ultrafast growth of WSe 2 is due to the small energy barriers and exothermic characteristic for the diffusion and attachment of W and Se on the edges of WSe 2 on Au substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic transport property of NiFe/WSe2/NiFe spin valve structure

    NASA Astrophysics Data System (ADS)

    Zhao, Kangkang; Xing, Yanhui; Han, Jun; Feng, Jiafeng; Shi, Wenhua; Zhang, Baoshun; Zeng, Zhongming

    2017-06-01

    Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe2) as spacer in a Py/WSe2/Py vertical spin valve. In this junction, the WSe2 spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of -1.1% at 4 K and -0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  4. Material Synthesis and Device Aspects of Monolayer Tungsten Diselenide.

    PubMed

    Yao, Zihan; Liu, Jialun; Xu, Kai; Chow, Edmond K C; Zhu, Wenjuan

    2018-03-27

    In this paper, we investigate the synthesis of WSe 2 by chemical vapor deposition and study the current transport and device scaling of monolayer WSe 2 . We found that the device characteristics of the back-gated WSe 2 transistors with thick oxides are very sensitive to the applied drain bias, especially for transistors in the sub-micrometer regime. The threshold voltage, subthreshold swing, and extracted field-effect mobility vary with the applied drain bias. The output characteristics in the long-channel transistors show ohmic-like behavior, while that in the short-channel transistors show Schottky-like behavior. Our investigation reveals that these phenomena are caused by the drain-induced barrier lowering (short-channel effect). For back-gated WSe 2 transistors with 280 nm oxide, the short-channel effect appears when the channel length is shorter than 0.4 µm. This extremely long electrostatic scaling length is due to the thick back-gate oxides. In addition, we also found that the hydrogen flow rate and the amount of WO 3 precursor play an important role in the morphology of the WSe 2 . The hole mobility of the monolayer WSe 2 is limited by Columbic scattering below 250 K, while it is limited by phonon scattering above 250 K. These findings are very important for the synthesis of WSe 2 and accurate characterization of the electronic devices based on 2D materials.

  5. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  6. Nanoscale deformation and friction characteristics of atomically thin WSe2 and heterostructure using nanoscratch and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, P.; Nakanishi, Y.; Jaques, Y. M.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvão, D. S.; Tiwary, C. S.; Ajayan, P. M.

    2017-12-01

    2D transition metals di-selenides are attracting a lot of attention due to their interesting optical, chemical and electronics properties. Here, the deformation characteristics of monolayer, multi- layer WSe2 and its heterostructure with MoSe2 were investigated using a new technique that combines nanoscratch and Raman spectroscopy. The 2D monolayer WSe2 showed anisotropy in deformation. Effect of number of WSe2 layers on friction characteristics were explored in detail. Experimental observations were further supported by MD simulations. Raman spectra recorded from the scratched regions showed strain induced degeneracy splitting. Further nano-scale scratch tests were extended to MoSe2-WSe2 lateral heterostructures. Effect of deformation on lateral hetero junctions were further analysed using PL and Raman spectroscopy. This new technique is completely general and can be applied to study other 2D materials.

  7. Nano-optical imaging of WS e 2 waveguide modes revealing light-exciton interactions

    DOE PAGES

    Fei, Z.; Scott, M. E.; Gosztola, D. J.; ...

    2016-08-01

    We report on a nano-optical imaging study of WSe 2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe 2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe 2. We found that all the modes interact strongly with WSe 2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies,more » on the other hand, these modes are strongly damped due to adjacent B excitons or band-edge absorptions. Lastly, the mode-shifting phenomena are consistent with polariton formation in WSe 2.« less

  8. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  9. High gain, low noise, fully complementary logic inverter based on bi-layer WSe{sub 2} field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saptarshi; Roelofs, Andreas; Dubey, Madan

    2014-08-25

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe{sub 2} field effect transistors (FETs) can be realized. We report record high drive current of 98 μA/μm for the electron conduction and 110 μA/μm for the hole conduction in Schottky barrier WSe{sub 2} FETs. Then, we combine high performance WSe{sub 2} PFET with WSe{sub 2} NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for themore » NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe{sub 2} inverter was found to be ∼25 and the noise margin was close to its ideal value of ∼2.5 V for a supply voltage of V{sub DD} = 5.0 V.« less

  10. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  11. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  12. Multimodal Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe2/MoS2 Type-II Interface.

    PubMed

    Almadori, Yann; Bendiab, Nedjma; Grévin, Benjamin

    2018-01-10

    Atomically thin transition-metal dichalcogenides (TMDC) have become a new platform for the development of next-generation optoelectronic and light-harvesting devices. Here, we report a Kelvin probe force microscopy (KPFM) investigation carried out on a type-II photovoltaic heterojunction based on WSe 2 monolayer flakes and a bilayer MoS 2 film stacked in vertical configuration on a Si/SiO 2 substrate. Band offset characterized by a significant interfacial dipole is pointed out at the WSe 2 /MoS 2 vertical junction. The photocarrier generation process and phototransport are studied by applying a differential technique allowing to map directly two-dimensional images of the surface photovoltage (SPV) over the vertical heterojunctions (vHJ) and in its immediate vicinity. Differential SPV reveals the impact of chemical defects on the photocarrier generation and that negative charges diffuse in the MoS 2 a few hundreds of nanometers away from the vHJ. The analysis of the SPV data confirms unambiguously that light absorption results in the generation of free charge carriers that do not remain coulomb-bound at the type-II interface. A truly quantitative determination of the electron-hole (e-h) quasi-Fermi levels splitting (i.e., the open-circuit voltage) is achieved by measuring the differential vacuum-level shift over the WSe 2 flakes and the MoS 2 layer. The dependence of the energy-level splitting as a function of the optical power reveals that Shockley-Read-Hall processes significantly contribute to the interlayer recombination dynamics. Finally, a newly developed time-resolved mode of the KPFM is applied to map the SPV decay time constants. The time-resolved SPV images reveal the dynamics of delayed recombination processes originating from photocarriers trapping at the SiO 2 /TMDC interfaces.

  13. Controlling the morphology of MBE-grown WSe2 on epitaxial graphene/SiC(0001).

    NASA Astrophysics Data System (ADS)

    Liu, Liwei; Moghadam, Afsaneh; Weinert, Michael; Li, Lian

    Controlling the morphology of transition metal dichalcogenides (TMDs) during molecular beam epitaxy is critical for their potential device applications. In this work, by systematically changing the substrate temperature and W/Se flux ratio, the growth of sub-monolayer to few layers WSe2 on graphene/SiC(0001) is investigated by in situ scanning tunneling microscopy, x-ray photoelectron spectroscopy, and Raman spectroscopy. The results indicate that the morphology of the WSe2 films can be controlled from fractal to compact triangular. These findings and their implication for the controlled growth of TMD heterostructures will be discussed at the meeting. This research was supported by NSF (DMR-1508560).

  14. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE PAGES

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...

    2017-05-31

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  15. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2017-02-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  16. Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Javerzac-Galy, Clément; Kumar, Anshuman; Schilling, Ryan D.; Piro, Nicolas; Khorasani, Sina; Barbone, Matteo; Goykhman, Ilya; Khurgin, Jacob B.; Ferrari, Andrea C.; Kippenberg, Tobias J.

    2018-05-01

    We present quantum yield measurements of single layer $\\textrm{WSe}_2$ (1L-$\\textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($\\eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $\\textrm{QY}_\\textrm{c}\\sim10^{-3}$, consistent with operation in the \\textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.

  17. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  18. Don't words come easy? A psychophysical exploration of word superiority

    PubMed Central

    Starrfelt, Randi; Petersen, Anders; Vangkilde, Signe

    2013-01-01

    Words are made of letters, and yet sometimes it is easier to identify a word than a single letter. This word superiority effect (WSE) has been observed when written stimuli are presented very briefly or degraded by visual noise. We compare performance with letters and words in three experiments, to explore the extents and limits of the WSE. Using a carefully controlled list of three letter words, we show that a WSE can be revealed in vocal reaction times even to undegraded stimuli. With a novel combination of psychophysics and mathematical modeling, we further show that the typical WSE is specifically reflected in perceptual processing speed: single words are simply processed faster than single letters. Intriguingly, when multiple stimuli are presented simultaneously, letters are perceived more easily than words, and this is reflected both in perceptual processing speed and visual short term memory (VSTM) capacity. So, even if single words come easy, there is a limit to the WSE. PMID:24027510

  19. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides (Part II)

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Peter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. This work is supported by DOE grant DE-FG 02-04-ER-46157, research carried out in part at the CFN and NSLS, Brookhaven National Laboratory.

  20. The effect of air stable n-doping through mild plasma on the mechanical property of WSe2 layers

    NASA Astrophysics Data System (ADS)

    Xu, Linyan; Qian, Shuangbei; Xie, Yuan; Wu, Enxiu; Hei, Haicheng; Feng, Zhihong; Wu, Sen; Hu, Xiaodong; Guo, Tong; Zhang, Daihua

    2018-04-01

    Two-dimensional transition metal dichalcogenides have been widely applied to electronic and optoelectronic device owing to their remarkable material properties. Many studies present the platform for regulating the contact resistance via various doping schemes. Here, we report the alteration of mechanical properties of few top layers of the WSe2 flake which are processed by air stable n-doping of N2O with a constant gas flow through mild plasma and present better manufacturability and friability. The single-line nanoscratching experiments on the WSe2 flakes with different doping time reveal that the manufacturable depths are positively correlated with the exposure time at a certain range and tend to be stable afterwards. Meanwhile, material characterization by x-ray photoelectron spectroscopy confirms that the alteration of mechanical properties is owing to the creation of Se vacancies and substitution of O atoms, which breaks the primary molecular structure of the WSe2 flakes. The synchronous Kelvin probe force microscopy and topography results of ROI nanoscratching of a stepped WSe2 sample confirmed that the depth of the degenerate doping is five layers, which was consistent with the single-line scratching experiments. Our results reveal the interrelationship of the mechanical property, chemical bonds and work function changes of the doped WSe2 flakes.

  1. The effect of air stable n-doping through mild plasma on the mechanical property of WSe2 layers.

    PubMed

    Xu, Linyan; Qian, Shuangbei; Xie, Yuan; Wu, Enxiu; Hei, Haicheng; Feng, Zhihong; Wu, Sen; Hu, Xiaodong; Guo, Tong; Zhang, Daihua

    2018-04-27

    Two-dimensional transition metal dichalcogenides have been widely applied to electronic and optoelectronic device owing to their remarkable material properties. Many studies present the platform for regulating the contact resistance via various doping schemes. Here, we report the alteration of mechanical properties of few top layers of the WSe 2 flake which are processed by air stable n-doping of N 2 O with a constant gas flow through mild plasma and present better manufacturability and friability. The single-line nanoscratching experiments on the WSe 2 flakes with different doping time reveal that the manufacturable depths are positively correlated with the exposure time at a certain range and tend to be stable afterwards. Meanwhile, material characterization by x-ray photoelectron spectroscopy confirms that the alteration of mechanical properties is owing to the creation of Se vacancies and substitution of O atoms, which breaks the primary molecular structure of the WSe 2 flakes. The synchronous Kelvin probe force microscopy and topography results of ROI nanoscratching of a stepped WSe 2 sample confirmed that the depth of the degenerate doping is five layers, which was consistent with the single-line scratching experiments. Our results reveal the interrelationship of the mechanical property, chemical bonds and work function changes of the doped WSe 2 flakes.

  2. Magnetotransport of High Mobility Holes in Monolayer and Bilayer WSe2

    NASA Astrophysics Data System (ADS)

    Tutuc, Emanuel

    Transition metal dichalcogenides have attracted significant interest because of their two-dimensional crystal structure, large band-gap, and strong spin-orbit interaction which leads to spin-valley locking. Recent advances in sample fabrication have allowed the experimental study of low temperature magneto-transport of high mobility holes in WSe2. We review here the main results of these studies which reveal clear quantum Hall states in mono- and bilayer WSe2. The data allows the extraction of an effective hole mass of m* = 0.45me (me is the bare electron mass) in both mono and bilayer WSe2. A systematic study of the carrier distribution in bilayer WSe2 determined from a Fourier analysis of the Shubnikov-de Haas oscillations indicates that the two layers are weakly coupled. The individual layer density dependence on gate bias shows negative compressibility, a signature of strong electron-electron interaction in these materials associated with the large effective mass. We discuss the interplay between cyclotron and Zeeman splitting using the dependence of the quantum Hall state sequence on carrier density, and the angle between the magnetic field and the WSe2 plane. Work done in collaboration with B. Fallahazad, H. C. P. Movva, K. Kim, S. K. Banerjee, T. Taniguchi, and K. Watanabe. This work supported by the Nanoelectronics Research Initiative SWAN center, Intel Corp., and National Science Foundation.

  3. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS

    PubMed Central

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2017-01-01

    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  4. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application.

    PubMed

    Nourbakhsh, Amirhasan; Zubair, Ahmad; Dresselhaus, Mildred S; Palacios, Tomás

    2016-02-10

    This paper studies band-to-band tunneling in the transverse and lateral directions of van der Waals MoS2/WSe2 heterojunctions. We observe room-temperature negative differential resistance (NDR) in a heterojunction diode comprised of few-layer WSe2 stacked on multilayer MoS2. The presence of NDR is attributed to the lateral band-to-band tunneling at the edge of the MoS2/WSe2 heterojunction. The backward tunneling diode shows an average conductance slope of 75 mV/dec with a high curvature coefficient of 62 V(-1). Associated with the tunnel-diode characteristics, a positive-to-negative transconductance in the MoS2/WSe2 heterojunction transistors is observed. The transition is induced by strong interlayer coupling between the films, which results in charge density and energy-band modulation. The sign change in transconductance is particularly useful for multivalued logic (MVL) circuits, and we therefore propose and demonstrate for the first time an MVL-inverter that shows three levels of logic using one pair of p-type transistors.

  5. Determination of taste-active compounds of a bitter Camembert cheese by omission tests.

    PubMed

    Engel, E; Septier, C; Leconte, N; Salles, C; Le Quere, J L

    2001-11-01

    The taste-active compounds of a Camembert cheese selected for its intense bitterness defect were investigated. The water-soluble fraction (WSE) was extracted with pure water and fractionated by successive tangential ultrafiltrations and nanofiltration. The physicochemical assessment of these fractions led to the construction of a model WSE which was compared by sensory evaluation to the crude water-soluble extract, using a panel of 16 trained tasters. As no significant difference was perceived, this model WSE was then used directly or mixed with other cheese components for omission tests. Among the main taste characteristics of the WSE (salty, sour, umami and bitter), bitterness was found to be due to small peptides whose mass distribution was obtained by RPHPLC-MS (400-3000 Da) and whose taste properties are discussed.

  6. A scanning probe investigation of the role of surface motifs in the behavior of p-WSe 2 photocathodes

    DOE PAGES

    Velazquez, Jesus M.; John, Jimmy; Esposito, Daniel V.; ...

    2015-10-08

    The spatial variation in the photoelectrochemical performance for the reduction of an aqueous one-electron redox couple, Ru(NH 3) 6 3+/2+, and for the evolution of H 2(g) from 0.5 M H 2SO 4(aq) at the surface of bare or Pt-decorated p-type WSe 2 photocathodes has been investigated in situ using scanning photocurrent microscopy (SPCM). The measurements revealed significant differences in the charge-collection performance (quantified by the values of external quantum yields, Φ ext) on various macroscopic terraces. Local spectral response measurements indicated a variation in the local electronic structure among the terraces, which was consistent with a non-uniform spatial distributionmore » of sub-band-gap states within the crystals. The photoconversion efficiencies of Pt-decorated p-WSe2 photocathodes were greater for the evolution of H 2(g) from 0.5 M H 2SO 4 than for the reduction of Ru(NH 3) 6 3+/2+, and terraces that exhibited relatively low values of Φext for the reduction of Ru(NH 3) 6 3+/2+ could in some cases yield values of Φ ext for the evolution of H 2(g) comparable to the values of Φ ext yielded by the highest-performing terraces. In conclusion, although the spatial resolution of the techniques used in this work frequently did not result in observation of the effect of edge sites on photocurrent efficiency, some edge effects were observed in the measurements; however the observed edge effects differed among edges, and did not appear to determine the performance of the electrodes.« less

  7. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS2/WSe2 van der Waals Heterostructure.

    PubMed

    Khan, Muhammad Atif; Rathi, Servin; Lee, Changhee; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo Hyeb; Kim, Gil-Ho

    2018-06-25

    Two-dimensional (2D) materials based heterostructures provide a unique platform where interaction between stacked 2D layers can enhance the electrical and opto-electrical properties as well as give rise to interesting new phenomena. Here, operation of a van der Waals heterostructure device comprising of vertically stacked bi-layer MoS 2 and few layered WSe 2 has been demonstrated in which atomically thin MoS 2 layer has been employed as a tunneling layer to the underlying WSe 2 layer. In this way, simultaneous contacts to both MoS 2 and WSe 2 2D layers have been established by forming direct MS (metal semiconductor) to MoS 2 and tunneling based MIS (metal insulator semiconductor) contacts to WSe 2 , respectively. The use of MoS 2 as a dielectric tunneling layer results in improved contact resistance (80 kΩ-µm) for WSe 2 contact, which is attributed to reduction in effective Schottky barrier height and is also confirmed from the temperature dependent measurement. Further, this unique contact engineering and type II band alignment between MoS 2 and WSe 2 enables a selective and independent carrier transport across the respective layers. This contact engineered dual channel heterostructure exhibits an excellent gate control and both channel current and carrier types can be modulated by the vertical electric field of the gate electrode, which is also reflected in on/off ratio of 10 4 for both electrons (MoS 2 ) and holes (WSe 2 ) channels. Moreover, the charge transfer at the heterointerface is studied quantitatively from the shift in the threshold voltage of the pristine MoS 2 and heterostructure device, which agrees with the carrier recombination induced optical quenching as observed in the Raman spectra of the pristine and heterostructure layers. This observation of dual channel ambipolar transport enabled by the hybrid tunneling contacts and strong interlayer coupling can be utilized for high performance opto-electrical devices and applications.

  8. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    NASA Astrophysics Data System (ADS)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  9. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2.

    PubMed

    Huang, Wen; Luo, Xin; Gan, Chee Kwan; Quek, Su Ying; Liang, Gengchiau

    2014-06-14

    Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) are prototypical layered two-dimensional transition metal dichalcogenide materials, with each layer consisting of three atomic planes. We refer to each layer as a trilayer (TL). We study the thermoelectric properties of 1-4TL MoS2 and WSe2 using a ballistic transport approach based on the electronic band structures and phonon dispersions obtained from first-principles calculations. Our results show that the thickness dependence of the thermoelectric properties is different under n-type and p-type doping conditions. Defining ZT1st peak as the first peak in the thermoelectric figure of merit ZT as doping levels increase from zero at 300 K, we found that ZT1st peak decreases as the number of layers increases for MoS2, with the exception of 2TL in n-type doping, which has a slightly higher value than 1TL. However, for WSe2, 2TL has the largest ZT1st peak in both n-type and p-type doping, with a ZT1st peak value larger than 1 for n-type WSe2. At high temperatures (T > 300 K), ZT1st peak dramatically increases when the temperature increases, especially for n-type doping. The ZT1st peak of n-type 1TL-MoS2 and 2TL-WSe2 can reach 1.6 and 2.1, respectively.

  10. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2sbnd MoS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Lei, Xiang; Yu, Ke

    2018-04-01

    A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.

  11. Optoelectronic Control of Spin and Pseudospin in Layered WSe2

    NASA Astrophysics Data System (ADS)

    Jones, Aaron

    2014-03-01

    Coherent manipulation of spin-like quantum numbers facilitates the development of new quantum technologies. Layered transition metal dichalcogenides provide an ideal laboratory to exploit such dynamic control of spin, pseudospin, and their interplay. Here, we discuss two examples based on monolayer and bilayer WSe2. Due to the inversion asymmetry in monolayer WSe2, valley pseudospins, which index the degenerate extrema of the energy-momentum bands, possess circularly polarized optical selection rules. In addition to the generation of valley polarization through optical pumping of valley excitons, we demonstrate the creation of a coherent superposition between valley states in monolayer WSe2 by linearly polarized excitation. On the other hand, bilayer WSe2 provides an additional quantum degree of freedom, the layer pseudospin, which corresponds to layer polarization. In AB stacked bilayers, we find the real spin is locked to layer pseudospin for a given valley, which results in the suppression of spin relaxation and electrical control of spin Zeeman splitting without an applied magnetic field. Additionally, we obtain spectroscopic evidence of interlayer and intralayer trion species, an important step toward coherent optical control in van der Waals 2D heterostructures. Aaron Jones partially supported by NSF Grant No. DGE-0718124.

  12. Spectroscopic Signatures for Interlayer Coupling in MoS2-WSe2 van der Waals Stacking

    DTIC Science & Technology

    2014-09-07

    theory (DFPT) calculations were carried out using the plane wave code CASTEP as implemented in the Materials Studio package .38 A hexagonal unit cell...transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out -of-plane mode A2 1g for WSe2 (309 cm1) is found sensitive to the...Raman out -of-plane mode A2 1g for WSe2 (309 cm1) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic

  13. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles.

    PubMed

    Qin, Peng; Ge, Zhen-Hua; Chen, Yue-Xing; Chong, Xiaoyu; Feng, Jing; He, Jiaqing

    2018-08-24

    Polycrystalline p-type Cu 1.8 S composites with WSe 2 nanoparticles were fabricated by the mechanical alloying method combined with the spark plasma sintering technique. The Seebeck coefficient was significantly enhanced by the optimized carrier concentration, while the thermal conductivity was simultaneously decreased due to the refined grain and WSe 2 nanoparticles. An enhanced Seebeck coefficient of 110 μV K -1 and a reduced thermal conductivity of 0.68 W m -1 K -1 were obtained for the Cu 1.8 S + 1 wt% WSe 2 sample at 773 K, resulting in a remarkably enhanced peak ZT of 1.22 at 773 K, which is 2.5 times higher than that (0.49 at 773 K) of a pristine Cu 1.8 S sample. The cheap and environmentally friendly Cu 1.8 S-based materials with enhanced properties may find promising applications in thermoelectric devices.

  14. Gate-Controlled BP-WSe2 Heterojunction Diode for Logic Rectifiers and Logic Optoelectronics.

    PubMed

    Li, Dong; Wang, Biao; Chen, Mingyuan; Zhou, Jun; Zhang, Zengxing

    2017-06-01

    p-n junctions play an important role in modern semiconductor electronics and optoelectronics, and field-effect transistors are often used for logic circuits. Here, gate-controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe 2 ) heterojunctions are reported. The gate-tunable ambipolar charge carriers in BP and WSe 2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p-p and n-n) and anisotype (p-n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP-WSe 2 heterojunction diodes can be developed for high-performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microcavity enhanced single photon emission from two-dimensional WSe2

    NASA Astrophysics Data System (ADS)

    Flatten, L. C.; Weng, L.; Branny, A.; Johnson, S.; Dolan, P. R.; Trichet, A. A. P.; Gerardot, B. D.; Smith, J. M.

    2018-05-01

    Atomically flat semiconducting materials such as monolayer WSe2 hold great promise for novel optoelectronic devices. Recently, quantum light emission has been observed from bound excitons in exfoliated WSe2. As part of developing optoelectronic devices, the control of the radiative properties of such emitters is an important step. Here, we report the coupling of a bound exciton in WSe2 to open microcavities. We use a range of radii of curvature in the plano-concave cavity geometry with mode volumes in the λ3 regime, giving Purcell factors of up to 8 while increasing the photon flux five-fold. Additionally, we determine the quantum efficiency of the single photon emitter to be η=0.46 ±0.03 . Our findings pave the way to cavity-enhanced monolayer based single photon sources for a wide range of applications in nanophotonics and quantum information technologies.

  16. Polarity control in WSe2 double-gate transistors

    NASA Astrophysics Data System (ADS)

    Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni

    2016-07-01

    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

  17. NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface.

    PubMed

    Li, Ming-Yang; Shi, Yumeng; Cheng, Chia-Chin; Lu, Li-Syuan; Lin, Yung-Chang; Tang, Hao-Lin; Tsai, Meng-Lin; Chu, Chih-Wei; Wei, Kung-Hwa; He, Jr-Hau; Chang, Wen-Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-07-31

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface. Copyright © 2015, American Association for the Advancement of Science.

  18. Pulsed laser deposition for the synthesis of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Mohammed, A.; Nakamura, H.; Wochner, P.; Ibrahimkutty, S.; Schulz, A.; Müller, K.; Starke, U.; Stuhlhofer, B.; Cristiani, G.; Logvenov, G.; Takagi, H.

    2017-08-01

    Atomically thin films of WSe2 from one monolayer up to 8 layers were deposited on an Al2O3 r-cut ( 1 1 ¯ 02 ) substrate using a hybrid-Pulsed Laser Deposition (PLD) system where a laser ablation of pure W is combined with a flux of Se. Specular X-ray reflectivities of films were analysed and were consistent with the expected thickness. Raman measurement and atomic force microscopy confirmed the formation of a WSe2 monolayer and its spatial homogeneity over the substrate. Grazing-incidence X-ray diffraction uncovered an in-plane texture in which WSe2 [ 10 1 ¯ 0 ] preferentially aligned with Al2O3 [ 11 2 ¯ 0 ]. These results present a potential to create 2D transition metal dichalcogenides by PLD, where the growth kinetics can be steered in contrast to common growth techniques like chemical vapor deposition and molecular beam epitaxy.

  19. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  20. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  1. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets.

    PubMed

    Li, Hai; Wu, Jumiati; Yin, Zongyou; Zhang, Hua

    2014-04-15

    Although great progress has been achieved in the study of graphene, the small current ON/OFF ratio in graphene-based field-effect transistors (FETs) limits its application in the fields of conventional transistors or logic circuits for low-power electronic switching. Recently, layered transition metal dichalcogenide (TMD) materials, especially MoS2, have attracted increasing attention. In contrast to its bulk material with an indirect band gap, a single-layer (1L) MoS2 nanosheet is a semiconductor with a direct band gap of ~1.8 eV, which makes it a promising candidate for optoelectronic applications due to the enhancement of photoluminescence and high current ON/OFF ratio. Compared with TMD nanosheets prepared by chemical vapor deposition and liquid exfoliation, mechanically exfoliated ones possess pristine, clean, and high-quality structures, which are suitable for the fundamental study and potential applications based on their intrinsic thickness-dependent properties. In this Account, we summarize our recent research on the preparation, characterization, and applications of 1L and multilayer MoS2 and WSe2 nanosheets produced by mechanical exfoliation. During the preparation of nanosheets, we proposed a simple optical identification method to distinguish 1L and multilayer MoS2 and WSe2 nanosheets on a Si substrate coated with 90 and 300 nm SiO2. In addition, we used Raman spectroscopy to characterize mechanically exfoliated 1L and multilayer WSe2 nanosheets. For the first time, a new Raman peak at 308 cm(-1) was observed in the spectra of WSe2 nanosheets except for the 1L WSe2 nanosheet. Importantly, we found that the 1L WSe2 nanosheet is very sensitive to the laser power during characterization. The high power laser-induced local oxidation of WSe2 nanosheets and single crystals was monitored by Raman spectroscopy and atomic force microscopy (AFM). Hexagonal and monoclinic structured WO3 thin films were obtained from the local oxidization of single- to triple-layer (1L-3L) and quadruple- to quintuple-layer (4L-5L) WSe2 nanosheets, respectively. Then, we present Raman characterization of shear and breathing modes of 1L and multilayer MoS2 and WSe2 nanosheets in the low frequency range (<50 cm(-1)), which can be used to accurately identify the layer number of nanosheets. Magnetic force microscopy was used to characterize 1L and multilayer MoS2 nanosheets, and thickness-dependent magnetic response was found. In the last part, we briefly introduce the applications of 1L and multilayer MoS2 nanosheets in the fields of gas sensors and phototransistors.

  2. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    PubMed Central

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  4. Dynamics of valley pseudospin in single-layer WSe2. Inter-valley scattering mediated by electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.

  5. First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer

    NASA Astrophysics Data System (ADS)

    Nie, Yifan; Liang, Chaoping; Zhang, Kehao; Zhao, Rui; Eichfeld, Sarah M.; Cha, Pil-Ryung; Colombo, Luigi; Robinson, Joshua A.; Wallace, Robert M.; Cho, Kyeongjae

    2016-06-01

    The control of domain morphology and defect level of synthesized transition metal dichalcogenides (TMDs) is of crucial importance for their device applications. However, current TMDs synthesis by chemical vapor deposition and molecular beam epitaxy is in an early stage of development, where much of the understanding of the process-property relationships is highly empirical. In this work, we use a kinetic Monte Carlo coupled with first principles calculations to study one specific case of the deposition of monolayer WSe2 on graphene, which can be expanded to the entire TMD family. Monolayer WSe2 domains are investigated as a function of incident flux, temperature and precursor ratio. The quality of the grown WSe2 domains is analyzed by the stoichiometry and defect density. A phase diagram of domain morphology is developed in the space of flux and the precursor stoichiometry, in which the triangular compact, fractal and dendritic domains are identified. The phase diagram has inspired a new synthesis strategy for large TMD domains with improved quality.

  6. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang

    2018-02-01

    Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

  7. First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-10-01

    By using first-principles calculations combined with the phonon Boltzmann transport equation, we systematically investigate the phonon transport of monolayer WSe2. Compared with other 2D materials, the monolayer WSe2 is found to have an ultralow thermal conductivity due to the ultralow Debye frequency and heavy atom mass. The room temperature thermal conductivity for a typical sample size of 1 μm is 3.935  W/m K, which is one order of magnitude lower than that of MoS2. And the room temperature thermal conductivity can be further decreased by about 95% in 10 nm sized samples. Moreover, we also find the ZA phonons have the dominant contribution to the thermal conductivity, and the relative contribution is almost 80% at room temperature, which is remarkably higher than that for monolayer MoS2. This is because the ZA phonons have longer lifetime than that of LA and TA phonons in monolayer WSe2.

  8. Few-Layer WSe2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping.

    PubMed

    Ko, Seungpil; Na, Junhong; Moon, Young-Sun; Zschieschang, Ute; Acharya, Rachana; Klauk, Hagen; Kim, Gyu-Tae; Burghard, Marko; Kern, Klaus

    2017-12-13

    Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe 2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al 2 O 3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W -1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

  9. Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors.

    PubMed

    Lin, Yu-Chuan; Jariwala, Bhakti; Bersch, Brian M; Xu, Ke; Nie, Yifan; Wang, Baoming; Eichfeld, Sarah M; Zhang, Xiaotian; Choudhury, Tanushree H; Pan, Yi; Addou, Rafik; Smyth, Christopher M; Li, Jun; Zhang, Kehao; Haque, M Aman; Fölsch, Stefan; Feenstra, Randall M; Wallace, Robert M; Cho, Kyeongjae; Fullerton-Shirey, Susan K; Redwing, Joan M; Robinson, Joshua A

    2018-02-27

    Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe 2 ) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe 2 /sapphire exhibit ambipolar behavior with excellent on/off ratios (∼10 7 ), high current density (1-10 μA·μm -1 ), and good field-effect transistor mobility (∼30 cm 2 ·V -1 ·s -1 ) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

  10. Theory of dynamical screening of excitons in monolayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dery, Hanan

    Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe2 and WS2 have shown that, while the low-temperature absorption and photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction and ensuing valley plasmons. Considering their signature in the self-energy of electrons from the top spin-split conduction valleys leads to the emergence of a correlation-induced virtual state in the band gap. This phenomenon sheds light on the origin of the luminescence in monolayer WSe2 and WS2 in the presence of pronounced many-body interactions. I will also present numerical results of the absorption spectrum calculated from the two-particle Dyson Equation of the pair Green's function. Inclusion of dynamical screening in the potential is imperative to correctly describe the physics of excitons in gated structures. Department of Energy under Contract No. DE-SC0014349, the National Science Foundation under Contract No. DMR-1503601, and the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013.

  11. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  12. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    PubMed Central

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  13. Electronic and magnetic properties of Mn-doped WSe2 monolayer under strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Wang, Tianxing

    2017-04-01

    Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from -10% to -2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at -2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.

  14. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoqiang; Zhang, Tanmei; Yao, Jiandomg; Zhang, Yi; Xu, Jiarui; Yang, Guowei

    2016-06-01

    Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W-1, external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.

  15. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Maultzsch, Janina

    2018-04-01

    Based on ab initio theoretical calculations of the optical spectra of vertical heterostructures of MoSe2 (or MoS2) and WSe2 sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the A excitons of MoSe2 and WSe2 with a significant binding energy on the order of 250 meV for the first excitons in the series. At the same time, we predict from accurate many-body G0W0 calculations that crystallographically aligned MoSe2/WSe2 heterostructures exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe2/WSe2 heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. Our calculations confirm the recent experimental observation of a doublet nature of the long-lived states in photoluminescence spectra of Mo X2/W Y2 heterostructures, and we attribute these two contributions to momentum-direct interlayer excitons at the K point of the hexagonal Brillouin zone and to momentum-indirect excitons at the indirect fundamental band gap. Our calculations further suggest a noticeable effect of stacking order on the electronic band gaps and on the peak energies of the interlayer excitons and their oscillation strengths.

  16. Shubnikov-de Haas oscillations of high mobility holes in monolayer and bilayer WSe2: spin-valley locking, effective mass, and inter-layer coupling

    NASA Astrophysics Data System (ADS)

    Fallahazad, Babak; Movva, Hema Chandra Prakash; Kim, Kyounghwan; Larentis, Stefano; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel

    We study the magnetotransport properties of high mobility holes in monolayer and bilayer WSe2, measured in dual-gated samples with top and bottom hexagonal boron-nitride dielectrics, and using platinum bottom contacts. Thanks to the Pt high work-function combined with the a high hole density induced electrostatically by an applied top gate bias, the contacts remain ohmic down to low (1.5 K) temperatures. The samples display well defined Shubnikov-de Haas (SdH) oscillations, and quantum Hall states (QHS) in high magnetic fields. In both mono and bilayer WSe2, the SdH oscillations and the QHSs occur predominantly at even filling factors, evincing a two-fold Landau level degeneracy consistent with spin-valley locking. The Fourier transform analysis of the SdH oscillations in dual-gated bilayer WSe2 reveal the presence of two subbands, each localized in the top or the bottom layer, as well as negative compressibility. From the temperature dependence of the SdH oscillation amplitude we determine a hole effective mass of 0.45me for both mono and bilayer WSe2. The top and bottom layer densities can be independently tuned using the top and bottom gates, respectively, evincing a weak interlayer coupling. This work has been supported by NRI-SWAN and Intel corporation.

  17. Word and Pseudoword Superiority Effects: Evidence From a Shallow Orthography Language.

    PubMed

    Ripamonti, Enrico; Luzzatti, Claudio; Zoccolotti, Pierluigi; Traficante, Daniela

    2017-08-03

    The Word Superiority Effect (WSE) denotes better recognition of a letter embedded in a word rather than in a pseudoword. Along with WSE, also a Pseudoword Superiority Effect (PSE) has been described: it is easier to recognize a letter in a legal pseudoword than in an unpronounceable nonword. At the current state of the art, both WSE and PSE have been mainly tested with English speakers. The present study uses the Reicher-Wheeler paradigm with native speakers of Italian (a shallow orthography language). Differently from English and French, we found WSE for RTs only, whereas PSE was significant for both accuracy and reaction times (RTs). This finding indicates that, in the Reicher-Wheeler task, readers of a shallow orthography language can effectively rely on both the lexical and the sublexical routes. As to the effect of letter position, a clear advantage for the first letter position emerged, a finding suggesting a fine-grained processing of the letter strings with coding of letter position, and indicating the role of visual acuity and crowding factors.

  18. Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.

    PubMed

    Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan

    2016-08-03

    We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

  19. Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Meng; Keblinski, Pawel, E-mail: keblip@rpi.edu

    2014-04-14

    We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1 ≤ n ≤ 20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1 ≤ n ≤ 10, and is associated with ballistic phonon transport mechanism. We attribute the diffusivemore » heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.« less

  20. Contrast-enhanced MR imaging of the brain using T1-weighted FLAIR with BLADE compared with a conventional spin-echo sequence.

    PubMed

    Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi

    2008-02-01

    The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.

  1. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.

    PubMed

    Groenendijk, Dirk J; Buscema, Michele; Steele, Gary A; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-10-08

    Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

  2. Interlayer Interactions in Twisted WSe 2/WS 2 Bilayer Heterojunctions: Synthesis, Characterization, and Modeling

    DOE PAGES

    Wang, Kai; Huang, Bing; Tian, Mengkun; ...

    2016-06-16

    Twisting adjacent layers in van der Waals solids can significantly alter their interlayer interactions for tunable optical and electronic properties. Here, we report theoretical calculations, fabrication, and detailed characterizations of WSe 2/WS 2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of CVD-grown WS 2 and WSe 2. Density functional calculations predicted the formation of type-II heterojunctions for the stamped bilayers, with band structures that strongly depend on the interlayer twist angle. Raman spectroscopy reveals strong interlayer coupling with the appearance of a layer-number sensitive mode of WS 2 at 311 cm -1 in WSemore » 2/WS 2 bilayers. This strong interlayer coupling resulted in a 1~2 order of magnitude quenching of the photoluminescence. The broadening and shifts were observed in micro-absorption spectroscopy of WSe 2/WS 2 bilayers, which resulted in a net ~10% enhancement in integrated absorption strength across the visible spectrum with respect to the sum of the individual monolayer spectra. The observed 24 4 meV broadening of the WSe 2 A-exciton absorption band in the bilayers provided an estimate on the rate of charge transfer between the layers that ranged from 23 to 33 fs, and was supported by direct femtosecond pump-probe measurements. These results indicate that interlayer exciton formation and non-radiative decay channels dominate optical properties in these bilayers, which may be important for tunable future photovoltaics and detector applications.« less

  3. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering.

    PubMed

    Tan, Yang; Ma, Linan; Gao, Zhibin; Chen, Ming; Chen, Feng

    2017-04-12

    Raman enhancement on a flat nonmetallic surface has attracted increasing attention, ever since the discovery of graphene enhanced Raman scattering. Recently, diverse two-dimensional layered materials have been applied as a flat surface for the Raman enhancement, attributed to different mechanisms. Looking beyond these isolated materials, atomic layers can be reassembled to design a heterostructure stacked layer by layer with an arbitrary chosen sequence, which allows the flow of charge carriers between neighboring layers and offers novel functionalities. Here, we demonstrate the heterostructure as a novel Raman enhancement platform. The WSe 2 (W) monolayer and graphene (G) were stacked together to form a heterostructure with an area of 10 mm × 10 mm. Heterostructures with different stacked structuress are used as platforms for the enhanced Raman scattering, including G/W, W/G, G/W/G/W, and W/G/G/W. On the surface of the heterostructure, the intensity of the Raman scattering is much stronger compared with isolated layers, using the copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman enhancement effect on heterostructures depends on stacked methods. Phonon modes of CuPc have the strongest enhancement on G/W. W/G and W/G/G/W have a stronger enhancement than that on the isolated WSe 2 monolayer, while lower than the graphene monolayer. The G/W/G/W/substrate demonstrated a comparable Raman enhancement effect than the G/W/substrate. These differences are due to the different interlayer couplings in heterostructures related to electron transition probability rates, which are further proved by first-principle calculations and probe-pump measurements.

  4. Probing the influence of dielectric environment on excitons in monolayer WSe 2: Insight from high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve

    Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe 2 monolayers affixed to single-modemore » optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.« less

  5. Probing the influence of dielectric environment on excitons in monolayer WSe 2: Insight from high magnetic fields

    DOE PAGES

    Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve; ...

    2016-11-09

    Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe 2 monolayers affixed to single-modemore » optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.« less

  6. Electrical and optical transport properties of single layer WSe2

    NASA Astrophysics Data System (ADS)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  7. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-01-13

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  8. Tunneling Diode Based on WSe2 /SnS2 Heterostructure Incorporating High Detectivity and Responsivity.

    PubMed

    Zhou, Xing; Hu, Xiaozong; Zhou, Shasha; Song, Hongyue; Zhang, Qi; Pi, Lejing; Li, Liang; Li, Huiqiao; Lü, Jingtao; Zhai, Tianyou

    2018-02-01

    van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next-generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe 2 /SnS 2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe 2 /SnS 2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe 2 /SnS 2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 10 13 Jones (I ph /I dark ratio of ≈10 6 ) and photoresponsivity of 244 A W -1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  10. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  11. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  12. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  13. Fabrication and independent control of patterned polymer gate for a few-layer WSe{sub 2} field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sung Ju; Park, Min; Kang, Hojin

    We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe{sub 2}) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe{sub 2} FET acts as a p-type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS{sub 2}) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibilitymore » in transition metal dichalcogenide (TMD)-based electronics.« less

  14. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe2 Light-Emitting van der Waals Heterostructure.

    PubMed

    Binder, Johannes; Withers, Freddie; Molas, Maciej R; Faugeras, Clement; Nogajewski, Karol; Watanabe, Kenji; Taniguchi, Takashi; Kozikov, Aleksey; Geim, Andre K; Novoselov, Kostya S; Potemski, Marek

    2017-03-08

    We report on experimental investigations of an electrically driven WSe 2 based light-emitting van der Waals heterostructure. We observe a threshold voltage for electroluminescence significantly lower than the corresponding single particle band gap of monolayer WSe 2 . This observation can be interpreted by considering the Coulomb interaction and a tunneling process involving excitons, well beyond the picture of independent charge carriers. An applied magnetic field reveals pronounced magneto-oscillations in the electroluminescence of the free exciton emission intensity with a 1/B periodicity. This effect is ascribed to a modulation of the tunneling probability resulting from the Landau quantization in the graphene electrodes. A sharp feature in the differential conductance indicates that the Fermi level is pinned and allows for an estimation of the acceptor binding energy.

  15. Structural and electronic properties of in-plane phase engineered WSe2: A DFT study

    NASA Astrophysics Data System (ADS)

    Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.

    2018-04-01

    We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.

  16. From Looking at Our Schools (LAOS) to Whole School Evaluation--Management, Leadership and Learning (WSE-MLL): The Evolution of Inspection in Irish Schools over the Past Decade

    ERIC Educational Resources Information Center

    McNamara, Gerry; O'Hara, Joe

    2012-01-01

    This paper attempts to provide an overview of the key assumptions underpinning the "Whole School Evaluation" (WSE) inspection policy developed in Ireland since 2003. Beginning with a documentary analysis the paper argues that the capacity to generate useful self evaluative data in schools was seen as being at the heart of the model of…

  17. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe{sub 2} heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Anyuan; Liu, Erfu; Long, Mingsheng

    2016-05-30

    We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less

  18. Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei

    2018-05-01

    Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.

  19. Optical Polarization of Excitons and Trions Under Continuous and Pulsed Excitation in Single Layers of WSe2

    DTIC Science & Technology

    2017-10-11

    dependence of the depolarization of the trion follows the same trend as that of the neutral exciton and involves collisional broadening. However, the...spectrum of our WSe2 sample, differential reflectivity, power dependence spectra, an alternate fitting scheme, raw helicity analyzed photoluminescence...that with cw excitation, the polarization of the trion is nearly twice the polarization of the neutral exciton at 5 K, and the temperature dependence

  20. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe2 nanosheet and ZnO nanowire transistors on glass.

    PubMed

    Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil

    2015-01-07

    A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.

    PubMed

    Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua

    2018-06-21

    Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.

  2. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  3. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    PubMed

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2.

    PubMed

    Cai, Lili; McClellan, Connor J; Koh, Ai Leen; Li, Hong; Yalon, Eilam; Pop, Eric; Zheng, Xiaolin

    2017-06-14

    Two-dimensional (2D) molybdenum trioxide (MoO 3 ) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO 3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO 3 . Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO 3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS 2 , graphene, and WSe 2 , based on van der Waals epitaxy. The flame-grown ultrathin MoO 3 sheet functions as an efficient hole doping layer for WSe 2 , enabling WSe 2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·μm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.

  5. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI.

    PubMed

    Alkan, Ozlem; Kizilkiliç, Osman; Yildirim, Tülin; Alibek, Sedat

    2009-06-01

    We compared periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) MR technique with spin echo (SE) technique for evaluation of artifacts, and detection and delineation of brain lesions. Contrast-enhanced T1-weighted fluid attenuated inversion recovery (FLAIR) images with BLADE technique (CE T1W-FLAIR BLADE) and contrast-enhanced T1-weighted SE (CE T1W-SE) were performed in 50 patients with intracranial enhancing lesions. These techniques were compared by two neuroradiologists for qualitative analysis of artifacts, lesion detectability, lesion delineation from adjacent structures, and preferred imaging technique; and for quantitative variables, i.e., lesion-to-background and lesion-to-cerebrospinal fluid (CSF) contrast-to-noise (CNR) ratios. Reader agreement was assessed by kappa statistics. All lesions depicted with the CE T1W-SE were also detected with the CE T1W-FLAIR BLADE technique. Delineation of lesions was better on CE T1W-FLAIR BLADE in the majority of patients. Flow-related artifacts were considerably reduced with CE T1W-FLAIR BLADE. A star-like artifact at the level of the 4(th) ventricle was noted on CE T1W-FLAIR BLADE but not on CE T1W-SE. The lesion-to-background CNR and lesion-to-CSF CNR did not show a statistically significant difference between the two techniques. CE T1W-FLAIR BLADE images were preferred by the observers over the CE T1w-SE images, indicating good interobserver agreement (k = 0.70). CE T1W-FLAIR BLADE technique is superior to CE T1WSE for delineation of lesions and reduction of flow-related artifacts, especially within the posterior fossa, and is preferred by readers. CE T1W-FLAIR BLADE may be an alternative approach to imaging, especially for posterior fossa lesions.

  6. Functional and Morphological Correlates in the Drosophila LRRK2 loss-of-function Model of Parkinson’s Disease: Drug Effects of Withania somnifera (Dunal) Administration

    PubMed Central

    Catelani, Tiziano; Setzu, Maria Dolores; Solla, Paolo; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio

    2016-01-01

    The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson’s disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared to WT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is required. PMID:26727265

  7. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    NASA Astrophysics Data System (ADS)

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J. W.; Amsalem, Patrick; Koch, Norbert

    2018-04-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron-hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  8. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.

    2018-02-01

    There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low electron density materials.

  9. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  10. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  11. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  12. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE PAGES

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...

    2017-02-08

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  13. Cascaded emission of single photons from the biexciton in monolayered WSe2

    PubMed Central

    He, Yu-Ming; Iff, Oliver; Lundt, Nils; Baumann, Vasilij; Davanco, Marcelo; Srinivasan, Kartik; Höfling, Sven; Schneider, Christian

    2016-01-01

    Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe2, sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe2, which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors. PMID:27830703

  14. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    NASA Astrophysics Data System (ADS)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  15. WSe2 nanoribbons: new high-performance thermoelectric materials.

    PubMed

    Chen, Kai-Xuan; Luo, Zhi-Yong; Mo, Dong-Chuan; Lyu, Shu-Shen

    2016-06-28

    In this work, for the first time, we systematically investigate the ballistic transport properties of WSe2 nanoribbons using first-principles methods. Armchair nanoribbons with narrow ribbon width are mostly semiconductive but the zigzag nanoribbons are metallic. Surprisingly, an enhancement in thermoelectric performance is discovered moving from monolayers to nanoribbons, especially armchair ones. The maximum room-temperature thermoelectric figure of merit of 2.2 for an armchair nanoribbon is discovered. This may be contributed to by the effects of the disordered edges, owing to the existence of dangling bonds at the ribbon edge. H-passivation has turned out to be an effective way to stabilize the edge atoms, which enhances the thermodynamic stability of the nanoribbons. In addition, after H-passivation, all of the armchair nanoribbons exhibit semiconductive properties with similar band gaps (∼1.3 eV). Our work provides instructional theoretical evidence for the application of armchair WSe2 nanoribbons as promising thermoelectric materials. The enhancement mechanism of the disordered edge effect can also encourage further exploration to achieve outstanding thermoelectric materials.

  16. Studies on transport properties of copper doped tungsten diselenide single crystals

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  17. Influence of the substrate material on the optical properties of tungsten diselenide monolayers

    NASA Astrophysics Data System (ADS)

    Lippert, Sina; Schneider, Lorenz Maximilian; Renaud, Dylan; Kang, Kyung Nam; Ajayi, Obafunso; Kuhnert, Jan; Halbich, Marc-Uwe; Abdulmunem, Oday M.; Lin, Xing; Hassoon, Khaleel; Edalati-Boostan, Saeideh; Duck Kim, Young; Heimbrodt, Wolfram; Yang, Eui-Hyeok; Hone, James C.; Rahimi-Iman, Arash

    2017-06-01

    Monolayers of transition-metal dichalcogenides such as WSe2 have become increasingly attractive due to their potential in electrical and optical applications. Because the properties of these 2D systems are known to be affected by their surroundings, we report how the choice of the substrate material affects the optical properties of monolayer WSe2. To accomplish this study, pump-density-dependent micro-photoluminescence measurements are performed with time-integrating and time-resolving acquisition techniques. Spectral information and power-dependent mode intensities are compared at 290 K and 10 K for exfoliated WSe2 on SiO2/Si, sapphire (Al2O3), hBN/Si3N4/Si, and MgF2, indicating substrate-dependent appearance and strength of exciton, trion, and biexciton modes. Additionally, one CVD-grown WSe2 monolayer on sapphire is included in this study for direct comparison with its exfoliated counterpart. Time-resolved micro-photoluminescence shows how radiative decay times strongly differ for different substrate materials. Our data indicates exciton-exciton annihilation as a shortening mechanism at room temperature, and subtle trends in the decay rates in correlation to the dielectric environment at cryogenic temperatures. On the measureable time scales, trends are also related to the extent of the respective 2D-excitonic modes’ appearance. This result highlights the importance of further detailed characterization of exciton features in 2D materials, particularly with respect to the choice of substrate.

  18. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2 , WS2 , and WSe2 ) is lower than that of graphene and its analogues.

    PubMed

    Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin

    2014-07-28

    Studies involving transition-metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2 , WS2 , and WSe2 , and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose-dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL(-1) ; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in-depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial-induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST-8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are less toxic. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui

    2018-06-01

    Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.

  20. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  1. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  2. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene

    NASA Astrophysics Data System (ADS)

    Völkl, Tobias; Rockinger, Tobias; Drienovsky, Martin; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan

    2017-09-01

    We use a van der Waals pickup technique to fabricate different heterostructures containing WSe2(WS2) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts, and a top gate was deposited. For graphene /WSe2/SiO2 samples we observe mobilities of ˜12 000 cm2V-1s-1 . Magnetic-field-dependent resistance measurements on these samples show a peak in the conductivity at low magnetic fields. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe2(WS2) and hexagonal boron nitride show a much higher mobility of up to ˜120 000 cm2V-1s-1 . However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic fields a resistance peak appears, which we ascribe to a size effect due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors due to complete lifting of the spin and valley degeneracies.

  3. Gate-Tunable WSe2/SnSe2 Backward Diode with Ultrahigh-Reverse Rectification Ratio.

    PubMed

    Murali, Krishna; Dandu, Medha; Das, Sarthak; Majumdar, Kausik

    2018-02-14

    Backward diodes conduct more efficiently in the reverse bias than in the forward bias, providing superior high-frequency response, temperature stability, radiation hardness, and 1/f noise performance than a conventional diode conducting in the forward direction. Here, we demonstrate a van der Waals material-based backward diode by exploiting the giant staggered band offsets of WSe 2 /SnSe 2 vertical heterojunction. The diode exhibits an ultrahigh-reverse rectification ratio (R) of ∼2.1 × 10 4 , and the same is maintained up to an unusually large bias of 1.5 V-outperforming existing backward diode reports using conventional bulk semiconductors as well as one- and two-dimensional materials by more than an order of magnitude while maintaining an impressive curvature coefficient (γ) of ∼37 V -1 . The transport mechanism in the diode is shown to be efficiently tunable by external gate and drain bias, as well as by the thickness of the WSe 2 layer and the type of metal contacts used. These results pave the way for practical electronic circuit applications using two-dimensional materials and their heterojunctions.

  4. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules.

    PubMed

    Lin, Hsiang-Ting; Chang, Chiao-Yun; Cheng, Pi-Ju; Li, Ming-Yang; Cheng, Chia-Chin; Chang, Shu-Wei; Li, Lance L J; Chu, Chih-Wei; Wei, Pei-Kuen; Shih, Min-Hsiung

    2018-05-09

    Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe 2 ) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe 2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

  5. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors.

    PubMed

    Roy, Tania; Tosun, Mahmut; Cao, Xi; Fang, Hui; Lien, Der-Hsien; Zhao, Peida; Chen, Yu-Ze; Chueh, Yu-Lun; Guo, Jing; Javey, Ali

    2015-02-24

    Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of ∼80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors.

  6. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Yankowitz, Matthew; Forsythe, Carlos; Rhodes, Daniel; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Zhu, Xiaoyang; Dean, Cory R.

    2018-05-01

    Monolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin-orbit coupling and lack of inversion symmetry1-15. Although recent experiments have also identified the critical role of carrier interactions within these materials11,15, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs)16,17 to perform LL spectroscopy in ML WSe2, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes. We find that the LLs differ notably between the two bands, and follow a unique sequence in the valence band (VB) that is dominated by strong Zeeman effects. The Zeeman splitting in the VB is several times higher than the cyclotron energy, far exceeding the predictions of a single-particle model and, moreover, tunes significantly with doping15. This implies exceptionally strong many-body interactions, and suggests that ML WSe2 can serve as a host for new correlated-electron phenomena.

  7. Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials

    NASA Astrophysics Data System (ADS)

    Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai

    2016-03-01

    We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.

  8. Near-infrared photodetectors utilizing MoS{sub 2}-based heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min Ji; Min, Jung Ki; Yi, Sum-Gyun

    2015-07-28

    Near-infrared photodetectors are developed using graphene/MoS{sub 2} and WSe{sub 2}/MoS{sub 2} vertical heterojunctions. These heterojunctions exhibit diode-rectifying behavior in the dark and enhanced photocurrent upon near-infrared irradiation. The photocurrent increases with increasing near-infrared power, leading to the photoresponsibility of 0.14 and 0.3 A W{sup −1} for the graphene/MoS{sub 2} and WSe{sub 2}/MoS{sub 2} heterojunctions, respectively, which are much higher than the photoresponsibility reported for a multilayer MoS{sub 2} phototransistor.

  9. Ab-initio study of superconducting state in intercalated MoSe2 and WSe2 bilayers

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Durajski, A. P.; Jarosik, M. W.

    2018-05-01

    A two-dimensional systems have attracted significant interest due to their outstanding physical, chemical and optoelectronic properties. This paper focuses on the detailed investigations of the electronic, phononic and superconducting properties of transition-metal dichalcogenide bilayers MSe 2 (M = Mo, W) intercalated by calcium atoms. The first-principles calculations show that (MoSe2)2Ca and (WSe2)2Ca systems exhibit metallic behavior and weak phonon-mediated superconductivity with low critical temperature of 0.51 and 0.30 K, respectively. These results confirm other theoretical predictions and suggest that the investigated materials cannot be a good candidates for a nanoscale superconductors.

  10. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk.

    PubMed

    Ayyash, Mutamed; Al-Nuaimi, Amna K; Al-Mahadin, Suheir; Liu, Shao-Quan

    2018-01-15

    This study aimed to investigate in vitro the health-promoting benefits (anticancer activity, α-amylase and α-glucosidase inhibition, angiotensin-converting-enzyme (ACE)-inhibition, antioxidant and proteolytic activity) of camel milk fermented with indigenous probiotic strains of Lactobacillus spp., compared with fermented bovine milk. The three camel milk probiotic strains Lb. reuteri-KX881777, Lb. plantarum-KX881772, Lb. plantarum-KX881779 and a control strain Lb. plantarum DSM2468 were employed to ferment camel and bovine milks separately. The proteolytic and antioxidant activity of water soluble extracts (WSEs) from all fermented camel milks were higher than those of fermented bovine milk. α-Amylase inhibition of WSEs were >34% in both milk types fermented with all strains during storage periods, except the WSE of camel milk fermented by Lp.K772. The highest ACE-inhibition of the WSE from camel milk fermented by Lr.K777 was >80%. The proliferations of Caco-2, MCF-7 and HELA cells were more inhibited when treated with the WSE of fermented camel milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  12. Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe2.

    PubMed

    Liu, Chunsen; Yan, Xiao; Wang, Jianlu; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-05-01

    Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe 2 and a 3D Al 2 O 3 /HfO 2 /Al 2 O 3 charge-trap stack are combined to form a charge-trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built-in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state-of-the-art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high-performance charge trap memory based on WSe 2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials.

    PubMed

    Shim, Jaewoo; Jo, Seo-Hyeon; Kim, Minwoo; Song, Young Jae; Kim, Jeehwan; Park, Jin-Hong

    2017-06-27

    Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (V TH s). Here, we report a finding: the photoinduced drain current in graphene/WSe 2 heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon. We also prove that such L-NDT phenomenon in specific bias ranges originates from a variable potential barrier at a graphene/WSe 2 junction due to a gate-controllable graphene electrode. This finding allows us to conceive graphene/WSe 2 -based MVL logic circuits by using the I D -V G characteristics with two distinctive V TH s. Based on this finding, we further demonstrate a light-triggered ternary inverter circuit with three stable logical states (ΔV out of each state <0.05 V). Our study offers the pathway to substantialize MVL systems.

  14. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P.

    2009-11-01

    Soil erosion by water (WSE) has become a relevant issue at the Mediterranean level. In particular, natural conditions and human impact have made the Calabria (southern Italy) particularly prone to intense WSE. The purpose of this investigation is to identify areas highly affected by WSE in Calabria by comparing the scenarios obtained by assuming control and preventive measures and actions, as well as actual conditions generated by forest fires, also in the presence of conditions of maximum rainfall erosion. Geographic Information System techniques have been adopted to treat data of reasonable spatial resolution obtained at a regional scale for application to the RUSLE model. This work is based on the comparison of such data with a basic scenario that has been defined by the present situation (present scenario). In this scenario: (i) R has been assessed by means of an experimental relation adjusted to Calabria on the basis of 5-min observations; (ii) K has been drawn from the soil map of Calabria including 160 soilscapes; (iii) LS has been estimated according to the RUSLE2 model by using (among other subfactors) a 40-m square cell DTM; (iv) C has been derived by processing the data inferred from the project Corine Land Cover, whose legend includes 35 different land uses on three levels; and (v) P has been hypothesized as equal to 1. For the remaining three hypothesized scenarios, the RUSLE factors have been adjusted according to experimental data and to data in the literature. In particular, forest areas subject to fire have been randomly generated as far as fire location, extension, structure, and intensity are concerned. The values obtained by the application of the RUSLE model have emphasized that land management by means of measures and actions for reducing WSE causes a notable reduction of the erosive rate decreasing from ~30 to 12.3 Mg ha - 1 y - 1 . On the other hand, variations induced by hypothetical wildfires in forests on 10% of the regional territory bring WSE over the whole region to values varying from 30 to 116 Mg ha - 1 y - 1 . This study can be offered to territorial planning authorities as an evaluation instrument as it highlights the merits and limitations of some territorial management actions. In fact, in Calabria no observations exist concerning the implications of these actions.

  15. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Lijie; Li, Min

    2018-07-01

    Single layer transition-metal dichalcogenides materials (MoS2, MoSe2, WS2 and WSe2) are investigated using the first-principles method with the emphasis on their responses to mechanical strains. All these materials display the direct band gap under a certain range of strains from compressive to tensile (stable range). We have found that this stable range is different for these materials. Through studying on their mechanical properties again using the first-principles approach, it is unveiled that this stable strain range is determined by the Young's modulus. More analysis on strains induced electronic band gap properties have also been conducted.

  16. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe_{2} Heterostructures.

    PubMed

    Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel

    2018-04-27

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  17. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures

    NASA Astrophysics Data System (ADS)

    Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel

    2018-04-01

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  18. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    PubMed

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  19. Thermoelectric transport coefficients in mono-layer MoS{sub 2} and WSe{sub 2}: Role of substrate, interface phonons, plasmon, and dynamic screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu

    2015-10-07

    The thermoelectric transport coefficients of electrons in two recently emerged transition metal di-chalcogenides (TMD), MoS{sub 2} and WSe{sub 2}, are calculated by solving Boltzmann transport equation using Rode's iterative technique in the diffusive transport regime and the coupled current (electrical and heat) equations. Scattering from remote phonons along with the hybridization of TMD plasmon with remote phonon modes and dynamic screening under linear polarization response are investigated in TMDs sitting on a dielectric environment. The transport coefficients are obtained for a varying range of temperature and doping density for three different types of substrates—SiO{sub 2}, Al{sub 2}O{sub 3}, and HfO{submore » 2}. The Seebeck co-efficient for MoS{sub 2} and WSe{sub 2} is found to be higher than 3D semiconductors even with diffusive transport. The electronic thermal conductivity is found to be low, however, the thermoelectric figure of merit is limited by the high phonon thermal conductivity. It is found that judicious selection of a dielectric environment based on temperature of operation and carrier density is crucial to optimize the thermoelectric performance of TMD materials.« less

  20. Voltage-controlled quantum light from an atomically thin semiconductor

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick

    2015-06-01

    Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

  1. Effects of Weight-shifting Exercise Combined with Transcutaneous Electrical Nerve Stimulation on Muscle Activity and Trunk Control in Patients with Stroke.

    PubMed

    Jung, Kyoung-Sim; Jung, Jin-Hwa; In, Tae-Sung; Cho, Hwi-Young

    2016-12-01

    This study investigated the effects of weight-shifting exercise (WSE) combined with transcutaneous electrical nerve stimulation (TENS), applied to the erector spinae and external oblique (EO) muscles, on muscle activity and trunk control in patients with hemiparetic stroke. Sixty patients with stroke were recruited to this study and randomly distributed into three treatment groups: (1) WSE + TENS, (2) WSE + placebo TENS, and (3) control. All participants underwent 30 sessions of training (30 minutes five times per week for 6 weeks) and received 1 hour of conventional physical therapy five times per week for 6 weeks. Muscle activity, maximum reaching distance and trunk impairment scale scores were assessed in all patients before and after the training. After training, the WSE + TENS group showed significant increase in the EO activity, maximum reaching distance and trunk impairment scale scores compared with the WSE + placebo TENS and control groups. These findings suggest that WSE with TENS applied to the erector spinae and EO muscles increased the trunk muscle activity and improved trunk control. Therefore, WSE with TENS could be a beneficial intervention in clinical settings for individuals with hemiparetic stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Interface exciton at lateral heterojunction of monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Ka Wai; Gong, Zhirui; Yu, Hongyi; Yao, Wang

    Heterostructures based on 2D transition metal dichalcogenides (TMDs) have attracted extensive research interest recently due to the appealing physical properties of TMDs and new geometries for forming heterostructures. One such heterostructure is the lateral heterojunctions seamlessly formed in a monolayer crystal between two different types of TMDs, e.g. WSe2 and MoSe2. Such heterojunction exhibits a type II band alignment, with electrons (holes) having lower energy on the MoSe2 (WSe2) region. Here we present the study of an interface exciton at the 1D lateral junction of monolayer TMDs. With the distance dependent screening, we find that the interface exciton can have strong binding even though the electron-hole separation is much larger compare to the 2D excitons in TMDs. Neutral excitons are studied using two different approaches: the solution based on a real-space tight binding model, and the perturbation expansion in a hydrogen-like basis in an effective mass model. We have also used the latter method to study charged excitons at a MoSe2-WSe2-MoSe2 nanoscale junction. The work is supported by the Research Grant Council of Hong Kong (HKU705513P, HKU9/CRF/13G), the Croucher Foundation, and the HKU OYRA.

  3. Bond Dissociation Energies of Tungsten Molecules: WC, WSi, WS, WSe, and WCl.

    PubMed

    Sevy, Andrew; Huffaker, Robert F; Morse, Michael D

    2017-12-14

    Resonant two-photon ionization spectroscopy was used to locate predissociation thresholds in WC, WSi, WS, WSe, and WCl, allowing bond dissociation energies to be measured for these species. Because of the high degree of vibronic congestion in the observed spectra, it is thought that the molecules dissociate as soon as the lowest separated atom limit is exceeded. From the observed predissociation thresholds, dissociation energies are assigned as D 0 (WC) = 5.289(8) eV, D 0 (WSi) = 3.103(10) eV, D 0 (WS) = 4.935(3) eV, D 0 (WSe) = 4.333(6) eV, and D 0 (WCl) = 3.818(6) eV. These results are combined with other data to obtain the ionization energy IE(WC) = 8.39(9) eV and the anionic bond dissociation energies of D 0 (W-C - ) = 6.181(17) eV, D 0 (W - -C) = 7.363(19) eV, D 0 (W-Si - ) ≤ 3.44(4) eV, and D 0 (W - -Si) ≤ 4.01(4) eV. Combination of the D 0 (WX) values with atomic enthalpies of formation also provides Δ f H 0K ° values for the gaseous WX molecules. Computational results are also provided, which shed some light on the electronic structure of these molecules.

  4. Hybrid WSe2-In2O3 Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents.

    PubMed

    Guo, Nan; Gong, Fan; Liu, Junku; Jia, Yi; Zhao, Shaofan; Liao, Lei; Su, Meng; Fan, Zhiyong; Chen, Xiaoshuang; Lu, Wei; Xiao, Lin; Hu, Weida

    2017-10-04

    Photodetectors based on low-dimensional materials have attracted tremendous attention because of their high sensitivity and compatibility with conventional semiconductor technology. However, up until now, developing low-dimensional phototransistors with high responsivity and low dark currents over broad-band spectra still remains a great challenge because of the trade-offs in the potential architectures. In this work, we report a hybrid phototransistor consisting of a single In 2 O 3 nanowire as the channel material and a multilayer WSe 2 nanosheet as the decorating sensitizer for photodetection. Our devices show high responsivities of 7.5 × 10 5 and 3.5 × 10 4 A W -1 and ultrahigh detectivities of 4.17 × 10 17 and 1.95 × 10 16 jones at the wavelengths of 637 and 940 nm, respectively. The superior detectivity of the hybrid architecture arises from the extremely low dark currents and the enhanced photogating effect in the depletion regime by the unique design of energy band alignment of the channel and sensitizer materials. Moreover, the visible to near-infrared absorption properties of the multilayer WSe 2 nanosheet favor a broad-band spectral response for the devices. Our results pave the way for developing ultrahigh-sensitivity photodetectors based on low-dimensional hybrid architectures.

  5. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  6. Defect-mediated phonon dynamics in TaS2 and WSe2

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2017-01-01

    We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630

  7. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE PAGES

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin; ...

    2017-07-26

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  8. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    PubMed

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  9. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes

    PubMed Central

    2015-01-01

    The p–n diodes represent the most fundamental device building blocks for diverse optoelectronic functions, but are difficult to achieve in atomically thin transition metal dichalcogenides (TMDs) due to the challenges in selectively doping them into p- or n-type semiconductors. Here, we demonstrate that an atomically thin and sharp heterojunction p–n diode can be created by vertically stacking p-type monolayer tungsten diselenide (WSe2) and n-type few-layer molybdenum disulfide (MoS2). Electrical measurements of the vertically staked WSe2/MoS2 heterojunctions reveal excellent current rectification behavior with an ideality factor of 1.2. Photocurrent mapping shows rapid photoresponse over the entire overlapping region with a highest external quantum efficiency up to 12%. Electroluminescence studies show prominent band edge excitonic emission and strikingly enhanced hot-electron luminescence. A systematic investigation shows distinct layer-number dependent emission characteristics and reveals important insight about the origin of hot-electron luminescence and the nature of electron–orbital interaction in TMDs. We believe that these atomically thin heterojunction p–n diodes represent an interesting system for probing the fundamental electro-optical properties in TMDs and can open up a new pathway to novel optoelectronic devices such as atomically thin photodetectors, photovoltaics, as well as spin- and valley-polarized light emitting diodes, on-chip lasers. PMID:25157588

  10. Capacitance-voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae

    2018-02-01

    Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.

  11. Carbon-Nanotube-Confined Vertical Heterostructures with Asymmetric Contacts.

    PubMed

    Zhang, Jin; Zhang, Kenan; Xia, Bingyu; Wei, Yang; Li, Dongqi; Zhang, Ke; Zhang, Zhixing; Wu, Yang; Liu, Peng; Duan, Xidong; Xu, Yong; Duan, Wenhui; Fan, Shoushan; Jiang, Kaili

    2017-10-01

    Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon-nanotube-confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single-walled carbon nanotube (SWCNT) and a metal electrode. By using WSe 2 and MoS 2 , the CCVH can be made into p-type and n-type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe 2 CCVH from unipolar to bipolar, and the transition of WSe 2 /MoS 2 from p-n junction to n-n junction under proper source-drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano-optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intense conductivity suppression by edge defects in zigzag MoS2 and WSe2 nanoribbons: a density functional based tight-binding study.

    PubMed

    Silva, F W N; Costa, A L M T; Liu, Lei; Barros, E B

    2016-11-04

    The effects of edge vacancies on the electron transport properties of zigzag MoS2/WSe2 nanoribbons are studied using a density functional theory (DFT)-based tight-binding model with a sp(3)d(5) basis set for the electronic structure calculation and applying the Landauer-Büttiker approach for the electronic transport. Our results show that the presence of a single edge vacancy, with a missing MoS2/WSe2 triplet, is enough to suppress the conductance of the system by almost one half for most energies around the Fermi level. Furthermore, the presence of other single defects along the same edge has little effect on the overall conductance, indicating that the conductance of that particular edge has been strongly suppressed by the first defect. The presence of another defect on the opposite edge further suppresses the quantum conductance, independently of the relative position between the two defects in opposite edges. The introduction of other defects cause the suppression to be energy dependent, leading to conductance peaks which depend on the geometry of the edges. The strong conductance dependence on the presence of edge defects is corroborated by DFT calculations using SIESTA, which show that the electronic bands near the Fermi energy are strongly localized at the edge.

  13. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less

  14. Integrated Energy Aerogel of N,S-rGO/WSe2/NiFe-LDH for Both Energy Conversion and Storage.

    PubMed

    Xu, Xiaowei; Chu, Hang; Zhang, Zhuqing; Dong, Pei; Baines, Robert; Ajayan, Pulickel M; Shen, Jianfeng; Ye, Mingxin

    2017-09-27

    High-performance active materials for energy-storage and energy-conversion applications require a novel class of electrodes: ones with a structure conducive to conductivity, large specific surface area, high porosity, and mechanical robustness. Herein, we report the design and fabrication of a new ternary hybrid aerogel. The process entails an in situ assembly of 2D WSe 2 nanosheets and NiFe-LDH nanosheets on a 3D N,S-codoped graphene framework, accomplished by a facile hydrothermal method and electrostatic self-assembly technology. The obtained nanocomposite architecture maximizes synergistic effects among its three 2D-layer components. To assess the performance of this hybrid material, we deployed it as an advanced electrode in overall water splitting and in a supercapacitor. Results in both scenarios attest to its excellent electrochemical properties. Specifically, serving as a catalyst in an oxygen evolution reaction, our nanocomposite requires overpotentials of 1.48 and 1.59 V to obtain current densities of 10 and 100 mA cm -2 , respectively. The hybrid material also efficiently electrocatalyzes hydrogen evolution reactions in base solution, necessitating overpotentials of -50 and -237 mV for current densities of 1.0 and 100 mA cm -2 , respectively. The 3D hybrid, when applied to a symmetric supercapacitor device, achieves 125.6 F g -1 capacitance at 1 A g -1 current density. In summary, our study elucidates a new strategy to maximize efficiency via synergetic effects that is likely applicable to other 2D materials.

  15. Spin depolarization dynamics of WSe2 bilayer

    NASA Astrophysics Data System (ADS)

    Niu, Binghui; Ye, Jialiang; Li, Ting; Li, Ying; Zhang, Xinhui

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11474276) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB0603).

  16. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    PubMed

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-08

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that exceed the frequencies imposed by the underlying substrates. These results should provide important insights in the design and understanding of electronic and optoelectronic devices based on quantum confined atomically thin 2D lateral heterostructures.

  17. Nanobubble induced formation of quantum emitters in monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan

    2017-06-01

    The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

  18. Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe2 Monolayers

    NASA Astrophysics Data System (ADS)

    Dey, P.; Yang, Luyi; Robert, C.; Wang, G.; Urbaszek, B.; Marie, X.; Crooker, S. A.

    2017-09-01

    Using time-resolved Kerr rotation, we measure the spin-valley dynamics of resident electrons and holes in single charge-tunable monolayers of the archetypal transition-metal dichalcogenide (TMD) semiconductor WSe2 . In the n -type regime, we observe long (˜130 ns ) polarization relaxation of electrons that is sensitive to in-plane magnetic fields By, indicating spin relaxation. In marked contrast, extraordinarily long (˜2 μ s ) polarization relaxation of holes is revealed in the p -type regime, which is unaffected by By, directly confirming long-standing expectations of strong spin-valley locking of holes in the valence band of monolayer TMDs. Supported by continuous-wave Kerr spectroscopy and Hanle measurements, these studies provide a unified picture of carrier polarization dynamics in monolayer TMDs, which can guide design principles for future valleytronic devices.

  19. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Robert, C.; Courtade, E.; Manca, M.; Martinelli, L.; Taniguchi, T.; Watanabe, K.; Amand, T.; Rowe, A. C. H.; Paget, D.; Urbaszek, B.; Marie, X.

    2018-04-01

    We have combined spatially resolved steady-state micro-photoluminescence with time-resolved photoluminescence to investigate the exciton diffusion in a WSe2 monolayer encapsulated with hexagonal boron nitride. At 300 K, we extract an exciton diffusion length of LX = 0.36 ± 0.02 μm and an exciton diffusion coefficient of DX = 14.5 ± 2 cm2/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species: bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of LXD=1.5 ±0.02 μ m.

  20. Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor.

    PubMed

    Yan, Xiao; Liu, Chunsen; Li, Chao; Bao, Wenzhong; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2017-09-01

    The burgeoning 2D semiconductors can maintain excellent device electrostatics with an ultranarrow channel length and can realize tunneling by electrostatic gating to avoid deprivation of band-edge sharpness resulting from chemical doping, which make them perfect candidates for tunneling field effect transistors. Here this study presents SnSe 2 /WSe 2 van der Waals heterostructures with SnSe 2 as the p-layer and WSe 2 as the n-layer. The energy band alignment changes from a staggered gap band offset (type-II) to a broken gap (type-III) when changing the negative back-gate voltage to positive, resulting in the device operating as a rectifier diode (rectification ratio ~10 4 ) or an n-type tunneling field effect transistor, respectively. A steep average subthreshold swing of 80 mV dec -1 for exceeding two decades of drain current with a minimum of 37 mV dec -1 at room temperature is observed, and an evident trend toward negative differential resistance is also accomplished for the tunneling field effect transistor due to the high gate efficiency of 0.36 for single gate devices. The I ON /I OFF ratio of the transfer characteristics is >10 6 , accompanying a high ON current >10 -5 A. This work presents original phenomena of multilayer 2D van der Waals heterostructures which can be applied to low-power consumption devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt.

    PubMed

    Aloğlu, H Sanlıdere; Oner, Z

    2011-11-01

    In this study, physicochemical and microbiological properties of traditional and commercial yogurt samples were determined during 4 wk of storage. Proteolytic activity, which occurs during the storage period of yogurt samples, was also determined. Peptide fractions obtained from yogurts were investigated and the effect of proteolysis on peptide release during storage was determined. The antioxidant activities of peptides released from yogurt water-soluble extracts (WSE) and from HPLC fractions were determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The antioxidant activity of WSE from traditional yogurt was greater than that of WSE from commercial yogurts. In analysis by the ABTS method, mean values increased from 7.697 to 8.739 mM Trolox/g in commercial yogurts, and from 10.115 to 13.182 mM Trolox/g in traditional yogurts during storage. Antioxidant activities of peptides released from HPLC fractions of selected yogurt samples increased 10 to 200 times. In all yogurt samples, the greatest antioxidant activity was shown in the F2 fraction. After further fractionation of yogurt samples, the fractions coded as F2.2, F2.3, F4.3, and F4.4 had the highest antioxidant activity values. Total antioxidant activity of yogurts was low but after purification of peptides by fractionation in HPLC, peptide fractions with high antioxidant activity were obtained. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The search for new ultrathin materials as the "new silicon" has begun. In this dissertation, I examine (1) the surface structure, including the growth, the crystal quality, and thin film surface corrugation of a monolayer sample and a few layers of MoS2 and WSe2, and (2) their electronic structure. The characteristics of these electronic systems depend intimately on the morphology of the surfaces they inhabit, and their interactions with the substrate or within layers. These physical properties will be addressed in each chapter. This thesis has dedicated to the characterization of mono- and a few layers of MoS2 and WSe2 that uses surface-sensitive probes such as low-energy electron microscopy and diffraction (LEEM and LEED). Prior to our studies, the characterization of monolayer MoS2 and WSe2 has been generally limited to optical and transport probes. Furthermore, the heavy use of thick silicon oxide layer as the supporting substrate has been important in order to allow optical microscopic characterization of the 2D material. Hence, to the best of our knowledge, this has prohibited studies of this material on other surfaces, and it has precluded the discovery of potentially rich interface interactions that may exist between MoS 2 and its supporting substrate. Thus, in our study, we use a so-called SPELEEM system (Spectroscopic Photo-Emission and Low Energy Electron Microscopy) to address these imaging modalities: (1) real-space microscopy, which would allow locating of monolayer MoS2 samples, (2) spatially-resolved low-energy diffraction which would allow confirmation of the crystalline quality and domain orientation of MoS2 samples, and, (3) spatially-resolved spectroscopy, which would allow electronic structure mapping of MoS2 samples. Moreover, we have developed a preparation procedure for samples that yield, a surface-probe ready, ultra-clean, and can be transferred on an arbitrary substrate. To fully understand the physics in MoS2 such as direct-to-indirect band gap transition, hole mobility, strain, or large spin-orbit splitting, we investigate our sample using micro-probe angle-resolved photoemission (micro-ARPES), which is a powerful tool to directly measure the electronic structure. We find that the valence bands of monolayer MoS2, particularly the low-binding-energy bands, are distinctly different from those of bulk MoS 2 in that the valence band maximum (VBM) of a monolayer is located at K¯ of the first Brillouin zone (BZ), rather than at Gamma, as is the case in bilayer and thicker MoS2 crystals. This result serves as a direct evidence, if complemented with the photoluminescence studies of conduction bands, which shows the direct-to-indirect transition from mono- to multi-layer MoS2. We also confirmed this same effect in WSe2 in our later studies. Also, by carefully studying the uppermost valence band (UVB) of both exfoliated and CVD-grown monolayer MoS2, we found a compression in energy in comparison with the calculated band, an effect, which were also observed in suspended sample with minimum-to-none substrate interaction. We tentatively attribute it to an intrinsic effect of monolayer MoS2 owning to lattice relaxation. The degree of compression in CVD-grown MoS2 is larger than that in exfoliated monolayer MoS 2, likely due to defects, doping, or stress. Furthermore, we find that the uppermost valence band near ?¯ of monolayer MoS2 is less dispersive than that of the bulk, which leads to a striking increase in the hole effective-mass and, hence, the reduced carrier mobility of the monolayer compared to bulk MoS2. Beyond monolayer MoS2, we have studied the evolution of bandgap as a function of interlayer twist angles in a bilayer MoS2 system. Our micro-ARPES measurements over the whole surface-Brillouin zone reveal the Gamma state is, indeed, the highest lying occupied state for all twist angles, affirming the indirect bandgap designation for bilayer MoS2, irrespective of twist angle. We directly quantify the energy separation between the high symmetry points Gamma and K¯ of the highest occupied states; this energy separation is predicted to be directly proportional to the interlayer separation, which is a function of the twist angle. We also confirm that this trend is a result of the energy shifting of the top-most occupied state at Gamma, which is predicted by DFT calculations. Finally, we also report on the variation of the hole effective mass at Gamma and K¯ with respect to twist angle and compare it with theory. Our study provides a direct measurement and serves as an example for how the interlayer coupling can affect the band structure and electron transitions, which is crucial in designing TMDs devices. I briefly sum up our angle-resolve two-photon photoemission (2PPE) studies on self-assembly molecules, organic molecules, and graphene on highly-crystalline metal systems, and our investigation of their interfacial charge transfer/trapping, image potential states, and coverage-dependent dipole moments, as well as their work functions by using a tunable ultra-fast femtosecond laser. (Abstract shortened by UMI.).

  3. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  4. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  5. Materials Data on MoWSeS3 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on TeMoWSe3 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Te3MoWSe (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Band-bending induced by charged defects and edges of atomically thin transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Le Quang, T.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.

    2018-07-01

    We report scanning tunneling microscopy/spectroscopy (STM/STS) investigations of the band-bending in the vicinity of charged point defects and edges of monolayer MoSe2 and mono- and trilayer WSe2 films deposited on graphitized silicon carbide substrates. By tracing the spatial evolution of the structures of the STS spectra, we evaluate the magnitude and the extent of the band-bending to be equal to few hundreds milielectronvolts and several nanometres, respectively. With the aid of a simple electrostatic model, we show that the spatial variation of the Coulomb potential close to the film edges can be well reproduced by taking into account the metallic screening by graphene. Additionally, the analysis of our data for trilayer WSe2 provides reasonable estimations of its dielectric constant () and of the magnitude of the charge trapped at the defect site (Q  =  +e).

  9. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Utama, M. Iqbal Bakti; Regan, Emma C.; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-01

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS2)–tungsten diselenide (WSe2) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.

  10. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures.

    PubMed

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel

    2017-06-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  11. Materials Data on Te2Mo3WSe6 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on TeMoWSe2S (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Te4Mo3WSe4 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Te2MoWSeS (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Te6Mo3WSe2 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Te2MoWSe2 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Te4Mo3WSe4 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Manipulation of light via subwavelength nanostructures

    NASA Astrophysics Data System (ADS)

    Yinghong, Gu

    Subwavelength nanostructures have exhibited different and controllable optical characteristics from their original material, leading a way to artificial metamaterials and metasurfaces. These nanostructures interact with light with surface plasmon resonances, cavity and waveguide modes, scattering and diffractions and etc., so they can realize the manipulation of light, which has attracted enduring and fanatic research interest, ranging from visible light, infrared light, THz to microwaves. Nanostructures, which are welldesigned and patterned to control and engineer the resonances, have realized and improved the performance of numerous optical applications such as color printing, perfect absorption, waveplates, planar lens, holograms, cloaking, optical trapping and sensing. This thesis has presents several works on manipulating light with subwavelength nanostructures, which can be generalized into two main parts. In the first part our works are manipulating far-field characteristics of light by meta-surfaces, including the high resolution color printing and imaging with spectra manipulation, and quarter wave plate (QWP) with the phase and polarization manipulation. For the color generation applications, we have presented a comprehensive literature review on the recent developments of plasmonic colors, and then we reported our ultra-high resolution nonplasmonic color printing with ultra-narrow Si fin nanostructures and an efficient TMM calculation. For the quarter wave plate, we present a series works of plasmonic QWPs including active hybrid QWPs working at multi-wavelength in visible/near-infrared light, and in THz range based on similar mechanism. The other main part is the near-field manipulation of light by nanostructures including two aspects. One is the direct excited dark modes, and the other is the photoluminescence (PL) enhancement by nanostructures. We have proposed a new mechanism to directly excite dark modes by using an electrical shorting approach with a continuous metal cover on a periodic HSQ pillar template without any asymmetry in geometry, environment and incidence. And we will also present a cooperative work on giant PL enhancement of WSe2-Au plasmonic hybrid nanostructures. In simulation, we have explained how a squared trenched Au nanostructure with gap plasmon enhances the PL of monolayer WSe2 on top of it, in both excitation process and emission process.

  19. Materials Data on Te2Mo3W(Se2S)2 (SG:156) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2017-05-25

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    PubMed

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  1. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures.

    PubMed

    Jin, Chenhao; Kim, Jonghwan; Utama, M Iqbal Bakti; Regan, Emma C; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-25

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )-tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Magnetic brightening and control of dark excitons in monolayer WSe2.

    PubMed

    Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F

    2017-09-01

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

  3. Magnetic brightening and control of dark excitons in monolayer WSe 2

    DOE PAGES

    Zhang, Xiao -Xiao; Cao, Ting; Lu, Zhengguang; ...

    2017-06-26

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light–matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitonsmore » are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. Furthermore, these studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.« less

  4. Observation of long-lived interlayer excitons in monolayer MoSe 2–WSe 2 heterostructures

    DOE PAGES

    Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.; ...

    2015-02-24

    Van der Waals bound heterostructures constructed with two-dimensional materials, such as graphene, boron nitride and transition metal dichalcogenides, have sparked wide interest in both device physics and technologies at the two-dimensional limit. One highly coveted heterostructure is that of differing monolayer transition metal dichalcogenides with type-II band alignment, with bound electrons and holes localized in individual monolayers, that is, interlayer excitons. Here, we report the observation of interlayer excitons in monolayer MoSe 2–WSe 2 heterostructures by photoluminescence and photoluminescence excitation spectroscopy. The energy and luminescence intensity are highly tunable by an applied vertical gate voltage. Moreover, we measure an interlayermore » exciton lifetime of ~1.8 ns, an order of magnitude longer than intralayer excitons in monolayers. Ultimately, our work demonstrates optical pumping of interlayer electric polarization, which may provoke further exploration of interlayer exciton condensation, as well as new applications in two-dimensional lasers, light-emitting diodes and photovoltaic devices.« less

  5. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers

    PubMed Central

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-Yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice. PMID:28070558

  6. Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, Santiago; Rojas, Teresa Cristina; Brizuela, Marta; Sánchez-López, Juan Carlos

    2017-12-01

    Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30-40% relative humidity, RH) and dry nitrogen (RH<7%) environments using the same tribometer and testing conditions. A nanostructural study using advanced transmission electron microscopy of the initial coatings and examination of the counterfaces after the friction test using different analytical tools helped to elucidate what governs the tribological behavior for each type of environment. This allowed conclusions to be made about the influence of the coating microstructure and composition on the tribological response. The best performance obtained with a WSex film (specific wear rate of 2 × 10-8 mm3 N-1m-1 and a friction coefficient of 0.03-0.05) was compared with that of the well-established MoS2 lubricant material.

  7. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer

    PubMed Central

    Lundt, Nils; Klembt, Sebastian; Cherotchenko, Evgeniia; Betzold, Simon; Iff, Oliver; Nalitov, Anton V.; Klaas, Martin; Dietrich, Christof P.; Kavokin, Alexey V.; Höfling, Sven; Schneider, Christian

    2016-01-01

    Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. PMID:27796288

  8. Dark trions and biexcitons in WS2 and WSe2 made bright by e-e scattering

    NASA Astrophysics Data System (ADS)

    Danovich, Mark; Zólyomi, Viktor; Fal'Ko, Vladimir I.

    2017-04-01

    The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and K’ valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the constituent electron and hole. One might similarly assume that the ground states of charged excitons and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K‧) electron-electron scattering mixes bright and dark states of these complexes, and estimate the radiative lifetimes in the ground states of these “semi-dark” trions and biexcitons to be ~10 ps, and analyse how these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 monolayers.

  9. Band-edges and band-gap in few-layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Bhunia, Hrishikesh; Pal, Amlan J.

    2018-05-01

    We have considered liquid-exfoliated transition metal dichalcogenides (WS2, WSe2, MoS2, and MoSe2) and studied their band-edges and band-gap through scanning tunneling spectroscopy (STS) and density of states. A monolayer, bilayer (2L), and trilayer (3L) of each of the layered materials were characterized to derive the energies. Upon an increase in the number of layers, both the band-edges were found to shift towards the Fermi energy. The results from the exfoliated nanosheets have been compared with reported STS studies of MoS2 and WSe2 formed through chemical vapor deposition or molecular beam epitaxy methods; an uncontrolled lattice strain existed in such 2L and 3L nanoflakes due to mismatch in stacking-patterns between the monolayers affecting their energies. In the present work, the layers formed through the liquid-exfoliation process retained their interlayer coupling or stacking-sequence prevalent to the bulk and hence allowed determination of band-energies in these strain-free two-dimensional materials.

  10. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    NASA Astrophysics Data System (ADS)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  11. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion

    PubMed Central

    Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X.; Wang, G.; Urbaszek, B.

    2017-01-01

    Excitons, Coulomb bound electron–hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal. PMID:28367962

  12. Femtosecond to picosecond transient effects in WSe 2 observed by pump-probe angle-resolved photoemission spectroscopy.

    PubMed

    Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao

    2017-11-22

    Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.

  13. Marrying Excitons and Plasmons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Van Tuan, Dinh; Scharf, Benedikt; Žutić, Igor; Dery, Hanan

    2017-10-01

    Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe2 and WS2 but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.

  14. Synthesis and Characterization of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  15. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    NASA Astrophysics Data System (ADS)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  16. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    PubMed Central

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-01-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363

  17. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    PubMed

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  18. Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2

    NASA Astrophysics Data System (ADS)

    Molina-Sánchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    2017-08-01

    In single-layer WSe$_2$, a paradigmatic semiconducting transition metal dichalcogenide, a circularly polarized laser field can selectively excite electronic transitions in one of the inequivalent $K^{\\pm}$ valleys. Such selective valley population corresponds to a pseudospin polarization. This can be used as a degree of freedom in a valleytronic device provided that the time scale for its depolarization is sufficiently large. Yet, the mechanism behind the valley depolarization still remains heavily debated. Recent time-dependent Kerr experiments have provided an accurate way to visualize the valley dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized pump pulse. We present here a clear, accurate and parameter-free description of the valley dynamics. By using an atomistic, ab initio, approach we fully disclose the elemental mechanisms that dictate the depolarization effects. Our results are in excellent agreement with recent time-dependent Kerr experiments. We explain the Kerr dynamics and its temperature dependence in terms of electron-phonon mediated processes that induce spin-flip inter-valley transitions.

  19. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  20. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    PubMed

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  1. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.

    PubMed

    Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2016-05-11

    Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.

  2. In situ degradation studies of two-dimensional WSe₂-graphene heterostructures.

    PubMed

    Wang, B; Eichfield, S M; Wang, D; Robinson, J A; Haque, M A

    2015-09-14

    Heterostructures of two-dimensional materials can be vulnerable to thermal degradation due to structural and interfacial defects as well as thermal expansion mismatch, yet a systematic study does not exist in the literature. In this study, we investigate the degradation of freestanding WSe2-graphene heterostructures due to heat and charge flow by performing in situ experiments inside a transmission electron microscope. Experimental results show that purely thermal loading requires higher temperatures (>850 °C), about 150 °C higher than that under combined electrical and thermal loading. In both cases, selenium is the first element to decompose and migration of silicon atoms from the test structure to the freestanding specimen initiates rapid degradation through the formation of tungsten disilicide and silicon carbide. The role of the current flow is to enhance the migration of silicon from the sample holder and to knock-out the selenium atoms. The findings of this study provide fundamental insights into the degradation of WSe2-graphene heterostructures and inspire their application in electronics for use in harsh environments.

  3. Strain-engineered growth of two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  4. Strain-engineered growth of two-dimensional materials

    DOE PAGES

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; ...

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  5. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-02-10

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.

  6. Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings

    PubMed Central

    Domínguez-Meister, Santiago; Rojas, Teresa Cristina; Brizuela, Marta; Sánchez-López, Juan Carlos

    2017-01-01

    Abstract Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30–40% relative humidity, RH) and dry nitrogen (RH<7%) environments using the same tribometer and testing conditions. A nanostructural study using advanced transmission electron microscopy of the initial coatings and examination of the counterfaces after the friction test using different analytical tools helped to elucidate what governs the tribological behavior for each type of environment. This allowed conclusions to be made about the influence of the coating microstructure and composition on the tribological response. The best performance obtained with a WSex film (specific wear rate of 2 × 10−8 mm3 N–1m–1 and a friction coefficient of 0.03–0.05) was compared with that of the well-established MoS2 lubricant material. PMID:28458736

  7. Challenges Associated with Estimating Utility in Wet Age-Related Macular Degeneration: A Novel Regression Analysis to Capture the Bilateral Nature of the Disease.

    PubMed

    Hodgson, Robert; Reason, Timothy; Trueman, David; Wickstead, Rose; Kusel, Jeanette; Jasilek, Adam; Claxton, Lindsay; Taylor, Matthew; Pulikottil-Jacob, Ruth

    2017-10-01

    The estimation of utility values for the economic evaluation of therapies for wet age-related macular degeneration (AMD) is a particular challenge. Previous economic models in wet AMD have been criticized for failing to capture the bilateral nature of wet AMD by modelling visual acuity (VA) and utility values associated with the better-seeing eye only. Here we present a de novo regression analysis using generalized estimating equations (GEE) applied to a previous dataset of time trade-off (TTO)-derived utility values from a sample of the UK population that wore contact lenses to simulate visual deterioration in wet AMD. This analysis allows utility values to be estimated as a function of VA in both the better-seeing eye (BSE) and worse-seeing eye (WSE). VAs in both the BSE and WSE were found to be statistically significant (p < 0.05) when regressed separately. When included without an interaction term, only the coefficient for VA in the BSE was significant (p = 0.04), but when an interaction term between VA in the BSE and WSE was included, only the constant term (mean TTO utility value) was significant, potentially a result of the collinearity between the VA of the two eyes. The lack of both formal model fit statistics from the GEE approach and theoretical knowledge to support the superiority of one model over another make it difficult to select the best model. Limitations of this analysis arise from the potential influence of collinearity between the VA of both eyes, and the use of contact lenses to reflect VA states to obtain the original dataset. Whilst further research is required to elicit more accurate utility values for wet AMD, this novel regression analysis provides a possible source of utility values to allow future economic models to capture the quality of life impact of changes in VA in both eyes. Novartis Pharmaceuticals UK Limited.

  8. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2

    NASA Astrophysics Data System (ADS)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R.

    2016-06-01

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

  9. Item response modeling: A psychometric assessment of the children's fruit, vegetable, water, and physical activity self-efficacy scales among Chinese children

    USDA-ARS?s Scientific Manuscript database

    This study aimed to evaluate the psychometric properties of four self-efficacy scales (i.e., self-efficacy for fruit (FSE), vegetable (VSE), and water (WSE) intakes, and physical activity (PASE)) and to investigate their differences in item functioning across sex, age, and body weight status groups ...

  10. TWIRL: Tactical Warfare in the ROSS Language.

    DTIC Science & Technology

    1984-10-01

    outputs of sponsored reserch for gee distribution. Publications of The Rand Corporation do not nece. * surily reflect the opinions or policies of the...I.I- V%.. CONTENTS p PREFACE ....................................................... iii SUM M ARY...objets involved in a battle. For wse in analysis or training. this facility would enable a human to play an active. decPisknmaking role during a

  11. Using Selective Drainage Methods to Extract Continuous Surface Flow from 1-Meter Lidar-Derived Digital Elevation Data

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2010-01-01

    Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.

  12. Differential in surface elevation change across mangrove forests in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Fu, Haifeng; Wang, Wenqing; Ma, Wei; Wang, Mao

    2018-07-01

    A better understanding of surface elevation changes in different mangrove forests would improve our predictions of sea-level rise impacts, not only upon mangrove species distributions in the intertidal zone, but also on the functioning of these wetlands. Here, a two-year (2015-2017) dataset derived from 18 RSET-MH (rod surface elevation table-marker horizon) stations at Dongzhaigang Bay, Hainan, China, was analyzed to investigate how surface elevation changes differed across mangrove species zones. The current SET data indicated a rather high rate (9.6 mm y-1, on average) of surface elevation gain that was mostly consistent with that (8.1 mm y-1, on average) inferred from either the 137Cs or 210Pb dating of sediment cores. In addition, these surface elevation changes were sensitive to elevation in the intertidal zone and differed significantly between the two study sites (Sanjiang and Houpai). Mangrove species inhabiting the lower intertidal zone tended to experience greater surface elevation change at Sanjiang, which agrees with the general view that sedimentation and elevation gains are driven by elevation in the intertidal zone (i.e., greater when positioned lower in the intertidal profile). However, at Houpai, both surface elevation change and surface accretion showed the opposite trend (i.e., greater when positioned higher in the intertidal profile). This study's results indicate that the pattern of surface elevation changes across the intertidal profile maybe inconsistent due to intricate biophysical controls. Therefore, instead of using a constant rate, models should presume a topography that evolves at differing rates of surface elevation change in different species zones across the intertidal profile when predicting the impacts of sea-level rise on mangrove distributions.

  13. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  14. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  15. Dielectric function, critical points, and Rydberg exciton series of WSe2 monolayer.

    PubMed

    Diware, M S; Ganorkar, S P; Park, K; Chegal, W; Cho, H M; Cho, Y J; Kim, Y D; Kim, H

    2018-06-13

    The complex dielectric function ([Formula: see text]) of WSe 2 monolayer grown by atomic layer deposition is investigated using spectroscopic ellipsometry. Band structure parameters are obtained by standard line-shape analysis of the second-energy-derivative of [Formula: see text] spectra. The fundamental band gap is observed at 2.26 eV, corresponds to transition between valence band (VB) maximum at the K point and conduction band (CB) minimum at Q point in the Brillouin zone (BZ). Two strong so-called A and B excitonic peaks in [Formula: see text] spectra originate from vertical transitions from spin-orbit split (0.43 eV) VB to CB at K point of the BZ. Binding energies of A and B exactions are 0.71 and 0.28 eV, respectively. Well resolved five excited excitons states has been detected within the spectral region between A and B. Energy profile of the Rydberg series shows significant deviation from the hydrogenic behavior, discussed in connection with the 2D hydrogen model. Results presented here will improve our understanding about the optical response of 2D materials and will help to design better optoelectronic applications and validate theoretical considerations.

  16. Dielectric function, critical points, and Rydberg exciton series of WSe2 monolayer

    NASA Astrophysics Data System (ADS)

    Diware, M. S.; Ganorkar, S. P.; Park, K.; Chegal, W.; Cho, H. M.; Cho, Y. J.; Kim, Y. D.; Kim, H.

    2018-06-01

    The complex dielectric function () of WSe2 monolayer grown by atomic layer deposition is investigated using spectroscopic ellipsometry. Band structure parameters are obtained by standard line-shape analysis of the second-energy-derivative of spectra. The fundamental band gap is observed at 2.26 eV, corresponds to transition between valence band (VB) maximum at the K point and conduction band (CB) minimum at Q point in the Brillouin zone (BZ). Two strong so-called A and B excitonic peaks in spectra originate from vertical transitions from spin–orbit split (0.43 eV) VB to CB at K point of the BZ. Binding energies of A and B exactions are 0.71 and 0.28 eV, respectively. Well resolved five excited excitons states has been detected within the spectral region between A and B. Energy profile of the Rydberg series shows significant deviation from the hydrogenic behavior, discussed in connection with the 2D hydrogen model. Results presented here will improve our understanding about the optical response of 2D materials and will help to design better optoelectronic applications and validate theoretical considerations.

  17. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors.

    PubMed

    Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon

    2015-01-01

    For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.

  18. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  19. Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2

    NASA Astrophysics Data System (ADS)

    Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung

    2017-06-01

    The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.

  20. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  1. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    PubMed Central

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  2. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  3. Ice elevations and surface change on the Malaspina Glacier, Alaska

    USGS Publications Warehouse

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.

  4. User’s Guide to Southeast Asia Combat Data

    DTIC Science & Technology

    1976-06-01

    North latitude Binary coded decimal Bomb damage assessment Battle Damage Assessment and Reporting Team Brigade Basic encyclopedia A University of...and movement routes Bomb wing CALCOMP CANDLESTICK CAP CAP CAS CAS CAVD CBU , CBS California Computer Products, Inc. Call sign...Special Studies Group (a high-level Washington committee) WAC WBLC WIA WOLF WSE3 WWDMS WWMCCS W X World Aeronautical Chart Waterborne logistic

  5. Vision-related quality of life: 12-month aflibercept treatment in patients with treatment-resistant neovascular age-related macular degeneration.

    PubMed

    Zhu, Meidong; Wijeyakumar, Wijeyanthy; Syed, Adil R; Joachim, Nichole; Hong, Thomas; Broadhead, Geoffrey K; Li, Haitao; Luo, Kehui; Chang, Andrew

    2017-03-01

    To assess changes in vision-related quality of life (VR-QoL) among patients with treatment-resistant neovascular age-related macular degeneration (nAMD) following intravitreal aflibercept treatment over 48 weeks. We conducted a prospective study in which 49 patients with nAMD resistant to anti-vascular endothelial growth factor therapy were switched to intravitreal aflibercept. Patients were treated with three loading doses every 4 weeks followed by injections every 8 weeks, for a total of 48 weeks. Ophthalmic examinations performed at each visit included best-corrected visual acuity (BCVA) and central macular thickness (CMT) measurement. The National Eye Institute Visual Functioning Questionnaire 25 (NEI VFQ-25) was used to assess VR-QoL at baseline and weeks 24 and 48. Changes in NEI VFQ-25 composite and subscale scores were analyzed using paired t tests. The relationship between the change in VR-QoL and changes in BCVA and CMT, and the impact of the better-seeing eye (BSE, defined as the eye reading the greater number of letters at baseline) vs. the worse-seeing eye (WSE, the fellow eye to the BSE) were assessed. Mean NEI VFQ-25 composite scores improved significantly at weeks 24 and 48 compared to baseline (4.5 ± 9.2 and 4.4 ± 11.8, respectively, all p < 0.01). Among subscales, general vision and near and distance activities showed significant improvements at weeks 24 and 48 (all p < 0.05). Improvement in the NEI VFQ-25 composite score was significantly associated with increased BCVA at week 48 (β coefficient = 0.43, p = 0.029), but not with change in CMT (β coefficient = -0.007, p = 0.631). There was no association between VR-QoL changes and BSE or WSE. Despite previous anti-VEGF treatment in this cohort, overall VR-QoL improved following aflibercept therapy over 48 weeks. This improvement was related to improved vision in treatment eyes regardless of whether they were the BSE or WSE.

  6. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    NASA Technical Reports Server (NTRS)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.

  7. Lateral epitaxy of atomically sharp WSe 2/WS 2 heterojunctions on silicon dioxide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianyi; Zhou, Wu; Tang, Wei

    Here, in recent years, 2-D transition-metal dichalcogenides (TMDCs) have received great interests because of the broader possibilities offered by their tunable band gaps, as opposed to gapless graphene which precludes application in digital electronics. TMDCs exhibit an indirect-to-direct band gap transition at the single atomic sheet state as well as optically accessible spin degree of freedom in valleytronics.

  8. Lateral epitaxy of atomically sharp WSe 2/WS 2 heterojunctions on silicon dioxide substrates

    DOE PAGES

    Chen, Jianyi; Zhou, Wu; Tang, Wei; ...

    2016-09-30

    Here, in recent years, 2-D transition-metal dichalcogenides (TMDCs) have received great interests because of the broader possibilities offered by their tunable band gaps, as opposed to gapless graphene which precludes application in digital electronics. TMDCs exhibit an indirect-to-direct band gap transition at the single atomic sheet state as well as optically accessible spin degree of freedom in valleytronics.

  9. A physically based compact I-V model for monolayer TMDC channel MOSFET and DMFET biosensor.

    PubMed

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Khan, Saeed Uz Zaman; Khosru, Quazi D M

    2018-06-08

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson's equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift-diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe 2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe 2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS 2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  10. Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar R.; Garcia, Carlos; Holleman, Joshua; Rhodes, Daniel; Parker, Chason; Talapatra, Saikat; Terrones, Mauricio; Balicas, Luis; McGill, Stephen A.

    2016-12-01

    Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) have been extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs). Here, we report a photoconductivity study from FETs built from few-layers of p-WSe2 measured in a multi-terminal configuration under illumination by a 532 nm laser source. The photogenerated current was measured as a function of the incident optical power, of the drain-to-source bias and of the gate voltage. We observe a considerably larger photoconductivity when the phototransistors were measured via a four-terminal configuration when compared to a two-terminal one. For an incident laser power of 248 nW, we extract 18 A W-1 and ˜4000% for the two-terminal responsivity (R) and the concomitant external quantum efficiency (EQE) respectively, when a bias voltage V ds = 1 V and a gate voltage V bg = 10 V are applied to the sample. R and EQE are observed to increase by 370% to ˜85 A W-1 and ˜20 000% respectively, when using a four-terminal configuration. Thus, we conclude that previous reports have severely underestimated the optoelectronic response of transition metal dichalcogenides, which in fact reveals a remarkable potential for photosensing applications.

  11. A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Zaman Khan, Saeed Uz; Khosru, Quazi D. M.

    2018-06-01

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson’s equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift–diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  12. Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin

    2018-05-01

    Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.

  13. Electrical control of second-harmonic generation in a WSe 2 monolayer transistor

    DOE PAGES

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...

    2015-04-20

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less

  14. Measuring the role of seagrasses in regulating sediment surface elevation

    USGS Publications Warehouse

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  15. Measuring the role of seagrasses in regulating sediment surface elevation.

    PubMed

    Potouroglou, Maria; Bull, James C; Krauss, Ken W; Kennedy, Hilary A; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M; Githaiga, Michael N; Diele, Karen; Huxham, Mark

    2017-09-20

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  16. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    USGS Publications Warehouse

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.

  17. Inland termination of the Weddell Sea Rift against a major Jurassic strike-slip fault zone between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin

    2013-04-01

    The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced within the newly identified Pagano Shear Zone, a major tectonic boundary between East and West Antarctica. We put forward two alternative kinematic tectonic models by analysing a compilation of our new data with previous magnetic and gravity datasets. In the simple shear model, ~E-W oriented Jurassic extension within the WSR was accommodated by left-lateral strike-slip motion on the Pagano Shear Zone. This would have facilitated eastward motion of the EWM block relative to East Antarctica, effectively transferring the block to West Antarctica. In a pure shear model, the left-lateral Pagano Shear Zone we identified and the dextral and normal fault systems, previously interpreted from aeromagnetic data further east at the the margins of the Dufek Intrusion, would represent conjugate fault systems. In the latter scenario, a more complex and potentially more distributed strike-slip boundary between the WSE and a mosaic of distinct East and West Antarctic crustal blocks may be possible. This tectonic model would resemble some geodynamic models for the opposite side of Antarctica, in the Ross Sea Embayment and Transantarctic Mountains, where more recent (Cenozoic) intraplate strike-slip fault systems have been proposed.

  18. 46 CFR 174.080 - Flooding on self-elevating and surface type units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...

  19. 46 CFR 174.080 - Flooding on self-elevating and surface type units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...

  20. 46 CFR 174.080 - Flooding on self-elevating and surface type units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...

  1. Groundwater withdrawals 1976, 1990, and 2000--10 and land-surface-elevation changes 2000--10 in Harris, Galveston, Fort Bend, Montgomery, and Brazoria Counties, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Johnson, Michaela R.

    2013-01-01

    Measured land-surface-elevation changes from December 31, 2000, to December 31, 2010, ranged from an elevation increase of 0.06 feet (ft), or an average increase in elevation of 0.006 ft per year, at the Seabrook borehole extensometer located near Seabrook, Tex., to an elevation decrease of 1.28 ft, or an average decrease in elevation of 0.128 ft per year, at a PAM station north of Jersey Village, Tex. (PAM 07). Measured land-surface-elevation changes from December 31, 2005, to December 31, 2010, ranged from an elevation increase of 0.07 ft, or an average increase in elevation of 0.014 ft per year, at PAM 09 in far northeastern Harris County to an elevation decrease of 0.51 ft, or an average decrease in elevation of 0.102 ft per year, at PAM 07.

  2. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2016-01-01

    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.

  3. Semiconductor Electrodes. XXXIII. Photoelectrochemistry of n-Type WSe2 in Acetonitrile.

    DTIC Science & Technology

    1981-01-06

    with an E. G. & G. (Salem, Mass.) Model 550 radio - imeter/photometer and a Scientech 361 power meter. RESULTS Capacitance measurements and cyclic...H. Gerischer, C. Clemen , and E. Bucher, Ber. Bunsenges. Phys. Chem., 83, 655 (1979); (g) J. Gobrecht, H. Gerischer, and H. Tributsch, J. Electrochem...Charleston Road Cleveland, Ohio 41135 1 Mountain View, California 94040 H Dr. B. Brummer Dr. P. P. Schmidt EIC Incorporated Department of Cheristry 55 Chapel

  4. Antarctic surface elevation and slope from multi-mission lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Neumann, T.; Markus, T.

    2017-12-01

    We present integrated estimates of surface elevation change and slope for the Antarctic Ice Sheet from a combination of measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and the Ice Cloud and land Elevation Satellite (ICESat-1). This technique is a data-driven approach that calculates elevation differentials on a shot-by-shot basis. Our method extends the records of each instrument, increases the overall spatial coverage compared to a single instrument and produces high-quality, integrated maps of surface elevation, surface elevation change and slope. We use our estimates of elevation change to assess the current state of major outlet glaciers in the Bellinghausen Sea, Amundsen Sea and Getz regions of West Antarctica (WAIS). In the Amundsen Sea, we find that thinning rates of Pine Island Glacier have decreased after 2011 while thinning rates of Smith and Kohler glaciers have increased unabated.

  5. Land, Ocean and Ice sheet surface elevation retrieval from CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Lu, X.; Hu, Y.

    2013-12-01

    Since launching in April 2006 the main objective of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been studying the climate impact of clouds and aerosols in the atmosphere. However, CALIPSO also collects information about other components of the Earth's ecosystem, such as lands, oceans and polar ice sheets. The objective of this study is to propose a Super-Resolution Altimetry (SRA) technique to provide high resolution of land, ocean and polar ice sheet surface elevation from CALIPSO single shot lidar measurements (70 m spot size). The land surface results by the new technique agree with the United States Geological Survey (USGS) National Elevation Database (NED) high-resolution elevation maps, and the ice sheet surface results in the region of Greenland and Antarctic compare very well with the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry measurements. The comparisons suggest that the obtained CALIPSO surface elevation information by the new technique is accurate to within 1 m. The effects of error sources on the retrieved surface elevation are discussed. Based on the new technique, the preliminary data products of along-track topography retrieved from the CALIPSO lidar measurements is available to the altimetry community for evaluation.

  6. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  7. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  8. Contrasting Decadal-Scale Changes in Elevation and Vegetation in Two Long Island Sound Salt Marshes

    EPA Science Inventory

    Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation table...

  9. Molecular Beam Epitaxy Growth of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yue, Ruoyu

    The exponential growth of Si-based technology has finally reached its limit, and a new generation of devices must be developed to continue scaling. A unique class of materials, transition metal dichalcogenides (TMD), have attracted great attention due to their remarkable optical and electronic properties at the atomic thickness scale. Over the past decade, enormous efforts have been put into TMD research for application in low-power devices. Among these studies, a high-quality TMD synthesis method is essential. Molecular beam epitaxy (MBE) can enable high-quality TMD growth by combining high purity elemental sources and an ultra-high vacuum growth environment, together with the back-end-of-line compatible growth temperatures. Although many TMD candidates have been grown by MBE with promising microstructure, the limited grain size (< 200 nm) for the MBE-grown TMDs reported in the literature thus far is unsuitable for high-performance device applications. In this dissertation, the synthesis of TMDs by MBE and their implementation in device structures were investigated. van der Waals epitaxial growth of these TMDs (HfSe2, WTe2, WSe2, WTex Se2-x), due to the relaxed interactions at the interface, have been demonstrated on large lattice-mismatched substrates without strain and misfit dislocations. The fundamental nucleation and growth behavior of WSe2 was investigated through a detailed experimental design, combined with on-lattice, diffusion-based first principles kinetic modeling. Over one order of magnitude improvement in grain size was achieved through this study. Results from both experiment and simulation showed that reducing the growth rate, enabled by high growth temperature and low metal flux, is vital to nucleation density control. Meanwhile, providing a chalcogen-rich growth environment will promote larger grain lateral growth by suppressing vertical growth. Applying the knowledge learned from the nucleation study, we sucessfully integrated the MBE-grown WSe2 into Si complementary metal-oxide-semiconductor (CMOS) compatible field-effect transistors (FETs). Excellent transport properties, such as field effect hole mobilities (40 cm 2/V·s) with orders of magnitude improvement over the reported values of MBE-grown TMDs, are shown. These studies provide a comprehensive understanding of the MBE synthesis of TMDs and devices, indicating the great potential of integrating TMDs into CMOS process flows for the future electronics.

  10. Scalable Synthesis of Graphene Based Heterostructures and Their Use in Energy Sensing, Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Bhimanapati, Ganesh Rahul

    2D materials are a unique class of materials system which has spread across the entire spectrum of materials including semi-metallic graphene to insulating boron nitride. Since graphene there has been many other 2D material systems (such as boron nitride (hBN), transition metal dichalcogenides (TMDs)) that provide a wider array of unique chemistries and properties to explore for applications specifically in optoelectronics, mechanical and energy applications. Specifically tailored heterostructures can be made which can retain the character of single-atom thick sheets while having an entirely different optical and mechanical properties compared to the parent materials. In the current work, heterostructures based on graphene, hBN and TMDs have been made, which were used to study the fundamental process-property relations and their use in energy conversion and storage have been studied. The first part of this dissertation focuses on scalable approach for liquid phase exfoliation of graphene oxide (GO) and hBN (Chapter 2). The current work successfully shows an exfoliation efficiency of 25% monolayer material for hBN, which was not previously achieved. These exfoliated materials were further mixed in the liquid environment to form a new heterostructure BCON (Chapter 3). This newly formed heterostructure was studied in detail for its process-property relations. At pH 4-8, BCON was highly stable and can be dried to form paper or ribbon like material. New bonds were observed in BCON which could be linked to the GO linkage at the nitrogen sites of the hBN. This free standing BCON was tested under various radiation sources like x-rays, alpha, beta, gamma sources and heavy ion like Ar particles and was found that it is very robust to radiation (Chapter 5). By understanding the chemistry, stability and properties of these materials, this could lay a foundation in using these materials for integration in conductive and insulating ink development, polymer composite development to improve the thermal and mechanical properties. Another major focus of this dissertation work is combining TMDs and graphene for energy applications specifically hydrogen evolution reactions (HERs) and Lithium ion batteries (LiBs). TMD's specifically MoS2 and WSe2 were grown on graphite paper using powder vaporization and metal organic chemical vapor deposition (MOCVD) (Chapter 4). Control over the architecture of the MoS2 and WSe2 was achieved by varying the precursor concentration and pressure, which was observed by using scanning electron microscopy. These samples were further characterized using cross-sectional transmission electron microscopy, x-ray photoelectron spectroscopy and Raman microscopy confirming the high quality of the material that was grown. The MoS2/graphite flowers were tested for hydrogen evolution reactions and were found that they are highly active for catalysis and by modifying the surface using simple UV-Ozone treatments, this activity can be increased by 4x (reducing the Tafel slope from 185 to 54 mV/Dec). Similar performance was observed for WSe2/Graphite heterostructure where the tiny 100 nm vertical flakes on graphite paper showed one of the lowest reported Tafel slope of 64 mV/Dec (Chapter 6). MoS2/Graphite was further tested for lithium ion batteries and was found that it had a higher cyclic capacity of 750 mV/Dec. This enhanced stability and performance for energy applications was achieved because of the direct growth technique on graphite. Hence this technique could be used as a scalable alternative to make anodes for lithium ion batteries.

  11. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  12. Effect of botanical immunomodulators on human CYP3A4 inhibition: implications for concurrent use as adjuvants in cancer therapy.

    PubMed

    Patil, Dada; Gautam, Manish; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2014-03-01

    Many botanical immunomodulators are used as adjuvants along with cancer chemotherapy. However, information on the impact of concurrent administration of such botanicals on pharmacokinetics of chemotherapy agents is inadequate. This study investigates inhibitory activities of 3 popular botanical adjuvants: ASPARAGUS RACEMOSU: (root aqueous extract; ARE), WITHANIA SOMNIFER: (root aqueous extract; WSE), and TINOSPORA CORDIFOLI: (stem aqueous extract, TCE) on human CYP3A4 isoenzyme, responsible for metabolism of several chemotherapy agents. . Testosterone 6-β hydroxylation was monitored using high-performance liquid chromatography as an indicator of CYP3A4 catalytic activities. Ketoconazole (positive control) and extracts were studied at their in vivo-relevant concentrations. TCE showed mild inhibition while no significant inhibitory activities were observed in WSE and ARE. TCE was further fractionated to obtain polar and nonpolar fractions. The nonpolar fraction showed significant CYP3A4 inhibition with IC50 13.06 ± 1.38 µg/mL. Major constituents of nonpolar fraction were identified using HPLC-DAD-MS profiling as berberine, jatrorrhizine, and palmatine, which showed IC50 values as 6.25 ± 0.30, 15.18 ± 1.59, and 15.53 ± 1.89 µg/mL, respectively. Our findings suggest that constituents of TCE extract especially protoberberine alkaloids have the potential to interact with cancer chemotherapy agents that are metabolized by CYP3A4 in vivo.

  13. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe 2, MoS 2, and MoSe 2 transistors

    DOE PAGES

    Chuang, Hsun -Jen; Chamlagain, Bhim; Koehler, Michael; ...

    2016-02-04

    Here, we report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe 2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~0.3 kΩ μm, high on/off ratios up to >10 9, and high drive currents exceeding 320 μA μm –1. These favorable characteristics are combined with a two-terminal field-effect hole mobility μ FE ≈ 2 × 10 2 cm 2 V –1 smore » –1 at room temperature, which increases to >2 × 10 3 cm 2 V –1 s –1 at cryogenic temperatures. We observe a similar performance also in MoS 2 and MoSe 2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.« less

  14. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  15. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  16. 76 FR 13175 - Pacific Gas and Electric Company; Notice of Application for Amendment of License and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... water surface elevation requirement, pursuant to Article 403 of the Hat Creek Hydroelectric Project. b... Electric Company (PG&E) is requesting a temporary variance of its water surface elevation requirement of... purpose of the water surface elevation of Cassel Pond is to mitigate the new water leakage found on the...

  17. Closing the loop on elevation change at Summit, Greenland.

    NASA Astrophysics Data System (ADS)

    Hawley, R. L.; Brunt, K. M.; Neumann, T.; Waddington, E. D.

    2016-12-01

    Surface elevation on a large ice sheet changes due to multiplephysical processes, some of which imply mass change of the ice sheet,and some not. Accumulation of new snow, in absence of otherprocesses, will increase surface elevation as new mass is added to theice sheet. Compaction of snow and firn, both new and old, has atendency to decrease surface elevation, with no corresponding changein mass. As ice flows out to the sides on an ice sheet, conservationof mass dictates that the surface elevation will decrease,corresponding to mass loss. In response to long-term changes in mass,the continental crust on which the ice rests seeks isostatic balance,resulting (since the last glacial maximum) in an increase inelevation, with no associated mass change. The summation of theseprocesses results in net elevation change.We have measured elevation change along a 12 km transect at Summit,Greenland, monthly since 2007. Along the same transect we measuredthe burial rate of stakes to determine accumulation. We havepreviously measured firn compaction over a period of 4 years, and haverecently measured differential ice motion and the resulting strain.Over the course of the measurement period, we find no significantelevation change. We do, however, find intriguing periodicities inelevation. By combining our measurements of elevation, accumulation,firn compaction, and ice flow, we attempt to "close the loop" inattributing the long-term balance of surface elevation.

  18. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates.

    PubMed

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A; Wee, Andrew T S; Qiu, Cheng-Wei; Yang, Joel K W

    2018-02-27

    Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe 2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 4 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  19. Contrasting Decadal-Scale Changes in Elevation and ...

    EPA Pesticide Factsheets

    Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3 ± 0.24 mm year−1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2 ± 0.52 mm year−1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment a

  20. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as part of a coastal inundation. A visual analysis indicated that developed, medium intensity and palustrine forested wetland land cover types would be impacted for those locations. This article demonstrates that hydrologic connectivity is an important factor to consider when inundating a lidar elevation surface. This information is needed for inundation monitoring and management in sensitive coastal regions.

  1. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited

    USGS Publications Warehouse

    Cahoon, D.R.; Reed, D.J.; Day, J.W.

    1995-01-01

    Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.

  2. A Paleoclimate Modeling Perspective on the Challenges to Quantifying Paleoelevation

    NASA Astrophysics Data System (ADS)

    Poulsen, C. J.; Aron, P.; Feng, R.; Fiorella, R.; Shen, H.; Skinner, C. B.

    2016-12-01

    Surface elevation is a fundamental characteristic of the land surface. Gradients in elevation associated with mountain ranges are a first order control on local and regional climate; weathering, erosion and nutrient transport; and the evolution and biodiversity of organisms. In addition, surface elevations are a proxy for the geodynamic processes that created them. Efforts to quantify paleoelevation have relied on reconstructions of mineralogical and fossil proxies that preserve environmental signals such as surface temperature, moist enthalpy, or surface water isotopic composition that have been observed to systematically vary with elevation. The challenge to estimating paleoelevation from proxies arises because the modern-day elevation dependence of these environmental parameters is not constant and has differed in the past in response to changes in both surface elevation and other climatic forcings, including greenhouse gas and orbital variations. For example, downward mixing of vapor that is isotopically enriched through troposphere warming under greenhouse forcing reduces the isotopic lapse rate. Without considering these factors, paleoelevation estimates for orogenic systems can be in error by hundreds of meters or more. Isotope-enabled climate models provide a tool for separating the climate response to these forcings into elevation and non-elevation components and for identifying the processes that alter the elevation dependence of environmental parameters. Our past and ongoing work has focused on the simulated climate response to surface uplift of the South American Andes, the North American Cordillera, and the Tibetan-Himalyan system during the Cenozoic, and its implication for interpreting proxy records from these regions. This work demonstrates that the climate response to uplift, and the implications for interpreting proxy records, varies tremendously by region. In this presentation, we synthesize climate responses to uplift across orogens, present new results examining the affect of orbital variations on elevation-dependent environmental parameters, and discuss the implications of our work for quantifying paleoelevations.

  3. Complete Soil-Structure Interaction (SSI) Analyses of I-walls Embedded in Level Ground During Flood Loading

    DTIC Science & Technology

    2012-09-01

    at the ground surface el 0 ft versus water elevation...sheet pile at the ground surface . ................ 62  Figure 3.24. Total displacements for a water elevation of 16.5 ft and a gap tip elevation of -11...103  Figure 4.19. Relative horizontal displacements of the sheet pile at the ground surface

  4. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  5. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    USGS Publications Warehouse

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  6. SPRUCE Hollow Elevation Data for Experimental Plots Beginning in 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, N. A.; Sebestyen, S. D.

    2017-01-01

    This data set provides hollow elevation data for the 17 SPRUCE experimental plots in the S1 bog on the Marcell Experimental Forest. Hollows were selected for measurement by walking along each octagonal boardwalk segment in a plot and identifying where a hollow intersected the boardwalk. The vertical distance between the surface of the boardwalk (with a known elevation) and the surface of the hollow was measured and the absolute elevation (in meters amsl) of the hollow surface was calculated. The hollow elevation measurements were carried out in October 2015, May 2016, and October 2016. These measurements will be repeated annuallymore » or more frequently.« less

  7. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    NASA Technical Reports Server (NTRS)

    Glende, W. L. B.

    1974-01-01

    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  8. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating along the NW coast, and thinning expanding to higher elevations in SW and N Greenland. Several outlet glaciers, for example Humboldt and Petermann glaciers in NW Greenland and Kangilerngata Sermia in W Greenland exhibit a complex spatial and temporal pattern of thickening-thinning with regions of thickening observed at lower elevations. We will examine the thickening and thinning history and the record of surface velocity of these glaciers to investigate the processes responsible for initiating and sustaining these changes. Moreover, by analyzing the detailed surface elevation change history along flowlines or across drainage basins, the propagation of thinning following perturbations at the glacier terminus can be investigated. Results, depicting the evolution of surface elevation changes of three major outlet glaciers, Jakobshavn, Helheim and Kangerlussuaq glaciers, will be shown.

  9. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  10. Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor

    NASA Astrophysics Data System (ADS)

    Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    We demonstrate robust power- and wavelength-dependent optical bistability in fully suspended monolayers of WSe2 near the exciton resonance. Bistability has been achieved under continuous-wave optical excitation at an intensity level of 10^3 W/cm^2. The observed bistability is originated from a photo-thermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. Under a finite magnetic field, the exciton bistability becomes helicity dependent, which enables repeatable switching of light purely by its polarization.

  11. Relationship between Spain and the United States during the 18th and 19th Centuries

    DTIC Science & Technology

    1990-03-21

    buiena correspandencis pars lo sucesivo; y si esta se difiriese a quando hubiese salida dle sus aprielas, ni sot voluntad estaria tan bien dispuesta, ni...ndidndase a voluntad . se podrdn internar hacia nuestres posesiones par [a espalda de Is Luisisna. H-ay que tcner presente quc el rio San Larenzo por el...serd en su mano on poderoso ynstrumento. pars menearlo a so voluntad contra dichas naciones: y que Wse no quedara sin exercicia, por mocha tiempo nadie

  12. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  13. Network global navigation satellite system surveys to harmonize American and Canadian datum for the Lake Champlain Basin

    USGS Publications Warehouse

    Flynn, Robert H.; Rydlund, Jr., Paul H.; Martin, Daniel J.

    2016-03-08

    Lake-gage water-surface elevations determined during the 3 days of surveys were converted to water-surface elevations referenced to the North American Vertical Datum of 1988 by using calculated offsets and historical water-surface elevations. In this report, an “offset” refers to the adjustment that needs to be applied to published data from a particular gage to produce elevation data referenced to the North American Vertical Datum of 1988. Offsets presented in this report can be used in the evaluation of water-surface elevations in a common datum for Lake Champlain and the Richelieu River. In addition, the water-level data referenced to the common datum (as determined from the offsets) may be used to calibrate flow models and support future modeling studies developed for Lake Champlain and the Richelieu River.

  14. Downwash of airplane winds

    NASA Technical Reports Server (NTRS)

    Munk, Max; Cario, Gunther

    1923-01-01

    The data for the calculation of the air forces acting on the elevators, obtained from previous model experiments are not immediately applicable in practice, as the angle at which the control surfaces meet the air stream is, in general, still unknown. The air stream, when it reaches the elevator has already been deflected by the wings and although the velocity imparted to the air current by the wings is of negligible amount compared with the speed of flight, the air behind the wings has been deflected downwards, so that the elevators work in an airstream which is inclined in a downward direction. The angle at which the air stream meets the elevator surface is, therefore, different from, and, with the usual arrangement of elevators, less than the angle made by the elevator surfaces with the line of flight.

  15. Tropical storm Irene flood of August 2011 in northwestern Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Olson, Scott A.; Massey, Andrew J.

    2016-09-02

    The simulated 1-percent AEP discharge water-surface elevations (nonregulatory) from recent (2015–16) hydraulic models for river reaches in the study area, which include the Deerfield, Green, and North Rivers in the Deerfield River Basin and the Hoosic River in the Hoosic River Basin, were compared with water-surface profiles in the FISs. The water-surface elevation comparisons were generally done downstream and upstream from bridges, dams, and major tributaries. The simulated 1-percent AEP discharge water-surface elevations of the recent hydraulic studies averaged 2.2, 2.3, 0.3, and 0.7 ft higher than water-surface elevations in the FISs for the Deerfield, Green, North, and Hoosic Rivers, respectively. The differences in water-surface elevations between the recent (2015–16) hydraulic studies and the FISs likely are because of (1) improved land elevation data from light detection and ranging (lidar) data collected in 2012, (2) detailed surveying of hydraulic structures and cross sections throughout the river reaches in 2012–13 (reflecting structure and cross section changes during the last 30–35 years), (3) updated hydrology analyses (30–35 water years of additional peak flow data at streamgages), and (4) high-water marks from the 2011 tropical storm Irene flood being used for model calibration.

  16. Digital elevation modeling via curvature interpolation for lidar data

    USDA-ARS?s Scientific Manuscript database

    Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...

  17. 46 CFR 174.080 - Flooding on self-elevating and surface type units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...

  18. 46 CFR 174.080 - Flooding on self-elevating and surface type units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...

  19. New land surface digital elevation model covers the Earth

    USGS Publications Warehouse

    Gesch, Dean B.; Verdin, Kristine L.; Greenlee, Susan K.

    1999-01-01

    Land surface elevation around the world is reaching new heights—as far as its description and measurement goes. A new global digital elevation model (DEM) is being cited as a significant improvement in the quality of topographic data available for Earth science studies.Land surface elevation is one of the Earth's most fundamental geophysical properties, but the accuracy and detail with which it has been measured and described globally have been insufficient for many large-area studies. The new model, developed at the U.S. Geological Survey's (USGS) EROS Data Center (EDC), has changed all that.

  20. Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972-2006

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Sauber, Jeanne M.; Post, Austin S.; Tangborn, Wendell V.; Rabus, Bernhard T.; Echelmeyer, Keith A.

    Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972-95 was 0.9±0.1 m a-1; (2) this rate accelerated to 3.0±0.7 m a-1 during 1995-2000; and (3) during 2000-03 the lowering rate was 1.5±0.4 m a-1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191±17 km3, which was an area-average surface elevation lowering of 1.7±0.2 m a-1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal-englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

  1. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    NASA Astrophysics Data System (ADS)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  2. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilagam, A., E-mail: thilaphys@gmail.com

    2016-04-28

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 10{sup 11 }cm{sup −2} and temperatures ≤60 K, excitons in well known monolayers (MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2}) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increasemore » in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.« less

  3. A summary of measured hydraulic data for the series of steady and unsteady flow experiments over patterned roughness

    USGS Publications Warehouse

    Collins, Dannie L.; Flynn, Kathleen M.

    1979-01-01

    This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)

  4. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  5. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; hide

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  6. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    USGS Publications Warehouse

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.

  7. The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    PubMed

    Reef, Ruth; Spencer, Tom; Mӧller, Iris; Lovelock, Catherine E; Christie, Elizabeth K; McIvor, Anna L; Evans, Ben R; Tempest, James A

    2017-02-01

    Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO 2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO 2 concentrations and nutrient availability on surface elevation change in intact mixed-species blocks of UK salt marsh using six open-top chambers receiving CO 2 -enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO 2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO 2 . Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO 2 -grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO 2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO 2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO 2 concentrations rise and should be considered in future wetland models for the region. Elevated CO 2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained. © 2016 John Wiley & Sons Ltd.

  8. Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado

    NASA Technical Reports Server (NTRS)

    Gregory, Kathryn M.; Chase, Clement G

    1994-01-01

    New paleobotanical data suggest that in the late Eocene the erosion surface which capped the Front Range, Colorado was 2.2-2.3 km in elevation, which is similar to the 2.5-km present elevation of surface remnants. This estimated elevation casts doubt on the conventional belief that the low-relief geomorphic surface was formed by lateral planation of streams to a base level not much higher than sea level and that the present deeply incised canyons must represent Neogene uplift of Colorado. Description of the surface, calculations of sediment volume, and isostatic balance and fluvial landsculpting models demonstrate that while the high elevation of the erosion surface was due to tectonic forces, its smoothness was mostly a result of climatic factors. A sediment balance calculated for the Front Range suggests that from 2 to 4 km of material were eroded by the late Eocene, consistent with fission track ages. This amount of erosion would remove a significant portionof the 7 km of Laramide upper crustal thickening. Isostatic modeling implies that the 2.2-3.3 km elevation was most likely created by lower crustal thickening during the Laramide. A numerical model of fluvial erosion and deposition suggests a way that a late Eocene surface could have formed at this high elevation without incision. A humid climate with a preponderance of small storm events will diffusively smooth topography and is a possible mechanism for formation oflow-relief, high-level surfaces. Paleoclimate models suggest a lack of large strom events in the late Eocene because of cool sea surface temperatures in the equatorial region. Return to a drier but stormier climate post-Eocene could have caused the incision of the surface by young canyons. By this interpretation, regional erosion surfaces may represent regional climatic rather than tectonic conditions.

  9. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  10. Elevation data fitting and precision analysis of Google Earth in road survey

    NASA Astrophysics Data System (ADS)

    Wei, Haibin; Luan, Xiaohan; Li, Hanchao; Jia, Jiangkun; Chen, Zhao; Han, Leilei

    2018-05-01

    Objective: In order to improve efficiency of road survey and save manpower and material resources, this paper intends to apply Google Earth to the feasibility study stage of road survey and design. Limited by the problem that Google Earth elevation data lacks precision, this paper is focused on finding several different fitting or difference methods to improve the data precision, in order to make every effort to meet the accuracy requirements of road survey and design specifications. Method: On the basis of elevation difference of limited public points, any elevation difference of the other points can be fitted or interpolated. Thus, the precise elevation can be obtained by subtracting elevation difference from the Google Earth data. Quadratic polynomial surface fitting method, cubic polynomial surface fitting method, V4 interpolation method in MATLAB and neural network method are used in this paper to process elevation data of Google Earth. And internal conformity, external conformity and cross correlation coefficient are used as evaluation indexes to evaluate the data processing effect. Results: There is no fitting difference at the fitting point while using V4 interpolation method. Its external conformity is the largest and the effect of accuracy improvement is the worst, so V4 interpolation method is ruled out. The internal and external conformity of the cubic polynomial surface fitting method both are better than those of the quadratic polynomial surface fitting method. The neural network method has a similar fitting effect with the cubic polynomial surface fitting method, but its fitting effect is better in the case of a higher elevation difference. Because the neural network method is an unmanageable fitting model, the cubic polynomial surface fitting method should be mainly used and the neural network method can be used as the auxiliary method in the case of higher elevation difference. Conclusions: Cubic polynomial surface fitting method can obviously improve data precision of Google Earth. The error of data in hilly terrain areas meets the requirement of specifications after precision improvement and it can be used in feasibility study stage of road survey and design.

  11. Anomalous sea surface structures as an object of statistical topography

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  12. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    DTIC Science & Technology

    2011-05-10

    Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface

  13. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  14. Numerical Modeling of Two-Terminal Quantum Well Devices

    DTIC Science & Technology

    1989-04-17

    transfer matrix methods . This was implemented for a perfectly symmetric resonant tunneling structure such as the one shown in figure 3. This technique has...occur for mean well widths near 0.08v or 0.09v. This situation requires further analysis . The situation for the well width of 70A, yielded low Q...WSe.4W AA L1ot. OVefol striwe Tunmelen "ers (a) (b) Figure 1: Pseudomorphic InO. 5 3 Ga 0 .4 7 As/AlA3/ InAa resonant tunneling diodes proposed in

  15. Reaction kinetics and product distributions in photoelectrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, C.A.

    1992-01-01

    Hot electron reaction studies at p-InP/CH[sub 3]CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe[sub 2]/dimethylferrocene[sup +/0] interfaces.

  16. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    EPA Science Inventory

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  17. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0.002 AEP event, the water-surface elevations will be an average of 0.04 ft and a maximum of 0.19 ft higher than current conditions.

  18. Surface mass balance model evaluation from satellite and airborne lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  19. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  20. Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios

    USGS Publications Warehouse

    Wang, Hongqing; Steyer, Gregory D.; Couvillion, Brady R.; John M. Rybczyk,; Beck, Holly J.; William J. Sleavin,; Ehab A. Meselhe,; Mead A. Allison,; Ronald G. Boustany,; Craig J. Fischenich,; Victor H. Rivera-Monroy,

    2014-01-01

    Large sediment diversions are proposed and expected to build new wetlands to alleviate the extensive wetland loss (5,000 km2) affecting coastal Louisiana during the last 78 years. Current assessment and prediction of the impacts of sediment diversions have focused on the capture and dispersal of both water and sediment on the adjacent river side and the immediate outfall marsh area. However, little is known about the effects of sediment diversions on existing wetland surface elevation and vertical accretion dynamics in the receiving basin at the landscape scale. In this study, we used a spatial wetland surface elevation model developed in support of Louisiana's 2012 Coastal Master Plan to examine such landscape-scale effects of sediment diversions. Multiple sediment diversion projects were incorporated in the model to simulate surface elevation and vertical accretion for the next 50 years (2010-2060) under two environmental (moderate and less optimistic) scenarios. Specifically, we examined landscape-scale surface elevation and vertical accretion trends under diversions with different geographical locations, diverted discharge rates, and geomorphic characteristics of the receiving basin. Model results indicate that small diversions (< 283 m3 s-1) tend to have limited effects of reducing landscape-scale elevation loss (< 3%) compared to a future without action (FWOA) condition. Large sediment diversions (> 1,500 m3 s-1) are required to achieve landscape-level benefits to promote surface elevation via vertical accretion to keep pace with rising sea level.

  1. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  2. Three-dimensional OCT based guinea pig eye model: relating morphology and optics.

    PubMed

    Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Revuelta, Luis; McFadden, Sally A; Marcos, Susana

    2017-04-01

    Custom Spectral Optical Coherence Tomography (SOCT) provided with automatic quantification and distortion correction algorithms was used to measure the 3-D morphology in guinea pig eyes (n = 8, 30 days; n = 5, 40 days). Animals were measured awake in vivo under cyclopegia. Measurements showed low intraocular variability (<4% in corneal and anterior lens radii and <8% in the posterior lens radii, <1% interocular distances). The repeatability of the surface elevation was less than 2 µm. Surface astigmatism was the individual dominant term in all surfaces. Higher-order RMS surface elevation was largest in the posterior lens. Individual surface elevation Zernike terms correlated significantly across corneal and anterior lens surfaces. Higher-order-aberrations (except spherical aberration) were comparable with those predicted by OCT-based eye models.

  3. AUTOMATIC AIR BURST DIRECTION FINDER

    DOEpatents

    Allard, G.A.

    1952-01-31

    This patent application describes an atomic explosion direction indicator comprising a geometric heat-scorchable indicating surface symmetrical about an axis, elevation and azimuth markings on the heat scorchable surface, and an indicating rod at the axis of said surface arranged to cast a shadow hereon, whereby heat from an atomic explosion will scorch a pattern on said surface indicative of the azimuth and elevation of said explosion.

  4. Aerodynamic characteristics of horizontal tail surfaces

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S

    1940-01-01

    Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.

  5. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    USGS Publications Warehouse

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly semivariograms decreased markedly between 2002 and 2003, timing that coincided with decreases in well-field pumping. Cross-validation results suggest that the kriging interpolation may smooth over the drawdown of the potentiometric surface near production wells. The groundwater monitoring network of 197 wells yielded an average kriging error in the potentiometric-surface elevations of 2 feet or less over approximately 70 percent of the map area. Additional data collection within the existing monitoring network of 260 wells and near selected well fields could reduce the error in individual months. Reducing the kriging error in other areas would require adding new monitoring wells. Potentiometric-surface elevations fluctuated by as much as 30 feet over the study period, and the spatially averaged elevation for the entire surface rose by about 2 feet over the decade. Monthly potentiometric-surface elevations describe the lateral groundwater flow patterns in the aquifer and are usable at a variety of spatial scales to describe vertical groundwater recharge and discharge conditions for overlying surface-water features.

  6. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi

    2015-03-01

    Compared to the weak spin-orbit-interaction (SOI) in graphene, layered transitionmetal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way to extend functionalities of novel spintronics and valleytronics devices. Such a valley polarization achieved via valley-selective circular dichroism has been predicted theoretically and demonstrated with optical experiments in MX2 systems. Despite the exciting progresses, the generation of a valley/spin current by valley polarization in MX2 remains elusive and a great challenge. A spin/valley current in MX2 compounds caused by such a valley polarization has never been observed, nor its electric-field control. In this talk, we demonstrated, within an electric-double-layer transistor based on WSe2, the manipulation of a spin-coupled valley photocurrent whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further greatly modulated with an external electric field. Such room temperature generation and electric control of valley/spin photocurrent provides a new property of electrons in MX2 systems, thereby enabling new degrees of control for quantum-confined spintronics devices. (In collaboration with S.C. Zhang, Y.L. Chen, Z.X. Shen, B Lian, H.J. Zhang, G Xu, Y Xu, B Zhou, X.Q. Wang, B Shen X.F. Fang) Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  7. Excitonic resonance effects and Davydov splitting in circularly polarized Raman spectra of few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sanghun; Kim, Kangwon; Lee, Jae-Ung; Cheong, Hyeonsik

    2017-12-01

    Few-layer tungsten diselenide (WSe2) is investigated using circularly polarized Raman spectroscopy with up to eight excitation energies. The main E2\\text{g}1 and A 1g modes near 250 cm-1 appear as a single peak in the Raman spectrum taken without consideration of polarization but are resolved by using circularly polarized Raman scattering. The resonance behaviors of the E2\\text{g}1 and A 1g modes are examined. Firstly, both the E2\\text{g}1 and A 1g modes are enhanced near resonances with the exciton states. The A 1g mode exhibits Davydov splitting for trilayers or thicker near some of the exciton resonances. The low-frequency Raman spectra show shear and breathing modes involving rigid vibrations of the layers and also exhibit strong dependence on the excitation energy. An unidentified peak at ~19 cm-1 that does not depend on the number of layers appears near resonance with the B exciton state at 1.96 eV (632.8 nm). The strengths of the intra- and inter-layer interactions are estimated by comparing the mode frequencies and Davydov splitting with the linear chain model, and the contribution of the next-nearest-neighbor interaction to the inter-layer interaction turns out to be about 34% of the nearest-neighbor interaction. Fano resonance is observed for 1.58 eV excitation, and its origin is found to be the interplay between two-phonon scattering and indirect band transition.

  8. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  9. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  10. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  11. Using computational modeling of river flow with remotely sensed data to infer channel bathymetry

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.

    2012-01-01

    As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.

  12. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  13. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  14. Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping

    NASA Technical Reports Server (NTRS)

    Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted

    2005-01-01

    Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.

  15. Measurements of Form and Frictional Drags over a Rough Topographic Bank

    DTIC Science & Technology

    2014-09-01

    processes, Topographic effects Unclassified Unclassified Unclassified UU 24 Hemantha Wijesekera (228) 688-4845 Reset I PAI!fElNTATION RELEASE...sea surface height associated with the sea surface slope resulting from rota- tional effects . Here barotropic pressure gradients associ- ated with...surface elevation are balanced by the Coriolis force; hTi(x, y, t) is the surface elevation resulting from accelerations/decelerations of flow over the

  16. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  17. The surface elevation table: marker horizon method for measuring wetland accretion and elevation dynamics

    USGS Publications Warehouse

    Callaway, John C.; Cahoon, Donald R.; Lynch, James C.

    2014-01-01

    Tidal wetlands are highly sensitive to processes that affect their elevation relative to sea level. The surface elevation table–marker horizon (SET–MH) method has been used to successfully measure these processes, including sediment accretion, changes in relative elevation, and shallow soil processes (subsidence and expansion due to root production). The SET–MH method is capable of measuring changes at very high resolution (±millimeters) and has been used worldwide both in natural wetlands and under experimental conditions. Marker horizons are typically deployed using feldspar over 50- by 50-cm plots, with replicate plots at each sampling location. Plots are sampled using a liquid N2 cryocorer that freezes a small sample, allowing the handling and measurement of soft and easily compressed soils with minimal compaction. The SET instrument is a portable device that is attached to a permanent benchmark to make high-precision measurements of wetland surface elevation. The SET instrument has evolved substantially in recent decades, and the current rod SET (RSET) is widely used. For the RSET, a 15-mm-diameter stainless steel rod is pounded into the ground until substantial resistance is achieved to establish a benchmark. The SET instrument is attached to the benchmark and leveled such that it reoccupies the same reference plane in space, and pins lowered from the instrument repeatedly measure the same point on the soil surface. Changes in the height of the lowered pins reflect changes in the soil surface. Permanent or temporary platforms provide access to SET and MH locations without disturbing the wetland surface.

  18. SPRUCE Bog Surface Elevation Assessments with SET Instrument Beginning in 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Paul J; Phillips, Jana R; Brice, Deanne J

    This data set reports plot-specific bog surface elevation measurements collected with the SPRUCE Elevation Transect (SET) instrument. Measurements are reported as absolute elevation in meters above mean sea level for two locations in each of the SPRUCE experimental treatment plots and additional ambient boardwalk plots -- 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20 and 21. This data set reports measurements collected from June 2013 through August 2017, but it will be appended annually as new data are collected.

  19. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. -L.; Gu, Y.; Liou, K. N.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  20. Sumatra-Andaman Megathrust Earthquake Slip: Insights From Mechanical Modeling of ICESat Surface Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Harding, D. J.; Miuller, J. R.

    2005-12-01

    Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity boundary condition on the Sumatra-Andaman subduction interface fault. The direction of slip on the fault surface is derived from the slip directions computed by Tsai et al. (in review) for centroid moment tensor focal mechanisms spatially distributed along the rupture. The slip model will be refined to better correspond to the observed surface deformation as additional results from the ICESat profiles become available.

  1. Processes contributing to resilience of coastal wetlands to sea-level rise

    USGS Publications Warehouse

    Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.

    2016-01-01

    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.

  2. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  3. Superior Valley Polarization and Coherence of 2s Excitons in Monolayer WSe_{2}.

    PubMed

    Chen, Shao-Yu; Goldstein, Thomas; Tong, Jiayue; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jun

    2018-01-26

    We report the experimental observation of 2s exciton radiative emission from monolayer tungsten diselenide, enabled by hexagonal boron nitride protected high-quality samples. The 2s luminescence is highly robust and persists up to 150 K, offering a new quantum entity for manipulating the valley degree of freedom. Remarkably, the 2s exciton displays superior valley polarization and coherence than 1s under similar experimental conditions. This observation provides evidence that the Coulomb-exchange-interaction-driven valley-depolarization process, the Maialle-Silva-Sham mechanism, plays an important role in valley excitons of monolayer transition metal dichalcogenides.

  4. Reaction kinetics and product distributions in photoelectrochemical cells. Technical progress report, March 15, 1992--March 14, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, C.A.

    1992-12-01

    Hot electron reaction studies at p-InP/CH{sub 3}CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe{sub 2}/dimethylferrocene{sup +/0} interfaces.

  5. Piezoelectric coefficients of bulk 3R transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Konabe, Satoru; Yamamoto, Takahiro

    2017-09-01

    The piezoelectric properties of bulk transition metal dichalcogenides (TMDCs) with a 3R structure were investigated using first-principles calculations based on density functional theory combined with the Berry phase treatment. Values for the elastic constant Cijkl , the piezoelectric coefficient eijk , and the piezoelectric coefficient dijk are given for bulk 3R-TMDCs (MoS2, MoSe2, WS2, and WSe2). The piezoelectric coefficients of bulk 3R-TMDCs are shown to be sufficiently large or comparable to those of conventional bulk piezoelectric materials such as α-quartz, wurtzite GaN, and wurtzite AlN.

  6. Light Propagation Through Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, Christopher; Paul, Jagannath; Zhang, Haoxiang; Stier, Andreas; Karaiskaj, Denis

    C.E.STEVENS,J.PAUL,H.ZHANG, Dept. of Physics, University of South Florida, Tampa, Florida 33620, USA. A.V.STIER, National High Magnetic Field Laboratory, Los Alamos, New Mexico 87545, D. KARAISKAJ, Dept. of Physics, University of South Florida, Tampa, Florida 33620, USA. - Using broadband light, the propagation of light through MoSe2 and WSe2 was investigated. Measuring the optical density for samples with different number of layers, we found that these values differ from what the Beer-Lambert Law predicts. The results were also modeled theoretically according to an effective two-band model. Funded by The Department of Energy.

  7. Superior Valley Polarization and Coherence of 2 s Excitons in Monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Yu; Goldstein, Thomas; Tong, Jiayue; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jun

    2018-01-01

    We report the experimental observation of 2 s exciton radiative emission from monolayer tungsten diselenide, enabled by hexagonal boron nitride protected high-quality samples. The 2 s luminescence is highly robust and persists up to 150 K, offering a new quantum entity for manipulating the valley degree of freedom. Remarkably, the 2 s exciton displays superior valley polarization and coherence than 1 s under similar experimental conditions. This observation provides evidence that the Coulomb-exchange-interaction-driven valley-depolarization process, the Maialle-Silva-Sham mechanism, plays an important role in valley excitons of monolayer transition metal dichalcogenides.

  8. Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.

    2007-01-01

    A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.

  9. Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Browning, Robert

    In the last 50 years, the semiconductor industry has been scaling the silicon transistor to achieve faster devices, lower power consumption, and improve device performance. Transistor gate dimensions have become so small that short channel effects and gate leakage have become a significant problem. To address these issues, performance enhancement techniques such as strained silicon are used to improve mobility, while new high-k gate dielectric materials replace silicon oxide to reduce gate leakage. At some point the fundamental limit of silicon will be reached and the semiconductor industry will need to find an alternate solution. The advent of graphene led to the discovery of other layered materials such as the transition metal dichalcogenides. These materials have a layered structure similar to graphene and therefore possess some of the same qualities, but unlike graphene, these materials possess sizeable bandgaps between 1-2 eV making them useful for digital electronic applications. Since initially discovered, most of the research on these films has been from mechanically exfoliated flakes, which are easily produced due to the weak van der Waals force binding the layers together. For these materials to be considered for use in mainstream semiconductor technology, methods need to be explored to grow these films uniformly over a large area. In this research, atomic layer deposition (ALD) was employed as the growth technique used to produce large area uniform thin films of several different transition metal dichalcogenides. By optimizing the ALD growth parameters, it is possible to grow high quality films a few to several monolayers thick over a large area with good uniformity. This has been demonstrated and verified using several physical analytical tests such as Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron spectroscopy, and scanning electron microscopy, which show that these films possess the same qualities as those of the mechanically exfoliated films. Back-gated field effect transistors were created and electrical characterization was performed to determine if ALD grown films possess the same electronic properties as films produced from other methods. The tests revealed that the ALD grown films have high field effect mobility and high current on/off ratios. The WSe2 films also exhibited ambipolar electrical behavior making them a possible candidate for complementary metal-oxide semiconductor (CMOS) technology. Ab-initio density functional theory calculations were performed and compared to experimental properties of MoS2 and WSe2 films, which show that the ALD films grown in this research match theoretical predictions. The transconductance measurements from the WSe2 devices used, matched very well with the theoretical calculations, bridging the gap between experimental data and theoretical predictions. Based upon this research, ALD growth of TMD films proves to be a viable alternative for silicon based digital electronics.

  10. Flood recovery maps for the White River in Bethel, Stockbridge, and Rochester, Vermont, and the Tweed River in Stockbridge and Pittsfield, Vermont, 2014

    USGS Publications Warehouse

    Olson, Scott A.

    2015-01-01

    Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.

  11. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  12. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  13. Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  14. Comparison of Surface Elevation Changes of the Greenland and Antarctic Ice Sheets from Radar and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2012-01-01

    A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.

  15. Gross decontamination experiment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, R.; Kinney, K.; Dettorre, J.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established formore » the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.« less

  16. Characterizing near-surface firn using the scattered signal component of the glacier surface return from airborne radio-echo sounding

    NASA Astrophysics Data System (ADS)

    Rutishauser, Anja; Grima, Cyril; Sharp, Martin; Blankenship, Donald D.; Young, Duncan A.; Cawkwell, Fiona; Dowdeswell, Julian A.

    2016-12-01

    We derive the scattered component (hereafter referred to as the incoherent component) of glacier surface echoes from airborne radio-echo sounding measurements over Devon Ice Cap, Arctic Canada, and compare the scattering distribution to firn stratigraphy observations from ground-based radar data. Low scattering correlates to laterally homogeneous firn above 1800 m elevation containing thin, flat, and continuous ice layers and below 1200 m elevation where firn predominantly consists of ice. Increased scattering between elevations of 1200-1800 m corresponds to firn with inhomogeneous, undulating ice layers. No correlation was found to surface roughness and its theoretical incoherent backscattering values. This indicates that the scattering component is mainly influenced by the near-surface firn stratigraphy, whereas surface roughness effects are minor. Our results suggest that analyzing the scattered signal component of glacier surface echoes is a promising approach to characterize the spatial heterogeneity of firn that is affected by melting and refreezing processes.

  17. Molecular interactions between single layered MoS2 and biological molecules† †Electronic supplementary information (ESI) available: SFG data analysis methods, spectral fitting parameters, additional spectra, CD spectrum, and details about MD simulation methods. See DOI: 10.1039/c7sc04884j

    PubMed Central

    Xiao, Minyu; Wei, Shuai; Li, Yaoxin; Jasensky, Joshua; Chen, Junjie; Brooks, Charles L.

    2017-01-01

    Two-dimensional (2D) materials such as graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and black phosphorous are being developed for sensing applications with excellent selectivity and high sensitivity. In such applications, 2D materials extensively interact with various analytes including biological molecules. Understanding the interfacial molecular interactions of 2D materials with various targets becomes increasingly important for the progression of better-performing 2D-material based sensors. In this research, molecular interactions between several de novo designed alpha-helical peptides and monolayer MoS2 have been studied. Molecular dynamics simulations were used to validate experimental data. The results suggest that, in contrast to peptide–graphene interactions, peptide aromatic residues do not interact strongly with the MoS2 surface. It is also found that charged amino acids are important for ensuring a standing-up pose for peptides interacting with MoS2. By performing site-specific mutations on the peptide, we could mediate the peptide–MoS2 interactions to control the peptide orientation on MoS2. PMID:29675220

  18. Initial Everglades Depth Estimation Network (EDEN) Digital Elevation Model Research and Development

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    Introduction The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). To produce historic and near-real time maps of water depths, the EDEN requires a system-wide digital elevation model (DEM) of the ground surface. Accurate Everglades wetland ground surface elevation data were non-existent before the U.S. Geological Survey (USGS) undertook the collection of highly accurate surface elevations at the regional scale. These form the foundation for EDEN DEM development. This development process is iterative as additional high accuracy elevation data (HAED) are collected, water surfacing algorithms improve, and additional ground-based ancillary data become available. Models are tested using withheld HAED and independently measured water depth data, and by using DEM data in EDEN adaptive management applications. Here the collection of HAED is briefly described before the approach to DEM development and the current EDEN DEM are detailed. Finally future research directions for continued model development, testing, and refinement are provided.

  19. Satellite and Instrument Influences on ICESat Waveforms

    NASA Astrophysics Data System (ADS)

    Webb, C. E.; Urban, T. J.; Neuenschwander, A. L.; Gutierrez, R.; Schutz, B. E.

    2007-12-01

    The White Sands Space Harbor (WSSH) has served as the principal ground calibration site throughout the Ice, Cloud and land Elevation Satellite (ICESat) mission. The Center for Space Research (CSR) at the University of Texas at Austin continues to conduct various experiments designed to validate the timing, geolocation and geometric characteristics of individual laser footprints on the surface. In addition, two airborne lidar surveys of the calibration site and surrounding area were conducted during the mission, first in 2003 and again in 2007. Chosen for its limited surface roughness and topographic flatness, this area has been targeted 3-4 times in each of the 12 ICESat mapping campaigns to date, yielding a significant altimetry data set. The derived surface elevations are compared with those from the airborne lidar surveys, as well as those obtained by the Shuttle Radar Topography Mission (SRTM). Furthermore, the Geoscience Laser Altimetry System (GLAS) onboard ICESat records a digitized waveform for each laser pulse returned from the surface. The two methods currently used to fit such signals in ICESat data processing are examined and compared for the WSSH waveforms. The first fits up to two distinct Gaussians and provides a surface elevation at the location of the maximum peak. The second fits up to six overlapping Gaussians and provides a surface elevation at the centroid of the pulse. Observed differences in the reported elevations are discussed in terms of the satellite's off-nadir targeting geometry, the laser energy, and the skewness of the returned waveforms.

  20. High-precision measurements of wetland sediment elevation. II The rod surface elevation table

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Perez, B.C.; Segura, B.; Holland, R.D.; Stelly, C.; Stephenson, G.; Hensel, P.

    2002-01-01

    A new high-precision device for measuring sediment elevation in emergent and shallow water wetland systems is described. The rod surface-elevation table (RSET) is a balanced, lightweight mechanical leveling device that attaches to both shallow ( 1 m in order to be stable. The pipe is driven to refusal but typically to a depth shallower than the rod bench mark because of greater surface resistance of the pipe. Thus, the RSET makes it possible to partition change in sediment elevation over shallower (e.g., the root zone) and deeper depths of the sediment profile than is possible with the SET. The confidence intervals for the height of an individual pin measured by two different operators with the RSET under laboratory conditions were A? 1.0 and A? 1.5 mm. Under field conditions, confidence intervals for the measured height of an individual pin ranged from A? 1.3 mm in a mangrove forest up to A? 4.3 mm in a salt marsh.

  1. Automating the implementation of an equilibrium profile model for glacier reconstruction in a GIS environment

    NASA Astrophysics Data System (ADS)

    Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano

    2014-05-01

    Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.

  2. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-94

    USGS Publications Warehouse

    Claar, D.V.; Lilly, M.R.

    1995-01-01

    Ground-water and surface-water elevation data were collected at 52 sites from 1990 to 1994 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water elevations were measured in 32 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1994, the data-collection area was expanded to include the entire airport area.

  3. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  4. Program Merges SAR Data on Terrain and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  5. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.

  6. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  7. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  8. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE PAGES

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.; ...

    2016-07-28

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  9. Estimating relative sea-level rise and submergence potential at a coastal wetland

    USGS Publications Warehouse

    Cahoon, Donald R.

    2015-01-01

    A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.

  10. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  11. 30 CFR 77.217 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Area-capacity curves means graphic curves which readily show the reservoir water surface area, in acres, at different elevations from the bottom of the reservoir to the maximum water surface, and the capacity or volume, in acre-feet, of the water contained in the reservoir at various elevations. (c...

  12. 30 CFR 77.217 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Area-capacity curves means graphic curves which readily show the reservoir water surface area, in acres, at different elevations from the bottom of the reservoir to the maximum water surface, and the capacity or volume, in acre-feet, of the water contained in the reservoir at various elevations. (c...

  13. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  14. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Minghua; Fu, Jiyong; Dias, A. C.; Qu, Fanyao

    2018-07-01

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe2, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (Xb), intravalley biexciton (XXk,k) and intervalley biexciton (XX) in particular for the XXk,k PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e. increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of Xb shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XXk,k VP is found almost independent of temperature. In contrast to both Xb and XXk,k, the intervalley XX VP identically vanishes, because of equal populations of excitons in the K and valleys bounded to form intervalley biexcitons. Notably, it is found that the Xb VP much more strongly depends on bright–dark scattering than that of XXk,k, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for Xb at strong bright–dark scatterings, but not for XXk,k. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the dependence of time evolution of PL and VP on temperature and excitation fluence is discussed.

  15. Benefits of walking and solo experiences in UK wild places.

    PubMed

    Freeman, Elizabeth; Akhurst, Jacqueline; Bannigan, Katrina; James, Hazel

    2017-12-01

    This paper examines human-nature interaction and how therapeutic this relationship is by investigating the efficacy of structured outdoor experience. Two walking and solo experience (WSEs) explored university students' (aged 20-43 years) perceptions of walking through and being with nature. The first was a 5-day journey (n = 4; 3 females and 1 male) and the second (n = 5; 3 females and 2 males) took place over two weekends, with a 2-week interval in-between. Pre- and post-experience interviews, journal writing, group discussions and a 9-month follow-up interviews were used to collect data and thematic analysis [Braun and Clarke (Using thematic analysis in psychology. Qual Res Psychol 2006;3:77-101.)] was applied. Both WSEs were considered together during analysis, as well as comparisons made between the two, in order to evaluate implications for practice. Benefits of the WSE that contributed to a general sense of well-being were: (i) gaining a sense of freedom and escape; (ii) gaining a sense of awareness and sensitivity to one's environment and its influence (iii) gaining confidence in being able to cope and take action; (iv) gaining a sense of perspective on and appreciation for life. Furthermore, the meaning participants formed in relation to their environment before, during and after the WSE, and the activity within that environment, played a role in their sense of well-being and in their motivations to re-access nature in other places. Findings suggest that WSEs are a cost effective way to give rise to beneficial and durable experiences, but a more holistic approach to policy is needed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-96, and selected geohydrologic report references

    USGS Publications Warehouse

    Claar, David V.; Lilly, Michael R.

    1997-01-01

    Ground-water and surface-water elevation data were collected at 61 sites from 1990 to 1996 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water-surface elevations were measured in 41 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1996, the data-collection area was expanded to include the entire airport area. The total number of data-collection sites varied each year because of changing project objectives and increased understanding of the geohydrology in the area.

  17. 23 CFR 650.117 - Content of design studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...

  18. 23 CFR 650.117 - Content of design studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...

  19. 23 CFR 650.117 - Content of design studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...

  20. 23 CFR 650.117 - Content of design studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...

  1. 23 CFR 650.117 - Content of design studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...

  2. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  3. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  4. Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Dow, C. F.; Poinar, K.; Nowicki, S.

    2017-12-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.

  5. Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input

    NASA Astrophysics Data System (ADS)

    Ackley, S. F.; Maksym, T.; Stammerjohn, S. E.; Gao, Y.; Weissling, B.

    2016-12-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.

  6. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. Additional information is included in the original extended abstract.

  7. Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  8. Field and laboratory determination of water-surface elevation and velocity using noncontact measurements

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.

    2016-01-01

    Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.

  9. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    USGS Publications Warehouse

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  10. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    PubMed

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  11. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  12. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Treesearch

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  13. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    NASA Astrophysics Data System (ADS)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  14. Two-dimensional crystals: managing light for optoelectronics.

    PubMed

    Eda, Goki; Maier, Stefan A

    2013-07-23

    Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution.

  15. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.

    2018-04-01

    An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

  16. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-10-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with 'ab initio' calculations of the phonon energies and the phonon density of state reveal strong interaction with the E‧ and E″ phonon modes.

  17. The role of electron-phonon interactions on the coherence lifetime of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2017-06-01

    We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with ‘ab initio’ calculations of the phonon energies and the phonon density of state reveal strong interaction with the E’ and E” phonon modes.

  18. The Effect of Elevation Bias in Interpolated Air Temperature Data Sets on Surface Warming in China During 1951-2015

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Sun, Fubao; Ge, Quansheng; Kleidon, Axel; Liu, Wenbin

    2018-02-01

    Although gridded air temperature data sets share much of the same observations, different rates of warming can be detected due to different approaches employed for considering elevation signatures in the interpolation processes. Here we examine the influence of varying spatiotemporal distribution of sites on surface warming in the long-term trend and over the recent warming hiatus period in China during 1951-2015. A suspicious cooling trend in raw interpolated air temperature time series is found in the 1950s, and 91% of which can be explained by the artificial elevation changes introduced by the interpolation process. We define the regression slope relating temperature difference and elevation difference as the bulk lapse rate of -5.6°C/km, which tends to be higher (-8.7°C/km) in dry regions but lower (-2.4°C/km) in wet regions. Compared to independent experimental observations, we find that the estimated monthly bulk lapse rates work well to capture the elevation bias. Significant improvement can be achieved in adjusting the interpolated original temperature time series using the bulk lapse rate. The results highlight that the developed bulk lapse rate is useful to account for the elevation signature in the interpolation of site-based surface air temperature to gridded data sets and is necessary for avoiding elevation bias in climate change studies.

  19. A semi-automated tool for reducing the creation of false closed depressions from a filled LIDAR-derived digital elevation model

    USGS Publications Warehouse

    Waller, John S.; Doctor, Daniel H.; Terziotti, Silvia

    2015-01-01

    Closed depressions on the land surface can be identified by ‘filling’ a digital elevation model (DEM) and subtracting the filled model from the original DEM. However, automated methods suffer from artificial ‘dams’ where surface streams cross under bridges and through culverts. Removal of these false depressions from an elevation model is difficult due to the lack of bridge and culvert inventories; thus, another method is needed to breach these artificial dams. Here, we present a semi-automated workflow and toolbox to remove falsely detected closed depressions created by artificial dams in a DEM. The approach finds the intersections between transportation routes (e.g., roads) and streams, and then lowers the elevation surface across the roads to stream level allowing flow to be routed under the road. Once the surface is corrected to match the approximate location of the National Hydrologic Dataset stream lines, the procedure is repeated with sequentially smaller flow accumulation thresholds in order to generate stream lines with less contributing area within the watershed. Through multiple iterations, artificial depressions that may arise due to ephemeral flow paths can also be removed. Preliminary results reveal that this new technique provides significant improvements for flow routing across a DEM and minimizes artifacts within the elevation surface. Slight changes in the stream flow lines generally improve the quality of flow routes; however some artificial dams may persist. Problematic areas include extensive road ditches, particularly along divided highways, and where surface flow crosses beneath road intersections. Limitations do exist, and the results partially depend on the quality of data being input. Of 166 manually identified culverts from a previous study by Doctor and Young in 2013, 125 are within 25 m of culverts identified by this tool. After three iterations, 1,735 culverts were identified and cataloged. The result is a reconditioned elevation dataset, which retains the karst topography for further analysis, and a culvert catalog.

  20. Experimental and analytical transonic flutter characteristics of a geared-elevator configuration

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1980-01-01

    The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.

  1. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  2. Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Freeman, Michael L.

    2011-01-01

    The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.

  3. A Numerical Study of Currents, Water Surface Elevations, and Energy Dissipation in Chandeleur-Breton Sound, Louisiana.

    DTIC Science & Technology

    1978-02-01

    Numerical methods in the form of a digital computer model were used to simulate and study the tide- and wind-induced circulation in Chandeleur -Breton...entrances through the Chandeleur Island chain, where speed reaches 50-60 cm/sec for short periods. Surface elevations were found to have an average tide range

  4. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  5. Influence of substrate micropatterning on biofilm growth

    NASA Astrophysics Data System (ADS)

    Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David

    2015-11-01

    We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.

  6. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  7. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less

  8. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  9. Optimization of transition-metal dichalcogenides based field-effecttransistors via contact engineering

    NASA Astrophysics Data System (ADS)

    Perera, Meeghage Madusanka

    Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of remarkable properties for applications in next generation nano-electronics. These systems have displayed many "graphene-like" properties including a relatively high carrier mobility, mechanical flexibility, chemical and thermal stability, and moreover offer the significant advantage of a substantial band gap. However, the fabrication of high performance field-effect transistors (FETs) of TMDs is challenging mainly due to the formation of a significant Schottky barrier at metal/TMD interface in most cases. The main goal of this study is to develop novel contact engineering strategies to achieve low-resistance Ohmic contacts. Our first approach is to use Ionic Liquid (IL) gating of metal contacted MoS2 FETs to achieve highly transparent tunneling contacts due to the strong band banding at metal/MoS2 interface. The substantially reduced contact resistance in ionic-liquid-gated bilayer and few-layer MoS 2 FETs results in an ambipolar behavior with high ON/OFF ratios, a near-ideal subthreshold swing, and significantly improved field-effect mobility. Remarkably, the mobility of a 3-nm-thick MoS2 FET with an IL gate was found to increase from ˜ 100 cm2V-1s-1 to ˜ 220 cm2V-1s-1 as the temperature decreased from 180 K to 77 K. This finding is in quantitative agreement with the true channel mobility measured by four-terminal measurement, suggesting that the mobility is predominantly limited by phonon-scattering. To further improve the contacts of TMD devices, graphene was used as work function tunable electrodes. In order to achieve low Schottky barrier height, both IL gating and surface charge transfer doping were used to tune the work function of graphene electrodes close to the conduction band edge of MoS 2. As a result, the performance of our graphene contacted MoS2 FETs is limited by the channel rather than contacts, which is further verified by four-terminal measurements. Finally, degenerately doped TMDs are used as drain/source electrodes to form 2D/2D van der Waals contacts, which are air and thermally stable. WSe2 devices with 2D/2D contacts and 0.01% Nb doped WSe2 channel show a high ON/OFF ratio and high field-effect mobility of 175 cm2 V-1S-1 at room temperature, which increases to 654 cm2V-1S-1 at cryogenic temperatures. As the doping concentration increases, both the ON/OFF ratio and mobility decrease. These contact engineering strategies overcome a major challenge in the development of electronics based on 2D materials beyond graphene.

  10. Accelerated warming at high elevations: a review of the current evidence and proposals for future research (Invited)

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.

    2013-12-01

    Arctic amplification, whereby enhanced warming is evident at high latitudes, is well accepted amongst the scientific community. Increased warming at high elevations is more controversial and is often given the more vague term 'elevational dependency'. The way in which different approaches (mountain surface data, radiosondes, satellite data and models) often yield different results is discussed, along with the differences between these approaches. Analyses of surface data differ in the stations chosen for comparison, the time period, elevational range, and methods of trend identification. An analysis of global datasets using over a thousand stations (GHCN, CRU) and defining change by the most common method of calculating the linear gradient of a best fit line (linear regression) shows no simple relationship between warming rate and elevation. There are however feedback mechanisms in the mountain environment (e.g. cryospheric change, water vapor and treelines) which, although they may enhance warming at certain elevations, are fairly poorly understood. Warming rates are also shown to be influenced by factors in the mountain environment other than elevation, including topography (aspect, slope, topographic exposure) as well as mean annual temperature, but the relative influences of such controls have yet to be disentangled from those that show a more simple elevationally-dependent signal. Mountain summits and exposed ridge sites are shown to show least variability in warming rates, rising up above a sea of noise. Radiosondes and satellite data are further removed from changes on the ground (surface temperatures) and studies using such data tend to be rather divorced from the mountain environment and need calibration/comparison with surface datasets. Reanalyses such as NCEP/NCAR and ERA, although having good spatial coverage, tend to suffer from the same problems. Following a discussion of differences between all these approaches, a plan to develop an integrated global approach to this issue will be discussed.

  11. Miocene Surface Temperature Estimates of the Southern Altiplano and Their Implications for Surface Uplift

    NASA Astrophysics Data System (ADS)

    Smith, J. J.; Garzione, C.; Higgins, P.; MacFadden, B.; Auerbach, D.; Croft, D.

    2008-12-01

    Surface temperature estimates derived from stable isotopes can be used to infer tectonic history and subsequent climate change of the Bolivian Altiplano. This study compares surface temperatures calculated from two fossil localities (Cerdas and Quehua) that span middle to late Miocene age in the southern Altiplano. Temperatures were calculated using the approach of Zanazzi et al. (2007) by comparing the stable isotopes of fossil tooth enamel and concurrent fossilized bones. The δ18O of the surface water is derived from fossil tooth enamel that mineralized at a known mammal body temperature. Surface water compositions are then used to calculate the temperature at which fossil bones were diagenetically altered, using the assumption that most alteration of fossil bones occurs within 20 to 50 thousand years of deposition. These surface temperature estimates can be used as a proxy for the amount of surface uplift based on modern temperature lapse rates. The vertical surface temperature gradient observed in the present-day Andes is about 4.66°C/km. Changes in surface elevations may explain large temperature changes reflected throughout the middle to late Miocene. Cerdas and Quehua, at modern elevations of ~3800m, have fossil records that include teeth and diagenetically altered bones that were deposited before and during a period of inferred rapid surface uplift of the northern Altiplano of 2.5 ± 1 km between ~10 to 6 Ma. Both sites have been dated by magnetostratigraphy and by 40Ar/39Ar dating of tuffs: Cerdas dates from 16.358 ± 0.071 to 15.105 ± 0.073 Ma, and Quehua ranges from 12.611 ± 0.034 to 6.844 ± 0.386 Ma. The close proximity and current elevation of Cerdas (21.9°S, 3800m) and Quehua (20.0°S, 3800m) allows for the assumption that their elevations were closely correlated through time. Thus the temperatures and elevation estimates derived from each location are assumed to reflect the larger extent of the southern Altiplano. If analysis of fossil enamel and bone from these locations shows a significant temperature decrease from middle to late Miocene, this would support the hypothesis of rapid regional surface uplift of the Altiplano during the late Miocene due to loss of the dense lower crust and/or lithospheric mantle.

  12. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    NASA Astrophysics Data System (ADS)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  13. Quasiparticle interference in unconventional 2D systems.

    PubMed

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  14. Documentation of programs used to determine a wetlands hydroperiod from model-simulated water-surface elevations

    USGS Publications Warehouse

    Sonenshein, R.S.

    1996-01-01

    A technique has been developed to determine a wetlands hydroperiod by comparing simulated water levels from a ground-water flow model and land- surface elevation data through a geographic information system. The simulated water levels are compared with the land-surface elevation data to determine the height of the water surface above or below land surface for the area of interest. Finally, the hydroperiod is determined for established time periods using criteria specified by the user. The program application requires the use of geographic information system software (ARC/INFO), including the TIN and GRID subsystems of the software. The application consists of an ANSI compatible C program to translate ground- water data output from the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model (MODFLOW) into a format that can be used as input for the geographic information system programs (AML's). The application uses ARC/INFO AML programs and ARC/INFO menu interface programs to create digital spatial data layers of the land surface and water surface and to determine the hydroperiod. The technique can be used to evaluate and manage wetlands hydrology.

  15. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  16. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  17. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control

    USGS Publications Warehouse

    Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.

  19. In-situ GPS records of surface mass balance, firn compaction rates, and ice-shelf basal melt rates for Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.

    2016-12-01

    In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and <0.4 m residuals. Similar Dh/Dt estimates with reduced variability are obtained after removing expected downward GPS pole base velocity from observed GPS antenna Dh/Dt. Estimated Dh/Dt basal melt rates are 10 to 40 m/yr for the outer PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to ocean heat content than previously reported, at least for these locations and time periods.

  20. The Effect of Firn-Aquifer Drainage on the Greenland Subglacial System or Subglacial Efficiency and Storage Modified by the Temporal Pattern of High-Elevation Meltwater Input

    NASA Technical Reports Server (NTRS)

    Andrews, Lauren C.; Poinar, Kristin; Dow, Christine F.; Nowicki, Sophie M.

    2017-01-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980- 2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial- lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially and the probability of crevassing at high elevations will play an important role in how the subglacial system, proglacial discharge and ice motion will respond to future increases in surface melt production and runoff.

  1. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part, the effect of ambient air on TMDs will be investigated and partial oxidation of TMDs. In the last part, uniform deposition of dielectric layers on 2D materials will be presented, employing organic seedling layer. Although 2D materials have been expected as next generation semiconductor platform, direct deposition of dielectric is still challenging and induces leakage current commonly, because inertness of their surface resulted from absent of dangling bond. Here, metal phthalocyanine monolayer (ML) is employed as seedling layers and the growth of atomic layer deposition (ALD) dielectric is investigated in each step using STM.

  2. Surface ozone in the White Mountains of California

    Treesearch

    Joel Burley; Andrzej Bytnerowicz

    2011-01-01

    Surface ozone concentrations are presented for four high-elevation sites along a northesouth transect along the spine of the White Mountains and a fifth site located at lower elevation approximately 15 km to the west on the floor of the Owens Valley. The ozone data, which were collected from mid-June through mid-October of 2009, include results from two sites, White...

  3. UAV-based photogrammetry combination of the elevational outcrop and digital surface models: an example of Sanyi active fault in western Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-En; Huang, Wen-Jeng; Chang, Ping-Yu; Lo, Wei

    2016-04-01

    An unmanned aerial vehicle (UAV) with a digital camera is an efficient tool for geologists to investigate structure patterns in the field. By setting ground control points (GCPs), UAV-based photogrammetry provides high-quality and quantitative results such as a digital surface model (DSM) and orthomosaic and elevational images. We combine the elevational outcrop 3D model and a digital surface model together to analyze the structural characteristics of Sanyi active fault in Houli-Fengyuan area, western Taiwan. Furthermore, we collect resistivity survey profiles and drilling core data in the Fengyuan District in order to build the subsurface fault geometry. The ground sample distance (GSD) of an elevational outcrop 3D model is 3.64 cm/pixel in this study. Our preliminary result shows that 5 fault branches are distributed 500 meters wide on the elevational outcrop and the width of Sanyi fault zone is likely much great than this value. Together with our field observations, we propose a structural evolution model to demonstrate how the 5 fault branches developed. The resistivity survey profiles show that Holocene gravel was disturbed by the Sanyi fault in Fengyuan area.

  4. Footwear effects on walking balance at elevation.

    PubMed

    Simeonov, Peter; Hsiao, Hongwei; Powers, John; Ammons, Douglas; Amendola, Alfred; Kau, Tsui-Ying; Cantis, Douglas

    2008-12-01

    The study evaluated the effects of shoe style on workers' instability during walking at elevation. Twenty-four construction workers performed walking tasks on roof planks in a surround-screen virtual reality system, which simulated a residential roof environment. Three common athletic and three work shoe styles were tested on wide, narrow and tilted planks on a simulated roof and on an unrestricted surface at simulated ground. Dependent variables included lateral angular velocities of the trunk and the rear foot, as well as the workers' rated perceptions of instability. The results demonstrated that shoe style significantly affected workers walking instability at elevated work environments. The results highlighted two major shoe-design pathways for improving walking balance at elevation: enhancing rear foot motion control; and improving ankle proprioception. This study also outlined some of the challenges in optimal shoe selection and specific shoe-design needs for improved walking stability during roof work. The study adds to the knowledge in the area of balance control, by emphasising the role of footwear as a critical human-support surface interface during work on narrow surfaces at height. The results can be used for footwear selection and improvements to reduce risk of falls from elevation.

  5. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  6. Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H.; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-01

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A3g shows a large redshift with increasing thickness; the experimental and theoretical results agreeing well. This thickness dependence is two times larger than that in the chalcogenide materials such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that in graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers, and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP, and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  7. Large Frequency Change with Thickness in Interlayer Breathing Mode--Significant Interlayer Interactions in Few Layer Black Phosphorus.

    PubMed

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-10

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  8. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach

    NASA Astrophysics Data System (ADS)

    Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.

    2010-01-01

    This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.

  9. Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design.

    PubMed

    Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona

    2015-01-01

    In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.

  10. Method for estimating potential wetland extent by utilizing streamflow statistics and flood-inundation mapping techniques: Pilot study for land along the Wabash River near Terre Haute, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.

    2012-01-01

    Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream direction of flow and (2) land-surface elevation data. These map products from the pilot study will aid the NRCS and its partners with the onsite inundation-zone verification in agricultural land for a potential restoration and will assist in determining at what elevation to plant hardwood trees for increased survivability on ground above frequently flooded terraces.

  11. Comparing elevation and freeboard from IceBridge and four different CryoSat-2 retrackers for coincident sea ice observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.

    2017-12-01

    The airborne IceBridge and spaceborne Cryosat-2 missions observe polar sea ice at different altitudes with different footprint sizes and often at different time and locations. Many studies use different retrackers to derive Cryosat-2 surface elevation, which we find causes large differences in the elevation and freeboard comparisons of IceBridge and Cryosat-2. In this study, we compare sea ice surface elevation and freeboard using 8 coincident CryoSat-2, ATM, and LVIS observations with IceBridge airplanes under flying the Cryosat-2 ground tracks. We apply identical ellipsoid, geoid model, tide model, and atmospheric correction to CryoSat-2 and IceBridge data to reduce elevation bias due to their differences. IceBridge's ATM and LVIS elevation and freeboard and Snow Radar snow depth are averaged at each CryoSat-2 footprint for comparison. The four different Cryosat-2 retrackers (ESA, GSFC, AWI, and JPL) show distinct differences in mean elevation up to 0.35 meters over leads and over floes, which suggests that systematic elevation bias exists between the retrackers. The mean IceBridge elevation over leads is within the mean elevation distribution of the four Cryosat-2 retrackers. The mean IceBridge elevation over floes is above the mean elevation distribution of the four Cryosat-2 retrackers. After removing the snow depth from IceBridge elevation, over floe, the mean elevation of IceBridge is within the mean elevation distribution of the four Cryosat-2 retrackers. By identifying the strengths and weaknesses of the retrackers, this study provides a mechanism to improve freeboard retrievals from existing methods.

  12. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    NASA Astrophysics Data System (ADS)

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  13. Validation Of DEM Data Dvied From World View 3 Stero Imagery For Low Elevation Majuro Atoll, Marchall Islands

    EPA Science Inventory

    The availability of surface elevation data for the Marshall Islands has been identified as a "massive" data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are nee...

  14. Validation of DEM Data Derived from World View 3 Stereo Imagery for Low Elevation Majuro Atoll, Marshall Islands

    EPA Science Inventory

    The availability of surface elevation data for the Marshall Islands has been identified as a “massive” data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are need...

  15. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    USGS Publications Warehouse

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrows Ammodramus maritimus, saltmarsh sharp-tailed sparrows A. caudacutus, black rails Laterallus jamaicensis, clapper rails Rallus longirostris, Forster's terns Sterna forsteri, common terns Sterna hirundo, and gull-billed terns Sterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.

  16. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  17. Numerical Model of the Hoosic River Flood-Control Channel, Adams, MA

    DTIC Science & Technology

    2010-02-01

    The model was then used to evaluate the flow conditions associated with the as-built channel configuration. The existing channel conditions were then...end as part of a channel restoration project. The model was to determine if restoration alterations would change water- surface elevations associated ...water-surface elevations associated with the initial design and construction. After as-built flow conditions were established, flow conditions

  18. Gravity deformation measurements of 70m reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.

    2001-01-01

    Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.

  19. Echelon approach to areas of concern in synoptic regional monitoring

    USGS Publications Warehouse

    Myers, Wayne; Patil, Ganapati P.; Joly, Kyle

    1997-01-01

    Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.

  20. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  1. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  2. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  3. Greenland meltwater storage in firn limited by near-surface ice formation

    NASA Astrophysics Data System (ADS)

    Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.

    2016-04-01

    Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

  4. ICESAT Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, D. D.; Carabajal, C. C.; Harding, D. H.; Bufton, J. L.; Williams, T. A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.

  5. Flood of April 2007 in Southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2009-01-01

    Up to 8.5 inches of rain fell from April 15 through 18, 2007, in southern Maine. The rain - in combination with up to an inch of water from snowmelt - resulted in extensive flooding. York County, Maine, was declared a presidential disaster area following the event. The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency (FEMA), determined peak streamflows and recurrence intervals at 24 locations and peak water-surface elevations at 63 sites following the April 2007 flood. Peak streamflows were determined with data from continuous-record streamflow-gaging stations where available and through hydraulic models where station data were not available. The flood resulted in peak streamflows with recurrence intervals greater than 100 years throughout most of York County, and recurrence intervals up to 50 years in Cumberland County. Peak flows for selected recurrence intervals varied from less than 10 percent to greater than 100 percent different than those in the current FEMA flood-insurance studies due to additional data or newer regression equations. Water-surface elevations observed during the April 2007 flood were bracketed by elevation profiles in FEMA flood-insurance studies with the same recurrence intervals as the recurrence intervals bracketing the observed peak streamflows at seven sites, with higher elevation-profile recurrence intervals than streamflow recurrence intervals at six sites, and with lower elevation-profile recurrence intervals than streamflow recurrence intervals at one site. The April 2007 flood resulted in higher peak flows and water-surface elevations than the flood of May 2006 in coastal locations in York County, and lower peak flows and water-surface elevations than the May 2006 flood further from the coast and in Cumberland County. The Mousam River watershed with over 13 dams and reservoirs was severely impacted by both events. Analyses indicate that the April 2007 peak streamflows in the Mousam River watershed occurred despite the fact that up to 287 million ft3 of runoff was stored by 13 dams and reservoirs.

  6. Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.

    2014-12-01

    Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18″N, 68°29'47″W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.

  7. Livelihoods Poised Between Cold and Dry: Modeling Land Surface Phenologies and Phenometric Lapse Rates in Central Asian Highland Pastures

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Krehbiel, C. P.; Kelgenbaeva, K.

    2016-12-01

    To explore the vulnerability of high-elevation communities in the Kyrgyz Republic and in Uzbekistan to changing climatic, sociodemographic, and socioeconomic conditions, we assembled image time series to characterize the condition of pastures near villages at high elevation (>2000 masl) and in remote pastures at higher elevations. Here we describe the application of the convex quadratic (CxQ) model of land surface phenology to highland pasturelands for selected oblasts in the Kyrgyz Republic and in eastern Uzbekistan. We used 16 years (2000-2015) of Landsat normalized difference vegetation index (NDVI) data with MODIS land surface temperature data processed into accumulated growing degree-days. The peak height of the NDVI and the thermal time to peak are two key phenological metrics derived analytically from the fitted parameter coefficients of the CxQ model for each pixel time series. Both exhibited sensitivity to elevation, which we describe in terms of phenometric lapse rates (PLRs). Interannual variation in PLRs was expressed differently for the peak NDVI and the thermal time to peak. Peak NDVI increased with elevation up to a point but also exhibited more spatial variation in dry years than in wetter years. Thermal time to peak exhibited strong, highly significant negative linear relationships to elevation with steeper slopes in drier years. Both types of PLRs were modulated by aspect. These relationships and the associated CxQ models by elevation and aspect can provide expectations against which to detect changes in pasture status as a result of management or weather.

  8. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  9. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  10. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  11. Changes in canopy cover alter surface air and forest floor temperature in a high-elevation red spruce (Picea rubens Sarg.) forest

    Treesearch

    Johnny L. Boggs; Steven G. McNulty

    2010-01-01

    The objective of this study is to describe winter and summer surface air and forest floor temperature patterns and diurnal fluctuations in high-elevation red spruce (Picea rubens Sarg.) forests with different levels of canopy cover. In 1988, a series of 10- x 10-meter plots (control, low nitrogen [N] addition, and high nitrogen addition) were...

  12. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    PubMed

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  13. Water-surface elevation and discharge measurement data for the Red River of the North and its tributaries near Fargo, North Dakota, water years 2014–15

    USGS Publications Warehouse

    Damschen, William C.; Galloway, Joel M.

    2016-08-25

    The U.S. Geological Survey, in cooperation with the Fargo Diversion Board of Authority, collected water-surface elevations during a range of discharges needed for calibration of hydrologic and hydraulic models for specific reaches of interest in water years 2014–15. These water-surface elevation and discharge measurement data were collected for design planning of diversion structures on the Red River of the North and Wild Rice River and the aqueduct/diversion structures on the Sheyenne and Maple Rivers. The Red River of the North and Sheyenne River reaches were surveyed six times, and discharges ranged from 276 to 6,540 cubic feet per second and from 166 to 2,040 cubic feet per second, respectively. The Wild Rice River reach also was surveyed six times during 2014 and 2015, and discharges ranged from 13 to 1,550 cubic feet per second. The Maple River reach was surveyed four times, and discharges ranged from 16.4 to 633 cubic feet per second. Water-surface elevation differences from upstream to downstream in the reaches ranged from 0.33 feet in the Red River of the North reach to 9.4 feet in the Maple River reach.

  14. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  15. Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu

    2016-09-01

    A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.

  16. Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water

    USGS Publications Warehouse

    ,

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  17. Elevated pCO2 enhances bacterioplankton removal of organic carbon

    PubMed Central

    James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422

  18. Comparing IceBridge and CryoSat-2 sea ice observations over the Arctic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.; Hofton, M. A.; Manizade, S.; Cornejo, H.

    2016-12-01

    From 2009 to 2015, CryoSat-2 and IceBridge had 34 coincident lines over sea ice, 23 over the Arctic (20 with ATM, 2 with LVIS, and 1 with both ATM and LVIS) and 11 over the Southern Ocean (9 with ATM and 2 with both ATM and LVIS). In this study, we will compare both surface elevation and sea ice freeboard from CryoSat-2, ATM, and LVIS. We will apply identical ellipsoid, geoid, tide models, and atmospheric corrections to CryoSat-2, ATM, and LVIS data. For CryoSat-2, we will use surface elevation and sea ice freeboard both in the standard CryoSat-2 data product and calculated through a waveform fitting method. For ATM and LVIS, we will use surface elevation and sea ice freeboard in the OIB data product and the elevation and sea ice freeboard calculated through Gaussian waveform fitting method. The results of this study are important for using ATM and LVIS to calibrate/validate CryoSat-2 results and bridging the data gap between ICESat and ICESat-2.

  19. 2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  20. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  1. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE PAGES

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  2. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  3. Novel Sources of Witchweed (Striga) Resistance from Wild Sorghum Accessions.

    PubMed

    Mbuvi, Dorothy A; Masiga, Clet W; Kuria, Eric; Masanga, Joel; Wamalwa, Mark; Mohamed, Abdallah; Odeny, Damaris A; Hamza, Nada; Timko, Michael P; Runo, Steven

    2017-01-01

    Sorghum is a major food staple in sub-Saharan Africa (SSA), but its production is constrained by the parasitic plant Striga that attaches to the roots of many cereals crops and causes severe stunting and loss of yield. Away from cultivated farmland, wild sorghum accessions grow as weedy plants and have shown remarkable immunity to Striga . We sought to determine the extent of the resistance to Striga in wild sorghum plants. Our screening strategy involved controlled laboratory assays of rhizotrons, where we artificially infected sorghum with Striga , as well as field experiments at three sites, where we grew sorghum with a natural Striga infestation. We tested the resistance response of seven accessions of wild sorghum of the aethiopicum, drummondii, and arundinaceum races against N13, which is a cultivated Striga resistant landrace. The susceptible control was farmer-preferred variety, Ochuti. From the laboratory experiments, we found three wild sorghum accessions (WSA-1, WSE-1, and WSA-2) that had significantly higher resistance than N13. These accessions had the lowest Striga biomass and the fewest and smallest Striga attached to them. Further microscopic and histological analysis of attached Striga haustorium showed that wild sorghum accessions hindered the ingression of Striga haustorium into the host endodermis. In one of the resistant accessions (WSE-1), host and parasite interaction led to the accumulation of large amounts of secondary metabolites that formed a dark coloration at the interphase. Field experiments confirmed the laboratory screening experiments in that these same accessions were found to have resistance against Striga . In the field, wild sorghum had low Area under the Striga Number Progressive curve (AUSNPC), which measures emergence of Striga from a host over time. We concluded that wild sorghum accessions are an important reservoir for Striga resistance that could be used to expand the genetic basis of cultivated sorghum for resistance to the parasite.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2}. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at Kmore » point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2} crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an A{sub H} transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and A{sub H} transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (B{sub H} transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the B{sub H} transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.« less

  5. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2.

    PubMed

    Zhang, Minghua; Fu, Jiyong; Dias, A C; Qu, Fanyao

    2018-05-18

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe$_2$, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (X$_{\\rm b}$), intravalley biexciton (XX$_{\\rm k,k}$) and intervalley biexciton (XX$_{\\rm k,k^\\prime}$) in particular for the {XX$_{\\rm k,k}$} PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e., increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of X$_{\\rm b}$ shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XX$_{\\rm k,k}$ VP is found almost independent of temperature. In contrast to both X$_{\\rm b}$ and XX$_{\\rm k,k}$, the intervalley XX$_{\\rm k,k^\\prime}$ VP identically vanishes, because of equal populations of excitons in the $K$ and $K^\\prime$ valleys bounded to form intervalley biexcitons. Notably, it is found that the X$_{\\rm b}$ VP much more strongly depends on bright-dark scattering than that of {XX$_{\\rm k,k}$}, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for X$_{\\rm b}$ at strong bright-dark scatterings, but not for XX$_{\\rm k,k}$. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the time evolution of PL and VP, depending on temperature and excitation fluence, is discussed. © 2018 IOP Publishing Ltd.

  6. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  7. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    PubMed Central

    Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven

    2012-01-01

    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810

  8. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, K. N.; Gu, Y.; Leung, L. R.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily andmore » seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m -2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season.Finally, because 60–90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources' vulnerability to climate change and air pollution.« less

  9. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrom, Northwest Greenland, 1985-2016

    NASA Astrophysics Data System (ADS)

    Wendler, Lindsay

    The several distinct glaciers of Upernavik Isstrom, which drain a portion of the northwest margin of the Greenland Ice Sheet (GrIS), exhibit variable thinning, retreat, and velocity behaviors, despite being in such close proximity, draining into the same fjord, and experiencing similar climatic conditions. The goal of this study was to reconstruct, in as much detail as possible, a 1985-2016 surface elevation change history for each Upernavik glacier. Surface elevation datasets used in these reconstructions included laser altimetry data collected by several NASA systems (ATM, LVIS, ICESat) and digital elevation models (DEMs) derived from various sources (1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery). The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for use in final reconstructions. The spatiotemporal pattern of ice surface change was analyzed and compared with other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings that may have influenced the variable behavior of the glaciers. We detected rapid thinning on glaciers 1, 2, and 5 and determined the timing of these thinning events. Major findings included detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continued thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops, suggesting that reduction of lateral drag might have contributed to the thinning. While this study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. My study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.

  10. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  11. On the relationship between isostatic elevation and the wavelengths of tectonic surface features on Venus

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.

    1990-01-01

    Venus lithospheric structure models are presently formulated in which regional isostatic elevation, d, and the spacing wavelength, lambda, of tectonic features formed due to horizontal extension and compression are functions of both surface thermal gradient and crustal thickness c. It is shown that, in areas of Venus where the upper mantle is stronger than the upper crust, the spacings of short-wavelength features should increase with increasing d, if that change in turn is due to increasing c, but should decrease with increasing d, if this change is in turn due to increasing surface thermal gradient.

  12. Assimilation of Wave and Current Data for Prediction of Inlet and River Mouth Dynamics

    DTIC Science & Technology

    2013-07-01

    onto the Delft3D computational grid and the specification of Riemann -type boundary conditions for the boundary-normal velocity and surface elevation...conditions from time- history data from in situ tide gages. The corrections are applied to the surface-elevation contribution to the Riemann boundary...The algorithms described above are all of the strong-constraint variational variety, and make use of adjoint solvers corresponding to the various

  13. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    DTIC Science & Technology

    2008-01-02

    to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H20 2 and decreased pH and the production of...Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the...organometallic catalysis, acidification of the electrode surface, the combined effects of elevated hydrogen peroxide (H202) and decreased pH and the production

  14. Summary of water-surface-elevation data for 116 U.S. Geological Survey lake and reservoir stations in Texas and comparison to data for water year 2006

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, municipal, and local agencies, currently (2007) collects data for more than 120 lakes and reservoirs in Texas through a realtime, data-collection network. The National Water Information System that processes and archives water-resources data for the Nation provides a central source for retrieval of real-time as well as historical data. This report provides a brief description of the real-time, data-collection network and graphically summarizes the period-of-record daily mean water-surface elevations for 116 active and discontinued USGS lake and reservoir stations in Texas. The report also graphically depicts selected statistics (minimum, maximum, and mean) of daily mean water-surface-elevation data. The data for water year 2006 are compared to the selected statistics.

  15. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  16. Topographic View of Ceres Mountain

    NASA Image and Video Library

    2015-09-30

    This view, made using images taken by NASA's Dawn spacecraft, features a tall conical mountain on Ceres. Elevations span a range of about 5 miles (8 kilometers) from the lowest places in this region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The white streaks seen running down the side of the mountain are especially bright parts of the surface. The image was generated using two components: images of the surface taken during Dawn's High Altitude Mapping Orbit (HAMO) phase, where it viewed the surface at a resolution of about 450 feet (140 meters) per pixel, and a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution Survey phase. The image of the region is color-coded according to elevation, and then draped over the shape model to give this view. http://photojournal.jpl.nasa.gov/catalog/PIA19976

  17. Study on glacier changes from multi-source remote sensing data in the mountainous areas of the upper reaches of Shule River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, H.

    2017-12-01

    The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.

  18. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  19. Interpolations of groundwater table elevation in dissected uplands.

    PubMed

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  20. How can we Optimize Global Satellite Observations of Glacier Velocity and Elevation Changes?

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Pritchard, M. E.; Zheng, W.

    2015-12-01

    We have started a global compilation of glacier surface elevation change rates measured by altimeters and differencing of Digital Elevation Models and glacier velocities measured by Synthetic Aperture Radar (SAR) and optical feature tracking as well as from Interferometric SAR (InSAR). Our goal is to compile statistics on recent ice flow velocities and surface elevation change rates near the fronts of all available glaciers using literature and our own data sets of the Russian Arctic, Patagonia, Alaska, Greenland and Antarctica, the Himalayas, and other locations. We quantify the percentage of the glaciers on the planet that can be regarded as fast flowing glaciers, with surface velocities of more than 50 meters per year, while also recording glaciers that have elevation change rates of more than 2 meters per year. We examine whether glaciers have significant interannual variations in velocities, or have accelerated or stagnated where time series of ice motions are available. We use glacier boundaries and identifiers from the Randolph Glacier Inventory. Our survey highlights glaciers that are likely to react quickly to changes in their mass accumulation rates. The study also identifies geographical areas where our knowledge of glacier dynamics remains poor. Our survey helps guide how frequently observations must be made in order to provide quality satellite-derived velocity and ice elevation observations at a variety of glacier thermal regimes, speeds and widths. Our objectives are to determine to what extent the joint NASA and Indian Space Research Organization Synthetic Aperture Radar mission (NISAR) will be able to provide global precision coverage of ice speed changes and to determine how to optimize observations from the global constellation of satellite missions to record important changes to glacier elevations and velocities worldwide.

Top