Sample records for surface energy

  1. Surface structure and stability of partially hydroxylated silica surfaces

    DOE PAGES

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    2017-04-04

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  2. Particle Engineering in Pharmaceutical Solids Processing: Surface Energy 
Considerations

    PubMed Central

    Williams, Daryl R.

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912

  3. A topological screening heuristic for low-energy, high-index surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  5. Surface tension, surface energy, and chemical potential due to their difference.

    PubMed

    Hui, C-Y; Jagota, A

    2013-09-10

    It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.

  6. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: A density-functional study

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.

    2013-03-01

    The polar threefold surfaces of the GaPd compound crystallizing in the B20 (FeSi-type) structure (space group P213) have been investigated using density-functional methods. Because of the lack of inversion symmetry the B20 structure exists in two enantiomorphic forms denoted as A and B. The threefold {111} surfaces have polar character. In both nonequivalent (111) and (bar{1}bar{1}bar{1}) directions several surface terminations differing in structure and chemical composition are possible. The formation of the threefold surfaces has been studied by simulated cleavage experiments and by calculations of the surface energies. Because of the polar character of the threefold surfaces calculations for stoichiometric slabs permit only the determination of the average energy of the surfaces exposed on both sides of the slab. Calculations for nonstoichiometric slabs performed in the grand canonical ensemble yield differences of the surface energies for the possible terminations as a function of the chemical potential in the reactive atmosphere above the surface and predict a transition between Ga- and Pd-terminated surfaces as a function of the chemical potential. The {100} surfaces are stoichiometric and uniquely defined. The calculated surface energies are identical to the average energies of the {100} surfaces of the pure metals. The {210} surfaces are also stoichiometric, with an energy very close to that of the {100} surfaces. Assuming that for the {111} surfaces the energies of different possible terminations are in a proportion equal to that of the concentration-weighted energies of the {111} surfaces of the pure metals, surface energies for all possible {111} terminations may be calculated. The preferable termination perpendicular to the A⟨111⟩ direction consists of a bilayer with three Ga atoms in the upper and three Pd atoms in the lower part. The surface energy of this termination further decreases if the Pd triplet is covered by additional Ga atom. Perpendicular to the A< bar{1}bar{1}bar{1} > direction the lowest energy has been found for a bilayer with three Ga atoms per surface cell in the upper layer and one Ga and one Pd in the lower part. The calculated surface energies are in agreement with a simulated cleavage experiment. However, cleavage does not result in the formation of the lowest-energy surfaces, because all possible {111} cleavage planes expose a low-energy surface on one, and a high-energy surface on the other side. The prediction of Ga-terminated surfaces has been tested against the available experimental information. The calculated surface electronic density of states is in very good agreement with photo-emission spectroscopy. Calculated STM images of the most stable surfaces agree with all details of the available experimental images. The chemical reactivity of the most stable surfaces has been studied by the adsorption of CO molecules. The adsorption energies and maximum coverages calculated for the Ga-terminated surfaces permit a reasonable interpretation of the observed thermal desorption spectra, whereas for the Pd-terminated surfaces the calculated adsorption energies are far too high.

  7. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    PubMed

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  9. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  10. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE PAGES

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  11. Surface energy of talc and chlorite: Comparison between electronegativity calculation and immersion results.

    PubMed

    Douillard, Jean-Marc; Salles, Fabrice; Henry, Marc; Malandrini, Harold; Clauss, Frédéric

    2007-01-15

    The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.

  12. Analysis of energy flow during playground surface impacts.

    PubMed

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  13. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    NASA Astrophysics Data System (ADS)

    Kibar, Ali

    2016-02-01

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750-3050 Reynolds number, with an inclination angle of 20°-40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy.

  14. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.

  15. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  16. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  17. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  18. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  19. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Castells, Victoria; Van Tassel, Paul R.

    2005-02-01

    Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.

  20. Functionalized Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS)

    DTIC Science & Technology

    2012-01-01

    oligomeric silsesquioxane (F-POSS) possesses one of the lowest surface energies leading to the creation of superhydrophobic and oleophobic surfaces...material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via covalently...F-POSS possesses one of the lowest surface energies leading to the creation of superhydrophobic and oleophobic surfaces. (a) Mabry, J. M

  1. 4H-SiC surface energy tuning by nitrogen up-take

    NASA Astrophysics Data System (ADS)

    Pitthan, E.; Amarasinghe, V. P.; Xu, C.; Gustafsson, T.; Stedile, F. C.; Feldman, L. C.

    2017-04-01

    Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  2. Surface-induced dissociation and chemical reactions of C2D4(+) on stainless steel, carbon (HOPG), and two different diamond surfaces.

    PubMed

    Feketeová, Linda; Zabka, Jan; Zappa, Fabio; Grill, Verena; Scheier, Paul; Märk, Tilmann D; Herman, Zdenek

    2009-06-01

    Surface-induced interactions of the projectile ion C(2)D(4)(+) with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar(+) ions (5-400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).

  3. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.

    PubMed

    Liang, Shide; Zhang, Jian; Zhang, Shicui; Guo, Huarong

    2004-11-15

    We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue. (c) 2004 Wiley-Liss, Inc.

  4. Protein-Nanoparticle Interactions: Improving Immobilized Lytic Enzyme Activity and Surface Energy Effects

    NASA Astrophysics Data System (ADS)

    Downs, Emily Elizabeth

    Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.

  5. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose.

    PubMed

    Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R

    2001-05-01

    To assess differences in surface energy due to processing induced disorder and to understand whether the disorder dominated the surfaces of particles. Inverse gas chromatography was used to compare the surface energies of crystalline, amorphous, and ball milled lactose. The milling process made ca 1% of the lactose amorphous, however the dispersive contribution to surface energy was 31.2, 37.1, and 41.6 mJ m(-2) for crystalline, spray dried and milled lactose, respectively. A physical mixture of crystalline (99%) and amorphous (1%) material had a dispersive surface energy of 31.5 mJ m(-2). Milling had made the surface energy similar to that of the amorphous material in a manner that was very different to a physical mixture of the same amorphous content. The milled material will have similar interfacial interactions to the 100% amorphous material.

  6. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  7. Effect of crystal habits on the surface energy and cohesion of crystalline powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y

    2014-09-10

    The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.

  8. Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1982-01-01

    Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.

  9. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  10. Relationship of wood surface energy to surface composition

    Treesearch

    Feipeng P. Liu; Timothy G. Rials; John Simonsen

    1998-01-01

    The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...

  11. Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbone and polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Ponter, A. B.; Jones, W. R., Jr.; Jansen, R. H.

    1994-01-01

    Contact angles of water and methylene iodide were measured as a function of UV/O3 treatment time for three polymers: poly(methylmethacrylate) (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE). Surface roughnesses were also measured. Surface free energies were then calculated using relationships developed by Kaelble and Neumann. The surface energy of polycarbonate was found to increase (60 percent) during UV/O3 treatment. However, calculations on PMMA were hampered by the formation of a water soluble surface product. On PTFE surfaces, the UV/O3 treatment etched the surface causing large increases in surface roughness, rendering contact angle measurements impossible. It is concluded that care must be taken in interpreting contact angle measurements and surface energy calculations on UV/O3 treated polymer surfaces.

  12. The Effect of Solution Chemistry on Nucleation of Nesquehonite

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhu, C.; Wang, Z.

    2016-12-01

    The interfaces between minerals and aqueous solutions are key to important Earth surface processes, including chemical weathering, mineral dissolution/precipitation, and pollutant absorption/release. Mineral surface properties, such as the surface structure and the surface energy, determine the outcomes of many geochemical reactions. Several factors could affect surface energy, but the effect of solution chemistry, particularly the solution stoichiometry, on the surface energy and nucleation process is poorly understood. The goal of this study is to understand the effect of solution chemistry on the nucleation of nesquehonite. Nesquehonite nucleation experiments were conducted in aqueous solutions having similar Mg2+/ CO32- activity ratios, but different saturation states and solution pH. The experimental results show that induction-time estimates from our precipitation experiments with similar Mg2+/CO32- activity ratios are consistent with classical nucleation theory (CNT), while the surface energy derived from CNT varies with Mg2+/CO32- activity ratios. Our observations can be explained by the different absorption behaviors of Mg2+ and CO32- and and/or reduced Gibbs free energies through better screening of the electric double layer. A surface energy model involving solution composition is developed that combines surface complexation with electrostatic models. The new model takes into account how surface charge may affect surface energy. It implies that the highest surface energy may occur around the point of zero charge (p.z.c), where the nucleation is fastest (or conversely, where the induction time is shortest) under low saturation states, but not under high saturation states. An accelerated attachment rate of monomers at the p.z.c. is consistent with high surface energy, since it represents higher reactivity of surface ions and less work needed to break the solvated water molecules. This study provides deeper insights into mechanisms of nesquehonite nucleation in nature, and guidelines for accelerating the precipitation rates of nesquehonite.

  13. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Observing changes in atmospheric heat content

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Globally, air temperatures near the surface over land have been rising in recent decades, and this has been presented as solid evidence of global warming. However, some scientists have argued that total heat content (energy), rather than temperature, should be used as a metric of warming trends. Surface air temperature is only one component of the energy content of the surface atmosphere—kinetic energy and latent heat also contribute. Peterson et al. present the first study to use observational data to estimate global changes in surface energy of the atmosphere over time. They include temperature, kinetic energy, and latent heat in their analysis. The authors found that total global surface atmospheric energy and heat content have increased since the 1970s, even though kinetic energy decreased slightly and in some regions latent heat declined while temperature increased.

  15. Calculation of surface enthalpy of solids from an ab initio electronegativity based model: case of ice.

    PubMed

    Douillard, J M; Henry, M

    2003-07-15

    A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.

  16. Thickness-dependent surface energies of few-layered arsenene and antimonene films in α and β phases

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Zhu, Y. F.; Jiang, Q.

    2018-07-01

    Group V elemental few-layered materials with semiconducting electronic properties are emerging as promising 2D layered materials. Since the layered configurations need substrate for device fabrications, their surface energy values could decide their properties. Here, we have performed a systematic density functional theory (DFT) investigation on the surface energies of arsenene and antimonene films as the function of thickness. The results show that the surface energy of β phase increases with increased layered numbers and converges to a constant value at about five layers, while the surface energy of α phase is size-independent. Since the surface energies of both α and β phase are similar, there is the existence possibility of α phase. Those could give references for future manufacture of arsenene and antimonene nano-devices.

  17. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  18. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  19. Improving the Thermodynamic Stability of Aluminate Spinel Nanoparticles with Rare Earths

    DOE PAGES

    Hasan, M. M.; Dey, Sanchita; Nafsin, Nazia; ...

    2016-06-29

    Surface energy is a key parameter to understand and predict the stability of catalysts. In this work, the surface energy of MgAl 2O 4, an important base material for catalyst support, was reduced by using dopants prone to form surface excess (surface segregation): Y 3+, Gd 3+, and La 3+. The energy reduction was predicted by atomistic simulations of spinel surfaces and experimentally demonstrated by using microcalorimetry. The surface energy of undoped MgAl 2O 4 was directly measured as 1.65 ± 0.04 J/m 2 and was reduced by adding 2 mol % of the dopants to 1.55 ± 0.04 J/mmore » 2 for Y-doping, 1.45 ± 0.05 J/m 2 for Gd-doping, and 1.26 ± 0.06 J/m 2 for La-doping. Atomistic simulations are qualitatively consistent with the experiments, reinforcing the link between the role of dopants in stabilizing the surface and the energy of segregation. Surface segregation was experimentally assessed using electron energy loss spectroscopy mapping in a scanning transmission electron microscopy image. Finally, the reduced energy resulted in coarsening inhibition for the doped samples and, hence, systematically smaller particle sizes (larger surface areas), meaning increased stability for catalytic applications. Moreover, both experiment and modeling reveal preferential dopant segregation to specific surfaces, which leads to the preponderance of {111} surface planes and suggests a strategy to enhance the area of desired surfaces in nanoparticles for better catalyst support activity.« less

  20. Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations

    Treesearch

    C. H. Luce; D. G. Tarboton

    2010-01-01

    The snow surface temperature is an important quantity in the snow energy balance, since it modulates the exchange of energy between the surface and the atmosphere as well as the conduction of energy into the snowpack. It is therefore important to correctly model snow surface temperatures in energy balance snowmelt models. This paper focuses on the relationship between...

  1. Comments on the article entitled “Incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics” by D.J. Bottomley, Lasse Makkonen and Kari Kolari [Surf. Sci. 603 (2009) 97

    NASA Astrophysics Data System (ADS)

    Hecquet, Pascal

    2010-02-01

    In the Shuttleworth's equation gij=γδij+dγ/dɛij, γ is the surface energy and gij is the surface stress with respect to the corresponding bulk quantity. At equilibrium and T=0 K, the bulk energy is the cohesive energy and the bulk stress is zero ( p=0). For i=j ( ɛii is hydrostatic) and for a flat surface, we show that the equilibrium surface stress gii corresponds to a surface pressure located mainly at the first monolayer and that the presence of the surface energy γ in the Shuttleworth's equation results from the matter conservation rule. Indeed, γ is an energy calculated per constant unit area while the atomic surface varies with the deformation as ( 1+ɛii). The equilibrium surface stress gii present at the surface is parallel to the surface. When gii is positive, this signifies that the surface atoms tend to contract together in the direction i even if the bulk pressure p is zero.

  2. Inferring the microscopic surface energy of protein-protein interfaces from mutation data.

    PubMed

    Moal, Iain H; Dapkūnas, Justas; Fernández-Recio, Juan

    2015-04-01

    Mutations at protein-protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical ΔΔG values, yielding mean energies of -48 cal mol(-1) Å(-2) for interactions between hydrophobic surfaces, -51 to -80 cal mol(-1) Å(-2) for surfaces of complementary charge, and 66-83 cal mol(-1) Å(-2) for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at -24 cal mol(-1) Å(-2) . Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid-body interactions (r = 0.66). When used to rerank docking poses, it can place near-native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50-95% of the cohesive energy. The model is available open-source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/. © 2015 Wiley Periodicals, Inc.

  3. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study.

    PubMed

    Abraham, Kirubaharan S; Jagdish, Nithya; Kailasam, Vignesh; Padmanabhan, Sridevi

    2017-05-01

    To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016" and 0.016" × 0.022" NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.

  4. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  5. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  6. Predicting the quality of powders for inhalation from surface energy and area.

    PubMed

    Cline, David; Dalby, Richard

    2002-09-01

    To correlate the surface energy of active and carrier components in an aerosol powder to in vitro performance of a passive dry powder inhaler. Inverse gas chromatography (IGC) was used to assess the surface energy of active (albuterol and ipratropium bromide) and carrier (lactose monohydrate, trehalose dihydrate and mannitol) components of a dry powder inhaler formulation. Blends (1%w/w) of drug and carrier were prepared and evaluated for dry powder inhaler performance by cascade impaction. The formulations were tested with either of two passive dry powder inhalers, Rotahaler (GlaxoSmithKline) or Handihaler (Boehringer Ingelheim). In vitro performance of the powder blends was strongly correlated to surface energy interaction between active and carrier components. Plotting fine particle fraction vs. surface energy interaction yielded an R2 value of 0.9283. Increasing surface energy interaction between drug and carrier resulted in greater fine particle fraction of drug. A convincing relationship, potentially useful for rapid formulation design and screening, was found between the surface energy and area parameters derived from IGC and dry powder inhaler performance.

  7. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    PubMed

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  8. OGO-6 gas-surface energy transfer experiment

    NASA Technical Reports Server (NTRS)

    Mckeown, D.; Dummer, R. S.; Bowyer, J. M., Jr.; Corbin, W. E., Jr.

    1973-01-01

    The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications.

  9. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  10. Rapid spectrophotometric method for determining surface free energy of microalgal cells.

    PubMed

    Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y

    2014-09-02

    Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.

  11. Surface energy fluxes at Central Florida during the convection and precipitation electrification experiment

    NASA Technical Reports Server (NTRS)

    Nie, D.; Demetriades-Shah, T. D.; Kanemasu, E. T.

    1993-01-01

    One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz, 1982; Sud and Smith, 1985; Sato et. al, 1989). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al, 1989). In order to better describe the processes in the atmosphere at various scales and improve our ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.

  12. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  13. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  14. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    PubMed

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  15. First-principles study of the surface properties of U-Mo system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo andmore » gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.« less

  16. Interaction of slow highly charged ions with a metal surface covered with a thin dielectric film. The role of the neutralization energy in the nanostructures formation

    NASA Astrophysics Data System (ADS)

    Majkić, M. D.; Nedeljković, N. N.; Dojčilović, R. J.

    2017-09-01

    We consider the slow highly charged ions impinging upon a metal surface covered with a thin dielectric film, and formation of the surface nanostructures (craters) from the standpoint of the required energy. For the moderate ionic velocities, the size of the surface features depends on the deposited kinetic energy of the projectile and the ionic neutralization energy. The neutralization energy is calculated by employing the recently developed quasi-resonant two-state vector model for the intermediate Rydberg state population and the micro-staircase model for the cascade neutralization. The electron interactions with the ionic core, polarized dielectric and charge induced on the metal surface are modelled by the appropriate asymptotic expressions and the method for calculation of the effective ionic charges in the dielectric is proposed. The results are presented for the interaction of \\text{X}{{\\text{e}}Z+} ions (velocity v=0.25 a.u.; 25) with the metal surface (Co) covered with a thin dielectric film, for model values of dielectric constant inside the interaction region. In the absence of dielectric film, the neutralization energy is lower than the potential (ionization) energy due to the incomplete neutralization. The presence of dielectric film additionally decreases the neutralization energy. We calculate the projectile neutralization energy in the perturbed dielectric (perturbation is caused by the ionic motion and the surface structure formation). We correlate the neutralization energy added to the deposited kinetic energy with the experimentally obtained energy necessary for the formation of the nano-crater of a given depth.

  17. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  18. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  19. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  20. Surface patterning of soft polymer film-coated cylinders via an electric field.

    PubMed

    Li, Bo; Li, Yue; Xu, Guang-Kui; Feng, Xi-Qiao

    2009-11-04

    Using the linear stability analysis method, we investigate the surface wrinkling of a thin polymer coating on a cylinder in an externally applied electric field. It is demonstrated that energy competition between surface energy, van der Waals interactive potential energy and electrostatic interaction energy may lead to ordered patterns on the film surface. The analytical solutions are derived for the critical conditions of both longitudinal and circumferential instabilities. The wavelengths of the generated surface patterns can be mediated by changing the magnitude of the electric field. Our analysis shows that the surface morphology is sensitive to the curvature radius of the fiber, especially in the micrometer and nanometer length scales. Furthermore, we suggest a potential approach for fabricating hierarchical patterns on curved surfaces.

  1. Estimating and validating surface energy fluxes at field scale over a heterogeneous land surfaces based on two-source energy balance model (TSEB)

    USDA-ARS?s Scientific Manuscript database

    Accurate estimation of surface energy fluxes at field scale over large areas has the potential to improve agricultural water management in arid and semiarid watersheds. Remote sensing may be the only viable approach for mapping fluxes over heterogeneous landscapes. The Two-Source Energy Balance mode...

  2. Auger mediated positron sticking on graphene and highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Chirayath, V. A.; Chrysler, M.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements on 6-8 layers graphene grown on polycrystalline copper and the measurements on a highly oriented pyrolytic graphite (HOPG) sample have indicated the presence of a bound surface state for positrons. Measurements carried out with positrons of kinetic energies lower than the electron work function for graphene or HOPG have shown emission of low energy electrons possible only through the Auger mediated positron sticking (AMPS) process. In this process the positron makes a transition from a positive energy scattering state to a bound surface state. The transition energy is coupled to a valence electron which may then have enough energy to get ejected from the sample surface. The positrons which are bound to surface state are highly localized in a direction perpendicular to surface and delocalized parallel to it which makes this process highly surface sensitive and can thus be used for characterizing graphene or graphite surfaces for open volume defects and surface impurities. The measurements have also shown an extremely large low energy tail for the C KVV Auger transition at 263eV indicative of another physical process for low energy emission. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  3. Surface modification of EPDM rubber by plasma treatment.

    PubMed

    Grythe, Kai Frode; Hansen, Finn Knut

    2006-07-04

    The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.

  4. Experimental Simulation of Solar Wind Interaction with MagneticDipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.

    2017-12-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.

  5. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  6. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    PubMed

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-06-05

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Surface energy fluxes and their representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, M.

    2016-12-01

    Energy fluxes at the Earth surface play a key role in the determination of surface climate and in the coupling of atmosphere, land and ocean components. Unlike their counterparts at the top of atmosphere (TOA), surface fluxes cannot be directly measured from satellites, but have to be inferred from the space-born observations using additional models to account for atmospheric perturbations, or from the limited number of surface observations. Uncertainties in the energy fluxes at the surface have therefore traditionally been larger than at the TOA, and have limited our knowledge on the distribution of the energy flows within the climate system. Accordingly, current climate models still largely differ in their representation of surface and atmospheric energy fluxes. Since the mid-1990s, accurate flux measurements became increasingly available from surface networks such as BSRN, which allow to better constrain the surface energy fluxes. There is, however, still a lack of flux measurements particularly over oceans. Further, the larger-scale representativeness of the station records needs to be assessed to judge their suitability as anchor sites for gridded flux products inferred from satellites, reanalyses and climate models. In addition, historic records need to be carefully quality-checked and homogeneized. In parallel, satellite-derived products of surface fluxes profit from the great advancement in space-born observations since the turn of the millennium, and from improved validation capabilities with surface observations. Ultimately, it is the combination of surface and space-born observations, reanalyses and modeling approaches that will advance our knowledge on the distribution of the surface energy fluxes. Uncertainties remain in the determination of surface albedo, skin temperatures and the partitioning of surface net radiation into the sensible and latent heat. Climate models over generations up to present day (CMIP5) tend to overestimate the downward shortwave and underestimate the downward longwave radiation. A challenge also remains the consistent representation of the global energy and water cycles. Yet it is shown that those climate models with a realistic surface radiation balance also simulate global precipitation amounts within the uncertainty range of observational estimates.

  8. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    PubMed

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  9. First-principles study of stability of helium-vacancy complexes below tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Yang, L.; Bergstrom, Z. J.; Wirth, B. D.

    2018-05-01

    Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.

  10. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Wang, Ao; DeBenedictis, Elizabeth P.; Keten, Sinan

    2017-11-01

    The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered curli fiber based adhesives.

  11. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  12. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  13. First-principles investigation on the structures, energies, electronic and defective properties of Ti2AlN surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Xiuli; Sun, Dongli; Wang, Qing

    2018-03-01

    In this research work, the structures, energies, electronic and defective properties of (0001), (10 1 bar 0) , (11 2 bar 0) and (10 1 bar 3) surfaces of Ti2AlN were investigated systematically by the first-principles calculations based on density functional theory. The (0001) and (10 1 bar 0) are polar surfaces and have different kinds of surface terminations, while the (11 2 bar 0) and (10 1 bar 3) are non-polar surfaces. The calculated results show that the Ti(Al)-, Al- terminated (0001) surfaces experience the least relaxation, and N- terminated (0001) surface experiences the greatest relaxation. The calculated surface energies of non-polar surfaces are independent on the constituent element chemical potential, while surface energies of polar surfaces are correlated with the constituent element chemical potential. It is found that the (0001)-Ti(Al), (0001)-Al, (10 1 bar 0) -TiAl and (10 1 bar 3) surface are stable under the condition of Ti- and Al- rich environments, the (0001)-N surface is the most stable one under the Ti- and Al- poor condition. The electronic structures of all the surfaces except (10 1 bar 3) are significantly influenced by structure relaxations. Furthermore, the monovacancy formation energies on the surface layer are lower than that in the bulk, the monovacancies are most difficult to exist on the (10 1 bar 3) surface among all the surfaces.

  14. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    PubMed

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  15. Thermodynamics of rough colloidal surfaces

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael

    1991-03-01

    In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.

  16. Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications.

    PubMed

    Boo, Chanhee; Lee, Jongho; Elimelech, Menachem

    2016-08-02

    We investigated the factors that determine surface omniphobicity of microporous membranes and evaluated the potential application of these membranes in desalination of low surface tension wastewaters by membrane distillation (MD). Specifically, the effects of surface morphology and surface energy on membrane surface omniphobicity were systematically investigated by evaluating wetting resistance to low surface tension liquids. Single and multilevel re-entrant structures were achieved by using cylindrical glass fibers as a membrane substrate and grafting silica nanoparticles (SiNPs) on the fibers. Surface energy of the membrane was tuned by functionalizing the fiber substrate with fluoroalkylsilane (FAS) having two different lengths of fluoroalkyl chains. Results show that surface omniphobicity of the modified fibrous membrane increased with higher level of re-entrant structure and with lower surface energy. The secondary re-entrant structure achieved by SiNP coating on the cylindrical fibers was found to play a critical role in enhancing the surface omniphobicity. Membranes coated with SiNPs and chemically modified by the FAS with a longer fluoroalkyl chain (or lower surface energy) exhibited excellent surface omniphobicity and showed wetting resistance to low surface tension liquids such as ethanol (22.1 mN m(-1)). We further evaluated performance of the membranes in desalination of saline feed solutions with varying surface tensions by membrane distillation (MD). The engineered membranes exhibited stable MD performance with low surface tension feed waters, demonstrating the potential application omniphobic membranes in desalinating complex, high salinity industrial wastewaters.

  17. Physicochemical characterization of D-mannitol polymorphs: the challenging surface energy determination by inverse gas chromatography in the infinite dilution region.

    PubMed

    Cares-Pacheco, M G; Vaca-Medina, G; Calvet, R; Espitalier, F; Letourneau, J-J; Rouilly, A; Rodier, E

    2014-11-20

    Nowadays, it is well known that surface interactions play a preponderant role in mechanical operations, which are fundamental in pharmaceutical processing and formulation. Nevertheless, it is difficult to correlate surface behaviour in processes to physical properties measurement. Indeed, most pharmaceutical solids have multiple surface energies because of varying forms, crystal faces and impurities contents or physical defects, among others. In this paper, D-mannitol polymorphs (α, β and δ) were studied through different characterization techniques highlighting bulk and surface behaviour differences. Due to the low adsorption behaviour of β and δ polymorphs, special emphasis has been paid to surface energy analysis by inverse gas chromatography, IGC. Surface energy behaviour has been studied in Henry's domain showing that, for some organic solids, the classical IGC infinite dilution zone is never reached. IGC studies highlighted, without precedent in literature, dispersive surface energy differences between α and β mannitol, with a most energetically active α form with a γ(s)(d) of 74.9 mJ·m⁻². Surface heterogeneity studies showed a highly heterogeneous α mannitol with a more homogeneous β (40.0 mJ·m⁻²) and δ mannitol (40.3 mJ·m⁻²). Moreover, these last two forms behaved similarly considering surface energy at different probe concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Phase-Field Analysis of Fracture-Induced Twinning in Single Crystals

    DTIC Science & Technology

    2013-07-01

    strongly on surface energy and twinning shear (i.e., eigenstrain ). Depending on the coherent twin boundary energy, anisotropy of surface energy is...Poisson’s ratio and elastic nonlinearity and strongly on surface energy and twinning shear (i.e. eigenstrain ). Depending on the coherent twin boundary energy...shear eigenstrain c0/2) relieves much of the stress that would otherwise be large as r ! 0 in an elastic medium without a twin. Twin growth to the

  19. Estimating changes in heat energy stored within a column of wetland surface water and factors controlling their importance in the surface energy budget

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Sumner, David M.; Castillo, Adrian

    2005-01-01

    Changes in heat energy stored within a column of wetland surface water can be a considerable component of the surface energy budget, an attribute that is demonstrated by comparing changes in stored heat energy to net radiation at seven sites in the wetland areas of southern Florida, including the Everglades. The magnitude of changes in stored heat energy approached the magnitude of net radiation more often during the winter dry season than during the summer wet season. Furthermore, the magnitude of changes in stored heat energy in wetland surface water generally decreased as surface energy budgets were upscaled temporally. A new method was developed to estimate changes in stored heat energy that overcomes an important data limitation, namely, the limited spatial and temporal availability of water temperature measurements. The new method is instead based on readily available air temperature measurements and relies on the convolution of air temperature changes with a regression‐defined transfer function to estimate changes in water temperature. The convolution‐computed water temperature changes are used with water depths and heat capacity to estimate changes in stored heat energy within the Everglades wetland areas. These results likely can be adapted to other humid subtropical wetlands characterized by open water, saw grass, and rush vegetation type communities.

  20. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    PubMed Central

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  1. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  2. Procedure for estimating fracture energy from fracture surface roughness

    DOEpatents

    Williford, Ralph E.

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  3. Nanostructured Coatings of Inner Surfaces in Microporous Matrixes

    DTIC Science & Technology

    2000-01-01

    SURFACE ENERGY _.I", DISPERSED MATERIAL............................ ,BULK MATERIp,’ t. i02 10’ iol LM Figure 1. a) Surface arising due to process of...material dispersion . b) Surface energy per cm3 of dispersed material versus characteristic size of dispersed particles - nanostructures with different...growth and lateral microstructuring techniques have made it possible to realise low-dimensional electronic systems with quantum confined energy structure

  4. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  5. Lattice effects of surface cell: Multilayer multiconfiguration time-dependent Hartree study on surface scattering of CO/Cu(100)

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2017-05-01

    To study the scattering of CO off a movable Cu(100) surface, extensive multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations are performed based on the SAP [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] potential energy surface in conjunction with a recently developed expansion model [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)] for including lattice motion. The surface vibration potential is constructed by a sum of Morse potentials where the parameters are determined by simulating the vibrational energies of a clean Cu(100) surface. Having constructed the total Hamiltonian, extensive dynamical calculations in both time-independent and time-dependent schemes are performed. Two-layer MCTDH (i.e., normal MCTDH) block-improved-relaxations (time-independent scheme) show that increasing the number of included surface vibrational dimensions lets the vibrational energies of CO/Cu(100) decrease for the frustrated translation (T mode), which is of low energy but increase those of the frustrated rotation (R mode) and the CO-Cu stretch (S mode), whose vibrational energies are larger than the energies of the in-plane surface vibrations (˜79 cm-1). This energy-shifting behavior was predicted and discussed by a simple model in our previous publication [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)]. By the flux analysis of the MCTDH/ML-MCTDH propagated wave packets, we calculated the sticking probabilities for the X + 0D, X + 1D, X + 3D, X + 5D, and X + 15D systems, where "X" stands for the used dimensionality of the CO/rigid-surface system and the second entry denotes the number of surface degrees of freedom included. From these sticking probabilities, the X + 5D/15D calculations predict a slower decrease of sticking with increasing energy as compared to the sticking of the X + 0D/1D/3D calculations. This is because the translational energy of CO is more easily transferred to surface vibrations, when the vibrational dimensionality of the surface is enlarged.

  6. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the rangemore » of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.« less

  7. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE PAGES

    Shukla, Anil K.

    2017-09-01

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  8. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  9. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    PubMed

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  10. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  11. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation.

    PubMed

    Chen, Xiao-Bo; Li, Yun-Cang; Hodgson, Peter D; Wen, Cuie

    2009-07-01

    The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20min, 2h, 5h and 8h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti-OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89+/-0.76microm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79+/-0.31 to 10.25+/-0.39microm.

  12. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials.

    PubMed

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-10-11

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H₂SO₄) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100-500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H₂SO₄.

  13. Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics

    NASA Astrophysics Data System (ADS)

    Hošek, Petr; Spiwok, Vojtěch

    2016-01-01

    Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.

  14. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    PubMed

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  15. Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates

    PubMed Central

    Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi

    2017-01-01

    Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697

  16. A three-dimensional He-CO potential energy surface with improved long-range behavior

    NASA Astrophysics Data System (ADS)

    McBane, George C.

    2016-12-01

    A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.

  17. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  18. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  19. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  20. Analysis of surface sputtering on a quantum statistical basis

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.

  1. Apparent Activation Energies Associated with Protein Dynamics on Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.

    2012-01-01

    With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578

  2. Transition of surface energy budget in the Gobi Desert between spring and summer seasons

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.; Gao, Youxi

    1986-01-01

    The surface energetics of the southwest Gobi Desert, including the temporal variations and diurnally averaged properties of the surface energy budget components, was investigated. The field program was conducted during the spring and summer of 1984, with the measurement system designed to monitor radiative exchange, heat/moisture storage in the soil, and sensible and latent heat exhange between the ground and the atmosphere. Results of the analysis reveal a seasonal transition feature not expected of a midlatitude desert. Namely, the differences in both surface radiation exchange and the distibution of sensible and latent heat transfer arise within a radiatively forced environment that barely deviates from spring to summer in terms of available solar energy at the surface. Both similarities and differences in the spring and summer surface energy budgets arise from differences imparted to the system by an increase in the summertime atmospheric moisture content. Changes in the near-surface mixing ratio are shown to alter the effectiveness of the desert surface in absorbing radiative energy and redistibuting it to the lower atmosphere through sensible and latent heat exchange.

  3. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  4. Uncoated microcantilevers as chemical sensors

    DOEpatents

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  5. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.

  6. Internal Energy Transfer and Dissociation Model Development using Accelerated First-Principles Simulations of Hypersonic Flow Features

    DTIC Science & Technology

    2013-07-11

    in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -­‐ Jones  (LJ)   potential  energy  surface  (PES)  dictating  atomic  interaction  forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found

  7. Designing transition metal surfaces for their adsorption properties and chemical reactivity

    NASA Astrophysics Data System (ADS)

    Montemore, Matthew M.

    Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications. First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates. Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design. In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the adsorbate-surface coupling. A single equation, with only a single adsorbate-dependent fitting parameter as well as a few universal fitting parameters, is developed that can predict the adsorption energy of any radical on any close-packed transition metal surface. The surface electronic properties that are input into this equation can be estimated based on the alloy structure of the surface, improving prospects for high-throughput screening and rational catalyst design. The methods discussed in this thesis are used to design a novel catalyst for ethylene epoxidation, which is experimentally synthesized and tested. Initial tests indicate that this catalyst may have improved selectivity over pure Ag.

  8. Surface properties of HMX crystal

    NASA Technical Reports Server (NTRS)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  9. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  10. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  11. Low-energy electron diffraction from ferroelectric surfaces: Dead layers and surface dipoles in clean Pb(Zr ,Ti )O 3(001 )

    NASA Astrophysics Data System (ADS)

    Teodorescu, Cristian M.; Pintilie, Lucian; Apostol, Nicoleta G.; Costescu, Ruxandra M.; Lungu, George A.; Hrib, LuminiÅ£a.; Trupinǎ, Lucian; Tǎnase, Liviu C.; Bucur, Ioana C.; Bocîrnea, Amelia E.

    2017-09-01

    The positions of the low energy electron diffraction (LEED) spots from ferroelectric single crystal films depend on its polarization state, due to electric fields generated outside of the sample. One may derive the surface potential energy, yielding the depth where the mobile charge carriers compensating the depolarization field are located (δ ). On ferroelectric Pb (Zr ,Ti ) O3 (001) samples, surface potential energies are between 6.7 and 10.6 eV, and δ values are unusually low, in the range of 1.8 ±0.4 Å . When δ is introduced in the values of the band bending inside the ferroelectric, a considerably lower value of the dielectric constant and/or of the polarization near the surface than their bulk values is obtained, evidencing either that the intrinsic `dielectric constant' of the material has this lower value or the existence of a `dead layer' at the free surface of clean ferroelectric films. The inwards polarization of these films is explained in the framework of the present considerations by the formation of an electron sheet on the surface. Possible explanations are suggested for discrepancies between the values found for surface potential energies from LEED experiments and those derived from the transition between mirror electron microscopy and low energy electron microscopy.

  12. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  13. A theoretical investigation of the (0001) covellite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspari, Roberto, E-mail: roberto.gaspari@iit.it; Manna, Liberato; Cavalli, Andrea

    2014-07-28

    We report on the properties of the (0001) covellites surfaces, which we investigate by periodic slab density functional theory calculations. The absolute surface energies have been computed for all bulk terminations, showing that surfaces terminated by the flat CuS layer are associated with the lowest surface energy. Cleavage is predicted to occur across the [0001] interlayer Cu–S bond. The surfaces obtained by lowest energy cleavage are analyzed in terms of the atomic vertical relaxation, workfunction, and surface band structure. Our study predicts the presence of a shallow p{sub z}-derived surface state located 0.26 eV below the Fermi level, which ismore » set to play an important role in the surface reactivity of covellite.« less

  14. Effect of surface energy on powder compactibility.

    PubMed

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  15. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  16. First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.

    PubMed

    Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio

    2015-07-15

    The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.

  17. What determines transitions between energy- and moisture-limited evaporative regimes?

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Gianotti, D.; Akbar, R.; Salvucci, G.; Entekhabi, D.

    2017-12-01

    The relationship between evaporative fraction (EF) and soil moisture (SM) has traditionally been used in atmospheric and land-surface modeling communities to determine the strength of land-atmosphere coupling in the context of the dominant evaporative regime (energy- or moisture-limited). However, recent field observations reveal that EF-SM relationship is not unique and could vary substantially with surface and/or meteorological conditions. This implies that conventional EF-SM relationships (exclusive of surface and meteorological conditions) are embedded in more complex dependencies and that in fact it is a multi-dimensional function. To fill the fundamental knowledge gaps on the important role of varying surface and meteorological conditions not accounted for by the traditional evaporative regime conceptualization, we propose a generalized EF framework using a mechanistic pore-scale model for evaporation and energy partitioning over drying soil surfaces. Nonlinear interactions among the components of the surface energy balance are reflected in a critical SM that marks the onset of transition between energy- and moisture-limited evaporative regimes. The new generalized EF framework enables physically based estimates of the critical SM, and provides new insights into the origin of land surface EF partitioning linked to meteorological input data and the evolution of land surface temperature during surface drying that affect the relative efficiency of surface energy balance components. Our results offer new opportunities to advance predictive capabilities quantifying land-atmosphere coupling for a wide range of present and projected meteorological input data.

  18. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  19. Reconfiguration of a smart surface using heteroclinic connections

    PubMed Central

    McInnes, Colin R.; Xu, Ming

    2017-01-01

    A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191

  20. Surface Energy of C60 and the Interfacial Interactions in Aqueous Systems

    EPA Science Inventory

    The surface free energy components of C60 powder in the form of compressed pellets were determined by sessile drop contact angle measurements. Based on van Oss-Chaudhury-Good model to Young-Dupre equation, the surface energy of C60 and the contributions of the apolar (Lifshitz-v...

  1. Energy flow and energy dissipation in a free surface.

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  2. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  3. The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1990-01-01

    Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.

  4. Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    2018-01-01

    Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces. Streptococci with fibrillar surface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity. Adhering, nonfibrillated streptococci vibrated with amplitudes around 20 nm above a hydrophobic surface. Amplitudes did not depend on ionic strength for either strain. Calculations of bacterial energies from their distances above the surfaces using the Boltzman equation showed that bacteria with fibrillar tethers vibrated as a harmonic oscillator. The energy of bacteria without fibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey, and Overbeek)-interaction energy. Distance variations above the surface over time of bacteria with fibrillar tethers are suggested to be governed by the harmonic oscillations, allowed by elasticity of the tethers, piercing through the potential energy barrier. Bacteria without fibrillar tethers “float” above a surface in the secondary energy minimum, with their perpendicular displacement restricted by their thermal energy and the width of the secondary minimum. The distinction between “tether-coupled” and “floating” adhesion is new, and may have implications for bacterial detachment strategies. PMID:29649869

  5. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials

    PubMed Central

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-01-01

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H2SO4) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100–500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H2SO4. PMID:29019926

  6. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  7. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  8. Can the KTP laser change the cementum surface of healthy and diseased teeth providing an acceptable root surface for fibroblast attachment?

    NASA Astrophysics Data System (ADS)

    Mailhot, Jason M.; Garnick, Jerry J.

    1996-04-01

    The purpose of our research is to determine the effects of KTP laser on root cementum and fibroblast attachment. Initial work has been completed in testing the effect of different energy levels on root surfaces. From these studies optimal energy levels were determined. In subsequent studies the working distance and exposure time required to obtain significant fibroblast attachment to healthy cementum surfaces were investigated. Results showed that lased cemental surfaces exhibited changes in surface topography which ranged from a melted surface to an apparent slight fusion of the surface of the covering smear layer. When the optimal energy level was used, fibroblasts demonstrate attachment on the specimens, resulting in the presence of a monolayer of cells on the control surfaces as well as on the surfaces lased with this energy level. The present study investigates the treatment of pathological root surfaces and calculus with a KTP laser utilizing these optimal parameters determine previously. Thirty single rooted teeth with advanced periodontal disease and ten healthy teeth were obtained, crowns were sectioned and roots split longitudinally. Forty test specimens were assigned into 1 of 4 groups; pathologic root--not lased, pathologic root--lased, root planed root and health root planed root. Human gingival fibroblasts were seeded on specimens and cultured for 24 hours. Specimens were processed for SEM. The findings suggest that with the KTP laser using a predetermined energy level applied to pathological root surfaces, the lased surfaces provided an unacceptable surface for fibroblast attachment. However, the procedural control using healthy root planed surfaces did demonstrate fibroblast attachment.

  9. Commensurability and transformations of adsorbed phases on a heterogeneous solid with periodic distribution of surface energy

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquin; Valencia, Eliana

    1997-07-01

    Monte Carlo experiments are used to investigate the adsorption of argon on a heterogeneous solid with a periodic distribution of surface energy. A study is made of the relation between the adsorbate molecule's diameter and the distance between the sites of maximum surface energy on the critical temperature, the observed phase changes, and the commensurability of the surface phase structure determined in the simulation.

  10. Estimating morning changes in land surface temperature from MODIS day/night land surface temperature: Applications for surface energy balance modeling

    USDA-ARS?s Scientific Manuscript database

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...

  11. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOEpatents

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  12. DFT simulations of water adsorption and activation on low-index α-Ga2O3 surfaces.

    PubMed

    Zhou, Xin; Hensen, Emiel J M; van Santen, Rutger A; Li, Can

    2014-06-02

    Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α-Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low-index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron-energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α-Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On Averaging Timescales for the Surface Energy Budget Closure Problem

    NASA Astrophysics Data System (ADS)

    Grachev, A. A.; Fairall, C. W.; Persson, O. P. G.; Uttal, T.; Blomquist, B.; McCaffrey, K.

    2017-12-01

    An accurate determination of the surface energy budget (SEB) and all SEB components at the air-surface interface is of obvious relevance for the numerical modelling of the coupled atmosphere-land/ocean/snow system over different spatial and temporal scales, including climate modelling, weather forecasting, environmental impact studies, and many other applications. This study analyzes and discusses comprehensive measurements of the SEB and the surface energy fluxes (turbulent, radiative, and ground heat) made over different underlying surfaces based on the data collected during several field campaigns. Hourly-averaged, multiyear data sets collected at two terrestrial long-term research observatories located near the coast of the Arctic Ocean at Eureka (Canadian Archipelago) and Tiksi (East Siberia) and half-hourly averaged fluxes collected during a year-long field campaign (Wind Forecast Improvement Project 2, WFIP 2) at the Columbia River Gorge (Oregon) in areas of complex terrain. Our direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate the available energy at half-hourly and hourly time scales by around 20-30% at these sites. This imbalance of the surface energy budget is comparable to other terrestrial sites. Surface energy balance closure is a formulation of the conservation of energy principle (the first law of thermodynamics). The lack of energy balance closure at hourly time scales is a fundamental and pervasive problem in micrometeorology and may be caused by inaccurate estimates of the energy storage terms in soils, air and biomass in the layer below the measurement height and above the heat flux plates. However, the residual energy imbalance is significantly reduced at daily and monthly timescales. Increasing the averaging time to daily scales substantially reduces the storage terms because energy locally entering the soil, air column, and vegetation in the morning is released in the afternoon and evening.

  14. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  15. Method Evaluations for Adsorption Free Energy Calculations at the Solid/Water Interface through Metadynamics, Umbrella Sampling, and Jarzynski's Equality.

    PubMed

    Wei, Qichao; Zhao, Weilong; Yang, Yang; Cui, Beiliang; Xu, Zhijun; Yang, Xiaoning

    2018-03-19

    Considerable interest in characterizing protein/peptide-surface interactions has prompted extensive computational studies on calculations of adsorption free energy. However, in many cases, each individual study has focused on the application of free energy calculations to a specific system; therefore, it is difficult to combine the results into a general picture for choosing an appropriate strategy for the system of interest. Herein, three well-established computational algorithms are systemically compared and evaluated to compute the adsorption free energy of small molecules on two representative surfaces. The results clearly demonstrate that the characteristics of studied interfacial systems have crucial effects on the accuracy and efficiency of the adsorption free energy calculations. For the hydrophobic surface, steered molecular dynamics exhibits the highest efficiency, which appears to be a favorable method of choice for enhanced sampling simulations. However, for the charged surface, only the umbrella sampling method has the ability to accurately explore the adsorption free energy surface. The affinity of the water layer to the surface significantly affects the performance of free energy calculation methods, especially at the region close to the surface. Therefore, a general principle of how to discriminate between methodological and sampling issues based on the interfacial characteristics of the system under investigation is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  17. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    PubMed

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.

    PubMed

    Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung

    2010-01-01

    We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.

  19. Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure

    NASA Astrophysics Data System (ADS)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Zhao, Jing

    2018-04-01

    In this paper, the surface energy effect on the nonlinear buckling and postbuckling behavior of functionally graded piezoelectric (FGP) cylindrical nanoshells subjected to lateral pressure is studied based on the electro-elastic surface/interface theory together with von-Kármán-Donnell-type kinematics of nonlinearity. The total strain energy of the FGP nanoshell, including surface energy, is derived by considering the constitutive formulations of surface phase. The principle of minimum potential energy is utilized to establish the nonlinear governing differential equations, and the singular perturbation technique is employed to obtain the asymptotic solutions. Then, two sets of comparison are conducted to validate the present work, and some numerical examples are given to study the effects of surface parameters, power law index and aspect ratio on the buckling and postbuckling behavior of FGP nanoshells. The results show that the critical buckling load and postbuckling path of FGP nanoshell are significantly size-dependent.

  20. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  2. Integration and Utilization of Nuclear Systems on the Moon and Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon

    2006-01-20

    Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less

  3. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  4. A Combined Model of Charging of the Surface and Bulk of a Dielectric Target by Electrons with the Energies 10-30 keV

    NASA Astrophysics Data System (ADS)

    Zykov, V. M.; Neiman, D. A.

    2018-04-01

    A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.

  5. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    PubMed

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.

  6. Sizing and Pointing of Solar Panels and for Solar Thermal Applications

    Atmospheric Science Data Center

    2014-09-25

    ... on horizontal surface (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth. ... on horizontal surface (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth ...

  7. Simulation of within-canopy radiation exchange

    USDA-ARS?s Scientific Manuscript database

    Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...

  8. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  9. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  10. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  11. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  12. SSE Data and Information

    Atmospheric Science Data Center

    2013-01-31

    Surface meteorology and Solar Energy (SSE) Data and Information   The Release 6.0 Surface meteorology and Solar ... Collaboration Benefits International Priorities of Energy Management" features SSE data and the RETScreen renewable energy tool. ( Read ...

  13. Ultralow energy ion beam surface modification of low density polyethylene.

    PubMed

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  14. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects.

    PubMed

    Gao, X-L; Zhang, G Y

    2016-07-01

    A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.

  15. Dynamics of CO2 scattering off a perfluorinated self-assembled monolayer. Influence of the incident collision energy, mass effects, and use of different surface models.

    PubMed

    Nogueira, Juan J; Vázquez, Saulo A; Mazyar, Oleg A; Hase, William L; Perkins, Bradford G; Nesbitt, David J; Martínez-Núñez, Emilio

    2009-04-23

    The dynamics of collisions of CO2 with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) on gold were investigated by classical trajectory calculations using explicit atom (EA) and united atom (UA) models to represent the F-SAM surface. The CO2 molecule was directed perpendicularly to the surface at initial collision energies of 1.6, 4.7, 7.7, and 10.6 kcal/mol. Rotational distributions of the scattered CO2 molecules are in agreement with experimental distributions determined for collisions of CO2 with liquid surfaces of perfluoropolyether. The agreement is especially good for the EA model. The role of the mass in the efficiency of the energy transfer was investigated in separate simulations in which the mass of the F atoms was replaced by either that of hydrogen or chlorine, while keeping the potential energy function unchanged. The calculations predict the observed trend that less energy is transferred to the surface as the mass of the alkyl chains increases. Significant discrepancies were found between results obtained with the EA and UA models. The UA surface leads to an enhancement of the energy transfer efficiency in comparison with the EA surface. The reason for this is in the softer structure of the UA surface, which facilitates transfer from translation to interchain vibrational modes.

  16. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects

    PubMed Central

    Zhang, G. Y.

    2016-01-01

    A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler–Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived. PMID:27493578

  17. Direct Measurement of the Surface Energy of Graphene.

    PubMed

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  18. Effect of mechanical denaturation on surface free energy of protein powders.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The energy balance of an urban area: Examining temporal and spatial variability through measurements, remote sensing and modeling

    NASA Astrophysics Data System (ADS)

    Offerle, Brian

    Urban environmental problems related to air quality, thermal stress, issues of water demand and quality, all of which are linked directly or indirectly to urban climate, are emerging as major environmental concerns at the start of the 21st century. Thus there are compelling social, political and economic, and scientific reasons that make the study and understanding of the fundamental causes of urban climates critically important. This research addresses these topics through an intensive study of the surface energy balance of Lodz, Poland. The research examines the temporal variability in long-term measurements of urban surface-atmosphere exchange at a downtown location and the spatial variability of this exchange over distinctly different neighborhoods using shorter-term observations. These observations provide the basis for an evaluation of surface energy balance models. Monthly patterns in energy exchange are consistent from year-to-year with variability determined by net radiation and the timing and amount of precipitation. Spatial variability can be determined from plan area fractions of vegetation and impervious surface, though heat storage exerts a strong control on shorter term variability of energy exchange, within and between locations in an urban area. Anthropogenic heat fluxes provide most of the energy driving surface-atmosphere exchange in winter, From a modeling perspective, sensible heat fluxes can be reliably determined from radiometrically sensed surface temperatures and spatially representative surface-atmosphere exchange in an urban area can be determined from satellite remote sensing products. Models of the urban surface energy balance showed good agreement with mean values of energy exchange and under most conditions represented the temporal variability due to synoptic and shorter time scale forcing well.

  20. Modeling elastic anisotropy in strained heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.

  1. Modeling elastic anisotropy in strained heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  2. Validity of Binary Collision Theory in Ion-Surface Interactions at 50-500 eV

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Giapis, Kostas

    2003-10-01

    Ion-surface interactions in the 50-500 eV regime have become increasingly important in plasma processing. Concerns exist in literature about the validity of the binary collision approximation (BCA) at low impact energies because peculiarities are frequently seen in the scattered ion energy distribution. Sub-surface processes, multiple bouncing, and super-elastic phenomena have all been hypothesized. This talk will explore the usefulness of BCA theory in predicting energy transfer during ion-surface collisions in the 50-500 eV energy range. Well-defined beams of rare gas ions (Ne, Ar, Kr) were scattered off semiconductor (Si, Ge) and metal surfaces (Ag, Au, Ni, Nb) to measure energy loss upon impact. The ion beams were produced from a floating ICP reactor coupled to a small accelerator beamline for transport and mass filtering. Exit channel energies were measured using a 90 gegree electrostatic sector coupled to a quadrupole mass filter with single ion detection capability. Although the BCA presents an over-simplified picture of the collision process, our results demonstrate that it is remarkably accurate in the low energy range for a variety of projectile-target combinations. In addition, reactive ion scattering of O2+ and O+ on inert and reactive surfaces (Au vs. Ag, Pt) suggests there may be rather high energy threshold processes which determine exit channel selectivity.

  3. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  4. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  5. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  6. Constructing a multidimensional free energy surface like a spider weaving a web.

    PubMed

    Chen, Changjun

    2017-10-15

    Complete free energy surface in the collective variable space provides important information of the reaction mechanisms of the molecules. But, sufficient sampling in the collective variable space is not easy. The space expands quickly with the number of the collective variables. To solve the problem, many methods utilize artificial biasing potentials to flatten out the original free energy surface of the molecule in the simulation. Their performances are sensitive to the definitions of the biasing potentials. Fast-growing biasing potential accelerates the sampling speed but decreases the accuracy of the free energy result. Slow-growing biasing potential gives an optimized result but needs more simulation time. In this article, we propose an alternative method. It adds the biasing potential to a representative point of the molecule in the collective variable space to improve the conformational sampling. And the free energy surface is calculated from the free energy gradient in the constrained simulation, not given by the negative of the biasing potential as previous methods. So the presented method does not require the biasing potential to remove all the barriers and basins on the free energy surface exactly. Practical applications show that the method in this work is able to produce the accurate free energy surfaces for different molecules in a short time period. The free energy errors are small in the cases of various biasing potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  8. Stability of flat zero-energy states at the dirty surface of a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Asano, Yasuhiro

    2017-06-01

    We discuss the stability of highly degenerate zero-energy states that appear at the surface of a nodal superconductor preserving time-reversal symmetry. The existence of such surface states is a direct consequence of the nontrivial topological numbers defined in the restricted Brillouin zones in the clean limit. In experiments, however, potential disorder is inevitable near the surface of a real superconductor, which may lift the high degeneracy at zero energy. We show that an index defined in terms of the chiral eigenvalues of the zero-energy states can be used to measure the degree of degeneracy at zero energy in the presence of potential disorder. We also discuss the relationship between the index and the topological numbers.

  9. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  10. Stability analysis of a pressure-solution surface

    NASA Astrophysics Data System (ADS)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  11. Surface Fractal Analysis for Estimating the Fracture Energy Absorption of Nanoparticle Reinforced Composites

    PubMed Central

    Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju

    2012-01-01

    In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017

  12. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  13. Fluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS) Based Monomers and Polymers

    DTIC Science & Technology

    2011-07-19

    surface energies leading to the creation of superhydrophobic and oleophobic surfaces. (a) Mabry, J. M.; Vij, A.; Iacono, S. T.; Viers, b. D., Angew...for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces

  14. Optimal reconstruction of the folding landscape using differential energy surface analysis

    NASA Astrophysics Data System (ADS)

    La Porta, Arthur; Denesyuk, Natalia A.; de Messieres, Michel

    2013-03-01

    In experiments and in simulations, the free energy of a state of a system can be determined from the probability that the state is occupied. However, it is often necessary to impose a biasing potential on the system so that high energy states are sampled with sufficient frequency. The unbiased energy is typically obtained from the data using the weighted histogram analysis method (WHAM). Here we present differential energy surface analysis (DESA), in which the gradient of the energy surface, dE/dx, is extracted from data taken with a series of harmonic biasing potentials. It is shown that DESA produces a maximum likelihood estimate of the folding landscape gradient. DESA is demonstrated by analyzing data from a simulated system as well as data from a single-molecule unfolding experiment in which the end-to-end distance of a DNA hairpin is measured. It is shown that the energy surface obtained from DESA is indistinguishable from the energy surface obtained when WHAM is applied to the same data. Two criteria are defined which indicate whether the DESA results are self-consistent. It is found that these criteria can detect a situation where the energy is not a single-valued function of the measured reaction coordinate. The criteria were found to be satisfied for the experimental data analyzed, confirming that end-to-end distance is a good reaction coordinate for the experimental system. The combination of DESA and the optical trap assay in which a structure is disrupted under harmonic constraint facilitates an extremely accurate measurement of the folding energy surface.

  15. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  16. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  17. Inelastic scattering of electrons at real metal surfaces

    NASA Astrophysics Data System (ADS)

    Ding, Z.-J.

    1997-04-01

    A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.

  18. Hidden complexity of free energy surfaces for peptide (protein) folding.

    PubMed

    Krivov, Sergei V; Karplus, Martin

    2004-10-12

    An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they could mask the complexity of the unprojected surface. Here we introduce an approach to determine the actual (unprojected) free energy surface and apply it to the second beta-hairpin of protein G, which has been used as a model system for protein folding. The surface is represented by a disconnectivity graph calculated from a long equilibrium folding-unfolding trajectory. The denatured state is found to have multiple low free energy basins. Nevertheless, the peptide shows exponential kinetics in folding to the native basin. Projected surfaces obtained from the present analysis have a simple form in agreement with other studies of the beta-hairpin. The hidden complexity found for the beta-hairpin surface suggests that the standard funnel picture of protein folding should be revisited.

  19. Surface energy modification for biomedical material by corona streamer plasma processing to mitigate bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Alhamarneh, Ibrahim; Pedrow, Patrick

    2011-10-01

    Bacterial adhesion initiates biofouling of biomedical material but the processes can be reduced by adjusting the material's surface energy. The surface of surgical-grade 316L stainless steel (316L SS) had its hydrophilic property enhanced by processing in a corona streamer plasma reactor using atmospheric pressure Ar mixed with O2. Reactor excitation was 60 Hz ac high-voltage (<= 10 kV RMS) applied to a multi-needle-to-grounded-torus electrode configuration. Applied voltage and streamer current pulses were monitored with a broadband sensor system. When Ar/O2 plasma was used, the surface energy was enhanced more than with Ar plasma alone. Composition of the surface before and after plasma treatment was characterized by XPS. As the hydrophilicity of the treated surface increased so did percent of oxygen on the surface thus we concluded that reduction in contact angle was mainly due to new oxygen-containing functionalities. FTIR was used to identify oxygen containing groups on the surface. The aging effect that accompanies surface free energy adjustments was also observed.

  20. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  1. Molecular dynamics simulations of energy dissipation and non-thermal diffusion on amorphous solid water.

    PubMed

    Fredon, A; Cuppen, H M

    2018-02-21

    Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. Especially, saturated, hydrogen-rich molecules are formed through surface chemistry where the interstellar grains act as a meeting place and absorbing energy. Here we present the results of thousands of molecular dynamics simulations to quantify the outcome of an energy dissipation process. Admolecules on top of an amorphous solid water surface have been given translational energy between 0.5 and 5 eV. Three different surface species are considered, CO 2 , H 2 O and CH 4 , spanning a range in binding energies, number of internal degrees of freedom and molecular weight. The results are compared against a previous study using a crystalline water ice surface. Possible outcomes of a dissipation process are adsorption - possibly after long-range diffusion-, desorption and desorption of a surface molecule. The three admolecules were found to bind at different locations on the surface, particularly in terms of height. Water preferably binds on top of the surface, whereas methane fills the nanopores on the surface. This has direct consequences for desorption, travelled distance, and kick-out probabilities. The admolecules are found to frequently travel several tens of angstroms before stabilizing on a binding site, allowing follow-up reactions en route. We present kick-out probabilities and we have been able to quantify the desorption probability which depends on the binding energy of the species, the translational excitation, and a factor that accounts for difference in binding site height. We provide expressions that can be incorporated in astrochemical models to predict grain surface formation and return into the gas phase of these products.

  2. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  3. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. © 2016 Eur J Oral Sci.

  4. SSE Data and Information

    Atmospheric Science Data Center

    2018-04-03

    Surface meteorology and Solar Energy (SSE) Data and Information The Release 6.0 Surface meteorology and Solar Energy ( SSE ) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...

  5. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  6. The influences of land use and land cover on climate; an analysis of the Washington-Baltimore area that couples remote sensing with numerical simulation

    USGS Publications Warehouse

    Pease, R.W.; Jenner, C.B.; Lewis, J.E.

    1980-01-01

    The Sun drives the atmospheric heat engine by warming the terrestrial surface which in turn warms the atmosphere above. Climate, therefore, is significantly controlled by complex interaction of energy flows near and at the terrestrial surface. When man alters this delicate energy balance by his use of the land, he may alter his climatic environment as well. Land use climatology has emerged as a discipline in which these energy interactions are studied; first, by viewing the spatial distributions of their surface manifestations, and second, by analyzing the energy exchange processes involved. Two new tools for accomplishing this study are presented: one that can interpret surface energy exchange processes from space, and another that can simulate the complex of energy transfers by a numerical simulation model. Use of a satellite-borne multispectral scanner as an imaging radiometer was made feasible by devising a gray-window model that corrects measurements made in space for the effects of the atmosphere in the optical path. The simulation model is a combination of mathematical models of energy transfer processes at or near the surface. Integration of these two analytical approaches was applied to the Washington-Baltimore area to coincide with the August 5, 1973, Skylab 3 overpass which provided data for constructing maps of the energy characteristics of the Earth's surface. The use of the two techniques provides insights into the relationship of climate to land use and land cover and in predicting alterations of climate that may result from alterations of the land surface.

  7. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  8. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  9. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    PubMed

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  10. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    USDA-ARS?s Scientific Manuscript database

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...

  11. A continuum state variable theory to model the size-dependent surface energy of nanostructures.

    PubMed

    Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon

    2015-10-14

    We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.

  12. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  13. SPM observation of nano-dots induced by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Terada, Masashi; Nakai, Yoichi; Kanai, Yasuyuki; Ohtani, Shunsuke; Komaki, Ken-ichiro; Yamazaki, Yasunori

    2005-05-01

    We have observed nano-dots on a highly oriented pyrolytic graphite (HOPG) surface produced by highly charged ion impacts with a scanning probe microscope. In order to clarify the role of potential and kinetic energies in surface modification, we have measured the kinetic energy and incident ion charge dependences of the dot size. The results showed that the potential energy or the incident ion charge has strong influence on the surface modification rather than the kinetic energy.

  14. Durable, Low-Surface-Energy Treatments

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  15. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing

    2012-12-01

    The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.

  16. Solar collector having a solid transmission medium

    DOEpatents

    Schertz, William W.; Zwerdling, Solomon

    1977-06-14

    There is provided a radiant energy transmission device capable of operation in a concentrative mode in which energy incident on an entrance area is directed toward and concentrated on an exit area of smaller area than the entrance area. The device includes a solid radiant energy transmission medium having surfaces coincident with the entrance and exit areas and particularly contoured reflective side walls. The surface coinciding with the entrance area is coupled to a cover plate formed of a radiant energy transmissive material. An energy transducer is coupled to the surface of the medium coinciding with the exit area.

  17. Scattered Ion Energetics for H atoms Impinging a Copper Surface

    NASA Astrophysics Data System (ADS)

    Defazio, J. N.; Stephen, T. M.; Peko, B. L.

    2002-05-01

    The energy loss and charge state of atomic hydrogen scattered from surfaces is important in a broad range of scientific endeavors. These include the charging of spacecraft, the detection of low energy neutrals in the space environment, energy transfer from magnetically confined plasmas and the modeling of low energy electric discharges. Measurements of scattered ions resulting from low energy (20 - 1000 eV) atomic hydrogen impacting a copper surface have been accomplished. Differential energy distributions and yields for H- and H+ resulting from these collisions are presented. The data show that the energy distributions develop a universal dependence, when scaled by the incident energy. These results are compared with studies involving incident hydrogen ions. For incident energies less than 100eV, there are obvious differences in the scattered ion energy distributions resulting from impacting atoms when compared to those resulting from ions.

  18. Partitioning of a Falling Droplet's Energy After Surface Impact

    NASA Astrophysics Data System (ADS)

    Kern, Vanessa; Steen, Paul

    2017-11-01

    Understanding energy partitioning post-impact is a first step to understanding immersive flow-forming processes. Here we investigate the partitioning of kinetic energy into surface energies for capillary water droplets falling onto homogeneous prepared hydrophilic, hydrophobic and super-hydrophobic surfaces. We analyze high-speed images of the impact event. Pre-impact Weber numbers range from 0-15. After impact and initial spreading, the droplet's contact line pins. After pinning, there is a slow decay to the rest state. During this underdamped decay, the droplet's remaining kinetic energy partitions into a linear combination of mode shape energies. These mode shapes and their frequencies correspond to those of pinned sessile droplets from theory. The influence of impact energy on modes excited will be discussed.

  19. Low-energy ion beamline scattering apparatus for surface science investigations

    NASA Astrophysics Data System (ADS)

    Gordon, M. J.; Giapis, K. P.

    2005-08-01

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100μA/cm2) of a single ion species at low, tunable energy (50-1400±5eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving Ne+20 with Mg /Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  20. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  1. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Das, Atanu K.; Appel, Aaron M.

    2017-03-22

    Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical energy and chemical energy. Molecular catalysts offer precise control of their structure, and the ability to modify the substituents to understand structure-reactivity relationships that are more difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. Copper-catalyzed click reactions are often used to form covalent bonds to surfaces, and pi-pi stacking of pyrenemore » substituents appended to the ligand of a molecular complex is a frequently used method to achieve non-covalent surface immobilization. This mini-review highlights surface confinement of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.« less

  2. Analytical and experimental investigation of the feasibility of accelerated lifetime testing of materials exposed to an atomic oxygen beam

    NASA Technical Reports Server (NTRS)

    Albridge, Royal; Barnes, Alan; Tolk, Norman

    1993-01-01

    The interaction of atomic particles with surfaces is of both scientific and technological interest. Past work emphasizes the measurement of high-energy sputtering yields. Very little work utilized low-energy beams for which chemical and electronic effects can be important. Even less work has been carried out using well-defined low-energy projectiles. The use of low-energy, reactive projectiles permits one to investigate surface processes that have not been well characterized. As the energy of the projectile decreases, the collisional cascades and spikes, that are common for high-energy projectiles, become less important, and chemical and electronic effects can play a significant role. Aspects of particle-surface interactions are of concern in several areas of technology. For example, the erosion, desorption, and glow of surfaces of spacecraft in orbit are important in the arena of space technology. The materials studied under this contract are of possible use on the exterior portions of the power generation system of Space Station Freedom. Under the original designs, Space Station Freedom's power generation system would generate potential differences on the surface as high as 200 volts. Ions in the plasma that often surround orbiting vehicles would be accelerated by these potentials leading to bombardment and erosion of the exposed surfaces. The major constituent of the atmosphere, approximately 90 percent, in the low earth orbit region is atomic oxygen. Since atomic oxygen is extremely reactive with most materials, chemical effects can arise in addition to the physical sputtering caused by the acceleration of the oxygen ions. Furthermore, the incident oxygen ions can remain embedded in the exposed surfaces, altering the chemical composition of the surfaces. Since the effective binding energy of a chemically altered surface can be quite different from that of the pure substrate, the sputtering yield of a chemically altered surface is usually different also. The low-energy O+ sputtering yield measurements, reported here, will help quantify the erosion rates for materials exposed to the low-earth orbit environment. These measurements are of technological importance in another respect. In most surface analysis techniques, a surface is bombarded with ions, electrons or photons. Information concerning the structure of the surface and near-surface bulk, abundance of impurities and defects, as well as other surface properties are obtained either from the desorbed species or from the scattered projectiles. Because of their low penetration depth, low-energy ions provide an advantage over other techniques because they provide information that is more indicative of conditions on the surface rather than integrated effects arising from deeper in the bulk. A better understanding of the microscopic processes involved in these interactions is not only of basic scientific interest, but will also aid the scientific community by increasing the accuracy and usefulness of these surface analysis techniques.

  3. Scalable free energy calculation of proteins via multiscale essential sampling

    NASA Astrophysics Data System (ADS)

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2010-12-01

    A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.

  4. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    NASA Astrophysics Data System (ADS)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  5. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni.

    PubMed

    López-Moreno, S; Romero, A H

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  6. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  7. Durable low surface-energy surfaces

    NASA Technical Reports Server (NTRS)

    Willis, Paul B. (Inventor); McElroy, Paul M. (Inventor); Hickey, Gregory H. (Inventor)

    1993-01-01

    A formulation for forming a low surface-energy surface on a substrate having (i) a fluoroalkyl silane having a low surface energy part, (ii) a liquid crystal silane operable for enhancing the orientation of the molecules of the fluoroalkyl silane and for crosslinking with the fluoroalkyl silane, and, (iii) a transport medium for applying the fluoroalkyl silane and the liquid crystal silane to the surface of a substrate. In one embodiment the formulation can includes a crosslinking agent for crosslinking the fluoroalkyl silane. In another embodiment the formulation has a condensation catalyst for enhancing chemical bonding of the fluoroalkyl silane to the substrate. The transport medium can be an alcohol such as methanol or ethanol.

  8. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface.

    PubMed

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Yamamoto, Naoki; Kim, Yousoo

    2015-09-11

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS.

  9. Effect of Various Material Properties on the Adhesive Stage of Fretting

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.

  10. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  11. Experimental Simulation of Solar Wind Interactions with Magnetic Dipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic

    2017-10-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.

  12. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  14. Accurate potential energy surface for the 1(2)A' state of NH(2): scaling of external correlation versus extrapolation to the complete basis set limit.

    PubMed

    Li, Y Q; Varandas, A J C

    2010-09-16

    An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system which is suitable for dynamics and kinetics studies of the reactions of N(2D) + H2(X1Sigmag+) NH(a1Delta) + H(2S) and their isotopomeric variants. It is obtained by fitting ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempirically the dynamical correlation using the double many-body expansion-scaled external correlation method. The function so obtained is compared in detail with a potential energy surface of the same family obtained by extrapolating the calculated raw energies to the complete basis set limit. The topographical features of the novel global potential energy surface are examined in detail and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel function has been built so as to become degenerate at linear geometries with the ground-state potential energy surface of A'' symmetry reported by our group, where both form a Renner-Teller pair.

  15. Free energy profiles from single-molecule pulling experiments.

    PubMed

    Hummer, Gerhard; Szabo, Attila

    2010-12-14

    Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.

  16. A surface physicochemical rationale for calculus formation in the oral cavity

    NASA Astrophysics Data System (ADS)

    Busscher, Henk J.; White, Don J.; Kamminga-Rasker, Hannetta J.; van der Mei, Henny C.

    2004-01-01

    Surface free energies of dental hard tissues, including salivary conditioning films on enamel, play a crucial role in mineralization, dissolution and adhesion processes at the tooth surface. These mineralization reactions at oral surfaces control the development and progression of various diseases. In this paper, we compare the surface free energies, as derived from measured contact angles with liquids, of salivary conditioning films on enamel after exposure to dentifrices with and without anti-calculus additives, such as hexametaphosphate, pyrophosphate or zinc citrate trihydrate. Measured contact angles were converted to surface free energies using the concept of Lifshitz-Van der Waals and Lewis acid-base components. Nearly all dentifrices yield film properties with a negative interfacial tension against an aqueous phase, which thermodynamically opposes mineralization. Concurrent with negative interfacial tensions, are positive values of the interfacial free energy of adhesion for octacalcium-phosphate (OCP) to the film surfaces, indicating that adhesion of newly mineralized, calcium-phosphate rich phases is thermodynamically unfavorable. Interestingly, two out of the three dentifrices with anti-calculus additives containing hexametaphosphate and pyrophosphate cause most positive interfacial free energies for OCP adhesion of 5.8 and 2.6 mJ/m 2, respectively. In summary, surface thermodynamical analyses indicate that anti-calculus effects of commercial dentifrice formulations are consistent with more negative interfacial tensions of salivary conditioning films on enamel surfaces and thus with more positive values for the interfacial free energy of adhesion toward newly formed mineral phases. A dentifrice containing hexametaphosphate yielded thermodynamic properties of salivary conditioning films most unfavorable for calculus formation.

  17. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele; Blanco-Rey, María

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of themore » incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.« less

  18. Copoly(imide siloxane) Abhesive Materials with Varied Siloxane Oligomer Length

    NASA Technical Reports Server (NTRS)

    Wohl, Christoper J.; Atkins, Brad M.; Lin, Yi; Belcher, Marcus A.; Connell, John W.

    2010-01-01

    In this work, low surface energy copoly(imide siloxane)s were synthesized with various siloxane segment lengths. Characterization of these materials revealed that domain formation of the low surface energy component within the matrix was more prevalent for longer siloxane segments as indicated by increased opacity, decreased mechanical properties, and variation of the Tg. Incorporation of siloxanes lowered the polymer s surface energy as indicated by water contact angle values. Topographical modification of these materials by laser ablation patterning further reduced the surface energy, even generating superhydrophobic surfaces. Combined, the contact angle data and particle adhesion testing indicated that copoly(imide siloxane) materials may provide greater mitigation to particulate adhesion than polyimide materials alone. These enhanced surface properties for abhesive applications did result in a reduction of the tensile moduli of the copolymers. It is possible that lower siloxane loading levels would result in retention of the mechanical properties of the polyimide while still affording abhesive surface properties. This hypothesis is currently being investigated. Laser ablation patterning offers further reduction in particle retention as the available surface area for particle adhesion is reduced. Pattern variation and size dependencies are currently being evaluated. For the purposes of lunar dust adhesion mitigation, it is likely that this approach, termed passive due to the lack of input from an external energy source, would not be sufficient to mitigate surface contamination or clean contaminated surfaces for some lunar applications. It is feasible to combine these materials with active mitigation strategies - methods that utilize input from external energy sources - would broaden the applicability of such materials for abhesive purposes. Collaborative efforts along these lines have been initiated with researchers at NASA Kennedy Space Center where experiments are being conducted involving a series of embedded electrodes within polymeric matrices.

  19. Nitrile versus isonitrile adsorption at interstellar grain surfaces. II. Carbonaceous aromatic surfaces

    NASA Astrophysics Data System (ADS)

    Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.

    2017-12-01

    Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.

  20. The use of inverse phase gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation.

    PubMed

    Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R

    2001-04-17

    The purpose of this study was to assess the effect of relative humidity (RH) on the surface energy of amorphous lactose. Two samples of amorphous lactose were investigated; a spray dried 100% amorphous material and a ball milled sample of crystalline lactose. The milled sample had less than 1% amorphous content by mass, but on investigation at 0% RH, yielded surface energies comparable to those obtained from the 100% amorphous material, indicating that the surface was amorphous. The effect of increasing humidity was to reduce the dispersive surface energy of the two samples from 36.0 +/- 0.14 and 41.6 +/- 1.4 mJ m(-2) at 0% RH for the spray dried and milled samples respectively, to a value comparable to that obtained for the crystalline alpha-lactose monohydrate of 31.3 +/- 0.41 mJ m(-2). The change in surface energy due to water sorption was only reversible up to 20% RH; after exposure to higher RH values subsequent drying did not result in a return to the original surface energy of the amorphous form. This shows that the surface is reorganising as the glass transition temperature (Tg) is reduced, even though the sample has not collapsed or crystallised. It was possible to follow the collapse behaviour in the column with ease, using a number of different methods.

  1. A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.

    PubMed

    Lubin, Joseph H; Pacella, Michael S; Gray, Jeffrey J

    2018-05-08

    Although structures have been determined for many soluble proteins and an increasing number of membrane proteins, experimental structure determination methods are limited for complexes of proteins and solid surfaces. An economical alternative or complement to experimental structure determination is molecular simulation. Rosetta is one software suite that models protein-surface interactions, but Rosetta is normally benchmarked on soluble proteins. For surface interactions, the validity of the energy function is uncertain because it is a combination of independent parameters from energy functions developed separately for solution proteins and mineral surfaces. Here, we assess the performance of the RosettaSurface algorithm and test the accuracy of its energy function by modeling the adsorption of leucine/lysine (LK)-repeat peptides on methyl- and carboxy-terminated self-assembled monolayers (SAMs). We investigated how RosettaSurface predictions for this system compare with the experimental results, which showed that on both surfaces, LK-α peptides folded into helices and LK-β peptides held extended structures. Utilizing this model system, we performed a parametric analysis of Rosetta's Talaris energy function and determined that adjusting solvation parameters offered improved predictive accuracy. Simultaneously increasing lysine carbon hydrophilicity and the hydrophobicity of the surface methyl head groups yielded computational predictions most closely matching the experimental results. De novo models still should be interpreted skeptically unless bolstered in an integrative approach with experimental data.

  2. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Meyers, T. P.; Pallardy, Stephen G.

    2006-01-01

    The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning,more » but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning identified in this paper provide a target for testing atmospheric general circulation models in their representation of land-atmosphere coupling.« less

  3. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOEpatents

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  4. Surface morphology effects in a vibration based triboelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  5. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  6. Methods and apparatus for delivering high power laser energy to a surface

    DOEpatents

    Faircloth, Brian O; Zediker, Mark S; Rinzler, Charles C; Koblick, Yeshaya; Moxley, Joel F

    2013-04-23

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  7. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  8. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    PubMed

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  9. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  10. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  11. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  12. Structural properties and diffusion processes of the Cu 3Au (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhang, Jian-Min; Zhang, Yan; Ji, Vincent

    2010-09-01

    The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu 3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu 3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.

  13. Solar concentrator with restricted exit angles

    DOEpatents

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  14. Theoretical considerations of soil retention. [dirtying of solar energy devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1980-01-01

    The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.

  15. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage.

    PubMed

    Sheng, Tian; Xu, Yue-Feng; Jiang, Yan-Xia; Huang, Ling; Tian, Na; Zhou, Zhi-You; Broadwell, Ian; Sun, Shi-Gang

    2016-11-15

    The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed. In fuel cells, the most important catalytic materials are Pt and Pd and their NCs with high-energy surfaces of convex or concave morphology. These exhibit remarkable activity toward electrooxidation of small organic molecules, such as formic acid, methanol, and ethanol and so on. In practical applications, the successful synthesis of Pt NCs with high-energy surfaces of small sizes (sub-10 nm) realized a superior high mass activity. The electrocatalytic performances have been further boosted by synergetic effects in bimetallic systems, either through surface decoration using foreign metal atoms or by alloying in which the high-index facet structure is preserved and the electronic structure of the NCs is altered. The intrinsic relationship of high electrocatalytic performance dependent on open structure and high-energy surface is also valid for (metal) oxide nanomaterials used in Li ion batteries (LIB). It is essential for the anode nanomaterials to have optimized structures to keep them more stable during the charge/discharge processes for reducing damaging volume expansion via intercalation and subsequent reduced battery lifetime. In the case of cathodes, tuning the surface structure of nanomaterials should be one of the most beneficial strategies to enhance the capacity and rate performance. In addition, metal oxides with unique defective structure of high catalytic activity and carbon materials of porous structure for facilitating fast Li + diffusion paths and efficiently trapping polysulfide are most important approached and employed in Li-O 2 battery and Li-S battery, respectively. In summary, significant progress has already been made in the electrocatalytic field, and likely emerging techniques based on NCs enclosed with high-energy surfaces and high-index facets could provide a promising platform to investigate the surface structure-catalytic functionality at nanoscale, thus shedding light on the rational design of practical catalysts with high activity, selectivity, and durability for energy conversion and storage.

  16. SU-E-T-796: Variation of Surface Photon Energy Spectra On Bone Heterogeneity and Beam Obliquity Between Flattened and Unflattened Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Owrangi, A; Grigorov, G

    Purpose: This study investigates the spectra of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity using flattened and unflattened photon beams. The spectra were calculated in a bone and water phantom using Monte Carlo simulation (the EGSnrc code). Methods: Spectra of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 × 10 cm{sup 2}) produced by a Varian TrueBEAM linear accelerator were calculated at the surfaces of a bone and water phantom using Monte Carlo simulations. The spectral calculations were repeated with the beam anglesmore » turned from 0° to 15°, 30° and 45° in the phantoms. Results: It is found that the unflattened photon beams contained more photons in the low-energy range of 0 – 2 MeV than the flattened beams with a flattening filter. Compared to the water phantom, both the flattened and unflattened beams had slightly less photons in the energy range < 0.4 MeV when a bone layer of 1 cm is present under the phantom surface. This shows that the presence of the bone decreased the low-energy photons backscattered to the phantom surface. When the photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased with the beam angle. This is because both the flattened and unflattened beams became more hardened when the beam angle increased. With the bone heterogeneity, the mean energies of both photon beams increased correspondingly. This is due to the absorption of low-energy photons by the bone, resulting in more significant beam hardening. Conclusion: The photon spectral information is important in studies on the patient’s surface dose enhancement when using unflattened photon beams in radiotherapy.« less

  17. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  18. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  19. SSE Data and Information Page

    Atmospheric Science Data Center

    2018-04-04

    Surface meteorology and Solar Energy (SSE) Data and Information A new POWER home page ... The Release 6.0 Surface meteorology and Solar Energy (SSE) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...

  20. Real Time Land-Surface Hydrologic Modeling Over Continental US

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    1998-01-01

    The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.

  1. Modification of the contact surfaces for improving the puncture resistance of laminar structures.

    PubMed

    Wang, Pengfei; Yang, Jinglei; Li, Xin; Liu, Mao; Zhang, Xin; Sun, Dawei; Bao, Chenlu; Gao, Guangfa; Yahya, Mohd Yazid; Xu, Songlin

    2017-07-26

    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10 -5  m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.

  2. Measurement and Analysis of Thermal Energy Responses from Discrete Urban Surfaces Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Ridd, M. K.

    1993-01-01

    This study employs data from the airborne Thermal Infrared Multispectral Scanner (TIMS) to measure thermal (i.e., longwave) energy responses, emitted or upwelling, from discrete surfaces that are typical of the city landscape within Salt Lake City, Utah, over a single diurnal time period (i.e., a single day, night-time sequence). These data are used to quantify the disposition of thermal energy for selected urban surfaces during the daytime and night-time, and the amount of change in thermal response or flux recorded between day and night. An analysis is presented on the thermal interrelationships observed for common urban materials for day, night, and flux, as identified from the TIMS data through the delineation of discrete surface type polygons. The results from the study illustrate that such factors as heat capacity, thermal conductivity, and the amount of soil moisture available have a profound impact on the magnitude of thermal energy emanating from a specific surface and on the dynamics of longwave energy response between day and night.

  3. Comparison of two free-energy expressions and their implications in surface enrichment

    NASA Astrophysics Data System (ADS)

    Jerry, Rocco A.; Nauman, E. Bruce

    1993-08-01

    We compare two free-energy expressions, developed by Cohen and Muthukumar [J. Chem. Phys. 90, 5749 (1989)] and by Jerry and Nauman [J. Colloid Interface Sci. 154, 122 (1992)], in terms of their predictions concerning surface enrichment. We show that a term must be added to the former expression so that it may predict the correct dependence of the surface composition on the bulk. The latter expression does predict the correct dependence. We have also derived the quadratic surface-energy contribution from a finite (nonzero) range interaction model.

  4. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  5. Internal Energy Transfer and Dissociation Model Development using Accelerated First-Principles Simulations of Hypersonic Flow Features

    DTIC Science & Technology

    2013-07-09

    through a potential energy surface (PES), such as the simple Lennard - Jones (LJ) PES [23] shown in the inset of Fig. 3, which is given by the following...a  normal  shock  wave.  Inset  shows  a   simple   Lennard -­‐ Jones  (LJ)   potential  energy  surface  (PES)  dictating...model input into such simulations is the potential energy surface (PES) that governs individual atomic interaction forces, developed by chemists and

  6. Energy loss from a moving vortex in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zieve, R. J.; Frei, C. M.; Wolfson, D. L.

    2012-11-01

    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.

  7. Electromagnetic Modeling, Optimization and Uncertainty Quantification for Antenna and Radar Systems Surfaces Scattering and Energy Absorption

    DTIC Science & Technology

    2017-03-06

    design of antenna and radar systems, energy absorption and scattering by rough-surfaces. This work has lead to significant new methodologies , including...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption...and scattering by rough-surfaces. This work has lead to significant new methodologies , including introduction of a certain Windowed Green Function

  8. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  9. Research on surface free energy of electrowetting liquid zoom lens

    NASA Astrophysics Data System (ADS)

    Zhao, Cunhua; Lu, Gaoqi; Wei, Daling; Hong, Xinhua; Cui, Dongqing; Gao, Changliu

    2011-08-01

    Zoom imaging systems have the tendencies of miniaturization or complication so the traditional glass / plastic lenses can't meet the needs. Therefore, a new method, liquid lens is put forward which realizes zoom by changing the shape of liquid surface. liquid zoom lenses have many merits such as smaller volume, lighter weight, controlled zoom, faster response, higher transmission, lower energy consumption and so on. Liquid zoom lenses have wide applications in mobile phones, digital cameras and other small imaging system. The electrowetting phenomenon was reviewed firstly and then the influence of the exerted voltage to the contact angle was analysed in electrowetting effect. At last, the surface free energy of cone-type double liquid zoom lens was researched via the energy minimization principle. The research of surface free energy offers important theoretic dependence for designing liquid zoom lens.

  10. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  11. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  12. Energy output reduction and surface alteration of quartz and sapphire tips following Er:YAG laser contact irradiation for tooth enamel ablation.

    PubMed

    Eguro, Toru; Aoki, Akira; Maeda, Toru; Takasaki, Aristeo Atsushi; Hasegawa, Mitsuru; Ogawa, Masaaki; Suzuki, Takanori; Yonemoto, Kazuaki; Ishikawa, Isao; Izumi, Yuichi; Katsuumi, Ichiroh

    2009-10-01

    Despite the recent increase in application of Er:YAG laser for various dental treatments, limited information is available regarding the contact tips. This study examined the changes in energy output and surface condition of quartz and sapphire contact tips after Er:YAG laser contact irradiation for tooth enamel ablation. Ten sets of unused quartz or sapphire contact tips were employed for contact irradiation to sound enamel of extracted teeth. The teeth were irradiated with Er:YAG laser at approximately 75 J/cm(2)/pulse and 20 Hz under water spray for 60 minutes. The energy output was measured before and every 5 minutes after irradiation, and the changes in morphology and chemical composition of the contact surface were analyzed. The energy output significantly decreased with time in both tips. The energy output from the sapphire tips was generally higher on average than that of the quartz. The contact surfaces of all the used quartz tips were concave and irregular. Most of the sapphire tips also appeared rough with crater formation and fractures, except for a few tips in which a high energy output and the original smooth surface were maintained. Spots of melted tooth substances were seen attached to the surface of both tips. In contact enamel ablation, the sapphire tip appeared to be more resistant than the quartz tip. The quartz tips showed similar patterns of energy reduction and surface alteration, whereas the sapphire tips revealed a wider and more characteristic variation among tips. Lasers Surg. Med. 41:595-604, 2009. (c) 2009 Wiley-Liss, Inc.

  13. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-08-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  14. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, Ebadollah, E-mail: enaderi42@gmail.com; Ghaisas, S. V.

    2016-08-15

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked outmore » from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.« less

  15. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  16. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES: PESTICIDES ON RUTILE AND ORGANO-RUTILE SURFACES

    EPA Science Inventory

    Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...

  17. DLVO interaction energies between hollow spherical particles and collector surfaces

    USDA-ARS?s Scientific Manuscript database

    The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...

  18. Kinetic-energy absorber employs frictional force between mating cylinders

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.

    1964-01-01

    A kinetic energy absorbing device uses a series of coaxial, mating cylindrical surfaces. These surfaces have high frictional resistance to relative motion when axial impact forces are applied. The device is designed for safe deceleration of vehicles impacting on landing surfaces.

  19. On thermophysical effects on the surface of functional nanostructured materials obtained with the application of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Babenko, D. D.; Dmitriev, A. S.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, a great scientific and practical interest is caused by functional energy surfaces, modified for certain technological problems. The urgency of the work is to develop promising technologies for thermal and nuclear power engineering, methods for converting solar energy, cooling low-current and high-current electronics devices, energy storage and transport systems on the basis of studying and developing new ways of creating and modifying the functional surfaces of heat exchange and other devices. Modified functional surfaces must have a number of new mechanical and thermophysical properties, including mechanical strength, a new surface morphology for controlling the processes of wetting and spreading working fluids on them, and have high efficiency from the viewpoint of thermohydrodynamic processes of flow and heat and mass transfer of working fluids to them. Among the various ways of modifying surfaces, recently, the method of surface exposure to femtosecond laser pulses (FLI) has become widespread. The technology of femtosecond laser surface treatment (FLPO) of solid materials has shown high efficiency, reliability, high productivity and a huge variety of modification methods. The paper presents new results on the study of thermophysical phenomena - the wetting and spreading of drops of various liquids, the study of the hysteresis of the contact angle, the study of evaporation and boiling processes on functional energy surfaces modified by femtosecond laser pulses. It is shown that in the majority of cases the presence of regular or stochastic nanostructures on the surface leads to a very strong change in the basic properties of the surface, which makes it possible to use such a technology to quickly and efficiently modify and obtain functional energy surfaces for certain predetermined purposes.

  20. Chemical equilibrium of ablation materials including condensed species

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Brinkley, K. L.

    1975-01-01

    Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.

  1. An Analysis of Inter-annual Variability and Uncertainty of Continental Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Huang, S. Y.; Deng, Y.; Wang, J.

    2016-12-01

    The inter-annual variability and the corresponding uncertainty of land surface heat fluxes during the first decade of the 21st century are re-evaluated at continental scale based on the heat fluxes estimated by the maximum entropy production (MEP) model. The MEP model predicted heat fluxes are constrained by surface radiation fluxes, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation fluxes and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface heat fluxes with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent heat fluxes have increasing trends associated with increasing trends in surface net radiative fluxes. The sensible heat fluxes also have increasing trends over most continents except for South America. Ground heat fluxes have little trends. The continental-scale analysis of the MEP fluxes are compared with other existing global surface fluxes data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.

  2. Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Sommers, Andrew; Eid, Khalid

    2010-03-01

    In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.

  3. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance.

    PubMed

    Tompsett, David A; Parker, Stephen C; Islam, M Saiful

    2014-01-29

    MnO2 is a technologically important material for energy storage and catalysis. Recent investigations have demonstrated the success of nanostructuring for improving the performance of rutile MnO2 in Li-ion batteries and supercapacitors and as a catalyst. Motivated by this we have investigated the stability and electronic structure of rutile (β-)MnO2 surfaces using density functional theory. A Wulff construction from relaxed surface energies indicates a rod-like equilibrium morphology that is elongated along the c-axis, and is consistent with the large number of nanowire-type structures that are obtainable experimentally. The (110) surface dominates the crystallite surface area. Moreover, higher index surfaces than considered in previous work, for instance the (211) and (311) surfaces, are also expressed to cap the rod-like morphology. Broken coordinations at the surface result in enhanced magnetic moments at Mn sites that may play a role in catalytic activity. The calculated formation energies of oxygen vacancy defects and Mn reduction at key surfaces indicate facile formation at surfaces expressed in the equilibrium morphology. The formation energies are considerably lower than for comparable structures such as rutile TiO2 and are likely to be important to the high catalytic activity of rutile MnO2.

  4. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Vastola, Guglielmo; Zhang, Yong-Wei; Ren, Qijun; Fan, Yongliang; Zhong, Zhenyang

    2015-03-01

    We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs.We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07433e

  5. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence of water increases the attractive interaction energy of the diblock copolymer on the cellulose surface, compared with that on the PP surface. Water decreases the interaction energy of the triblock copolymer on the cellulose surface, compared with that on the PP surface. MesoDyn was adopted to investigate the self-assembled morphology of the triblock copolymer, in aqueous solution, confined and sheared at solid-liquid interfaces. In a bulk aqueous solution, when the polymer concentration reached 10% v/v, micelles were observed with PPO blocks in the core and PEO blocks in the shell of the micelles. At the concentrations of 25% and 50%, worm-like micelles and irregular cylinders were observed in solutions, respectively. The micelles were formed faster in aqueous solutions confined by cellulose surfaces than that in the bulk. The formed micelles were broken under shearing, which led to a depletion of polymers at the interfaces. During the shearing on the PP surfaces, the polymers were adsorbed on the surfaces protecting the PP surfaces. This simulation study in the fiber lubrication was in good agreement with the experimental results and so provided an approach to visualize the polymer configuration at the liquid-solid interface, predict the lubricant-surface systems, and theoretically guide the experiments of designing new/efficient lubricants for fibers.

  6. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    PubMed Central

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  7. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  8. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  9. Wrapping conformations of a polymer on a curved surface

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Hsiao; Tsai, Yan-Chr; Hu, Chin-Kun

    2007-03-01

    The conformation of a polymer on a curved surface is high on the agenda for polymer science. We assume that the free energy of the system is the sum of bending energy of the polymer and the electrostatic attraction between the polymer and surface. As is also assumed, the polymer is very stiff with an invariant length for each segment so that we can neglect its tensile energy and view its length as a constant. Based on the principle of minimization of free energy, we apply a variation method with a locally undetermined Lagrange multiplier to obtain a set of equations for the polymer conformation in terms of local geometrical quantities. We have obtained some numerical solutions for the conformations of the polymer chain on cylindrical and ellipsoidal surfaces. With some boundary conditions, we find that the free energy profiles of polymer chains behave differently and depend on the geometry of the surface for both cases. In the former case, the free energy of each segment distributes within a narrower range and its value per unit length oscillates almost periodically in the azimuthal angle. However, in the latter case the free energy distributes in a wider range with larger value at both ends and smaller value in the middle of the chain. The structure of a polymer wrapping around an ellipsoidal surface is apt to dewrap a polymer from the endpoints. The dependence of threshold lengths for a polymer on the initially anchored positions is also investigated. With initial conditions, the threshold wrapping length is found to increase with the electrostatic attraction strength for the ellipsoidal surface case. When a polymer wraps around a sphere surface, the threshold length increases monotonically with the radius without the self-intersection configuration for a polymer. We also discuss potential applications of the present theory to DNA/protein complex and further researches on DNA on the curved surface.

  10. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  11. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  12. Previous design restraints and radiation damage effects of low energy particles

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Spacecraft design fluences and damage by low energy electrons and protons are summarized. For electron energies 5 MeV, the design fluence is 10 to the 11th power electrons/sq cm; for energies 5 MeV, the integral spectrum is assumed to go as 1/E sq. The design fluences for proton energies 30 MeV is 1.5 x 10 to the 9th power protons/sq cm; for energies 100 MeV, it is 5 x 10 to the 14th power protons/sq cm. The radioisotope thermoelectric generator gamma and neutron radiation constraints are listed. Damage due to electron energies 0.5 MeV and proton energies 10 MeV are summarized for effects on spacecraft thermal surfaces, reflective surfaces, and refractive materials. The high frequency noise figure for field effect transistors may increase markedly, and another effect is the buildup of charge on insulating surfaces, resulting in large electric fields.

  13. An investigation of current and future satellite and in-situ data for the remote sensing of the land surface energy balance

    NASA Technical Reports Server (NTRS)

    Diak, George R.

    1994-01-01

    This final report from the University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) summarizes a research program designed to improve our knowledge of the water and energy balance of the land surface through the application of remote sensing and in-situ data sources. The remote sensing data source investigations to be detailed involve surface radiometric ('skin') temperatures and also high-spectral-resolution infrared radiance data from atmospheric sounding instruments projected to be available at the end of the decade, which have shown promising results for evaluating the land-surface water and energy budget. The in-situ data types to be discussed are measurements of the temporal changes of the height of the planetary boundary layer and measurements of air temperature within the planetary boundary layer. Physical models of the land surface, planetary boundary layer and free atmosphere have been used as important tools to interpret the in-situ and remote sensing signals of the surface energy balance. A prototype 'optimal' system for combining multiple data sources into a three-dimensional estimate of the surface energy balance was developed and first results from this system will be detailed. Potential new sources of data for this system and suggested continuation research will also be discussed.

  14. Hierarchical Protein Free Energy Landscapes from Variationally Enhanced Sampling.

    PubMed

    Shaffer, Patrick; Valsson, Omar; Parrinello, Michele

    2016-12-13

    In recent work, we demonstrated that it is possible to obtain approximate representations of high-dimensional free energy surfaces with variationally enhanced sampling ( Shaffer, P.; Valsson, O.; Parrinello, M. Proc. Natl. Acad. Sci. , 2016 , 113 , 17 ). The high-dimensional spaces considered in that work were the set of backbone dihedral angles of a small peptide, Chignolin, and the high-dimensional free energy surface was approximated as the sum of many two-dimensional terms plus an additional term which represents an initial estimate. In this paper, we build on that work and demonstrate that we can calculate high-dimensional free energy surfaces of very high accuracy by incorporating additional terms. The additional terms apply to a set of collective variables which are more coarse than the base set of collective variables. In this way, it is possible to build hierarchical free energy surfaces, which are composed of terms that act on different length scales. We test the accuracy of these free energy landscapes for the proteins Chignolin and Trp-cage by constructing simple coarse-grained models and comparing results from the coarse-grained model to results from atomistic simulations. The approach described in this paper is ideally suited for problems in which the free energy surface has important features on different length scales or in which there is some natural hierarchy.

  15. Remote Sensing of Energy Distribution Characteristics over the Tibet

    NASA Astrophysics Data System (ADS)

    Shi, J.; Husi, L.; Wang, T.

    2017-12-01

    The overall objective of our study is to quantify the spatiotemporal characteristics and changes of typical factors dominating water and energy cycles in the Tibet region. Especially, we focus on variables of clouds optical & microphysical parameters, surface shortwave and longwave radiation. Clouds play a key role in the Tibetan region's water and energy cycles. They seriously impact the precipitation, temperature and surface energy distribution. Considering that proper cloud products with relatively higher spatial and temporal sampling and with satisfactory accuracy are serious lacking in the Tibet region, except cloud optical thickness, cloud effective radius and liquid/ice water content, the cloud coverage dynamics at hourly scales also analyzed jointly based on measurements of Himawari-8, and MODIS. Surface radiation, as an important energy source in perturbating the Tibet's evapotranspiration, snow and glacier melting, is a controlling factor in energy balance in the Tibet region. All currently available radiation products in this area are not suitable for regional scale study of water and energy exchange and snow/glacier melting due to their coarse resolution and low accuracies because of cloud and topography. A strategy for deriving land surface upward and downward radiation by fusing optical and microwave remote sensing data is proposed. At the same time, the big topographic effect on the surface radiation are also modelled and analyzed over the Tibet region.

  16. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  17. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  18. Topological semimetals with Riemann surface states

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Lu, Ling; Liu, Junwei; Fu, Liang

    Topological semimetals have robust bulk band crossings between the conduction and the valence bands. Among them, Weyl semimetals are so far the only class having topologically protected signatures on the surface known as the ``Fermi arcs''. Here we theoretically find new classes of topological semimetals protected by nonsymmorphic glide reflection symmetries. On a symmetric surface, there are multiple Fermi arcs protected by nontrivial Z2 spectral flows between two high-symmetry lines (or two segments of one line) in the surface Brillouin zone. We observe that so far topological semimetals with protected Fermi arcs have surface dispersions that can be mapped to noncompact Riemann surfaces representing simple holomorphic functions. We propose perovskite superlattice [(SrIrO3)2m, (CaIrO3)2n] as a nonsymmorphic Dirac semimetal. C.F. and L.F. were supported by the S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0001299/DE.

  19. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  20. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  1. Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Singh, R.

    1985-01-01

    This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.

  2. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    PubMed

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Momentum microscopy of ? single crystals with detailed surface characterisation

    NASA Astrophysics Data System (ADS)

    Ellguth, M.; Tusche, C.; Iga, F.; Suga, S.

    2016-11-01

    We report the in situ preparation of surfaces of the proposed topological Kondo insulator SmB? by controlled cycles of Ar ion sputtering and annealing. The procedure provides a reproducible way for the preparation of Sm- or B-rich surface terminations by low (?1080 ?C) or high (?1200 ?C) temperature annealing. The surface quality and termination were checked by low energy electron diffraction and Auger electron spectroscopy. Photoemission studies were carried out using momentum microscopy and two laboratory light sources providing polarised radiation with an energy of 6 eV (fourth harmonic of a pulsed Ti:Sapphire laser) and unpolarised radiation with an energy of 21.2 eV (He-I line of a gas discharge lamp). Full dispersions of electronic states in a wide two-dimensional momentum space were obtained by momentum microscopy from the in situ prepared Sm-terminated surface. The shape of the Fermi surface is discussed based on the sections through the bulk Brillouin zone sampled by the different photon energies.

  4. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.

    PubMed

    Zhang, Yanan; Ren, Weiqing

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  5. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Ujjwal Man, E-mail: umjoshi@gmail.com; Subedi, Deepak Prasad, E-mail: deepaksubedi2001@yahoo.com

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase inmore » surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.« less

  6. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Ren, Weiqing

    2014-12-01

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  7. Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.

    PubMed

    Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M

    2014-02-05

    We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. New potential energy surface for the HCS{sup +}–He system and inelastic rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS{sup +}–He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS{sup +} by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO{sup +}–He system.more » The HCS{sup +}–He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.« less

  9. High translational energy release in H2 (D2) associative desorption from H (D) chemisorbed on C(0001).

    PubMed

    Baouche, S; Gamborg, G; Petrunin, V V; Luntz, A C; Baurichter, A; Hornekaer, L

    2006-08-28

    Highly energetic translational energy distributions are reported for hydrogen and deuterium molecules desorbing associatively from the atomic chemisorption states on highly oriented pyrolytic graphite (HOPG). Laser assisted associative desorption is used to measure the time of flight of molecules desorbing from a hydrogen (deuterium) saturated HOPG surface produced by atomic exposure from a thermal atom source at around 2100 K. The translational energy distributions normal to the surface are very broad, from approximately 0.5 to approximately 3 eV, with a peak at approximately 1.3 eV. The highest translational energy measured is close to the theoretically predicted barrier height. The angular distribution of the desorbing molecules is sharply peaked along the surface normal and is consistent with thermal broadening contributing to energy release parallel to the surface. All results are in qualitative agreement with recent density functional theory calculations suggesting a lowest energy para-type dimer recombination path.

  10. Wettability and surface free energy of polarised ceramic biomaterials.

    PubMed

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2015-01-13

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.

  11. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    NASA Astrophysics Data System (ADS)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  12. The Modelling Analysis of the Response of Convective Transport of Energy and Water to Multiscale Surface Heterogeneity over Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    SUN, G.; Hu, Z.; Ma, Y.; Ma, W.

    2017-12-01

    The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not only for understanding the land atmosphere interactions over a heterogeneous surface by evaluating and improving the performance PBL schemes in WRF-meso, but also for the understanding the profound effect of Tibetan Plateau on the regional and global climate.

  13. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    NASA Astrophysics Data System (ADS)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.

  14. Energy budget of the volcano Stromboli, Italy

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.; Chouet, B. A.

    1979-01-01

    The results of the analyses of movies of eruptions at Stromboli, Italy, and other available data are used to discuss the question of its energy partitioning among various energy transport mechanisms. Energy is transported to the surface from active volcanoes in at least eight modes, viz. conduction (and convection) of the heat through the surface, radiative heat transfer from the vent, acoustical radiation in blast and jet noise, seismic radiation, thermal energy of ejected particles, kinetic energy of ejected particles, thermal energy of ejected gas, and kinetic energy of ejected gas. Estimated values of energy flux from Stromboli by these eight mechanisms are tabulated. The energy budget of Stromboli in its normal mode of activity appears to be dominated by heat conduction (and convection) through the ground surface. Heat carried by eruption gases is the most important of the other energy transfer modes. Radiated heat from the open vent and heat carried by ejected lava particles also contribute to the total flux, while seismic energy accounts for about 0.5% of the total. All other modes are trivial by comparison.

  15. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  16. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, John C.

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opensmore » up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.« less

  17. Hartree-Fock theory of the inhomogeneous electron gas at a jellium metal surface: Rigorous upper bounds to the surface energy and accurate work functions

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Ma, C. Q.

    1980-12-01

    The inhomogeneous electron gas at a jellium metal surface is studied in the Hartree-Fock approximation by Kohn-Sham density functional theory. Rigorous upper bounds to the surface energy are derived by application of the Rayleigh-Ritz variational principle for the energy, the surface kinetic, electrostatic, and nonlocal exchange energy functionals being determined exactly for the accurate linear-potential model electronic wave functions. The densities obtained by the energy minimization constraint are then employed to determine work-function results via the variationally accurate "displaced-profile change-in-self-consistent-field" expression. The theoretical basis of this non-self-consistent procedure and its demonstrated accuracy for the fully correlated system (as treated within the local-density approximation for exchange and correlation) leads us to conclude these results for the surface energies and work functions to be essentially exact. Work-function values are also determined by the Koopmans'-theorem expression, both for these densities as well as for those obtained by satisfaction of the constraint set on the electrostatic potential by the Budd-Vannimenus theorem. The use of the Hartree-Fock results in the accurate estimation of correlation-effect contributions to these surface properties of the nonuniform electron gas is also indicated. In addition, the original work and approximations made by Bardeen in this attempt at a solution of the Hartree-Fock problem are briefly reviewed in order to contrast with the present work.

  18. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, Sonia; Simpson, Matthew; Osuna, Jessica

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. Themore » LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.« less

  19. Composition and stability of the condensate observed at the Viking Lander 2 site on Mars

    NASA Astrophysics Data System (ADS)

    Hart, H. M.; Jakosky, B. M.

    1986-04-01

    Surface energy balance and near-surface temperature data from the Viking Lander 2 site taken during the first winter that condensated were observed and analyzed to determine the relative stability of CO2 and H2O frosts. The CO2 frost stability is calculated with an equilibrium surface energy balance model, i.e., the total energy incident on a frost surface is compared with the blackbody energy emitted by the surface. The energy sources considered were IR emission from the atmosphere, sunlight, and the sensible heat flux from the atmosphere. H2O stability was examined as a function of buoyant diffusion and turbulent mixing processes which could remove saturated near-surface gases. The CO2 frost is found to be sufficiently unstable at the time the condensate was observed on the ground, so all CO2 ice deposited at night would boil away in a few hours of sunlight. CO2 ice would not form during a dust storm. Water frost would be stable during the condensate observations, since sublimation would occur at a rate below 1 micron/day. A stable winter thickness of 10 microns is projected for the water ice.

  20. Introduction

    NASA Astrophysics Data System (ADS)

    2014-12-01

    This special issue of Applied Surface Science is a compilation of papers inspired by the symposium on "Surface/Interfaces Characterization and Renewable Energy" held at the 2013 MRS Fall Meeting. Practical uses of renewable energy are one of the greatest technical challenges today. The symposium explored a number of surface and interface-related questions relevant to this overarching theme. Topics from fuel cells to photovoltaics, from water splitting to fundamental and practical issues in charge generation and storage were discussed. The work presented included the use of novel experimental spectroscopic and microscopic analytical techniques, theoretical and computational understanding of interfacial phenomena, characterization of intricate behavior of charged species, as well as molecules and molecular fragments at surfaces and interfaces. It emphasized fundamental understanding of underlying processes, as well as practical devices design and applications of surface and interfacial phenomena related to renewable energy. These subjects are complicated by the transport of photons, electrons, ions, heat, and almost any other form of energy. Given the current concerns of climate change, energy independence and national security, this work is important and of interest to the field of Applied Surface Science. The sixteen papers published in this special issue have all been refereed.

  1. Composition and stability of the condensate observed at the Viking Lander 2 site on Mars

    NASA Technical Reports Server (NTRS)

    Hart, H. M.; Jakosky, B. M.

    1986-01-01

    Surface energy balance and near-surface temperature data from the Viking Lander 2 site taken during the first winter that condensated were observed and analyzed to determine the relative stability of CO2 and H2O frosts. The CO2 frost stability is calculated with an equilibrium surface energy balance model, i.e., the total energy incident on a frost surface is compared with the blackbody energy emitted by the surface. The energy sources considered were IR emission from the atmosphere, sunlight, and the sensible heat flux from the atmosphere. H2O stability was examined as a function of buoyant diffusion and turbulent mixing processes which could remove saturated near-surface gases. The CO2 frost is found to be sufficiently unstable at the time the condensate was observed on the ground, so all CO2 ice deposited at night would boil away in a few hours of sunlight. CO2 ice would not form during a dust storm. Water frost would be stable during the condensate observations, since sublimation would occur at a rate below 1 micron/day. A stable winter thickness of 10 microns is projected for the water ice.

  2. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  3. Coordinated field study for CaPE: Analysis of energy and water budgets

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Duchon, Claude; Kanemasu, Edward T.; Smith, Eric A.; Crosson, William; Laymon, Chip; Luvall, Jeff

    1993-01-01

    The objectives of this hydrologic cycle study are to understand and model (1) surface energy and land-atmosphere water transfer processes, and (2) interactions between convective storms and surface energy fluxes. A surface energy budget measurement campaign was carried out by an interdisciplinary science team during the period July 8 - August 19, 1991 as part of the Convection and Precipitation/Electrification Experiment (CaPE) in the vicinity of Cape Canaveral, FL. Among the research themes associated with CaPE is the remote estimation of rainfall. Thus, in addition to surface radiation and energy budget measurements, surface mesonet, special radiosonde, precipitation, high-resolution satellite (SPOT) data, geosynchronous (GOES) and polar orbiting (DMSP SSM/I, OLS; NOAA AVHRR) satellite data, and high altitude airplane data (AMPR, MAMS, HIS) were collected. Initial quality control of the seven surface flux station data sets has begun. Ancillary data sets are being collected and assembled for analysis. Browsing of GOES and radar data has begun to classify days as disturbed/undisturbed to identify the larger scale forcing of the pre-convective environment, convection storms and precipitation. The science analysis plan has been finalized and tasks assigned to various investigators.

  4. Saddle-like topological surface states on the T T'X family of compounds (T , T' = Transition metal, X =Si , Ge)

    NASA Astrophysics Data System (ADS)

    Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun

    2018-02-01

    Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.

  5. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  6. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  7. Locating landmarks on high-dimensional free energy surfaces

    PubMed Central

    Chen, Ming; Yu, Tang-Qing; Tuckerman, Mark E.

    2015-01-01

    Coarse graining of complex systems possessing many degrees of freedom can often be a useful approach for analyzing and understanding key features of these systems in terms of just a few variables. The relevant energy landscape in a coarse-grained description is the free energy surface as a function of the coarse-grained variables, which, despite the dimensional reduction, can still be an object of high dimension. Consequently, navigating and exploring this high-dimensional free energy surface is a nontrivial task. In this paper, we use techniques from multiscale modeling, stochastic optimization, and machine learning to devise a strategy for locating minima and saddle points (termed “landmarks”) on a high-dimensional free energy surface “on the fly” and without requiring prior knowledge of or an explicit form for the surface. In addition, we propose a compact graph representation of the landmarks and connections between them, and we show that the graph nodes can be subsequently analyzed and clustered based on key attributes that elucidate important properties of the system. Finally, we show that knowledge of landmark locations allows for the efficient determination of their relative free energies via enhanced sampling techniques. PMID:25737545

  8. Modified energetics and growth kinetics on H-terminated GaAs (110)

    NASA Astrophysics Data System (ADS)

    Galiana, B.; Benedicto, M.; Díez-Merino, L.; Lorbek, S.; Hlawacek, G.; Teichert, C.; Tejedor, P.

    2013-10-01

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As4, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å2 measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As4 molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.

  9. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  10. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  11. The Character of the Solar Wind, Surface Interactions, and Water

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  12. Contribution of the hydrostatic pressure to the shape of silver island particles

    NASA Astrophysics Data System (ADS)

    Anno, E.; Hoshino, R.

    1984-09-01

    We have investigated the shape change of silver island particles caused by the surface energy reduction. When the surface energy was reduced by the reaction with hydrogen sulfide, the flattening of the particles was observed. As is well known, the similar shape change takes place when the particle size increases. Therefore, the particle shape is considered to depend both on the surface energy and the particle size. From this consideration, we predict the contribution of the hydrostatic pressure P to the particle shape. As evidence of this contribution, we consider the existence of the critical size below which P is larger than the adhesive force FA between deposit and substrate surface. Investigating the influence of the flattening due to the surface energy reduction on the size distribution, the critical size is found and estimated to be about 80 Å in diameter. This value is comparable with that estimated from the condition P = FA.

  13. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  14. Three-component fermions with surface Fermi arcs in tungsten carbide

    NASA Astrophysics Data System (ADS)

    Ma, J.-Z.; He, J.-B.; Xu, Y.-F.; Lv, B. Q.; Chen, D.; Zhu, W.-L.; Zhang, S.; Kong, L.-Y.; Gao, X.; Rong, L.-Y.; Huang, Y.-B.; Richard, P.; Xi, C.-Y.; Choi, E. S.; Shao, Y.; Wang, Y.-L.; Gao, H.-J.; Dai, X.; Fang, C.; Weng, H.-M.; Chen, G.-F.; Qian, T.; Ding, H.

    2018-04-01

    Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have a non-trivial band topology manifested by gapless surface states, which induce exotic surface Fermi arcs1,2. Recent advances suggest new types of topological semimetal, in which spatial symmetries protect gapless electronic excitations without high-energy analogues3-11. Here, using angle-resolved photoemission spectroscopy, we observe triply degenerate nodal points near the Fermi level of tungsten carbide with space group P 6 ¯m 2 (no. 187), in which the low-energy quasiparticles are described as three-component fermions distinct from Dirac and Weyl fermions. We further observe topological surface states, whose constant-energy contours constitute pairs of `Fermi arcs' connecting to the surface projections of the triply degenerate nodal points, proving the non-trivial topology of the newly identified semimetal state.

  15. A theory of adhesion at a bimetallic interface - Overlap effects.

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.

    1973-01-01

    A preliminary calculation of the chemical bonding adhesive interaction between metal surfaces is provided. In this first theory the Hohenberg and Kohn formalism is used to give the bimetallic adhesive binding energy versus separation. The close-packed planes of Al, Mg, and Zn are considered. The effect of simple overlap of the metal-vacuum distributions is determined. The importance of registry between contact surfaces is ascertained. A minimum in the binding energy curve is exhibited for all combinations. The theoretical predictions agree with trends in bond strengths taken from available experimental data. An insight into the mechanisms involved in metallic transfer is given. The relationship between adhesive energies, cohesive energies, and surface energies is discussed.

  16. Role of surface energy and nano-roughness in the removal efficiency of bacterial contamination by nonwoven wipes from frequently touched surfaces

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.

    2017-12-01

    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

  17. Energy dependence of the trapping of uranium atoms by aluminum oxide surfaces

    NASA Technical Reports Server (NTRS)

    Librecht, K. G.

    1979-01-01

    The energy dependence of the trapping probability for sputtered U-235 atoms striking an oxidized aluminum collector surface at energies between 1 eV and 184 eV was measured. At the lowest energies, approximately 10% of the uranium atoms are not trapped, while above 10 eV essentially all of them stick. Trapping probabilities averaged over the sputtered energy distribution for uranium incident on gold and mica are also presented.

  18. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  19. Trampoline motions in Xe-graphite(0 0 0 1) surface scattering

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimasa; Yamaguchi, Hiroki; Hashinokuchi, Michihiro; Sawabe, Kyoichi; Maruyama, Shigeo; Matsumoto, Yoichiro; Shobatake, Kosuke

    2005-09-01

    We have investigated Xe scattering from the graphite(0 0 0 1) surface at hyperthermal incident energies using a molecular beam-surface scattering technique and molecular dynamics simulations. For all incident conditions, the incident Xe atom conserves the momentum parallel to the surface and loses approximately 80% of the normal incident energy. The weak interlayer potential of graphite disperses the deformation over the wide range of a graphene sheet. The dynamic corrugation induced by the collision is smooth even at hyperthermal incident energy; the graphene sheet moves like a trampoline net and the Xe atom like a trampoliner.

  20. Droplet Kinetic Energy from Center-Pivot Sprinklers

    USDA-ARS?s Scientific Manuscript database

    The kinetic energy of discrete water drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy developmen...

  1. Surface Energy Balance System (SEBS) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  2. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  3. Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics

    NASA Astrophysics Data System (ADS)

    Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.

    2018-02-01

    We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.

  4. An Example of Wang and Yau's Quasilocal Energy for Constant Radial Spacelike 2-Surfaces in a Maximally Rotating Black Hole Spacetime

    NASA Astrophysics Data System (ADS)

    Ray, Shannon; Miller, Warner

    2017-01-01

    We present the first non-trivial illustration of Wang and Yau's quasilocal energy (WYQLE) for a maximally rotating Kerr spacetime. The surfaces for which we compute quasilocal energy (QLE) are axisymmetric closed space like 2-surfaces S with constant radii in Boyer-Lindquist coordinates. There exists a critical radius r* for which these 2-surfaces are isometrically embeddable in R3 . For surfaces with r >=r* , the WYQLE trivially becomes the Brown and York QLE (BYQLE). To fully illustrate Wang and Yau's formulation, we compute the WYQLE for surfaces with r

  5. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    NASA Astrophysics Data System (ADS)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  6. A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.

    NASA Astrophysics Data System (ADS)

    Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd

    2017-04-01

    The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.

  7. Dynamics of Energy Transfer and Soft-Landing in Collisions of Protonated Dialanine with Perfluorinated Self-Assembled Monolayer Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratihar, Subha; Kohale, Swapnil C.; Bhakta, Dhruv G.

    2014-11-21

    Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H+, with a perfluorinateted octanethiolate self-assembled monolayer (F-SAM ) surface. The simulations are performed at collisions energy Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0o 0 (normal) and grazing 45o. Excellent agreement with experiment (J. Am. Chem. Soc. 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H+ internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H+ vibration, but for Ei = 5.0 eV ~20% ofmore » the energy transfer is to ala2-H+ rotation. Energy transfer to ala2-H+ rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H+ (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on//in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H+ is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B 2014, 118, 5577-5588) shows that thermally accommodated ala2-H+ ions have an binding energy with the F-SAM surface of at least ~15 kcal/mol.« less

  8. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    PubMed Central

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  9. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  10. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  11. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Nickless, Alecia; Verhoef, Wouter

    2017-07-01

    Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004-2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.

  12. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    PubMed

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  13. The molecular dynamics of adsorption and dissociation of O{sub 2} on Pt(553)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobse, Leon, E-mail: l.jacobse@chem.leidenuniv.nl; Dunnen, Angela den; Juurlink, Ludo B. F.

    2015-07-07

    Molecular adsorption and dissociation of O{sub 2} on the stepped Pt(553) surface have been investigated using supersonic molecular beam techniques and temperature programmed desorption. The initial and coverage-dependent sticking probability was determined with the King and Wells technique for various combinations of incident kinetic energy, surface temperature, incident angle, and surface coverage. A comparison with similar data for Pt(533) and Pt(110)(1 × 2) shows quantitatively the same high step-induced sticking at low incident energies compared to Pt(111). The enhancement is therefore insensitive to the exact arrangement of atoms forming surface corrugation. We consider energy transfer and electronic effects to explainmore » the enhanced sticking. On the other hand, dissociation dynamics at higher incident kinetic energies are strongly dependent on step type. The Pt(553) and Pt(533) surfaces are more reactive than Pt(111), but the (100) step shows higher sticking than the (110) step. We relate this difference to a variation in the effective lowering of the barrier to dissociation from molecularly adsorbed states into atomic states. Our findings are in line with results from experimental desorption studies and theoretical studies of atomic binding energies. We discuss the influence of the different step types on sticking and dissociation dynamics with a one-dimensional potential energy surface.« less

  14. High-energy x-ray diffraction from surfaces and nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejral, U.; Müller, P.; Shipilin, M.; Gustafson, J.; Franz, D.; Shayduk, R.; Rütt, U.; Zhang, C.; Merte, L. R.; Lundgren, E.; Vonk, V.; Stierle, A.

    2017-11-01

    High-energy surface-sensitive x-ray diffraction (HESXRD) is a powerful high-energy photon technique (E > 70 keV) that has in recent years proven to allow a fast data acquisition for the 3D structure determination of surfaces and nanoparticles under in situ and operando conditions. The use of a large-area detector facilitates the direct collection of nearly distortion-free diffraction patterns over a wide q range, including crystal truncation rods perpendicular to the surface and large-area reciprocal space maps from epitaxial nanoparticles, which is not possible in the conventional low-photon energy approach (E =10 -20 keV ). Here, we present a comprehensive mathematical approach, explaining the working principle of HESXRD for both single-crystal surfaces and epitaxial nanostructures on single-crystal supports. The angular calculations used in conventional crystal truncation rod measurements at low-photon energies are adopted for the high-photon-energy regime, illustrating why and to which extent large reciprocal-space areas can be probed in stationary geometry with fixed sample rotation. We discuss how imperfections such as mosaicity and finite domain size aid in sampling a substantial part of reciprocal space without the need of rotating the sample. An exact account is given of the area probed in reciprocal space using such a stationary mode, which is essential for in situ or operando time-resolved experiments on surfaces and nanostructures.

  15. The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region

    NASA Astrophysics Data System (ADS)

    Khosla, Radhika

    Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building interior through the roof, and the physical properties of the surface. These results hold particular relevance for urban heat island mitigation strategies. Based on the results of this work, recommendations are proposed for widespread adoption of various techniques that enhance building energy efficiency (particularly targeting rooftops), mitigate the negative impacts of the urban heat island, and overcome the current barriers to transforming the market.

  16. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.

  17. Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

    DTIC Science & Technology

    2012-10-01

    Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic electrospun surfaces...door for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic

  18. Analysis of surface energy budget data over varying land-cover conditions.

    USDA-ARS?s Scientific Manuscript database

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...

  19. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1992-01-01

    Evaporation from natural land surfaces often exhibits a strong variation during the course of a day, mostly in response to the daily variation of radiative energy input at the surface. This makes it difficult to derive the total daily evaporation, when only one or a few instantaneous estimates of evaporation are available. It is often possible to resolve this difficulty by assuming self-preservation in the diurnal evolution of the surface energy budget. Thus if the relative partition of total incoming energy flux among the different components remains the same, the ratio of latent heat flux and any other flux component can be taken as constant through the day. This concept of constant flux ratios is tested by means of data obtained during the First ISLSCP Field Experiment; the instantaneous evaporation values were calculated by means of the atmospheric boundary layer bulk similarity approach with radiosonde profiles and radiative surface temperatures. Good results were obtained for evaporative flux ratios with available energy flux, with net radiation, and with incoming shortwave radiation.

  20. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediatemore » temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.« less

  1. Surface characterization of hydrogen charged and uncharged alpha-2 and gamma titanium aluminide alloys using AES and REELS

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1990-01-01

    The surfaces of selected uncharged and hydrogen charged alpha-2 and gamma titanium aluminide alloys with Nb additions were characterized by Auger electron (AES) and reflected electron energy loss (REELS) spectroscopy. The alloy surfaces were cleaned before analysis at room temperature by ion sputtering. The low energy (500 eV) ion sputtering process preferentially sputtered the surface concentration. The surface concentrations were determined by comparing AES data from the alloys with corresponding data from elemental references. No differences were observed in the Ti or Nb Auger spectra for the uncharged and hydrogen charged alloys, even though the alpha-2 alloy had 33.4 atomic percent dissolved hydrogen. Also, no differences were observed in the AES spectra when hydrogen was adsorbed from the gas phase. Bulk plasmon energy shifts were observed in all alloys. The energy shifts were induced either by dissolved hydrogen (alpha-2 alloy) or hydrogen adsorbed from the gas phase (alpha-2 and gamma alloys). The adsorption induced plasmon energy shifts were greatest for the gamma alloy and cp-Ti metal.

  2. Evidence for a positron bound state on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Weiss, A. H.; Barbiellini, B.; Assaf, B. A.; Lim, Z. H.; Joglekar, P. V.; Heiman, D.

    2015-06-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators using the Positron Annihilation induced Auger Electron Spectrometer (PAES). A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ∼2eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi, Teand Se providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium(Ps) emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system.

  3. Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sejoong; Son, Young-Woo

    2017-10-01

    A quasiparticle band structure of a single layer 2 H -NbSe2 is reported by using first-principles G W calculation. We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static susceptibilities from the band structures obtained by the mean-field calculation as well as G W calculation with and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third nearest neighbor hoppings and is shown to reproduce our G W quasiparticle energy bands and Fermi surface very well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and their implications on recent controversial experimental results on CDW transition temperatures.

  4. Evaluate the Relative Importance of Subsurface Lateral Energy Exchange to Ground Heat Flux and Energy Balance over the Heterogeneous Surface of a Sub-tropical Wetland

    NASA Astrophysics Data System (ADS)

    CUI, W.; Chui, T. F. M.

    2016-12-01

    Subsurface lateral water and energy exchanges are often ignored in methods involving a surface energy balance under the homogeneity assumption, which may affect the estimation of evapotranspiration over a heterogeneous surface. Wetlands, however, are heterogeneous with vegetated areas and open water, making it difficult to accurately measure and estimate evapotranspiration. This study estimated the subsurface lateral energy exchange between the reed bed and shallow open water of a wetland within Mai Po Nature Reserve in Hong Kong, and further discussed its relative importance to the ground heat flux and energy balance over the wetland surface. An array of water level and temperature sensors were installed in the reed bed and the adjacent water, together with an eddy covariance system. The results suggested that the lateral energy exchange was over 30% of ground heat flux for half of the monitoring period, and should therefore be accounted for during the measurement of ground heat flux. However, the lateral energy exchange could not explain the energy balance disclosure at the site, as the variation was in phase with the residual of energy budget during the summer but was out of phase during the winter. Furthermore, this study developed a convolution model to estimate the lateral energy exchange based on air temperature which is readily available at many sites worldwide. This study overall enhanced our understanding of the subsurface lateral energy exchange, and possibly our estimation of evapotranspiration in heterogeneous environment.

  5. Surface Energy Balance System for Estimating Daily Evapotranspiration Rates in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or a combination of these models for an operational ET remote sensing program requires thorough evaluation. The Surface Energy Balance S...

  6. Seasonal and interannual variability in surface energy partitioning and vegetation cover with grazing at shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    We evaluated shortgrass steppe energy budgets based on the Bowen Ratio Energy Balance method for three different grazing intensity treatments at the Central Plains Experimental Range Long-Term Ecological Research (CPER-LTER) site. We tested the correlations between aboveground biomass and surface en...

  7. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers

    USDA-ARS?s Scientific Manuscript database

    The kinetic energy of discrete water drops impacting a bare soil surface generally leads to a drastic reduction in water infiltration rate due to formation of a seal on the soil surface. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development ...

  8. Deriving hourly surface energy fluxes and ET from Landsat Thematic mapper data using METRIC

    USDA-ARS?s Scientific Manuscript database

    Surface energy fluxes and evapotranspiration (ET) have long been recognized as playing an important role in determining exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. In this study, we applied the METRIC (Mapping ET at high Resolutions with Internal Calibration) alg...

  9. Determination of kinetic energy applied by center pivot sprinklers

    USDA-ARS?s Scientific Manuscript database

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  10. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

    NASA Astrophysics Data System (ADS)

    Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

  11. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  12. Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Stirner, Thomas; Scholz, David; Sun, Jizhong

    2018-05-01

    The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.

  13. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the imbalance magnitude. All turbulent fluxes are highly correlated with net radiation because this balance between solar and longwave radiation is the principal energy source for daytime surface warming, evaporation, and photosynthesis. We find that turbulent fluxes of carbon dioxide and sensible heat are closely linked and, on average, change sign synchronously during the diurnal and annual cycles. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.

  14. Double matrix effect in Low Energy Ion Scattering from La surfaces

    NASA Astrophysics Data System (ADS)

    Zameshin, Andrey A.; Yakshin, Andrey E.; Sturm, Jacobus M.; Brongerma, Hidde H.; Bijkerk, Fred

    2018-05-01

    Low Energy Ion Scattering (LEIS) has been performed on several lanthanum-based surfaces. Strong subsurface matrix effects - dependence of surface scattered He+ ion yield on the composition of subsurface layer - have been observed. The ion yield of He+ scattered by La differed by a factor of up to 2.5 for different surfaces, while only the La peak was visible in the spectra. To study these effects and enable surface quantification, He+ ion yields have been measured in a range of incident He+ energies from 1000 to 7500 eV for LaB6, La2O3, oxidized La and pure La surfaces. The investigation showed that as many as two simultaneous matrix effects are present, each one driven by a separate charge exchange mechanism. The first one is a resonant neutralization from the conduction band of La to an excited state of the He+ ion. It depends on the work function of the surface, which is lowered significantly when La interacts with O or B. The second mechanism is quasiresonant charge transfer between bound La levels and He 1s, which creates characteristic oscillations in the energy dependence of ion yields. The exact structure of the oscillations depends on small changes in binding energies of interacting La levels. This is the first time quasiresonant charge transfer is proven to be present in La. It is likely that La 5p orbitals participate in this resonance, which can be the first clear observation of a resonance between p and s orbitals in LEIS. This type of resonance was previously believed to be absent because of strong damping. We also demonstrated that despite the complex matrix effect precise measurements over a wide energy range allow quantification of the atomic composition of La-based surfaces.

  15. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    NASA Astrophysics Data System (ADS)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  16. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  17. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Zhao, Bin

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H{sub 2} → H{sub 2} + H, H + H{sub 2}O → H{sub 2} + OH, and H + CH{sub 4} → H{sub 2} + CH{sub 3}. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggestmore » this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.« less

  18. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    PubMed

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  19. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  20. Impact of Interactive Energy-Balance Modeling on Student Learning in a Core-Curriculum Earth Science Course

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.

    2008-12-01

    An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.

  1. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry.

    PubMed

    Savoy, Elizabeth S; Escobedo, Fernando A

    2012-11-20

    When in contact with a rough solid surface, fluids with low surface tension, such as oils and alkanes, have their lowest free energy in the fully wetted state. For applications where nonwetting by these phillic fluids is desired, some barrier must be introduced to maintain the nonwetted composite state. One way to create this free-energy barrier is to fabricate roughness with reentrant geometry, but the question remains as to whether the free-energy barrier is sufficiently high to prevent wetting. Our goal is to quantify the free-energy landscape for the wetting transition of an oily fluid on a surface of nails and identify significant surface features and conditions that maximize the wetting free-energy barrier (ΔGfwd*). This is a departure from most work on wetting, which focuses on the equilibrium composite and wetted states. We use boxed molecular dynamics (BXD) (Glowacki, D. R.; Paci, E.; Shalashilin, D. V. J. Phys. Chem. B2009, 113, 16603-16611) with a modified control scheme to evaluate both the thermodynamics and kinetics of the transition over a range of surface affinities (chemistry). We find that the reentrant geometry of the nails does create a free-energy barrier to transition for phillic chemistry whereas a corresponding system on straight posts wets spontaneously and, that doubling the nail height more than doubles ΔGfwd*. For neutral to phillic chemistry, the dewetting free-energy barrier is at least an order of magnitude higher than that for wetting, indicating an essentially irreversible wetting transition. Transition rates from BXD simulations and the associated trends agree well with those in our previous study that used forward flux sampling to compute transition rates for similar systems.

  2. Elastic layer under axisymmetric indentation and surface energy effects

    NASA Astrophysics Data System (ADS)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  3. Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2003-03-01

    The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.

  4. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    NASA Technical Reports Server (NTRS)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  5. Effects of surface roughness and energy on ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M. A.

    2011-02-01

    The aim of this study is to investigate the effects of surface roughness and surface energy on ice adhesion strength. Sandblasting technique was used to prepare samples with high roughness. Silicon-doped hydrocarbon and fluorinated-carbon thin films were employed to alter the surface energy of the samples. Silicon-doped hydrocarbon films were deposited by plasma-enhanced chemical vapor deposition, while fluorinated-carbon films were produced using deep reactive ion etching equipment by only activating the passivation step. Surface topographies were characterized using scanning electron microscopy and a stylus profilometer. The surface wetting properties were characterized by a video-based contact angle measurement system. The adhesion strength of ice formed from a water droplet on these surfaces was studied using a custom-built shear force test apparatus. It was found that the ice adhesion strength is correlated to the water contact angles of the samples only for surfaces with similar roughness: the ice adhesion strength decreases with the increase in water contact angle. The study also shows that smoother as-received sample surfaces have lower ice adhesion strength than the much rougher sandblasted surfaces.

  6. Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth

    DOE PAGES

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...

    2016-01-01

    The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  7. New insights into the properties of pubescent surfaces: peach fruit as a model.

    PubMed

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; Del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-08-01

    The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.

  8. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model1[OA

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-01-01

    The surface of peach (Prunus persica ‘Calrico’) is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context. PMID:21685175

  9. Factors affecting the sticking of insects on modified aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Chitsaz-Z, M. R.; Eiss, N. S.; Wightman, J. P.

    1987-01-01

    Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples.

  10. Unoccupied Surface State on Ag(110) as Revealed by Inverse Photoemission

    NASA Astrophysics Data System (ADS)

    Reihl, B.; Schlittler, R. R.; Neff, H.

    1984-05-01

    By use of the new technique of k-resolved inverse photoemission spectroscopy, an unoccupied s-like surface state on Ag(110) has been detected, which lies within the projected L2'-->L1 gap of the bulk. At the X¯ point of the surface Brillouin zone, the energy of the surface state is 1.65 eV above the Fermi level EF, and exhibits a band dispersion E(k∥) towards higher energies. The surface-state emission is immediately quenched when the surface is exposed to very small amounts of oxygen or hydrogen.

  11. Fluoroalkylated Silicon-Containing Surfaces - Estimation of Solid Surface Energy

    DTIC Science & Technology

    2010-10-20

    surface tension liquids such as octane (γlv = 21.6 mN/m) and methanol (γlv = 22.7 mN/m), requires an appropriately chosen surface micro/nano-texture in...addition to a low solid surface energy (γsv). 1H,1H,2H,2H- Heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) offers one of...27.5 mN/m), while Girifalco-Good analysis was performed using a set of polar and non-polar liquids with a wider range of liquid surface tension (15.5

  12. The origin of unequal bond lengths in the C 1B 2 state of SO 2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    Here the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v' 3 progression. We have recently made the first observation of low-lying levels with odd quanta of v' 3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood,more » to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A 1 state and indirect coupling with the repulsive 3 1A 1 state. The degree of staggering in the v' 3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A 1 surface at a bond angle of ~145°.« less

  13. The origin of unequal bond lengths in the C 1B 2 state of SO 2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-14

    Here the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v' 3 progression. We have recently made the first observation of low-lying levels with odd quanta of v' 3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood,more » to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A 1 state and indirect coupling with the repulsive 3 1A 1 state. The degree of staggering in the v' 3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A 1 surface at a bond angle of ~145°.« less

  14. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    NASA Astrophysics Data System (ADS)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  15. A relativistic density functional study of the role of 5f electrons in atomic and molecular adsorptions on actinide surfaces

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul

    Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the oxygen molecules on both (100) and (111) plutonium surfaces dissociate almost spontaneously, whereas hydrogen needs some activation energy to dissociate. From spin-polarized calculations we found both (100) and (111) surfaces have the layer by layer alternating spin-magnetic behavior. In general adsorption of H2 and O2 do not change this behavior.

  16. [Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].

    PubMed

    Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian

    2011-07-01

    A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.

  17. Radiative energy transfer from MoS2 excitons to surface plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Li, Bowen; Fang, Zheyu

    2017-12-01

    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  18. Superhydrophobic surfaces’ influence on streaming current based energy harvester

    NASA Astrophysics Data System (ADS)

    Fouché, Florent; Dargent, Thomas; Coffinier, Yannick; Treizebré, Anthony; Vlandas, Alexis; Senez, Vincent

    2016-11-01

    The purpose of this paper is to report the design, fabrication and characterization of silicon-based microfluidic channels with superhydrophobic walls for energy harvesting. We present the fabrication step of silicon based streaming current energy harvester and the nanostructuration of the microchannel walls. We characterize the superhydrophobic properties of the surface in a closed system. Our preliminary results on the electrical characterization of the device show a 43% increase of power harvested with our superhydrophobic surface compared to a planar hydrophobic surface.

  19. Plasma-surface interaction in the context of ITER.

    PubMed

    Kleyn, A W; Lopes Cardozo, N J; Samm, U

    2006-04-21

    The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.

  20. Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komolov, A. S., E-mail: akomolov07@ya.ru; Komolov, S. A.; Lazneva, E. F.

    2012-01-15

    The systematic features of laser-induced desorption from an SnO{sub 2} surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm{sup 2}. As the threshold pulse energy 28 mJ/cm{sup 2} is achieved, molecular oxygen O{sub 2} is detected in the desorption mass spectra from the SnO{sub 2} surface; as the threshold pulse energy 42 mJ/cm{sup 2} is reached, tin Sn, and SnO and (SnO){sub 2} particle desorption is observed. The laser desorption mass spectra from the SnO{sub 2} surface coated with an organic coppermore » phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm{sup 2}. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O{sub 2}, Sn, SnO, and (SnO){sub 2} is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO{sub 2} surface, which indicates the diffusion of atomic components of the SnO{sub 2} substrate to the bulk of the deposited organic film.« less

  1. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  2. Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.

    2015-12-01

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.

  3. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  4. Solar Wind Implantation into Lunar Regolith: Hydrogen Retention in a Surface with Defects

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Hurley, D. M.; Zimmerman, M. I.

    2014-01-01

    Solar wind protons are implanted directly into the top 100 nm of the lunar near-surface region, but can either quickly diffuse out of the surface or be retained, depending upon surface temperature and the activation energy, U, associated with the implantation site. In this work, we explore the distribution of activation energies upon implantation and the associated hydrogen-retention times; this for comparison with recent observation of OH on the lunar surface. We apply a Monte Carlo approach: for simulated solar wind protons at a given local time, we assume a distribution of U values with a central peak, U(sub c) and width, U(sub w), and derive the fraction retained for long periods in the near-surface. We find that surfaces characterized by a distribution with predominantly large values of U (greater than 1 eV) like that expected at defect sites will retain implanted H (to likely form OH). Surfaces with the distribution predominantly at small values of U (less than 0.2 eV) will quickly diffuse away implanted H. However, surfaces with a large portion of activation energies between 0.3 eV less than U less than 0.9 eV will tend to be H-retentive in cool conditions but transform into H-emissive surfaces when warmed (as when the surface rotates into local noon). These mid-range activation energies give rise to a diurnal effect with diffusive loss of H at noontime.

  5. Surface diffusion on SrTiO3 (100): A temperature accelerated dynamics and first principles study

    NASA Astrophysics Data System (ADS)

    Hong, Minki; Wohlwend, Jennifer L.; Behera, Rakesh K.; Phillpot, Simon R.; Sinnott, Susan B.; Uberuaga, Blas P.

    2013-11-01

    Temperature accelerated dynamics (TAD) with an empirical potential is used to predict diffusion mechanisms and energy barriers associated with surface diffusion of adatoms and surface vacancies on (100) SrTiO3 (STO). Specifically, Sr, O, and Ti adatoms and vacancies are investigated on each termination - SrO and TiO2 - of the SrTiO3 surface. We find that the empirical potential predicts different surface mobility of adatoms depending on the surface termination: they are mobile with relatively low diffusion barriers on the SrO-terminated surface, whereas they are largely immobile on the TiO2-terminated surface. One important finding is that, of the two binding sites on the SrO-terminated surface, one is typically very close in energy to the saddle point. Thus, one of the two sites is a good estimator of the migration energy of the adatom, a conclusion supported by select density functional theory (DFT) calculations. Motivated by this result, we calculate the migration energies for a number of metal elements on the SrO-terminated surface: Ti, Ba, La, and Al. The DFT results also reveal that the details of the migration mechanism depend on the charge state of the diffusing species and that the ability of the empirical potential to properly estimate the migration mechanism depends on the magnitude and variability of the charge transfer between the adatom and the surface.

  6. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  7. Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1969-01-01

    Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.

  8. Variational calculation of ground-state energy of iron atoms and condensed matter in strong magnetic fields. [at neutron star surfaces

    NASA Technical Reports Server (NTRS)

    Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.

    1977-01-01

    Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.

  9. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model,.

    PubMed

    Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C

    2016-09-01

    The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.

  10. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, A.; Wendt, F.; Yu, Y. -H.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less

  11. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  12. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  13. Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces.

    PubMed

    Heinz, Hendrik

    2010-05-01

    The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer-scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface-solute-solvent system, the solute-solvent system, the solvent system, and the surface-solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. Copyright 2009 Wiley Periodicals, Inc.

  14. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    PubMed

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  15. Dynamics of spider glue adhesion: effect of surface energy and contact area

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chen, Yizhou; Blackledge, Todd; Dhinojwala, Ali

    Spider glue is a unique biological adhesive which is humidity responsive such that the adhesion continues to increase upto 100% relative humidity (RH) for some species. This is unlike synthetic adhesives that significantly drop in adhesion with an increase in humidity. However, most of adhesion data reported in literature have used clean hydrophilic glass substrate, unlike the hydrophobic, and charged insect cuticle surface that adheres to spider glue in nature. Previously, we have reported that the spider glue viscosity changes over five orders of magnitude with humidity. Here, we vary the surface energy and surface charge of the substrate to test the change in Larnioides cornutus spider glue adhesion with humidity. We find that an increase in both surface energy and surface charge density increases the droplet spreading and there exists an optimum droplet contact area where adhesion is maximized. Moreover, spider glue droplets act as reusable adhesive for low energy hydrophobic surface at the optimum humidity. These results explain why certain prey are caught more efficiently by spiders in their habitat. The mechanism by which spider species tune its glue adhesion for local prey capture can inspire new generation smart adhesives.

  16. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  17. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanan, E-mail: ynzhang@suda.edu.cn; Ren, Weiqing, E-mail: matrw@nus.edu.sg; Institute of High Performance Computing, Singapore 138632

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results aremore » obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.« less

  18. F + H2 collisions on two electronic potential energy surfaces - Quantum-mechanical study of the collinear reaction

    NASA Technical Reports Server (NTRS)

    Zimmerman, I. H.; Baer, M.; George, T. F.

    1979-01-01

    Collinear quantum calculations are carried out for reactive F + H2 collisions on two electronic potential energy surfaces. The resulting transmission and reflection probabilities exhibit much greater variation with energy than single-surface studies would lead us to anticipate. Transmission to low-lying product channels is increased by orders of magnitude by the presence of the second surface; however, branching ratios among product states are found to be independent of the initial electronic state of the reactants. These apparently contradictory aspects of the calculation are discussed and a tentative explanation put forward to resolve them.

  19. Excitonic mechanism of the photoinduced surface restructuring of copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotskii, Michel

    An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.

  20. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  1. Energetics of the formation of Cu-Ag core–shell nanoparticles

    DOE PAGES

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was foundmore » that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.« less

  2. Global potential energy surface of ground state singlet spin O4

    NASA Astrophysics Data System (ADS)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  3. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  4. Static force fields simulations of reduced CeO2 (110) surface: Structure and adsorption of H2O molecule

    NASA Astrophysics Data System (ADS)

    Vives, Serge; Meunier, Cathy

    2018-02-01

    The CeO2(110) surface properties are largely involved in the catalysis, energy and biological phenomenon. The Static Force Fields simulations are able to describe large atomic systems surface even if no information on the electronic structure can be obtained. We employ those simulations to study the formation of the neutral 2 CeCe‧ VO•• cluster. We focus on seven different cluster configurations and find that the defect formation energy is the lower for the 1N-2N configurations. Two geometries are possible, as it is the case for the ab initio studies, the in plane and the more stable bridging one. We evidence the modifications of the surface energy and the Potential Energy Surface due to the presence of the 2 CeCe‧ VO•• defect. The physical adsorption of a water molecule is calculated and the geometry described for all the cluster configurations. The H2O molecule physisorption stabilizes the Ce(110) surface and the presence of the 2 CeCe‧ VO•• defect increases this effect.

  5. Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid

    PubMed Central

    Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki

    2018-01-01

    Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070

  6. Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoxin

    2015-04-01

    The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

  7. 1995 Annual Report and Five Year (1995-1999) Strategic Investment Plan

    DTIC Science & Technology

    1996-08-01

    fouling release hull coatings exploiting the low surface energy of surface oriented perfluorinated alkyl compounds . This project is a continuation...would not be able to adhere to it. The lowest surface free energies can be created by adsorbed monolayers of closely packed perfluorinated compounds ...embedding such molecules into the surface of polymeric matrices, and by binding the perfluorinated compounds into a polymeric backbone to create comb type

  8. Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

    DTIC Science & Technology

    2012-04-01

    Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007

  9. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  10. Investigations on the Influence of Parameters During Electron Beam Surface Hardening Using the Flash Technique

    NASA Astrophysics Data System (ADS)

    Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.

    2018-06-01

    The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.

  11. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  12. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less

  13. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  14. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco

    2015-09-01

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  15. Characterizing droplet kinetic energy applied by moving spray-plate center pivot irrigation sprinklers

    USDA-ARS?s Scientific Manuscript database

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  16. Effect of Intercalated Water on Potassium Ion Transport through Kv1.2 Channels Studied via On-the-Fly Free-Energy Parametrization.

    PubMed

    Paz, S Alexis; Maragliano, Luca; Abrams, Cameron F

    2018-05-08

    We introduce a two-dimensional version of the method called on-the-fly free energy parametrization (OTFP) to reconstruct free-energy surfaces using Molecular Dynamics simulations, which we name OTFP-2D. We first test the new method by reconstructing the well-known dihedral angles free energy surface of solvated alanine dipeptide. Then, we use it to investigate the process of K + ions translocation inside the Kv1.2 channel. By comparing a series of two-dimensional free energy surfaces for ion movement calculated with different conditions on the intercalated water molecules, we first recapitulate the widely accepted knock-on mechanism for ion translocation and then confirm that permeation occurs with water molecules alternated among the ions, in accordance with the latest experimental findings. From a methodological standpoint, our new OTFP-2D algorithm demonstrates the excellent sampling acceleration of temperature-accelerated molecular dynamics and the ability to efficiently compute 2D free-energy surfaces. It will therefore be useful in large variety complex biomacromolecular simulations.

  17. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.

  18. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  20. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  1. Engineered liquid crystal anchoring energies with nanopatterned surfaces.

    PubMed

    Gear, Christopher; Diest, Kenneth; Liberman, Vladimir; Rothschild, Mordechai

    2015-01-26

    The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.

  2. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  3. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  4. Active surface model improvement by energy function optimization for 3D segmentation.

    PubMed

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    PubMed

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  6. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance

    PubMed Central

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed. PMID:24086795

  7. Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.

    PubMed

    de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri

    2015-07-01

    The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.

  8. Parameter studies on the energy balance closure problem using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias

    2017-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.

  9. Atomic force microscopy study on topography of films produced by ion-based techniques

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.

    1996-09-01

    The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.

  10. MEMS based pyroelectric thermal energy harvester

    DOEpatents

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  11. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less

  12. Kinetics-Driven Crystal Facets Evolution at the Tip of Nanowires: A New Implementation of the Ostwald-Lussac Law.

    PubMed

    Yin, Xin; Wang, Xudong

    2016-11-09

    Nanocrystal facets evolution is critical for designing nanomaterial morphology and controlling their properties. In this work, we report a unique high-energy crystal facets evolution phenomenon at the tips of wurtzite zinc oxide nanowires (NWs). As the zinc vapor supersaturation decreased at the NW deposition region, the NW tip facets evolved from the (0001) surface to the {101̅3} surface and subsequently to the {112̅2} surface and eventually back to the flat (0001) surface. A series of NW tip morphology was observed in accordance to the different combinations of exposed facets. Exposure of the high-energy facets was attributed to the fluctuation of the energy barriers for the formation of different crystal facets during the layer-by-layer growth of the NW tip. The energy barrier differences between these crystal facets were quantified from the surface area ratios as a function of supersaturation. On the basis of the experimental observation and kinetics analysis, we argue that at appropriate deposition conditions exposure of the crystal facets at NW growth front is not merely determined by the surface energy. Instead, the NW may choose to expose the facets with minimal formation energy barrier, which can be determined by the Ehrlich-Schwoebel barrier variation. This empirical law for the NW tip facet formation was in analogy to the Ostwald-Lussac law of phase transformation, which brings a new insight toward nanostructure design and controlled synthesis.

  13. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun

    2017-06-01

    The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  14. Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhongming; Liu, Heping; Katul, Gabriel G.

    It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less

  15. Study on the Effect of Surface Energy of Polypropylene/Polyamide12 polymer Hybrid Matrix Reinforced with Virgin and Recycled Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Sena Maia, Bruno

    The presented work is focused on characterization of thermal treated recycled and virgin carbon fibers. Their thermal performances, chemical surface composition and its influence on interfacial adhesion phenomena on PP/PA12 hybrid matrix were compared using TGA, FTIR and XPS analysis. Additionally, differences between hybrid matrix structural performances of PP/PA12 using both surface modifiers PMPPIC and MAPP were investigated. Final mechanical properties improvements between 8% up to 17% were reached by addition of PMPPIC in PP/PA12 hybrid matrix. For PP/PA12 matrix reinforcement using virgin and recycled carbon fibers, impact energy was improved up to 98% compared with MAPP modified matrix leading to a novel composite with good energy absorption. Finally, wettability studies and surface free energy analysis of all materials studied support the effect of the addition of PMPPIC, MAPP and carbon fibers in final composite surface thermodynamics bringing important data correlation between interfacial adhesion mechanisms and final composite performance.

  16. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  17. Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies

    DOE PAGES

    Gao, Zhongming; Liu, Heping; Katul, Gabriel G.; ...

    2017-03-16

    It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less

  18. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  19. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  20. Correlating ion energies and CF{sub 2} surface production during fluorocarbon plasma processing of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ina T.; Zhou Jie; Fisher, Ellen R.

    2006-07-01

    Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C{sub 3}F{sub 8} and C{sub 4}F{sub 8} plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29 to 92 eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resultedmore » in increased ion intensities and mean ion energies. Most significantly, a comparison to CF{sub 2} surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF{sub 2} surface production in these systems.« less

  1. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  2. Quantized evaporation from liquid helium

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Hope, F. R.; Wyatt, A. F. G.

    1983-07-01

    The atomic-level kinetics of evaporation from a liquid surface are investigated experimentally for the case of liquid He-4. A pulse of phonons was injected by a submerged thin-film heater into purified He-4 (cooled to less than about 0.1 K) and collimated into a beam directed at the liquid surface; the atoms liberated at the surface were detected by a bolometer. The energy of the incident phonon and the kinetic energy of the liberated atom were calculated by determining the group velocity (from the minimum time elapsed between the beginning of the heater pulse and the arrival of the leading edge of the signal) and combining it with neutron-measured excitation dispersion data. Measurements were also made with a mixture of He-3 and He-4. The results are shown to be in good agreement with theoretical predictions of the phonon-induced quantum evaporation of surface atoms: the energy of the phonon is divided between the kinetic energy of the liberated atom and the energy required to overcome the binding forces.

  3. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  4. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  5. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    PubMed

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Modeling Calculation and Synthesis of Alumina Whiskers Based on the Vapor Deposition Process.

    PubMed

    Gong, Wei; Li, Xiangcheng; Zhu, Boquan

    2017-10-17

    This study simulated the bulk structure and surface energy of Al₂O₃ based on the density of states (DOS) and studied the synthesis and microstructure of one-dimensional Al₂O₃ whiskers. The simulation results indicate that the (001) surface has a higher surface energy than the others. The growth mechanism of Al₂O₃ whiskers follows vapor-solid (VS) growth. For the (001) surface with the higher surface energy, the driving force of crystal growth would be more intense in the (001) plane, and the alumina crystal would tend to grow preferentially along the direction of the (001) plane from the tip of the crystal. The Al₂O₃ grows to the shape of whisker with [001] orientation, which is proved both through modeling and experimentation.

  7. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-04-01

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  8. Method for surface plasmon amplification by stimulated emission of radiation (SPASER)

    DOEpatents

    Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL

    2011-09-13

    A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.

  9. Surface plasmon amplification by stimulated emission of radiation (SPASER)

    DOEpatents

    Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL

    2009-08-04

    A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.

  10. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  11. Composition Studies with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana

    The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.

  12. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface.

    PubMed

    Zhu, Guang; Su, Yuanjie; Bai, Peng; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Wang, Zhong Lin

    2014-06-24

    Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.

  13. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  14. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  15. Study of α-Cu 0.82Al 0.18(100) using low energy ion scattering

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Muhlen, E. Zur; O'Connor, D. J.; King, B. V.; MacDonald, R. J.

    1996-07-01

    The clean α-Cu 0.82Al 0.18(100) surface has been investigated using low energy ion scattering. The surface structure was found to be similar to the structure of the Cu(100) surface. By measuring the first layer concentration of Al using He + and Ne + beams and standard calibration procedure, the α-Cu 0.82Al 0.18(100) surface was found to be slightly Al-rich. Analysis of multiple scattering of ions suggests that Al atoms do not form islands. It was also found that Al atoms sit higher than the Cu atoms on the surface. By comparison with computer simulations (SABRE and FAN2D), the buckling of Al was found to be 0.16 ± 0.07 Å. No reconstructions were observed on the surface by low energy ion scattering which is in agreement with previous LEED studies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, asmore » well as applications for electrons bound to a 2D surface.« less

  17. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  18. [Adhesion loss of syrups in a metering glass which consists of a low surface free energy material].

    PubMed

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Hashizaki, Kaname; Ogura, Masao; Umeda, Yukiko; Hidaka, Shinji; Fukami, Toshiro; Tomono, Kazuo

    2010-08-01

    We previously reported a strong positive correlation between syrup viscosity and the rate of syrup loss due to adhesion to a glass metering device. In this study, we examined differences in the surface free energies of metering devices made of different polymeric materials, since reducing adhesion loss to metering devices could improve the efficiency of drug preparation involving highly viscous syrups. Among metering devices made of glass only, glass with a silicone coating (SLC), polypropylene (PP), and polymethylpentene (PMP) the surface free energy of the glass-only metering device was the highest (49.2 mN/m). The adhesion loss obtained for highly viscous syrups in the PP and PMP metering devices was significantly lower than that of the glass metering device. Measurements of syrup contact angles suggested that in metering devices made of PP and PMP, which have low surface free energies, a decrease in the spreading wetting of syrups was a factor in reducing the rate of adhesion loss. Thus irrespective of the syrup viscosity being measured, metering devices produced from materials with low surface free energies can reduce the time required to prepare prescriptions without compromising the accuracy of drug preparation.

  19. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface.

    PubMed

    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin

    2017-09-06

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  20. Impact of surface energy on the shock properties of granular explosives.

    PubMed

    Bidault, X; Pineau, N

    2018-01-21

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  1. Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2)

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh Kumar

    2018-01-01

    The energy fluxes at the surface and top of the atmosphere (TOA) from a long free run by the NCEP climate forecast system version 2.0 (CFSv2) are validated against several observation and reanalysis datasets. This study focuses on the annual mean energy fluxes and tries to link it with the systematic cold biases in the 2 m air temperature, particularly over the land regions. The imbalance in the long term mean global averaged energy fluxes are also evaluated. The global averaged imbalance at the surface and at the TOA is found to be 0.37 and 6.43 Wm-2, respectively. It is shown that CFSv2 overestimates the land surface albedo, particularly over the snow region, which in turn contributes to the cold biases in 2 m air temperature. On the other hand, surface albedo is highly underestimated over the coastal region around Antarctica and that may have contributed to the warm bias over that oceanic region. This study highlights the need for improvements in the parameterization of snow/sea-ice albedo scheme for a realistic simulation of surface temperature and that may have implications on the global energy imbalance in the model.

  2. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  3. Impact of surface energy on the shock properties of granular explosives

    NASA Astrophysics Data System (ADS)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  4. Unified interpretation of exciplex formation and marcus electron transfer on the basis of two-dimensional free energy surfaces.

    PubMed

    Murata, Shigeo; Tachiya, M

    2007-09-27

    The mechanism of exciplex formation proposed in a previous paper has been refined to show how exciplex formation and Marcus electron transfer (ET) in fluorescence quenching are related to each other. This was done by making simple calculations of the free energies of the initial (DA*) and final (D+A-) states of ET. First it was shown that the decrease in D-A distance can induce intermolecular ET even in nonpolar solvents where solvent orientational polarization is absent, and that it leads to exciplex formation. This is consistent with experimental results that exciplex is most often observed in nonpolar solvents. The calculation was then extended to ET in polar solvents where the free energies are functions of both D-A distance and solvent orientational polarization. This enabled us to discuss both exciplex formation and Marcus ET in the same D-A pair and solvent on the basis of 2-dimensional free energy surfaces. The surfaces contain more information about the rates of these reactions, the mechanism of fluorescence quenching by ET, etc., than simple reaction schemes. By changing the parameters such as the free energy change of reaction, solvent dielectric constants, etc., one can construct the free energy surfaces for various systems. The effects of free energy change of reaction and of solvent polarity on the mechanism and relative importance of exciplex formation and Marcus ET in fluorescence quenching can be well explained. The free energy surface will also be useful for discussion of other phenomena related to ET reactions.

  5. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  6. Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predications

    Treesearch

    Warren E. Heilman; Xindi Bain

    2013-01-01

    Recent research suggests that high levels of ambient near-surface atmospheric turbulence are often associated with rapid and sometimes erratic wildland fire spread that may eventually lead to large burn areas. Previous research has also examined the feasibility of using near-surface atmospheric turbulent kinetic energy (TKEs) alone or in...

  7. Impact of aerodynamic resistance formulations used in two-source modeling of energy exchange from the soil and vegetation using land surface temperature

    USDA-ARS?s Scientific Manuscript database

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  8. Remote Sensing and Monitoring of Earthen Flood-Control Structures

    DTIC Science & Technology

    2017-07-01

    The source of energy in passive techniques is derived from incident solar radiation or sunlight that reacts with the atmosphere, hydrosphere, and...the energy reflected or emitted from the earth’s surface. The source of energy in passive techniques involves incident solar radiation or sunlight... solar radiation is reflected back into the atmosphere, or where heat energy is emitted from the earth’s surface. As shown by Figure 2-3, certain regions

  9. A new mathematical modeling approach for the energy of threonine molecule

    NASA Astrophysics Data System (ADS)

    Sahiner, Ahmet; Kapusuz, Gulden; Yilmaz, Nurullah

    2017-07-01

    In this paper, we propose an improved new methodology in energy conformation problems for finding optimum energy values. First, we construct the Bezier surfaces near local minimizers based on the data obtained from Density Functional Theory (DFT) calculations. Second, we blend the constructed surfaces in order to obtain a single smooth model. Finally, we apply the global optimization algorithm to find two torsion angles those make the energy of the molecule minimum.

  10. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    PubMed

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lu; Hanson, David E

    Here we present the results on the study of surface properties of {beta}-HMX crystal utilizing molecular simulations. The surface polarity of three principal crystal surfaces are investigated by measuring the water contact angles. The calculated contact angles agree excellently with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain with and without nitroplasticizer from the three principal crystal surfaces were calculated using umbrella sampling technique. We find that the detaching free energy/force increases with the increasing HMX surface polarity. In addition, ourmore » results also show that nitroplasticizer plays an important role in the adhesion forces between Estane and HMX surfaces.« less

  12. Interaction of dyes CD–1 and SD–1 with the surface of oligodimethysiloxane

    NASA Astrophysics Data System (ADS)

    Chausov, D. N.

    2018-03-01

    We carried out the modeling orientation of the dyes CD–1 and SD–1 relative to the surface of oligodimethysiloxane using the atom–atom potentials method. We have discovered the dependence of the interaction energy in dyes molecules on the angles which characterizes their orientation relative to the surface of the oligodimethysiloxane crystal. It was found out that the obtained energy value of interaction with the surface can explain weak adhesive qualities of the dyes and the orientation type relative to the surface. We identified the break– loose force for the dyes on the oligodimethysiloxane crystal surface.

  13. An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat-corn production region

    USDA-ARS?s Scientific Manuscript database

    This paper compares three remote sensing-based models for estimating evapotranspiration (ET), namely the Surface Energy Balance System (SEBS), the Two-Source Energy Balance (TSEB) model, and the surface Temperature-Vegetation index Triangle (TVT). The models used as input MODIS/TERRA products and gr...

  14. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  15. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    NASA Astrophysics Data System (ADS)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine desorbs later with higher binding energies (5050-8420 K) that exceed that of the crystalline water ice (Edes = 4930 K), which is calculated with the same pre-exponential factor A = 1012 s-1. The best wetting ability of methylamine compared to H2O molecules makes CH3NH2 molecules a refractory species for low coverage. Other binding energies of astrophysical relevant molecules are gathered and compared, but we could not link the chemical functional groups (amino, methyl, hydroxyl, and carbonyl) with the binding energy properties. Implications of these high binding energies are discussed.

  16. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  17. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  18. Effects of surface motion and electron-hole pair excitations in CO2 dissociation and scattering on Ni(100)

    NASA Astrophysics Data System (ADS)

    Luo, Xuan; Zhou, Xueyao; Jiang, Bin

    2018-05-01

    The energy transfer between different channels is an important aspect in chemical reactions at surfaces. We investigate here in detail the energy transfer dynamics in a prototypical system, i.e., reactive and nonreactive scattering of CO2 on Ni(100), which is related to heterogeneous catalytic processes with Ni-based catalysts for CO2 reduction. On the basis of our earlier nine-dimensional potential energy surface for CO2/Ni(100), dynamical calculations have been done using the generalized Langevin oscillator (GLO) model combined with local density friction approximation (LDFA), in which the former accounts for the surface motion and the latter accounts for the low-energy electron-hole pair (EHP) excitation. In spite of its simplicity, it is found that the GLO model yields quite satisfactory results, including the significant energy loss and product energy disposal, trapping, and steering dynamics, all of which agree well with the ab initio molecular dynamics ones where many surface atoms are explicitly involved with high computational cost. However, the GLO model fails to describe the reactivity enhancement due to the lattice motion because it intrinsically does not incorporate the variance of barrier height on the surface atom displacement. On the other hand, in LDFA, the energy transferred to EHPs is found to play a minor role and barely alter the dynamics, except for slightly reducing the dissociation probabilities. In addition, vibrational state-selected dissociative sticking probabilities are calculated and previously observed strong mode specificity is confirmed. Our work suggests that further improvement of the GLO model is needed to consider the lattice-induced barrier lowering.

  19. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  20. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  1. Effect of a skin-deep surface zone on the formation of a two-dimensional electron gas at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Olszowska, Natalia; Lis, Jakub; Ciochon, Piotr; Walczak, Łukasz; Michel, Enrique G.; Kolodziej, Jacek J.

    2016-09-01

    Two-dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a one-dimensional (1D) self-consistent Poisson-Schrödinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schrödinger scheme predicts the 2DEG band energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wave functions.

  2. Surface analysis by means of high resolution energy loss spectroscopy of 180° elastic scattered protons in the 100 keV regime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Kanasaki; Noriaki, Matsunami; Noriaki, Itoh; Tomoki, Oku; Kensin, Kitoh; Masahiko, Aoki; Koji, Matsuda

    1988-06-01

    The design and computer simulation of the performance of a new ion-beam surface analyzer has been presented. The analyzer has the capability of analyzing the energy of ions incident at 100 keV and scattered by 180° at surfaces with a resolution of 5 eV. The analyzer consists of an ion source, an accelerating-decelerating tube and a multichannel analyzer. Computer simulation of the energy spectra of ions scattered from GaAs is reported.

  3. Energy conservation of the scattering from one-dimensional random rough surfaces in the high-frequency limit.

    PubMed

    Pinel, Nicolas; Bourlier, Christophe; Saillard, Joseph

    2005-08-01

    Energy conservation of the scattering from one-dimensional strongly rough dielectric surfaces is investigated using the Kirchhoff approximation with single reflection and by taking the shadowing phenomenon into account, both in reflection and transmission. In addition, because no shadowing function in transmission exists in the literature, this function is presented here in detail. The model is reduced to the high-frequency limit (or geometric optics). The energy conservation criterion is investigated versus the incidence angle, the permittivity of the lower medium, and the surface rms slope.

  4. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  5. Monitoring the spring-summer surface energy budget transition in the Gobi Desert using AVHRR GAC data. [Global Area Coverage

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.

    1986-01-01

    A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.

  6. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  7. Interaction of the NO 3pπ (C {sup 2}Π) Rydberg state with RG (RG = Ne, Kr, and Xe): Potential energy surfaces and spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ershova, Olga V.; Besley, Nicholas A., E-mail: Nick.Besley@nottingham.ac.uk; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk

    2015-01-21

    We present new potential energy surfaces for the interaction of NO(C {sup 2}Π) with each of Ne, Kr, and Xe. The potential energy surfaces have been calculated using second order Møller-Plesset perturbation theory, exploiting a procedure to converge the reference Hartree-Fock wavefunction for the excited states: the maximum overlap method. The bound rovibrational states obtained from the surfaces are used to simulate the electronic spectra and their appearance is in good agreement with available (2+1) REMPI spectra. We discuss the assignment and appearance of these spectra, comparing to that of NO-Ar.

  8. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  9. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  10. Strain-induced structure transformations on Si(111) and Ge(111) surfaces: a combined density-functional and scanning tunneling microscopy study.

    PubMed

    Zhachuk, R; Teys, S; Coutinho, J

    2013-06-14

    Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.

  11. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    NASA Astrophysics Data System (ADS)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  12. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    DOE PAGES

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; ...

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less

  13. Defining the Magnitude: Patterns, Regularities and Direct TOA-Surface Flux Relationships in the 15-Year Long CERES Satellite Data — Observations, Model and Theory

    NASA Astrophysics Data System (ADS)

    Zagoni, M.

    2017-12-01

    Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.

  14. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.

    PubMed

    Vorobjev, Y N; Almagro, J C; Hermans, J

    1998-09-01

    A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances.

  15. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  16. Determination of the mean solid-liquid interface energy of pivalic acid

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gliksman, M. E.

    1989-01-01

    A high-confidence solid-liquid interfacial energy is determined for an anisotropic material. A coaxial composite having a cylindrical specimen chamber geometry provides a thermal gradient with an axial heating wire. The surface energy is derived from measurements of grain boundary groove shapes. Applying this method to pivalic acid, a surface energy of 2.84 erg/sq cm was determined with a total systematic and random error less than 10 percent. The value of interfacial energy corresponds to 24 percent of the latent heat of fusion per molecule.

  17. Fission barriers from multidimensionally-constrained covariant density functional theories

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2017-11-01

    In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs) in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  18. Size effects and strain localization in atomic-scale cleavage modeling

    NASA Astrophysics Data System (ADS)

    Elsner, B. A. M.; Müller, S.

    2015-09-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.

  19. Dendritic growth shapes in kinetic Monte Carlo models

    NASA Astrophysics Data System (ADS)

    Krumwiede, Tim R.; Schulze, Tim P.

    2017-02-01

    For the most part, the study of dendritic crystal growth has focused on continuum models featuring surface energies that yield six pointed dendrites. In such models, the growth shape is a function of the surface energy anisotropy, and recent work has shown that considering a broader class of anisotropies yields a correspondingly richer set of growth morphologies. Motivated by this work, we generalize nanoscale models of dendritic growth based on kinetic Monte Carlo simulation. In particular, we examine the effects of extending the truncation radius for atomic interactions in a bond-counting model. This is done by calculating the model’s corresponding surface energy and equilibrium shape, as well as by running KMC simulations to obtain nanodendritic growth shapes. Additionally, we compare the effects of extending the interaction radius in bond-counting models to that of extending the number of terms retained in the cubic harmonic expansion of surface energy anisotropy in the context of continuum models.

  20. Surface tension and modeling of cellular intercalation during zebrafish gastrulation.

    PubMed

    Calmelet, Colette; Sepich, Diane

    2010-04-01

    In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.

Top