NASA Astrophysics Data System (ADS)
Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming
2017-05-01
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
Establishment of cell surface engineering and its development.
Ueda, Mitsuyoshi
2016-07-01
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Atomization characteristics of swirl injector sprays
NASA Technical Reports Server (NTRS)
Feikema, Douglas A.
1996-01-01
Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.
Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques
2017-06-26
SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and
SMART materials: Surfaces, transforms and interfaces. The commensurate engineering dimension
NASA Astrophysics Data System (ADS)
McDonach, Alaster; Gardiner, Peter T.; McEwen, Ron S.; Culshaw, Brian
1994-11-01
The future of molecularly based smart materials hinges on the development of integrated technologies addressing synthesis, assembly, shaping, etc. and some of these are now becoming clear. Even in the bolt on era new technologies will allow issues of commensurate engineering to be addressed.
Turbine Engine Hot Section Technology 1986
NASA Technical Reports Server (NTRS)
1986-01-01
The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.
Emerging Technologies for Assembly of Microscale Hydrogels
Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan
2013-01-01
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717
Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.
2010-01-01
A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the database included, the best available noise reduction was 40 dB cumulative. Projected effects from additional technologies were assessed for an advanced noise reduction configuration including landing gear fairings and advanced pylon and chevron nozzles. Incorporating the three additional technology improvements, an aircraft noise is projected of 42.4 dB cumulative below the Stage 4 level.
Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...
PREFACE: 13th International Conference on Metrology and Properties of Engineering Surfaces
NASA Astrophysics Data System (ADS)
Leach, Richard
2011-08-01
The 13th International Conference on Metrology and Properties of Engineering Surfaces focused on the progress in surface metrology, surface characterisation instrumentation and properties of engineering surfaces. The conference provided an international forum for academics, industrialists and engineers from different disciplines to meet and exchange their ideas, results and latest research. The conference was held at Twickenham Stadium, situated approximately six miles from Heathrow Airport and approximately three miles from the National Physical Laboratory (NPL). This was the thirteenth in the very successful series of conferences, which have firmly established surface topography as a new and exciting interdisciplinary field of scientific and technological studies. Scientific Themes: Surface, Micro and Nano Metrology Measurement and Instrumentation Metrology for MST Devices Freeform Surface Measurement and Characterisation Uncertainty, Traceability and Calibration AFM/SPM Metrology Tribology and Wear Phenomena Functional Applications Stylus and Optical Instruments
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
Applications of yeast surface display for protein engineering
Cherf, Gerald M.; Cochran, Jennifer R.
2015-01-01
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074
1998-09-16
A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Wong; Tian Tian; Luke Moughon
2005-09-30
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less
Advanced instrumentation for next-generation aerospace propulsion control systems
NASA Technical Reports Server (NTRS)
Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.
1993-01-01
New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.
Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup
2016-01-01
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
The Efficacy of Surface Haptics and Force Feedback in Education
ERIC Educational Resources Information Center
Gorlewicz, Jenna Lynn
2013-01-01
This dissertation bridges the fields of haptics, engineering, and education to realize some of the potential benefits haptic devices may have in Science, Technology, Engineering, and Math (STEM) education. Specifically, this dissertation demonstrates the development, implementation, and assessment of two haptic devices in engineering and math…
The Mercury System: Embedding Computation into Disk Drives
2004-08-20
enabling technologies to build extremely fast data search engines . We do this by moving the search closer to the data, and performing it in hardware...engine searches in parallel across a disk or disk surface 2. System Parallelism: Searching is off-loaded to search engines and main processor can
Benefits of Using a Mars Forward Strategy for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne
2009-01-01
This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.
Tribology. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Havas, George D., Comp.
Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2013-09-09
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
NASA Astrophysics Data System (ADS)
Wang, Hua
2018-02-01
In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter J.; Cooley, Kevin M.; Kirkham, Melanie J.
This final report summarizes experimental and analytical work performed under an agreement between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Transportation Technologies, and UT-Battelle LLC. The project was directed by Jerry Gibbs, of the U.S. Department of Energy’s Propulsion Materials Program, with management by D. P. Stinton and J. A. Haynes of ORNL. Participants included Peter J. Blau (Principal Investigator), Kevin M. Cooley (senior technician), Melanie J. Kirkham (materials scientist) of the Materials Science and Technology Division or ORNL, and Dinesh G. Bansal, a post doctoral fellow employed by Oak Ridge Associated Universitiesmore » (ORAU) and who, at the time of this writing, is an engineer with Cummins, Inc. This report covers a three-year effort that involved two stages. In the first stage, and after a review of the literature and discussions with surface treatment experts, a series of candidate alloys and surface treatments for titanium alloy (Ti-6Al-4V) was selected for initial screening. After pre-screening using an ASTM standard test method, the more promising surface treatments were tested in Phase 2 using a variable loading apparatus that was designed and built to simulate the changing load patterns in a typical connecting rod bearing. Information on load profiles from the literature was supplemented with the help of T.C. Chen and Howard Savage of Cummins, Inc. Considering the dynamic and evolving nature of materials technology, this report presents a snapshot of commercial and experimental bearing surface technologies for titanium alloys that were available during the period of this work. Undoubtedly, further improvements in surface engineering methods for titanium will evolve.« less
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
2007 Disruptive Technologies Conference - Disruptive Technologies: Turning Lists into Capabilities
2007-09-05
Privilege management • Health care, benefits, finance , time and attendance, etc. • Military operations – “Combat Identification” • Friend, Foe, Neutral...Logistics Influence Force Support Corporate Mgt & Support N o im pl ie d pr io ri ti za ti on Movement & Maneuver Surface Warfare Joint Fires Undersea...Starter Generator MEMS Actuators / Valves Atomizer Nozzles Reclaimed Electrical Heat Engine UC Berkely Wankel Engine Exhaust Thermo Electric/Others
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, A.K.; Rogers, A.Z.; McCray, J.A.
The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Development of exosome surface display technology in living human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu
Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated themore » successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.« less
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Surface and interface modification science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.-H.
1999-07-19
Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.
[Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].
Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi
2016-04-01
The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.
Rubber hose surface defect detection system based on machine vision
NASA Astrophysics Data System (ADS)
Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng
2018-01-01
As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.
Microtextured Surfaces for Turbine Blade Impingement Cooling
NASA Technical Reports Server (NTRS)
Fryer, Jack
2014-01-01
Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.
Engineering with uncertainty: monitoring air bag performance.
Wetmore, Jameson M
2008-06-01
Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.
Applications of Electrical Impedance Tomography (EIT): A Short Review
NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.
Assessment of advanced technologies for high performance single-engine business airplanes
NASA Technical Reports Server (NTRS)
Kohlman, D. L.; Holmes, B. J.
1982-01-01
The prospects for significantly increasing the fuel efficiency and mission capability of single engine business aircraft through the incorporation of advanced propulsion, aerodynamics and materials technologies are explored. It is found that turbine engines cannot match the fuel economy of the heavier rotary, diesel and advanced spark reciprocating engines. The rotary engine yields the lightest and smallest aircraft for a given mission requirement, and also offers greater simplicity and a multifuel capability. Great promise is also seen in the use of composite material primary structures in conjunction with laminar flow wing surfaces, a pusher propeller and conventional wing-tail configuration. This study was conducted with the General Aviation Synthesis Program, which can furnish the most accurate mission performance calculations yet obtained.
Surface thermohardening by the fast-moving electric arch
NASA Astrophysics Data System (ADS)
Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.
2017-01-01
This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
RD860 and RD860L Engines with Deep Thrust Throttling and a High Technology Readiness Level (TRL)
NASA Astrophysics Data System (ADS)
Prokopchuk, O. O.; Shul'ga, V. A.; Dibrivnyi, O. V.; Kukhta, A. S.
2018-04-01
To solve the problems of delivering payloads to Mars surface and returning them to the orbit, liquid rocket engines, operating on storable propellants with deep throttling possibility, are needed, besides having high energy-mass characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces
NASA Astrophysics Data System (ADS)
Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.
2014-09-01
We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.
Advances in Thin Film Sensor Technologies for Engine Applications
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.
1997-01-01
Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.
Reimagining the Role of School Libraries in STEM Education: Creating Hybrid Spaces for Exploration
ERIC Educational Resources Information Center
Subramaniam, Mega M.; Ahn, June; Fleischmann, Kenneth R.; Druin, Allison
2012-01-01
In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education,…
Cell surface engineering of microorganisms towards adsorption of heavy metals.
Li, Peng-Song; Tao, Hu-Chun
2015-06-01
Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross
2011-01-01
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Astrophysics Data System (ADS)
Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.
The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...
Science Support Room Operations During Desert RATS 2009
NASA Technical Reports Server (NTRS)
Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.;
2010-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)
NASA Astrophysics Data System (ADS)
Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren
2007-09-01
ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.
Advanced rotary engine components utilizing fiber reinforced Mg castings
NASA Technical Reports Server (NTRS)
Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.
1986-01-01
Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.
Investigation of performance deterioration of the CF6/JT9D, high-bypass ratio turbofan engines
NASA Technical Reports Server (NTRS)
Ziemianski, J. A.; Mehalic, C. M.
1980-01-01
The aircraft energy efficiency program within NASA is developing technology required to improve the fuel efficiency of commercial subsonic transport aricraft. One segment of this program includes engine diagnostics which is directed toward determining the sources and causes of performance deterioration in the Pratt and Whitney Aircraft JT9D and General Electric CF6 high-bypass ratio turbofan engines and developing technology for minimizing the performance losses. Results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analysis of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.
2011-01-01
S. Chhatre a , Joseph M. Mabry b , Robert E. Cohen a and Gareth H. McKinley c a Department of Chemical Engineering , Massachusetts Institute of...Department of Mechanical Engineering , Massachusetts Institute of Technology, Cambridge 02139 Corresponding Authors: Tel.: (617) 253-3777 (R.E.C.); (617...the morphological properties, is of interest in a number of applications including sensors, filtration, drug release, tissue engineering scaffolds
Research highlights: Microtechnologies for engineering the cellular environment.
Tseng, Peter; Kunze, Anja; Kittur, Harsha; Di Carlo, Dino
2014-04-07
In this issue we highlight recent microtechnology-enabled approaches to control the physical and biomolecular environment around cells: (1) developing micropatterned surfaces to quantify cell affinity choices between two adhesive patterns, (2) controlling topographical cues to align cells and improve reprogramming to a pluripotent state, and (3) controlling gradients of biomolecules to maintain pluripotency in embryonic stem cells. Quantitative readouts of cell-surface affinity in environments with several cues should open up avenues in tissue engineering where self-assembly of complex multi-cellular structures is possible by precisely engineering relative adhesive cues in three dimensional constructs. Methods of simple and local epigenetic modification of chromatin structure with microtopography and biomolecular gradients should also be of use in regenerative medicine, as well as in high-throughput quantitative analysis of external signals that impact and can be used to control cells. Overall, approaches to engineer the cellular environment will continue to be an area of further growth in the microfluidic and lab on a chip community, as the scale of the technologies seamlessly matches that of biological systems. However, because of regulations and other complexities with tissue engineered therapies, these micro-engineering approaches will likely first impact organ-on-a-chip technologies that are poised to improve drug discovery pipelines.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- A presentation by Franklin W. Olin College of Engineering is on display at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts
Field Evaluation of Six Protective Coatings Applied to T56 Turbines after 1500 Hours Engine Use
1991-06-01
Six Coating Systems On First-stage Gas Turbine Blades In The Engines of a Long-Range Maritime Patrol Aircraft ", Surface and Coating Technology, 36...based coatings. They were applied to the first-stage turbine blades in the engines of two long range maritime patrol aircraft operated by the Royal...incorrect. These differently coated turbine - blades have in fact seen 1500 hours service in a T56 engine . The title and further reference in the text should
Cell surface engineering with polyelectrolyte multilayer thin films.
Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L
2011-05-11
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
NASA Astrophysics Data System (ADS)
Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.
2017-09-01
Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.
Feasibility Study of Commercial Markets for New Sample Acquisition Devices
NASA Technical Reports Server (NTRS)
Brady, Collin; Coyne, Jim; Bilen, Sven G.; Kisenwether, Liz; Miller, Garry; Mueller, Robert P.; Zacny, Kris
2010-01-01
The NASA Exploration Systems Mission Directorate (ESMD) and Penn State technology commercialization project was designed to assist in the maturation of a NASA SBIR Phase III technology. The project was funded by NASA's ESMD Education group with oversight from the Surface Systems Office at NASA Kennedy Space Center in the Engineering Directorate. Two Penn State engineering student interns managed the project with support from Honeybee Robotics and NASA Kennedy Space Center. The objective was to find an opportunity to integrate SBIR-developed Regolith Extractor and Sampling Technology as the payload for the future Lunar Lander or Rover missions. The team was able to identify two potential Google Lunar X Prize organizations with considerable interest in utilizing regolith acquisition and transfer technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, R., E-mail: rifky-mec@yahoo.com; Tauviqirrahman, M., E-mail: rifky-mec@yahoo.com; Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Enschede
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boronmore » nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.« less
NASA Astrophysics Data System (ADS)
Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.
2009-09-01
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.
Surface engineering approaches to micropattern surfaces for cell-based assays.
Falconnet, Didier; Csucs, Gabor; Grandin, H Michelle; Textor, Marcus
2006-06-01
The ability to produce patterns of single or multiple cells through precise surface engineering of cell culture substrates has promoted the development of cellular bioassays that provide entirely new insights into the factors that control cell adhesion to material surfaces, cell proliferation, differentiation and molecular signaling pathways. The ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. Furthermore, cell patterning is an important tool for organizing cells on transducers for cell-based sensing and cell-based drug discovery concepts. From a material engineering standpoint, patterning approaches have greatly profited by combining microfabrication technologies, such as photolithography, with biochemical functionalization to present to the cells biological cues in spatially controlled regions where the background is rendered non-adhesive ("non-fouling") by suitable chemical modification. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature. In particular, the importance of non-fouling surface chemistries, the combination of hard and soft lithography with molecular assembly techniques as well as a number of less well known, but useful patterning approaches, including direct cell writing, are discussed.
Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.
Armentano, Ilaria; Fortunati, Elena; Mattioli, Samantha; Rescignano, Nicolatta; Kenny, José M
2013-04-01
The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.
Advanced Engineering Strategies for Periodontal Complex Regeneration.
Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Seol, Yang-Jo
2016-01-18
The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.
Turbine Engine Hot Section Technology (HOST)
NASA Technical Reports Server (NTRS)
1982-01-01
Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.
1990-01-01
Morten Dohlen Center for Industrial Rcsearch(SI), Box 124 Blindern, 0314 Oslo 3, Norway. Abstract. The combination of refinement and decomposition...of Technology Faculty of Industrial Design Engineering Section Mechanical Engineering Design Jaffalaan 9 NL-2628 BX Delft The Netherlands louwe...OF A GIVEN SET OF POINTS Leonardo Traversoni Dominguez Division de Ciencias Basicas e Ingenieria Universidad Autonoma Metropolitana (Iztapalapa) ap
Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education
ERIC Educational Resources Information Center
Crippen, Kent J.; Archambault, Leanna
2012-01-01
Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…
A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept
NASA Technical Reports Server (NTRS)
Riddle, Dennis W.; Eppel, Joseph C.
1987-01-01
The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.
Zhang, Shichao; Xing, Malcolm; Li, Bingyun
2018-06-01
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.
Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases.more » Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.« less
Future requirements in surface modeling and grid generation
NASA Technical Reports Server (NTRS)
Cosner, Raymond R.
1995-01-01
The past ten years have seen steady progress in surface modeling procedures, and wholesale changes in grid generation technology. Today, it seems fair to state that a satisfactory grid can be developed to model nearly any configuration of interest. The issues at present focus on operational concerns such as cost and quality. Continuing evolution of the engineering process is placing new demands on the technologies of surface modeling and grid generation. In the evolution toward a multidisciplinary analysis-bascd design environment, methods developed for Computational Fluid Dynamics are finding acceptance in many additional applications. These two trends, the normal evolution of the process and a watershed shift toward concurrent and multidisciplinary analysis, will be considered in assessing current capabilities and needed technological improvements.
Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions
NASA Technical Reports Server (NTRS)
Choo, Yung K. (Compiler)
1995-01-01
The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- During this year's NASA MarsPort Engineering Design Student Competition 2002 conference, the University of Colorado at Boulder presents this display. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Prototype thin-film thermocouple/heat-flux sensor for a ceramic-insulated diesel engine
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Barrows, Richard F.
1988-01-01
A platinum versus platinum-13 percent rhodium thin-film thermocouple/heat-flux sensor was devised and tested in the harsh, high-temperature environment of a ceramic-insulated, low-heat-rejection diesel engine. The sensor probe assembly was developed to provide experimental validation of heat transfer and thermal analysis methodologies applicable to the insulated diesel engine concept. The thin-film thermocouple configuration was chosen to approximate an uninterrupted chamber surface and provide a 1-D heat-flux path through the probe body. The engine test was conducted by Purdue University for Integral Technologies, Inc., under a DOE-funded contract managed by NASA Lewis Research Center. The thin-film sensor performed reliably during 6 to 10 hr of repeated engine runs at indicated mean surface temperatures up to 950 K. However, the sensor suffered partial loss of adhesion in the thin-film thermocouple junction area following maximum cyclic temperature excursions to greater than 1150 K.
DOT National Transportation Integrated Search
2013-03-01
This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of : special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The : ultimate goal is to imp...
NASA Astrophysics Data System (ADS)
Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.
2017-11-01
Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.
[Computer aided design for fixed partial denture framework based on reverse engineering technology].
Sun, Yu-chun; Lü, Pei-jun; Wang, Yong
2006-03-01
To explore a computer aided design (CAD) route for the framework of domestic fixed partial denture (FPD) and confirm the suitable method of 3-D CAD. The working area of a dentition model was scanned with a 3-D mechanical scanner. Using the reverse engineering (RE) software, margin and border curves were extracted and several reference curves were created to ensure the dimension and location of pontic framework that was taken from the standard database. The shoulder parts of the retainers were created after axial surfaces constructed. The connecting areas, axial line and curving surface of the framework connector were finally created. The framework of a three-unit FPD was designed with RE technology, which showed smooth surfaces and continuous contours. The design route is practical. The result of this study is significant in theory and practice, which will provide a reference for establishing the computer aided design/computer aided manufacture (CAD/CAM) system of domestic FPD.
Innovative Airbreathing Propulsion Concepts for Access to Space
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.
2001-01-01
This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.
PREFACE: International Conference on Fundamentals and Applications of HIPIMS
NASA Astrophysics Data System (ADS)
Ehiasarian, Arutiun; Bandorf, Ralf
2012-09-01
Thin film technology and surface engineering are nowadays key components for numerous innovative products like efficient windows, flat screens, sensors or hard coatings used in tool coating and automotive applications, as well as products for everyday life. In line with the demands of surface technology, coating technology is also evolving and improving. The latest major technology jump was the introduction of pulse technology in physical vapor deposition. High power impulse magnetron sputtering is the most recent development of pulse sputtering. After approximately a decade of intense academic investigation and development we observe today a transfer of this new technology towards industrial processes. As well as several international activities the international conference on fundamentals and applications of HIPIMS continues the success story of the HIPIMS days, initiated in 2004 at Sheffield Hallam University, UK. Becoming the only international conference especially dedicated to HIPIMS the HIPIMS conference is a venue for industrial and academic exchange on the latest developments in this fast evolving new technology. As a joint undertaking of Sheffield Hallam University SHU, Network of Competence for Industrial Plasma Surface Technology INPLAS and Fraunhofer Institute for Surface Engineering and Thin Films IST the HIPIMS conference was launched in 2010 in Sheffield, UK. With 120 delegates the impact of the new conference was underlined. The growing importance of HIPIMS technology was connected with a growth by nearly 35% to 160 participants in 2011 at the second HIPIMS conference in Braunschweig, DE. The participants were made up of equal numbers from research and development (university and research institutes) and industry. Being a global conference representatives from 25 different countries from all continents attended. The HIPIMS conference is also in joint collaboration with the COST Action MP0804 Highly Ionized Pulse Plasma Processes (www.hipp-cost.eu). COST (European Cooperation in Science and Technology) is one of the longest-running European frameworks supporting cooperation among scientists and researchers across Europe (www.cost.eu). The COST Action MP0804 HIPP processes focuses on the fundamentals and the industrial implementation of highly ionized pulse plasmas, where HIPIMS is the most prominent and most mature technology, today. Over 50 high level contributions, divided in 37 oral and 14 poster presentations were highly appreciated by the professional audience. The message from 2011 was that HIPIMS technology has now reached industry. In the opening session of the conference representatives from different companies reported on the latest developments in industrialization. Using HIPIMS technology, the lifetime of mills using a state of the art coating can be extended by 50%. Comparable deposition rates for coating cutting inserts on the different faces are reported. The ice-free window for automotive application is one solution just becoming available by HIPIMS technology. The talks from international experts covered a range from fundamental physics, experimental investigations, theoretically modeling to several applications and made the international conference on fundamentals and applications a success story to be continued in the following years. Arutiun Ehiasarian and Ralf Bandorf (Conference Chairmen of HIPIMS 2010 and 2011, respectively) Organising Committee (2010 and 2011) - Affiliations Professor Dr Papken Hovsepian (Sheffield Hallam University, Nanotechnology Center for PVD Research, UK) Professor Dr Günter Bräuer (Fraunhofer Institute for Surface Engineering and Thin Films IST/ Network of Competence INPLAS, Braunschweig, DE) Professor Dr Arutiun P. Ehiasarian (Sheffield Hallam University, Materials Research Institute, UK) Dr Ralf Bandorf (Fraunhofer Institute for Surface Engineering and Thin Films IST, Braunschweig, DE) Main Sponsor Society of Vacuum Coaters SVC Albuquerque, New Mexico, USA Sponsors Ionbond Netherlands BV Venlo, NL Hauzer Techno Coating BV Venlo, NL Hüttinger Elektronik GmbH + Co. KG Freiburg, DE Conference Photos Conference photograph Attendees HIPIMS Conference 2010, Sheffield, UK Conference photograph Attendees HIPIMS Conference 2011, Braunschweig, Germany
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-01-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.
Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L
2013-10-22
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-10-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
The algorithm of central axis in surface reconstruction
NASA Astrophysics Data System (ADS)
Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang
2017-09-01
Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.
Application of advanced technologies to derivatives of current small transport aircraft
NASA Technical Reports Server (NTRS)
Renze, P. P.; Terry, J. E.
1981-01-01
Mission requirements of the derivative design were the same as the baseline to readily identify the advanced technology benefits achieved. Advanced technologies investigated were in the areas of propulsion, structures and aerodynamics and a direct operating cost benefit analysis conducted to identify the most promising. Engine improvements appear most promising and combined with propeller, airfoil, surface coating and composite advanced technologies give a 21-25 percent DOC savings. A 17 percent higher acquisition cost is offset by a 34 percent savings in fuel used.
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane
2015-08-01
The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.
Bacterial Cell Surface Adsorption of Rare Earth Elements
NASA Astrophysics Data System (ADS)
Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.
2015-12-01
Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.
Post Secondary Project-Based Learning in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Ralph, Rachel A.
2015-01-01
Project-based learning (PjBL--to distinguish from problem-based learning--PBL) has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions. The purpose of this paper is to examine the research that has studied a variety of science, technology,…
2015-01-06
CAPE CANAVERAL, Fla. -- During a visit to NASA's Kennedy Space Center in Florida, NASA Chief Technologist David Miller, second from left, tours laboratories inside the Swamp Works facility. Miller is briefed on technology developments in the lab by Jack Fox, chief of the Surface Systems Office in the Engineering and Technology Directorate. At right is Karen Thompson, Kennedy's chief technologist. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Selleck, Ben; Espy, John
This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…
Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.
Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R
2017-05-01
Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.
2015-06-01
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.
Review on Enhanced Heat Transfer Techniques using Modern Technologies for 4S Air Cooled Engines
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Bupesh Raja, V. K.
2017-05-01
Engine performance is a biggest challenge and a vital area of concern when it comes to automobiles. Researchers across the globe have been working decades together meticulously improvising the performance of engine in terms of efficiency. The durability of the engine components mainly depends on the thermal stress it undergoes over the period of operation. Air cooling of engine is the simplest and most desirous technique that has been adopted for ages. In this regard fins or extended surfaces are employed for effective cooling of the cylinder while in operation. The conductive and convective heat transfer rate from the cylinder to the fins and in turn from the fins to surrounding ambience determines the effective performance of the engine. In this paper an attempt is made to review and summarize the various researches that were conducted on the Fins in terms of profile geometry, number of fins, size, thickness factor, material used etc., and to bring about a long term solution with the modern technologies like nano coatings and nano materials.
ENGINEERING BULLETIN: LANDFILL COVERS
Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...
Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application
NASA Astrophysics Data System (ADS)
Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan
2018-03-01
A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.
NASA Technical Reports Server (NTRS)
1975-01-01
A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.
Propulsion System Modeling and Simulation
NASA Technical Reports Server (NTRS)
Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile
2002-01-01
The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.
A Route Towards Sustainability Through Engineered Polymeric Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeja-Jayan, B; Kovacik, P; Yang, R
2014-05-30
Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniquesmore » engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.« less
A general strategy for the ultrafast surface modification of metals.
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-12-07
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.
Carbon-Based Wear Coatings: Properties and Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2003-01-01
The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
NASA Astrophysics Data System (ADS)
Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.
2017-01-01
Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.
Hydrogen-bonded LbL Shells for Living Cell Surface Engineering
2011-03-21
unicellular organism duplicates, i.e., one cell produces two in a given period of time (see divided cells as indicated by arrows in Fig. 10c). During...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgia Institute of Technology,School of Materials Science and Engineering,Atlanta,GA,30332 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT
Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao
2018-04-19
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Activities of the Center for Space Construction
NASA Technical Reports Server (NTRS)
1993-01-01
The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alarez, Erika; Thornton, Randall J.; Forbes, John C.
2008-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating
NASA Technical Reports Server (NTRS)
1997-01-01
This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.
Kuwayama, Toshihiro; Ruehl, Chris R; Kleeman, Michael J
2013-12-17
Toxicology studies indicate that inhalation of ultrafine particles (Dp < 0.1 μm) causes adverse health effects, presumably due to their large surface area-to-volume ratio that can drive heterogeneous reactions. Epidemiological associations between ultrafine particles and health effects, however, have been difficult to identify due to the lack of appropriate long-term monitoring and exposure data. The majority of the existing ultrafine particle epidemiology studies are based on exposure to particle number, although an independent analysis suggests that ultrafine particle mass (PM0.1) correlates better with particle surface area. More information is needed to characterize PM0.1 exposure to fully evaluate the health effects of ultrafine particles using epidemiology. The present study summarizes 1 year of daily PM0.1 chemistry and source apportionment at Sacramento, CA, USA. Positive matrix factorization (PMF) was used to resolve PM0.1 source contributions from old-technology diesel engines, residential wood burning, rail, regional traffic, and brake wear/road dust. Diesel PM0.1 and total PM0.1 concentrations were reduced by 97 and 26%, respectively, as a result of the adoption of cleaner diesel technology. The strong linear correlation between PM0.1 and particle surface area in central California suggests that the adoption of clean diesel engines reduced particle surface area by similar amounts. PM0.1 sulfate reduction occurred as a result of reduced primary particle surface area available for sulfate condensation. The current study demonstrates the capability of measuring PM0.1 source contributions over a 12 month period and identifies the extended benefits of emissions reduction efforts for diesel engines on ambient concentrations of primary and secondary PM0.1.
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Chhabria, Deepika
This thesis has two major topics: (1) Electrostatic Separation of Superconducting Particles from a Mixture of Non-Superconducting Particles. (2) Improvement in fuel atomization by Electrorheology. (1) Based on the basic science research, the interactions between electric field and superconductors, we have developed a new technology, which can separate superconducting granular particles from their mixture with non-superconducting particles. The electric-field induced formation of superconducting balls is important aspect of the interaction between superconducting particles and electric field. When the applied electric field exceeds a critical value, the induced positive surface energy on the superconducting particles forces them to aggregate into balls or cling to the electrodes. In fabrication of superconducting materials, especially HTSC materials, it is common to come across materials with multiple phases: some grains are in superconducting state while the others are not. Our technology is proven to be very useful in separating superconducting grains from the rest non-superconducting materials. To separate superconducting particles from normal conducting particles, we apply a suitable strong electric field. The superconducting particles cling to the electrodes, while normal conducting particles bounce between the electrodes. The superconducting particles could then be collected from the electrodes. To separate superconducting particles from insulating ones, we apply a moderate electric field to force insulating particles to the electrodes to form short chains while the superconducting particles are collected from the middle of capacitor. The importance of this technology is evidenced by the unsuccessful efforts to utilize the Meissner effect to separate superconducting particles from nonsuperconducting ones. Because the Meissner effect is proportional to the particle volume, it has been found that the Meissner effect is not useful when the superconducting particles are smaller than 45mum. One always come across multiphase superconducting materials where most superconducting grains are much smaller than 45mum. On the other hand, since our technology is based on the surface effect, it gets stronger when the particles become smaller. Our technology is thus perfect for small superconducting particles and for fabrication of HTSC materials. The area of superconductivity is expected to be very important for 21 st Century energy industry. The key for this development is the HTSC materials. We, therefore, expect that our technology will have strong impact in the area. (2) Improving engine efficiency and reducing pollutant emissions are extremely important. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. As combustion starts at the interface between fuel and air and most harmful emissions are coming from incomplete burning, reducing the size of fuel droplets would increase the total surface area to start burning, leading to a cleaner and more efficient engine. This concept has been widely accepted as the discussions about future engine for efficient and clean combustion are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramley, A.N.
1985-01-01
This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less
Active Surfaces and Interfaces of Soft Materials
NASA Astrophysics Data System (ADS)
Wang, Qiming
A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.
A general strategy for the ultrafast surface modification of metals
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-01-01
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909
Molecular biomimetics: nanotechnology through biology.
Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K-Y; Schulten, Klaus; Baneyx, François
2003-09-01
Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.
Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon
NASA Technical Reports Server (NTRS)
Johnson, Stewart W.; Wetzel, John P.
1989-01-01
A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.
Trends in high power laser applications in civil engineering
NASA Astrophysics Data System (ADS)
Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori
2005-03-01
This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.
Recent advances of nanotechnology in medicine and engineering
NASA Astrophysics Data System (ADS)
Nobile, Lucio; Nobile, Stefano
2016-05-01
The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.
Recent advances of nanotechnology in medicine and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobile, Lucio; Nobile, Stefano
The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.
Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2004-01-01
Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).
R&D Plan for Army Applications of AI/Robotics.
1982-05-01
Research, Development, and Acquisition (Army) OCE--Office, Chief of Engineers HTTG--High Technology Test Group DNA--Defense Nuclear Agency Contractors...comparison, include both trailer and van-mounted tools and * testing equipment that are generally of sufficient weight and bulk to be mounted and used on a...interactive diagnosis and corrective maintenance information for surface-to-surface missile launching systems beyond the capability of automet’. test equipment
The Tailoring of Traditional Systems Engineering for the Morpheus Project
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Hart, Jeremy J.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
Engineering hurdles in contact and intraocular lens lathe design: the view ahead
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Keller, John R.; Ball, Gary A.
1994-05-01
Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.
Mechanical Engineering Department engineering research: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, R.M.; Essary, K.L.; Genin, M.S.
1986-12-01
This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Gorokhovsky
2008-03-31
This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less
[Application of electrostatic spinning technology in nano-structured polymer scaffold].
Chen, Denglong; Li, Min; Fang, Qian
2007-04-01
To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.
Outlines on nanotechnologies applied to bladder tissue engineering.
Alberti, C
2012-01-01
Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.
Computing in Hydraulic Engineering Education
NASA Astrophysics Data System (ADS)
Duan, J. G.
2011-12-01
Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.
Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo
2012-10-01
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
1976-09-01
technology has made possible the deployment of very sophisticated and highly capable weapon systems. Taking advantage of this technology has carried...3) Ancillary Equipment 208 Types Numerous Notes : 1. Number of ships with this system 2. Includes Tartar used only for surface capability 3. These...maintains the Configuration Item Identification File (CIIF) . The CIIF provides storage and retrieval capability for technical and logistics data specified on
The Ion Propulsion System on NASA's Space Technology 4/Champollion Comet Rendezvous Mission
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Weiss, Jeffery M.
1999-01-01
The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface. Ion propulsion is an enabling technology for this mission. The ion propulsion system on ST4 consists of three ion engines each essentially identical to the single engine that flew on the DS1 spacecraft. The ST4 propulsion system will operate at a maximum input power of 7.5 kW (3.4 times greater than that demonstrated on DS1), will produce a maximum thrust of 276 mN, and will provide a total (Delta)V of 11.4 km/s. To accomplish this the propulsion system will carry 385 kg of xenon. All three engines will be operated simultaneously for the first 168 days of the mission. The nominal mission requires that each engine be capable of processing 118 kg. If one engine fails after 168 days, the remaining two engines can perform the mission, but must be capable of processing 160 kg of xenon, or twice the original thruster design requirement. Detailed analyses of the thruster wear-out failure modes coupled with experience from long-duration engine tests indicate that the thrusters have a high probability of meeting the 160-kg throughput requirement.
Advances in polymeric systems for tissue engineering and biomedical applications.
Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram
2012-03-01
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-05-01
utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can
Lunar surface vehicle model competition
NASA Technical Reports Server (NTRS)
1990-01-01
During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.
Advanced Human Factors Engineering Tool Technologies.
1988-03-01
charger/ AC adapter immersible probe air temperature probe surface temperature probe . * Sling psychrometer , MSA or Taylor 1328A * Aspirating... psychrometer , Model PP-100 or CP-147, Psychro-Dyne * Wet-bulb-heat-stress monitor, Model B&K 1219, Briel & Kjaer Transducer, Model B&K MM 0030 (3 each), Brijel
Turbine Engine Hot Section Technology, 1987
NASA Technical Reports Server (NTRS)
1987-01-01
Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.
[Design and fabrication of the custom-made titanium condyle by selective laser melting technology].
Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang
2014-10-01
To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.
Design of a 500 lbf liquid oxygen and liquid methane rocket engine for suborbital flight
NASA Astrophysics Data System (ADS)
Trillo, Jesus Eduardo
Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored, making the overall mission more cost effective by enabling larger usable mass. The major disadvantage methane has over hydrogen is it provides a lower specific impulse, or lower rocket performance. The UTEP Center for Space Exploration and Technology Research (cSETR) in partnership with the National Aeronautics and Space Administration (NASA) has been the leading research center for the advancement of Liquid Oxygen (LOX) and Liquid Methane (LCH4) propulsion technologies. Through this partnership, the CROME engine, a throattable 500 lbf LOX/LCH4 rocket engine, was designed and developed. The engine will serve as the main propulsion system for Daedalus, a suborbital demonstration vehicle being developed by the cSETR. The purpose of Daedalus mission and the engine is to fire in space under microgravity conditions to demonstrate its restartability. This thesis details the design process, decisions, and characteristics of the engine to serve as a complete design guide.
High-efficiency machining methods for aviation materials
NASA Astrophysics Data System (ADS)
Kononov, V. K.
1991-07-01
The papers contained in this volume present results of theoretical and experimental studies aimed at increasing the efficiency of cutting tools during the machining of high-temperature materials and titanium alloys. Specific topics discussed include a study of the performance of disk cutters during the machining of flexible parts of a high-temperature alloy, VZhL14N; a study of the wear resistance of cutters of hard alloys of various types; effect of a deformed electric field on the precision of the electrochemical machining of gas turbine engine components; and efficient machining of parts of composite materials. The discussion also covers the effect of the technological process structure on the residual stress distribution in the blades of gas turbine engines; modeling of the multiparameter assembly of engineering products for a specified priority of geometrical output parameters; and a study of the quality of the surface and surface layer of specimens machined by a high-temperature pulsed plasma.
Asteroid, Lunar and Planetary Regolith Management A Layered Engineering Defense
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2014-01-01
During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.
NASA Astrophysics Data System (ADS)
Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger
2017-01-01
Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2005-01-01
Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1977-01-01
Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.
60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications
NASA Astrophysics Data System (ADS)
Ingole, Sudeep
2013-06-01
60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
The challenges of sequencing by synthesis.
Fuller, Carl W; Middendorf, Lyle R; Benner, Steven A; Church, George M; Harris, Timothy; Huang, Xiaohua; Jovanovich, Stevan B; Nelson, John R; Schloss, Jeffery A; Schwartz, David C; Vezenov, Dmitri V
2009-11-01
DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.
A statistical nanomechanism of biomolecular patterning actuated by surface potential
NASA Astrophysics Data System (ADS)
Lin, Chih-Ting; Lin, Chih-Hao
2011-02-01
Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.
Fully printable, strain-engineered electronic wrap for customizable soft electronics.
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-24
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
NASA Astrophysics Data System (ADS)
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-01-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055
Propulsion/airframe integration issues for waverider aircraft
NASA Technical Reports Server (NTRS)
Blankson, Isaiah M.; Hagseth, Paul
1993-01-01
While many propulsion concepts and technologies developed for nonwaverider-type hypersonic vehicles may apply to waveriders, some aspects of these configurations require unique technological approaches. An evaluation is made of such distinctive opportunities in the cases of engine cycle selection, inlets, nozzle designs and integration, longitudinal stability, and thermal management. Also discussed are waverider requirements for control surface effectiveness, inlet boundary layer ingestion effects, and structural/configurational optimization, giving attention to trades in volumetric/structural efficiency and vehicle L/D.
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2008-06-01
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2002-01-01
The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.
Development of circulation control technology for powered-lift STOL aircraft
NASA Technical Reports Server (NTRS)
Englar, Robert J.
1987-01-01
The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.
Swamp Works- Multiple Projects
NASA Technical Reports Server (NTRS)
Carelli, Jonathan M.; Schuler, Jason M.; Chandler, Meredith L.
2013-01-01
My Surface Systems internship over the summer 2013 session covered a broad range of projects that utilized multiple fields of engineering and technology. This internship included a project to create a command center for a 120 ton regolith bin, for the design and assembly of a blast shield to add further protection for the Surface Systems engineers, for the design and assembly of a portable four monitor hyper wall strip that could extend as large as needed, research and programming a nano drill that could be utilized on a next generation robot or rover, and social media tasks including the making of videos, posting to social networking websites and creation of a new outreach program to help spread the word about the Swamp Works laboratory.
Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek
2013-01-01
Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416
Elloumi-Hannachi, I; Yamato, M; Okano, T
2010-01-01
Cell sheet technology (CST) is based on the use of thermoresponsive polymers, poly(N-isopropylacrylamide) (PIPAAm). The surface of PIPAAms is formulated in such a way as to make its typical thickness <100 nm. In this review, we first focus on how the methods of PIPAAm-grafted surface preparations and functionalization are important to be able to harvest a functional cell sheet, to be further transplanted. Then, we present aspects of tissue mimics and three-dimensional reconstruction of a tissue in vitro. Finally, we give an overview of clinical applications and clinically relevant animal experimentations of the technology, such as cardiomyopathy, visual acuity, periodonty, oesophageal ulcerations and type 1 diabetes.
NASA Astrophysics Data System (ADS)
Babenko, D. D.; Dmitriev, A. S.; Makarov, P. G.; Mikhailova, I. A.
2017-11-01
In recent years, a great scientific and practical interest is caused by functional energy surfaces, modified for certain technological problems. The urgency of the work is to develop promising technologies for thermal and nuclear power engineering, methods for converting solar energy, cooling low-current and high-current electronics devices, energy storage and transport systems on the basis of studying and developing new ways of creating and modifying the functional surfaces of heat exchange and other devices. Modified functional surfaces must have a number of new mechanical and thermophysical properties, including mechanical strength, a new surface morphology for controlling the processes of wetting and spreading working fluids on them, and have high efficiency from the viewpoint of thermohydrodynamic processes of flow and heat and mass transfer of working fluids to them. Among the various ways of modifying surfaces, recently, the method of surface exposure to femtosecond laser pulses (FLI) has become widespread. The technology of femtosecond laser surface treatment (FLPO) of solid materials has shown high efficiency, reliability, high productivity and a huge variety of modification methods. The paper presents new results on the study of thermophysical phenomena - the wetting and spreading of drops of various liquids, the study of the hysteresis of the contact angle, the study of evaporation and boiling processes on functional energy surfaces modified by femtosecond laser pulses. It is shown that in the majority of cases the presence of regular or stochastic nanostructures on the surface leads to a very strong change in the basic properties of the surface, which makes it possible to use such a technology to quickly and efficiently modify and obtain functional energy surfaces for certain predetermined purposes.
NASA Astrophysics Data System (ADS)
Eggers, Jens; Villermaux, Emmanuel
2008-03-01
Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the universe. Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects.
Innovative smart micro sensors for Army weaponry applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene
2008-03-01
Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.
Turbine Engine Hot Section Technology, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.
Automated Infrared Inspection Of Jet Engine Turbine Blades
NASA Astrophysics Data System (ADS)
Bantel, T.; Bowman, D.; Halase, J.; Kenue, S.; Krisher, R.; Sippel, T.
1986-03-01
The detection of blocked surface cooling holes in hollow jet engine turbine blades and vanes during either manufacture or overhaul can be crucial to the integrity and longevity of the parts when in service. A fully automated infrared inspection system is being established under a tri-service's Manufacturing Technology (ManTech) contract administered by the Air Force to inspect these surface cooling holes for blockages. The method consists of viewing the surface holes of the blade with a scanning infrared radiometer when heated air is flushed through the blade. As the airfoil heats up, the resultant infrared images are written directly into computer memory where image analysis is performed. The computer then makes a determination of whether or not the holes are open from the inner plenum to the exterior surface and ultimately makes an accept/reject decision based on previously programmed criteria. A semiautomatic version has already been implemented and is more cost effective and more reliable than the previous manual inspection methods.
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L
2011-09-01
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
Cell–scaffold interaction within engineered tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted largemore » amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.« less
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Stirling Space Engine Program. Volume 1; Final Report
NASA Technical Reports Server (NTRS)
Dhar, Manmohan
1999-01-01
The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.
2011-01-01
NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.
Persistence Factors Associated with First-Year Engineering Technology Learners
ERIC Educational Resources Information Center
Christe, Barbara
2015-01-01
Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…
ERIC Educational Resources Information Center
Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.
2017-01-01
Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of "Applied Field Sensitive Process Technologies" requiring an external field to…
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.
2007-01-01
A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NEIL K. MCDOUGALD
Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.
2011-01-01
In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported
Engineering yeast consortia for surface-display of complex cellulosome structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wilfred
As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach wasmore » to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the yeast surface and a significant improvement in cellulosic ethanol production. Although this adaptive strategy is ideal for assembling more complex cellulosome for large-scale production of cellulosic ethanol, a substantially larger number of enzymes (up to 10 to 12) is needed to better mimic the natural cellulosome structures for practical usage of the technology.« less
Methods for heat transfer and temperature field analysis of the insulated diesel
NASA Technical Reports Server (NTRS)
Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.
1984-01-01
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.
NASA Technical Reports Server (NTRS)
Margiotta, Danielle V.; McKittrick, Kristin R.; Straka, Sharon A.; Jones, Craig B.
2012-01-01
The passive Lotus dust mitigation coating currently being developed at NASA's Goddard Space Flight Center (GSFC), was selected by the Habitation Demonstration Unit Deep Space Habitat (HDU-DSH) for participation in the 2011 Desert Research and Technology Studies (D-RaTS). Based on the unique surface architecture of the Lotus leaf, the nano-engineered Lotus coating seeks to replicate these structures on space flight and habitation surfaces. By decreasing both the surface energy and area for particle attachment, the Lotus coating greatly diminishes dust accumulation on surfaces. This is a problem that can be encountered on lunar, Martian, and asteroid missions. Two different application methods of this coating were tested in summer 2011 at the D-RaTS site: the wet chemistry applied version and combustion chemical vapor deposition (CCVD) applied version. These Lotus coatings, along with two common thermal control coatings, were combined with the active dust mitigation electrodynamic shield (EDS) technology developed at Kennedy Space Center (KSC). The EDS technology uses an electrified grid to remove dust particles from the surface of a Kapton (Trademark) substrate. The Lotus coating and thermal control coatings were applied to these Kapton (Trademark) substrates for testing. The combination of these two innovations was theorized to be an applicable countermeasure for addressing dust accumulation during long-duration human space exploration. This theory was tested and characterized prior to, during, and after D-RaTS exposure.
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Laser shock wave and its applications
NASA Astrophysics Data System (ADS)
Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin
2007-12-01
The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.
Electric propulsion system technology
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.
1992-01-01
The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation with alkali metal propellants.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Singh, B.
1986-01-01
Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.
Engineering and "Standards for Technological Literacy."
ERIC Educational Resources Information Center
Gorham, Douglas
2002-01-01
Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)
Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Wong; Tian Tian; G. Smedley
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.« less
Hydrocarbon Rocket Technology Impact Forecasting
NASA Technical Reports Server (NTRS)
Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.
2012-01-01
Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.
Blueprinting macromolecular electronics.
Palma, Carlos-Andres; Samorì, Paolo
2011-06-01
Recently, by mastering either top-down or bottom-up approaches, tailor-made macromolecular nano-objects with semiconducting properties have been fabricated. These engineered nanostructures for organic electronics are based on conjugated systems predominantly made up of sp²-hybridized carbon, such as graphene nanoribbons. Here, we describe developments in a selection of these nanofabrication techniques, which include graphene carving, stimulus-induced synthesis of conjugated polymers and surface-assisted synthesis. We also assess their potential to reproduce chemically and spatially precise molecular arrangements, that is, molecular blueprints. In a broad context, the engineering of a molecular blueprint represents the fabrication of an integrated all-organic macromolecular electronic circuit. In this Perspective, we suggest chemical routes, as well as convergent on-surface synthesis and microfabrication approaches, for the ultimate goal of bringing the field closer to technology.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
(abstract) Electronic Packaging for Microspacecraft Applications
NASA Technical Reports Server (NTRS)
Wasler, David
1993-01-01
The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.
Additional risk of end-of-the-pipe geoengineering technologies
NASA Astrophysics Data System (ADS)
Bohle, Martin
2014-05-01
Humans are engineers, even the artists who engineer the surface of the globe. Should humans endeavour to engineer the Earth to counter climate change hazards? Striving towards 'global sustainability' will require to adjust the current production and consumption patterns. Contrary to an approach of global sustainability, 'geoengineering' deploys a 'technology fix' for the same purpose. Humans are much inclined to look for technological fixes for problems because well engineered technological methods have created modern societies. Thus, it seems obvious to apply an engineering solution to climate change issues too. In particular, as air pollution causing acid rains has been reduced by cleaner combustion processes or ozone destructing chemical coolants have been replaced by other substances. Common to these approaches was to reduce inputs into global or regional systems by withholding emission, replacing substances or limiting use cases for certain substances. Thus, the selected approach was a technological fix or regulatory measure targeting the 'start of the pipe'. However applying a 'start of the pipe' approach to climate change faces the issue that mankind should reduce inputs were its hurts, namely reducing radically energy that is produced from burning fossil fuels. Capping burning of fossil fuels would be disruptive for the economic structures or the consumption pattern of the developed and developing industrialised societies. Facing that dilemma, affordable geoengineering looks tempting for some. However geoengineering technologies, which counter climate change by other means than carbon capture at combustion, are of a different nature than the technological fixes and negotiated regulatory actions, which so far have been applied to limit threats to regional and global systems. Most of the proposed technologies target other parts of the climate system but the carbon-dioxide input into the atmosphere. Therefore, many geoengineering technologies differ qualitatively from the known successes. They do not tackle the initial cause, namely the carbon-dioxide inputs that are too high. This is their additional specific risk. 'The acceptability of geoengineering will be determined as much by social, legal and political issues as by scientific and technical factors', conclude Adam Corner and Nick Pidgeon (2010) when reviewing social and ethical implications of geoengineering the climate. It is to debate in that context that most geoengineering technologies are 'end of the pipe technologies', what involves an additional specific risk. Should these technologies be part of the toolbox to tackle anthropogenic climate change? Adam Corner and Nick Pidgeon 2010, Geoengineering the climate: The social and ethical implications, Environment Vol. 52.
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.
ERIC Educational Resources Information Center
Mitchell, Tamarra L.
2017-01-01
The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…
NASA Astrophysics Data System (ADS)
Kudryavtseva, Valeriya; Stankevich, Ksenia; Kibler, Elina; Golovkin, Alexey; Mishanin, Alexander; Bolbasov, Evgeny; Choynzonov, Evgeny; Tverdokhlebov, Sergei
2018-04-01
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
NASA Astrophysics Data System (ADS)
Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.
2013-10-01
The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.
A Review of Optical NDT Technologies
Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong
2011-01-01
Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045
1+1=3: Cross-Discipline Collaboration Really Adds Up!
ERIC Educational Resources Information Center
Breen, Mindy
2006-01-01
The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…
Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.
NASA Astrophysics Data System (ADS)
Bozic, O.; Longo, J. M.; Giese, P.; Behren, J.
2005-02-01
The electromagnetic railgun technology appears to be an interesting alternative to launch small payloads into Low Earth Orbit (LEO), as this may introduce lower launch costs. A high-end solution, based upon present state of the art technology, has been investigated to derive the technical boundary conditions for the application of such a new system. This paper presents the main concept and the design aspects of such propelled projectile with special emphasis on flight mechanics, aero-/thermodynamics, materials and propulsion characteristics. Launch angles and trajectory optimisation analyses are carried out by means of 3 degree of freedom simulations (3DOF). The aerodynamic form of the projectile is optimised to provoke minimum drag and low heat loads. The surface temperature distribution for critical zones is calculated with DLR developed Navier-Stokes codes TAU, HOTSOSE, whereas the engineering tool HF3T is used for time dependent calculations of heat loads and temperatures on project surface and inner structures. Furthermore, competing propulsions systems are considered for the rocket engines of both stages. The structural mass is analysed mostly on the basis of carbon fibre reinforced materials as well as classical aerospace metallic materials. Finally, this paper gives a critical overview of the technical feasibility and cost of small rockets for such missions. Key words: micro-satellite, two-stage-rocket, railgun, rocket-engines, aero/thermodynamic, mass optimization
Lewis Researcher in the Materials and Stresses Building
1952-12-21
A materials researcher at the NACA’s Lewis Flight Propulsion Laboratory examines a surface crack detection apparatus in the Materials and Stresses Building during December 1952. Materials research was an important aspect of propulsion technology. Advanced engine systems relied upon alloys, and later composites, that were strong, lightweight, and impervious to high temperatures. Jet engines which became increasingly popular in the late 1940s, produced much higher temperatures than piston engines. These higher temperatures stressed engine components, particularly turbines. Although Lewis materials research began during World War II, the Materials and Thermodynamics Division was not created until 1949. Its primary laboratories were located in the Materials and Stresses Building. The group sought to create new, improved materials and to improve engine design through increased understanding of materials. The Lewis materials researchers of the 1950s made contributions to nickel-aluminum alloys, cermet blades, metal matrix composites, oxide dispersion strengthened superalloys, and universal slopes.
Two-Year ET Programs: Essential Topics and Levels of Proficiency.
ERIC Educational Resources Information Center
Gourley, Frank A., Jr.
1990-01-01
Reports the results of a survey of graduates, employers, and instructors of engineering technology programs for the essential topics in mechanical engineering technology, mechanical drafting/design technology, manufacturing engineering technology, and industrial engineering technology. Identifies the proficiency level suggested for classwork and…
Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.
Igawa, Tomoyuki
2017-01-01
Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.
NASA Technical Reports Server (NTRS)
1985-01-01
Alliance Wall Corporation's Whyteboard, a porcelain enamel on steel panels wall board, owes its color stability to a KIAC engineering background study to identify potential technologies and manufacturers of equipment which could be used to detect surface flaws. One result of the data base search was the purchase of a spectrocolorimeter which enables the company to control some 250 standard colors, and match special colors.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... small caliber guns and projectiles, aerial bombing, directed energy technology, and manned or unmanned... at 202- 761-4922 or by e-mail at [email protected] , or Mr. Robert Berg, Corps of Engineers, Norfolk District, Regulatory Branch, at 757- 201-7793 or by e-mail at [email protected
NASA Astrophysics Data System (ADS)
De Hosson, Jeff Th. M.; Ali, Nasar; Fierro, Giuseppe; Aliofkhazraei, Mahmood; Chipara, Mircea
2016-09-01
The ;International Conference on Surfaces, Coatings and Nano-Structured Materials; (NANOSMAT) has rapidly emerged as the premier conference in the field of materials science, engineering, technology and all aspects of ;nano;. Since 2005, it has been very successfully organised in several European countries, including Portugal, Spain, Italy, France, Poland, Czech Republic, Ireland and also in USA, and in Asia, including Turkey and China.
Technology Transfer Summary Report (FY92), Naval Surface Warfare Center Dahlgren Division
1994-04-20
communications; no formal records are kept of these. Community Technical Outreach NSWCDD participates in the "Science and Engineering Apprentice" and the " Bay ...ADMINISTRATOR’S OFFICE NAVAL UNDERSEA WARFARE CENTER PO BOX 545 DIVISION NEWPORT SEQUIM WA 98382 NEWPORI’ RI 02841-5047 ATTN GIFT AND EXCHANGE DIV 4 ATTN CODE 00
NASA Astrophysics Data System (ADS)
De Hosson, Jeff Th. M.; Ali, Nasar; Fierro, Giuseppe; Aliofkhazraei, Mahmood; Chipara, Mircea
2017-11-01
The ;International Conference on Surfaces, Coatings and Nano-Structured Materials; (NANOSMAT) has rapidly emerged as the premier conference in the field of materials science, engineering, technology and all aspects of ;nano;. Since 2005, it has been very successfully organised in several European countries, including Portugal, Spain, Italy, France, Poland, Czech Republic, Ireland, United Kingdom and also in USA, and in Asia, including Turkey and China.
2014-11-03
Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Recovery of Lunar Surface Access Module Residual and Reserve Propellants
NASA Technical Reports Server (NTRS)
Notardonato, William U.
2007-01-01
The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Lai, Chun-Chin
2004-01-01
In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…
Technology of Strengthening Steel Details by Surfacing Composite Coatings
NASA Astrophysics Data System (ADS)
Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.
2016-04-01
The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.
Analysis of Engineering Content within Technology Education Programs
ERIC Educational Resources Information Center
Fantz, Todd D.; Katsioloudis, Petros J.
2011-01-01
In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…
Triangular laser-induced submicron textures for functionalising stainless steel surfaces
NASA Astrophysics Data System (ADS)
Romano, Jean-Michel; Garcia-Giron, Antonio; Penchev, Pavel; Dimov, Stefan
2018-05-01
Processing technologies that engineer surfaces with sub-micron topographies are of a growing interest to a range of optical, hydrophobic and microbiological applications. One of the promising technologies for creating such topographies employs ultra-short laser pulses to produce laser-induced periodic surface structures (LIPSS) that often result in non-regular, quasi-periodic nanoripples and nanopillars. In this research near infrared ultra-short pulses of 310 fs with a circular polarisation was used to texture ferritic stainless steel workpieces. A single-step process was designed to generate low spatial frequency LIPSS (LSFL) over relatively large areas. Apart from highly regular and homogeneous parallel lines with approximately 900 nm periodicity, extraordinarily uniform triangular-LSFL in hexagonal arrangements was created. The generation of such LSFL was found to be highly repeatable but very sensitive to the used laser processing settings. Therefore, the sensitivity of triangular-LSFL formation to the used laser processing settings, i.e. pulse to pulse distance, pulse fluence and focal plane offsets, were investigated in regard to the resulting morphologies and functional properties, i.e. structural colors and super-hydrophobicity. Finally, the capability of this technology for producing uniform triangular-shaped LSFL on relatively large surface areas of stainless steel plates was studied.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Recent advances in yeast cell-surface display technologies for waste biorefineries.
Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko
2016-09-01
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technology of interdisciplinary open-ended designing in engineering education
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.
2017-11-01
Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.
Surface structure and tribology of legless squamate reptiles.
Abdel-Aal, Hisham A
2018-03-01
Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...
Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray
2010-01-01
Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036
Fabrication of cell container arrays with overlaid surface topographies.
Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios
2012-02-01
This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.
Manned Mars Missions. Working group papers, volume 1, section 1-4
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor); Keaton, Paul W. (Editor)
1986-01-01
The papers presented by the working group on Manned Mars Missions are given. The purpose is to update earlier Mars missions study data, to examine the impact of new and emerging technologies on Mars mission capabilities, and to identify technological issues that would be useful in projecting scientific and engineering research in the coming decades. The papers are grouped into nine sections, which are: (1) rationale; (2) transportation trades and issues; (3) mission and configuration concepts; (4) surface infrastructure; (5) science investigations and issues; (6) life science/medical issues; (7) subsystems and technology development requirements; (8) political and economic issues; and (9) impact on other programs.
Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian J.; DellaCorte, Christopher
2002-01-01
The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.
Antibacterial Au nanostructured surfaces
NASA Astrophysics Data System (ADS)
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-01-01
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a
Technology Prospecting on Enzymes: Application, Marketing and Engineering
Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning
2012-01-01
Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658
Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives
NASA Technical Reports Server (NTRS)
Paul, Heather L.
2011-01-01
The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Wong; Tian Tian; Luke Moughon
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGFmore » 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.« less
Advanced High Pressure O2/H2 Technology
NASA Technical Reports Server (NTRS)
Morea, S. F. (Editor); Wu, S. T. (Editor)
1985-01-01
Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.
Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia
NASA Astrophysics Data System (ADS)
Tesfaye, T.
2017-12-01
Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.
Venus Surface Sample Return: A Weighty High-Pressure Challenge
NASA Technical Reports Server (NTRS)
Sweetser, Ted; Cameron, Jonathon; Chen, Gun-Shing; Cutts, Jim; Gershman, Bob; Gilmore, Martha S.; Hall, Jeffrey L.; Kerzhanovich, Viktor; McRonald, Angus; Nilsen, Erik
1999-01-01
A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.
2004-02-01
National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies
77 FR 34206 - Airworthiness Directives; Hartzell Engine Technologies Turbochargers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Airworthiness Directives; Hartzell Engine Technologies Turbochargers AGENCY: Federal Aviation Administration... directive (AD) for Cessna 206, 207, and 210 airplanes with Hartzell Engine Technologies (HET) turbochargers... information identified in this AD, contact Hartzell Engine Technologies, LLC, 2900 Selma Highway, Montgomery...
Morpheus: Advancing Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael
2012-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional safeguards provided during tether. A variety of free-flight trajectories are planned to incrementally build up to a fully functional Morpheus lander capable of flying planetary landing trajectories. In FY12, these tests will culminate with autonomous flights simulating a 1 km lunar approach trajectory, hazard avoidance maneuvers and precision landing in a prepared hazard field at the Kennedy Space Center (KSC). This paper describes Morpheus integrated testing campaign, infrastructure, and facilities, and the payloads being incorporated on the vehicle. The Project s fast pace, rapid prototyping, frequent testing, and lessons learned depart from traditional engineering development at JSC. The Morpheus team employs lean, agile development with a guiding belief that technologies offer promise, but capabilities offer solutions, achievable without astronomical costs and timelines.
Energy-Efficient Systems Eliminate Icing Danger for UAVs
NASA Technical Reports Server (NTRS)
2010-01-01
Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment
Lu, Qiaozhi; Al-Sheikh, Osama; Elisseeff, Jennifer H.; Grant, Michael P.
2015-01-01
The ocular surface is a component of the anterior segment of the eye and is covered by the tear film. Together, they protect the vital external components of the eye from the environment. Injuries, surgical trauma, and autoimmune diseases can damage this system, and in severe cases, tissue engineering strategies are necessary to ensure proper wound healing and recovery. Dry eye is another major concern and a complicated disease affecting the ocular surface. More effective and innovative therapies are required for better outcomes in treating dry eye. This review focuses on the regenerative medicine of the conjunctiva, which is an essential part of the ocular surface system. Features and advances of different types of biomolecular materials, and autologous and allogeneic tissue grafts are summarized and compared. Specifically, vitrigel, a collagen membrane and novel material for use on the ocular surface, offers significant advantages over other biomaterials. This review also discusses a breakthrough microfluidic technology, “organ-on-a-chip” and its potential application in investigating new therapies for dry eye. PMID:26692712
Application of Plasma Technology in the Life Sciences
NASA Astrophysics Data System (ADS)
Short, Robert
2002-10-01
This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.
Virus-based nanoparticles as platform technologies for modern vaccines
Lee, Karin L.; Twyman, Richard M.; Fiering, Steven
2017-01-01
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic through multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. PMID:26782096
Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.
2012-01-01
Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493
Fuel conservative aircraft engine technology
NASA Technical Reports Server (NTRS)
Nored, D. L.
1978-01-01
Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.
The Nazi engineers: reflections on technological ethics in hell.
Katz, Eric
2011-09-01
Engineers, architects, and other technological professionals designed the genocidal death machines of the Third Reich. The death camp operations were highly efficient, so these technological professionals knew what they were doing: they were, so to speak, good engineers. As an educator at a technological university, I need to explain to my students-future engineers and architects-the motivations and ethical reasoning of the technological professionals of the Third Reich. I need to educate my students in the ethical practices of this hellish regime so that they can avoid the kind of ethical justifications used by the Nazi engineers. In their own professional lives, my former students should not only be good engineers in a technical sense, but good engineers in a moral sense. In this essay, I examine several arguments about the ethical judgments of professionals in Nazi Germany, and attempt a synthesis that can provide a lesson for contemporary engineers and other technological professionals. How does an engineer avoid the error of the Nazi engineers in their embrace of an evil ideology underlying their technological creations? How does an engineer know that the values he embodies through his technological products are good values that will lead to a better world? This last question, I believe, is the fundamental issue for the understanding of engineering ethics.
NASA Astrophysics Data System (ADS)
Erisken, Cevat
Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded with adipose derived stromal cells (h-ADSCs). Analysis of resulting tissue constructs revealed chondrocytic differentiation of h-ADSCs, with both the chondrocytic cell concentration and mineralization varying as a function of distributions of concentrations of insulin and beta-GP, respectively. The investigation also covered characterization of biomechanical properties of native bovine osteochondral tissue samples, which were then compared with biomechanical properties of tissue constructs at different stages of development. The hybrid technology developed in this thesis should provide another enabling platform for the fabrication of functionally graded scaffolds that aim to mimic the elegant gradations found in myriad native tissues.
Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi
2016-11-01
Bioremediation of polycyclic aromatic hydrocarbons (PAHs) is extremely challenging when they coexist with heavy metals. This constrain has led to adsorption-based techniques that help immobilize the metals and reduce toxicity. However, the adsorbents can also non-selectively bind the organic compounds, which reduces their bioavailability. In this study we developed a surface-engineered organoclay (Arquad ® 2HT-75-bentonite-palmitic acid) which enhanced bacterial proliferation and adsorbed cadmium, but elevated phenanthrene bioavailability. Adsorption models of single and binary solutes revealed that the raw bentonite adsorbed cadmium and phenanthrene non-selectively at the same binding sites and sequestrated phenanthrene. In contrast, cadmium selectively bound to the deprotonated state of carboxyl groups in the organoclay and phenanthrene on the outer surface of the adsorbent led to a microbially congenial microenvironment with a higher phenanthrene bioavailability. This study provided valuable information which would be highly important for developing a novel clay-modulated bioremediation technology for cleaning up PAHs under mixed-contaminated situations. Copyright © 2016 Elsevier Ltd. All rights reserved.
An interactive grid generation procedure for axial and radial flow turbomachinery
NASA Technical Reports Server (NTRS)
Beach, Timothy A.
1989-01-01
A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- Gregg Buckingham, with KSC's Center for Space Education, addresses participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
Engineering analysis of shortfall for new technologies. Analysis memorandum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-11
The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less
ERIC Educational Resources Information Center
Roue, Leah C.
2007-01-01
The current number of women in technology and engineering only represents a fraction of today's workforce. Technological innovation depends on our nation's best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women's lack of participation can only be…
Review on the progress of ultra-precision machining technologies
NASA Astrophysics Data System (ADS)
Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa
2017-06-01
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
Thrust Area Report, Engineering Research, Development and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R. T.
1997-02-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less
Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko
2016-04-01
Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.
Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel
NASA Astrophysics Data System (ADS)
Markwitz, A.; Kennedy, J.
2017-10-01
A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.
Studies of the 3D surface roughness height
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-16
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. Onemore » such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.« less
ERIC Educational Resources Information Center
Rathburn, Sara L.; Weinberg, Andrea E.
2011-01-01
The GetWET Observatory was developed as part of an overall course redesign of the Introductory Geology Laboratory at Colorado State University to improve student learning of key surface and groundwater concepts for nonmajors in science, technology, engineering, and mathematics. Consisting of six groundwater monitoring wells, the GetWET Observatory…
Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection
NASA Technical Reports Server (NTRS)
Li, Jing; Lu, Yijiang
2005-01-01
A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
Surface engineering of nanoparticles in suspension for particle based bio-sensing
Sen, Tapas; Bruce, Ian J.
2012-01-01
Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809
Ultra Efficient Engine Technology Systems Integration and Environmental Assessment
NASA Technical Reports Server (NTRS)
Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)
2002-01-01
This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Borowski, Stanley
2003-01-01
Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.
Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G
2016-05-01
The fabrication and characterization of novel high surface area hollow gilled fiber tissue engineering scaffolds via industrially relevant, scalable, repeatable, high speed, and economical nonwoven carding technology is described. Scaffolds were validated as tissue engineering scaffolds using human adipose derived stem cells (hASC) exposed to pulsatile fluid flow (PFF). The effects of fiber morphology on the proliferation and viability of hASC, as well as effects of varied magnitudes of shear stress applied via PFF on the expression of the early osteogenic gene marker runt related transcription factor 2 (RUNX2) were evaluated. Gilled fiber scaffolds led to a significant increase in proliferation of hASC after seven days in static culture, and exhibited fewer dead cells compared to pure PLA round fiber controls. Further, hASC-seeded scaffolds exposed to 3 and 6dyn/cm(2) resulted in significantly increased mRNA expression of RUNX2 after one hour of PFF in the absence of soluble osteogenic induction factors. This is the first study to describe a method for the fabrication of high surface area gilled fibers and scaffolds. The scalable manufacturing process and potential fabrication across multiple nonwoven and woven platforms makes them promising candidates for a variety of applications that require high surface area fibrous materials. We report here for the first time the successful fabrication of novel high surface area gilled fiber scaffolds for tissue engineering applications. Gilled fibers led to a significant increase in proliferation of human adipose derived stem cells after one week in culture, and a greater number of viable cells compared to round fiber controls. Further, in the absence of osteogenic induction factors, gilled fibers led to significantly increased mRNA expression of an early marker for osteogenesis after exposure to pulsatile fluid flow. This is the first study to describe gilled fiber fabrication and their potential for tissue engineering applications. The repeatable, industrially scalable, and versatile fabrication process makes them promising candidates for a variety of scaffold-based tissue engineering applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vascular tissue engineering by computer-aided laser micromachining.
Doraiswamy, Anand; Narayan, Roger J
2010-04-28
Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.
Engineering Technology Education: Bibliography 1989.
ERIC Educational Resources Information Center
Dyrud, Marilyn A., Comp.
1990-01-01
Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…
Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Civinskas, Kestutis C.
2004-01-01
NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.
Integrating UAV Flight outputs in Esri's CityEngine for semi-urban areas
NASA Astrophysics Data System (ADS)
Anca, Paula; Vasile, Alexandru; Sandric, Ionut
2016-04-01
One of the most pervasive technologies of recent years, which has crossed over into consumer products due to its lowering prince, is the UAV, commonly known as drones. Besides its ever-more accessible prices and growing functionality, what is truly impressive is the drastic reduction in processing time, from days to ours: from the initial flight preparation to the final output. This paper presents such a workflow and goes further by integrating the outputs into another growing technology: 3D. The software used for this purpose is Esri's CityEngine, which was developed for modeling 3D urban environments using existing 2D GIS data and computer generated architecture (CGA) rules, instead of modeling each feature individually. A semi-urban areas was selected for this study and captured using the E-Bee from Parrot. The output point cloud elevation from the E-Bee flight was transformed into a raster in order to be used as an elevation surface in CityEngine, and the mosaic raster dataset was draped over this surface. In order to model the buildings in this area CGA rules were written using the building footprints, as inputs, in the form of Feature Classes. The extrusion heights for the buildings were also extracted from the point cloud, and realistic textures were draped over the 3D building models. Finally the scene was shared as a 3D web-scene which can be accessed by anyone through a link, without any software besides an internet browser. This can serve as input for Smart City development through further analysis for urban ecology Keywords: 3D, drone, CityEngine, E-Bee, Esri, scene, web-scene
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.
Cao, Gui Hong
2015-12-01
Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering sustainability.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2009-01-01
The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
Current opinion in Alzheimer's disease therapy by nanotechnology-based approaches.
Ansari, Shakeel Ahmed; Satar, Rukhsana; Perveen, Asma; Ashraf, Ghulam Md
2017-03-01
Nanotechnology typically deals with the measuring and modeling of matter at nanometer scale by incorporating the fields of engineering and technology. The most prominent feature of these engineered materials involves their manipulation/modification for imparting new functional properties. The current review covers the most recent findings of Alzheimer's disease (AD) therapeutics based on nanoscience and technology. Current studies involve the application of nanotechnology in developing novel diagnostic and therapeutic tools for neurological disorders. Nanotechnology-based approaches can be exploited for limiting/reversing these diseases for promoting functional regeneration of damaged neurons. These strategies offer neuroprotection by facilitating the delivery of drugs and small molecules more effectively across the blood-brain barrier. Nanotechnology based approaches show promise in improving AD therapeutics. Further replication work on synthesis and surface modification of nanoparticles, longer-term clinical trials, and attempts to increase their impact in treating AD are required.
Running SW4 On New Commodity Technology Systems (CTS-1) Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben
We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less
Immunotherapy of Malignant Disease Using Chimeric Antigen Receptor Engrafted T Cells
Maher, John
2012-01-01
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies. PMID:23304553
Synthesis, characterization, and environmental implications of graphene-coated biochar.
Zhang, Ming; Gao, Bin; Yao, Ying; Xue, Yingwen; Inyang, Mandu
2012-10-01
Biochar has attracted much research attention recently because of its potential applications in many environmental areas. In this work, the biochar technology was combined with the emerging graphene technology to create a new engineered graphene-coated biochar from cotton wood. The biomass feedstock was first treated with graphene/pyrene-derivative and was then annealed at 600°C in a quartz tube furnace under N(2) environment. Laboratory characterization with different microscopy and spectrometry tools showed that the graphene sheets were "soldered" by the pyrene molecules on the biochar surface during the annealing process. Thermogravimetric analysis showed that the graphene "skin" could improve the thermal stability of the biochar, making the engineered biochar a better carbon sequester for large scale land applications. Batch sorption experimental results indicated that the graphene-coated biochar has excellent adsorption ability of polycyclic aromatic hydrocarbons (PAHs) with a maximum methylene blue adsorption capacity of 174 mg g(-1), which is more than 20 times higher than that of the unmodified cotton wood biochar and comparable to those of some physically or chemically activated carbons. The enhanced adsorption of methylene blue on the graphene-coated biochar is mainly controlled by the strong π-π interactions between aromatic molecules and the graphene sheets on biochar surface. It is anticipated that this novel, facile, and low-cost method can be expanded to other carbon-rich materials to create engineered biochar for various environmental applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Technician Career Opportunities in Engineering Technology.
ERIC Educational Resources Information Center
Engineers' Council for Professional Development, New York, NY.
Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…
Associate Degree Curriculum for Engineering Technology.
ERIC Educational Resources Information Center
Campbell, Clifton P.
Presented is a two-year associate degree curriculum for Engineering Technology. Specializations are provided in civil, electronics, and mechanical technology. The civil engineering technology specialization facilitates three major areas of study, and mechanical technology includes design and production options. Each curriculum was designed to…
Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng
2018-05-07
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teaching Engineering Habits of Mind in Technology Education
ERIC Educational Resources Information Center
Loveland, Thomas; Dunn, Derrek
2014-01-01
With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…
ERIC Educational Resources Information Center
Gourley, Frank A., Jr.
A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…
Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft
NASA Technical Reports Server (NTRS)
Mount, Robert E.; Bartel, John; Hady, William F.
1987-01-01
Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.
Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)
2013-08-29
educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology
MoonRIDERS: NASA and Hawaiis Innovative Lunar Surface Flight Experiment for Landing in Late 2017
NASA Technical Reports Server (NTRS)
Kelso, R. M.; Romo, R.; Mackey, P. J.; Phillips, J. R., III; Cox, R. E.; Hogue, M. D.; Calle, C. I.
2016-01-01
Recently, NASA Kennedy Space Center, Hawaii's state aerospace agency PISCES, and two Hawaii high schools Iolani and Kealakehe have come together in a unique collaboration called MoonRIDERS. This strategic partnership will allow Hawaii students to participate directly in sending a science experiment to the surface of the moon. The MoonRIDERS project started in the spring of 2014, with each institution responsible for its own project costs and activities. PISCES, given its legislative direction in advancing planetary surface systems, saw this collaboration as an important opportunity to inspire a young generation and encourage STEM (Science, Technology, Engineering, and Mathematics) learning. Under the guidance of PISCES and NASA, the students will be involved hands-on from start to finish in the engineering, testing, and validation of a space technology called the Electrodynamic Dust Shield (EDS). Dust is a critical issue for space exploration, as evidenced by the Apollo lunar missions and Mars rovers and landers. Dust creates a number of problems for humans and hardware, including inhalation, mechanical interference, wear and tear on spacesuits, inhibition of heat transfer on radiators, and reduced efficiency of solar panels. To address this, the EDS is designed to work on a variety of materials, and functions by generatingelectrodynamic fields to clear away the dust. The Google Lunar XPRIZE (GLXP), a space competition "designed to inspire pioneers to do robotic space transport on a budget," serves as a likely method for the MoonRIDERS to get their project to the moon. The EDS would potentially be flown as a hosted payload on a competitor's lander (still to be chosen). This briefing will provide an overview of the technology, the unique partnership, progress update and testing leading to this flight opportunity.
An overview of NASA research on positive displacement general-aviation engines
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Habitats and Surface Construction Technology and Development Roadmap
NASA Technical Reports Server (NTRS)
Cohen, Marc; Kennedy, Kriss J.
1997-01-01
The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.
Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W; Moniot, Matthew; Jehlik, Forrest
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline).more » These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.« less
NASA Astrophysics Data System (ADS)
Weber, Katherine
Society has become increasingly technological, demanding that all citizens have a level of technological literacy. In order for this to occur, both males and females must participate in technology-related activities to achieve an adequate level of technological literacy. Despite individual and organizational efforts, females continue to be underrepresented in STEM-related occupations. This is especially true in many engineering-related fields. Jolly, Campbell and Perlman (2004) devised the Engagement, Capacity, and Continuity (ECC) Trilogy. With each factor of the trilogy in place, Jolly et al. found that female representation increased in STEM. The purpose of this study was to identify whether Jolly, Campbell, and Perlman's (2004) Engagement, Capacity, and Continuity Trilogy could be utilized by teachers in technology and engineering program settings to examine their students' interest (engagement), perceived personal capacity (capacity), as well as participation in technology and engineering-related activities (continuity). This descriptive study surveyed 556 female and male middle school and high school students enrolled in Technology and Engineering classes. The results of this study revealed that when students indicated a high interest and a high perceived personal capacity, and when they participated in technology and engineering-related activities, they also indicated an interest in pursuing a career in engineering. The results also revealed that the male students continued to be encouraged by technology and engineering teachers, parents, and counselors to pursue a career in engineering more than female students. This startling finding should draw some concern; both males and females should be equally encouraged to consider engineering as a career. Technology and engineering teachers should implement activities that appeal to both males and females. Parents should encourage their daughters to participate in informal learning opportunities to nurture their daughters' interest in STEM-related areas. Counselors should gain an awareness of the scope and diversity of different engineering fields so they can advise both male and female students to consider careers in engineering. In order for the United States to be competitive and innovative at the global level, female representation and contributions in STEM fields must increase. Key Words: GENDER, ENGAGEMENT, INTEREST, PERCEIVED PERSONAL CAPACITY, TECHNOLOGY AND ENGINEERING ACTIVITIES, WISCONSIN, STEM, AFTERSCHOOL ACTIVITIES.
Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet Configuration and System Studies
NASA Technical Reports Server (NTRS)
Kawai, Ronald T.; Friedman, Douglas M.; Serrano, Leonel
2006-01-01
A study was conducted to determine the potential reduction in fuel burned for BLI (boundary layer ingestion) inlets on a BWB (blended wing body) airplane employing AFC (active flow control). The BWB is a revolutionary type airplane configuration with engines on the aft upper surface where thick boundary layer offers the greatest opportunity for ram drag reduction. AFC is an emerging technology for boundary layer control. Several BLI inlet configurations were analyzed in the NASA-developed RANS Overflow CFD code. The study determined that, while large reductions in ram drag result from BLI, lower inlet pressure recovery produces engine performance penalties that largely offset this ram drag reduction. AFC could, however, enable a short BLI inlet that allows surface mounting of the engine which, when coupled with a short diffuser, would significantly reduce drag and weight for a potential 10% reduction in fuel burned. Continuing studies are therefore recommended to achieve this reduction in fuel burned considering the use of more modest amounts of BLI coupled with both AFC and PFC (Passive Flow Control) to produce a fail-operational system.
Engineering M13 for phage display.
Sidhu, S S
2001-09-01
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.
Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Ting
2016-03-01
Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
NASA Astrophysics Data System (ADS)
Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.
2018-03-01
The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.
SWIR hyperspectral imaging detector for surface residues
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick
2013-05-01
ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.
Molecular biomimetics: GEPI-based biological routes to technology.
Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet
2010-01-01
In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we describe lessons from biology with examples of protein-mediated functional biological materials, explain how novel peptides can be designed with specific affinity to inorganic solids using evolutionary engineering approaches, give examples of their potential utilizations in technology and medicine, and, finally, provide a summary of challenges and future prospects. (c) 2010 Wiley Periodicals, Inc.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
Motivation of Students Who Switch from Engineering to Engineering Technology
ERIC Educational Resources Information Center
Ramirez, Nichole
2017-01-01
A set of studies is reported describing the demographics, outcomes, and motivations of students who start in engineering and switch their major to engineering technology. There has been extensive research in engineering persistence, but little focus has been given to the "T" in STEM. Most research combines technology with other science…
Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter; Harris, Joel
2014-05-08
The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less
Application of laminar flow control to high-bypass-ratio turbofan engine nacelles
NASA Technical Reports Server (NTRS)
Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.
1991-01-01
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
1986-02-27
pavement testing include the use of the falling weight deflectometer and layered -elastic analysis. The falling weight deflectometer has the advantages of...being more transportable, lighter weight, and requires fewer operational personnel. The layer -elastic analysis provides for calculation of the elastic...moduli for pavement layers and sub- grade based on deflection measurements at the pavement surface. This analysis is device independent and will
Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug
2003-01-01
A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.
Preliminary scramjet design for hypersonic airbreathing missile application
NASA Technical Reports Server (NTRS)
Carlson, C. H.
1983-01-01
A conceptual design study of a scramjet engine was conducted for a hypersonic surface to air missile (HYSAM). The definition of the engine was based upon the requirements of accelerating the HYSAM from Mach 4 at 20,000 feet to Mach 6 at 100,000 feet and the cruise conditions at Mach 6. The resulting external and internal environmental conditions were used by various engineering disciplines performing design, stress and heat transfer analysis. A detailed structural analysis was conducted along with an indepth thermal analysis. Structurally all the components within the system exhibit positive margins of safety. A feasible concept was defined which uses state-of-the-art materials and existing TMC technology. The engine basically consists of a three dimensional carbon/carbon combustor/nozzle secured to an FS-85 columbium inlet. The carbon/carbon liner is sheathed with carbon felt insulation to thermally protect the FS-85 structure and skin. The thermal analysis of the engine indicates that a thermally viable configuration exists.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- JoAnn H. Morgan, director of External Relations and Business Development at KSC, welcomes participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability
NASA Astrophysics Data System (ADS)
Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong
2017-06-01
Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.
Surface contamination analysis technology team overview
NASA Astrophysics Data System (ADS)
Burns, H. Dewitt, Jr.
1996-11-01
The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.
Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations
NASA Technical Reports Server (NTRS)
Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.
2005-01-01
The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.
Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M
2017-02-01
In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.
FY04 Engineering Technology Reports Technology Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R M
2005-01-27
Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technicalmore » resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less
Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
NASA Astrophysics Data System (ADS)
Hla, S.-W.
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.
Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2012-01-01
NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.; Envia, E.
2002-01-01
In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.
Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals.
Berestok, Taisiia; Guardia, Pablo; Portals, Javier Blanco; Estradé, Sònia; Llorca, Jordi; Peiró, Francesca; Cabot, Andreu; Brock, Stephanie L
2018-06-05
Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In 2 S 3 , both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.
NASA Technical Reports Server (NTRS)
Turk, M. A.; Zeiner, P. K.
1986-01-01
In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.
Zhang, Meng; Kecojevic, Vladislav
2016-01-01
The main objective of this review was to build upon a previous study on the root causes of truck-related fatalities in surface coal mining operations in West Virginia, and to develop intervention strategies to eliminate these fatalities. This review considers a two-pronged approach to accident prevention: one that is fundamental and traditional (safety regulations, training and education, and engineering of the work environment); and one that is innovative and creative (e.g., applying technological advances to better control and eliminate the root causes of accidents). Suggestions for improving current training and education system are proposed, and recommendations are provided on improving the safety of mine working conditions, specifically safety conditions on haul roads, dump sites, and loading areas. We also discuss various currently available technologies that can help prevent haul truck-related fatal accidents. The results of this review should be used by mine personnel to help create safer working conditions and decrease truck-related fatalities in surface coal mining.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
NASA Astrophysics Data System (ADS)
Li, Ping; Jin, Tan; Guo, Zongfu; Lu, Ange; Qu, Meina
2016-10-01
High efficiency machining of large precision optical surfaces is a challenging task for researchers and engineers worldwide. The higher form accuracy and lower subsurface damage helps to significantly reduce the cycle time for the following polishing process, save the cost of production, and provide a strong enabling technology to support the large telescope and laser energy fusion projects. In this paper, employing an Infeed Grinding (IG) mode with a rotary table and a cup wheel, a multi stage grinding process chain, as well as precision compensation technology, a Φ300mm diameter plano mirror is ground by the Schneider Surfacing Center SCG 600 that delivers a new level of quality and accuracy when grinding such large flats. Results show a PV form error of Pt<2 μm, the surface roughness Ra<30 nm and Rz<180 nm, with subsurface damage <20 μm, and a material removal rates of up to 383.2 mm3/s.
Small Engine Component Technology (SECT)
NASA Technical Reports Server (NTRS)
Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.
1986-01-01
A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.
Advanced General Aviation Turbine Engine (GATE) study
NASA Technical Reports Server (NTRS)
Smith, R.; Benstein, E. H.
1979-01-01
The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
New Perspectives: Technology Teacher Education and Engineering Design
ERIC Educational Resources Information Center
Hill, Roger B.
2006-01-01
Initiatives to integrate engineering design within the field of technology education are increasingly evident. The National Science Foundation has encouraged and funded opportunities for technology educators and engineers to work collaboratively. However, perspectives regarding the role engineering should play within the discipline of technology…
Evolving Our Evaluation of Lighting Environments Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald; Clark, Toni Anne
2016-01-01
Imagine you are an astronaut on their 100th day of your three year exploration mission. During your daily routine to the small hygiene compartment of the spacecraft, you realize that no matter what you do, your body blocks the light from the lamp. You can clearly see your hands or your toes but not both! What were those design engineers thinking! It would have been nice if they could have made the walls glow instead! The reason the designers were not more innovative is that their interpretation of the system lighting requirements didn't allow them to be so! Currently, our interior spacecraft lighting standards and requirements are written around the concept of a quantity of light illuminating a spacecraft surface. The natural interpretation for the engineer is that a lamp that throws light to the surface is required. Because of certification costs, only one lamp is designed and small rooms can wind up with lamps that may be inappropriate for the room architecture. The advances in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting system. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. Realization that these systems can be integrated is not realized. The result is that the systems are developed independent from one another and potential efficiencies that could be realized from borrowing from the concept of one technology and applying it for the purpose of the other does not occur. This project investigated the possibility of incorporating large luminous surface lamps as an alternative or supplement to overhead lighting. We identified existing industry standards for architectural luminous or brightness uniformity as part of a lighting system definition. The efficiency of the surface lighting technology was evaluated for uniformity and power consumption. Finally, the team investigated possible performance savings if the walls were made to glow via a self luminous surface system instead of creating brightness by use of direct lighting of a highly reflective diffuse surface.
Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis
NASA Astrophysics Data System (ADS)
Nan, Song
2018-03-01
Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.
ERIC Educational Resources Information Center
Rose, Mary Annette; Shumway, Steven; Carter, Vinson; Brown, Josh
2015-01-01
Preparing a technology and engineering (TE) teacher who strives for teaching excellence is a fundamental mission of TE teacher education programs in the United States. In 2012, the International Technology and Engineering Educators Association (ITEEA, formerly the International Technology Education Association, ITEA) Council on Technology and…
Case Study of a Small Scale Polytechnic Entrepreneurship Capstone Course Sequence
ERIC Educational Resources Information Center
Webster, Rustin D.; Kopp, Richard
2017-01-01
A multidisciplinary entrepreneurial senior capstone has been created for engineering technology students at a research I land-grant university statewide extension. The two semester course sequence welcomes students from Mechanical Engineering Technology, Electrical Engineering Technology, Computer Graphics Technology, and Organizational…
Thin Film Sensors for Surface Measurements
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.
2001-01-01
Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
Reconfigurable Robust Routing for Mobile Outreach Network
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang
2010-01-01
The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.
Preface - 'NANOSMAT-Paris 2017'
NASA Astrophysics Data System (ADS)
De Hosson, Jeff Th. M.; Ali, Nasar; Fierro, Giuseppe; Aliofkhazraei, Mahmood; Chipara, Mircea
2018-07-01
The "International Conference on Surfaces, Coatings and Nano-Structured Materials" (NANOSMAT) has rapidly emerged as the premier conference in the field of materials science, engineering, technology and all aspects of "nano". The 12th International Conference on Surfaces, Coatings and Nanostructured Materials (NANOSMAT) was held at the Pierre & Marie Curie University in Paris, France. This conference is in the NANOSMAT conference series. The first two NANOSMAT conferences were held in Portugal (2005, 2007), whereas, the subsequent NANOSMAT meetings were held in Barcelona (Spain), Rome (Italy), Reims (France), Krakow (Poland), Prague (Czech Republic), Granada (Spain), Dublin (Ireland), Manchester (UK) and Aveiro (Portugal).
New Technologies for Enhanced Environmental Testing on Spacecraft Structures
NASA Astrophysics Data System (ADS)
Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio
2014-06-01
This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.
1992-01-09
and reliability and it concludes with a discussion of possible applications to the IMS prototype design. 1-2 AcknowledQements I would like to thank the...technologies and procedures such as cut-vertex set analysis, the results of which may lead to future applications of this work in network management. 1... mathematically as follows. If the distance between the atoms of the surface is d and the wave is scattered it an angle 9 (measured from the surface
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
2014-04-11
CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
NASA Astrophysics Data System (ADS)
Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng
2016-10-01
The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
ERIC Educational Resources Information Center
Hacker, Michael; Barak, Moshe
2017-01-01
Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…
ERIC Educational Resources Information Center
Edwards, Timothy I.; Roberson, Clarence E., Jr.
A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…
Software Engineering Technology Infusion Within NASA
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1996-01-01
Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.
Open Rotor Noise Prediction at NASA Langley - Capabilities, Research and Development
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun
2010-01-01
The high fuel prices of recent years have caused the operating cost of the airlines to soar. In an effort to bring down the fuel consumption, the major aircraft engine manufacturers are now taking a fresh look at open rotors for the propulsion of future airliners. Open rotors, also known as propfans or unducted fans, can offer up to 30 per cent improvement in efficiency compared to high bypass engines of 1980 vintage currently in use in most civilian aircraft. NASA Langley researchers have contributed significantly to the development of aeroacoustic technology of open rotors. This report discusses the current noise prediction technology at Langley and reviews the input data requirements, strengths and limitations of each method as well as the associated problems in need of attention by the researchers. We present a brief history of research on the aeroacoustics of rotating blade machinery at Langley Research Center. We then discuss the available noise prediction codes for open rotors developed at NASA Langley and their capabilities. In particular, we present the two useful formulations used for the computation of noise from subsonic and supersonic surfaces. Here we discuss the open rotor noise prediction codes ASSPIN and one based on Ffowcs Williams-Hawkings equation with penetrable data surface (FW - Hpds). The scattering of sound from surfaces near the rotor are calculated using the fast scattering code (FSC) which is also discussed in this report. Plans for further improvements of these codes are given.
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
NASA Astrophysics Data System (ADS)
Crenshaw, Mark VanBuren
This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.
Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool
ERIC Educational Resources Information Center
Thomas, Gary; Darayan, Shahryar
2018-01-01
Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…
A Contemporary Preservice Technology Education Program
ERIC Educational Resources Information Center
Flanigan, Rod; Becker, Kurt; Stewardson, Gary
2012-01-01
In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Metje, Nicole; Tuckwell, George
2017-11-01
Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.
Digital terrain modeling and industrial surface metrology: Converging realms
Pike, R.J.
2001-01-01
Digital terrain modeling has a micro-and nanoscale counterpart in surface metrology, the numerical characterization of industrial surfaces. Instrumentation in semiconductor manufacturing and other high-technology fields can now contour surface irregularities down to the atomic scale. Surface metrology has been revolutionized by its ability to manipulate square-grid height matrices that are analogous to the digital elevation models (DEMs) used in physical geography. Because the shaping of industrial surfaces is a spatial process, the same concepts of analytical cartography that represent ground-surface form in geography evolved independently in metrology: The surface topography of manufactured components, exemplified here by automobile-engine cylinders, is routinely modeled by variogram analysis, relief shading, and most other techniques of parameterization and visualization familiar to geography. This article introduces industrial surface-metrology, examines the field in the context of terrain modeling and geomorphology and notes their similarities and differences, and raises theoretical issues to be addressed in progressing toward a unified practice of surface morphometry.
Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka
2011-04-01
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.
Tissue engineering: confronting the transplantation crisis.
Nerem, R M
2000-01-01
Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2007-01-01
Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes identified herein are for polyurethane, epoxy and other paint systems applied by conventional wet-spray processes. A table summarizes the target hazardous materials, processes and materials, applications, affected programs, and candidate substrates.
FY08 Engineering Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minichino, C; McNichols, D
2009-02-24
This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technologymore » development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
Is Computer Science Compatible with Technological Literacy?
ERIC Educational Resources Information Center
Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.
2018-01-01
Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
Technology Insertion for Recapitalization of Legacy Systems
2017-09-28
Inspection Two methods of thermal wave inspection were investigated. In one method, an electric current was run through the torsion bar to heat the...Material Properties and the Controlled Shot Peening of Turbine Blades ". Metal Behaviour and Surface Engineering, IIIT-lnternational I 989 18 Richard...the presence of a singularity, direct control of the mesh size was used to set the element dimensions over several runs of the analysis. The element
Shipboard Coatings Developments, and Emerging Surface Technologies
2009-09-01
ALGAE GROWTH. Other pulls not recorded, no complaints to NAVSEA about speed. April 2008 Pulled for engine work, cleaned well, may have been over-coated...BATELLE TEST SITE, 58 MONTH, FULL IMMERSION RESULTS PRESSURE WASH, ALGAE EASILY REMOVED, POLISHING APPARENT. SOME HARD FOULING ON WELDS, NOT A...by ~500 mV • Protection potential increased by ~1000mV * Short-term EOC does not take into account seawater biofilm corrosion potential ennoblement
Liquid Acquisition Strategies for Exploration Missions: Current Status 2010
NASA Technical Reports Server (NTRS)
Chato, David J.
2010-01-01
NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
Bugarski, Aleksandar D; Hummer, Jon A; Vanderslice, Shawn
2016-01-01
This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC.
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor W. Wong; Tian Tian; Grant Smedley
2004-09-30
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scalemore » Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.« less
Bugarski, Aleksandar D.; Hummer, Jon A.; Vanderslice, Shawn
2017-01-01
This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC. PMID:26588029
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Youssef, Doaa; El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-06-28
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick's texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm.
El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-01-01
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick’s texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm. PMID:28773080
Patent Information Use in Engineering Technology Design: An Analysis of Student Work
ERIC Educational Resources Information Center
Phillips, Margaret; Zwicky, Dave
2017-01-01
How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…
Atomic layer deposition (ALD) for optical nanofabrication
NASA Astrophysics Data System (ADS)
Maula, Jarmo
2010-02-01
ALD is currently one of the most rapidly developing fields of thin film technology. Presentation gives an overview of ALD technology for optical film deposition, highlighting benefits, drawbacks and peculiarities of the ALD, especially compared to PVD. Viewpoint is practical, based on experience gained from tens of different applications over the last few decades. ALD is not competing, but enabling technology to provide coatings, which are difficult for traditional technologies. Examples of such cases are films inside of tubes; double side deposition on the substrate; large area accurate coatings; decorative coating for 3D parts; conformal coatings on high aspect ratio surfaces or inside porous structures. Novel materials can be easily engineered by making modifications on molecular level. ALD coats large surfaces effectively and fast. Opposite to common view, it actually provides high throughput (coated area/time), when used properly with a batch and/or in-line tools. It is possible to use ALD for many micrometers thick films or even produce thin parts with competitive cost. Besides optical films ALD provides large variety of features for nanofabrication. For example pin hole free films for passivation and barrier applications and best available films for conformal coatings like planarization or to improve surface smoothness. High deposition repeatability even with subnanometer film structures helps fabrication. ALD enters to production mostly through new products, not yet existing on the market and so the application IP field is reasonably open. ALD is an enabling, mature technology to fabricate novel optical materials and to open pathways for new applications.
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
NASA Astrophysics Data System (ADS)
Warju; Harto, S. P.; Soenarto
2018-01-01
One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan
2012-01-01
A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.
NASA Astrophysics Data System (ADS)
He, Xianyun; Wang, Yingjun; Wu, Gang
2012-10-01
In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.
NASA Astrophysics Data System (ADS)
van den Bogaard, M.
2012-03-01
Student success is among the most widely researched areas in tertiary education. Generalisability of research in this field is problematic due to cultural and structural differences between countries, institutions and programmes where the research is done. Engineering education in the Netherlands has not been studied in depth. In this paper, outcomes of studies done outside and inside engineering and outside and inside the Netherlands are discussed to help understand the complexity of student retention issues. Although generalisation is an issue, there are a number of concepts and variables that surface in many of these studies, including students' background and disposition variables, education attributes, variables concerning educational climate and student behaviour. How these variables are related and how a university can apply the outcomes of research in this field of study are discussed in this paper.
Non-thermal plasma technology for the development of antimicrobial surfaces: a review
NASA Astrophysics Data System (ADS)
Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe
2016-05-01
Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.
Research and technology, 1984 report
NASA Technical Reports Server (NTRS)
1984-01-01
Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.
Advanced component technologies for energy-efficient turbofan engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1980-01-01
The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.
Research and technology at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
ERIC Educational Resources Information Center
Kettle, Kevin C., Ed.
This colloquium was held with the purposes of promoting cooperation and collaboration among engineering education institutions in the Mekong subregion and establishing the linkage with engineering institutions in France; to promote university-industry collaboration in the field of engineering and technology education; to establish a network of…
Proceedings of the 1998 diesel engine emissions reduction workshop [DEER
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.
An Overview of Magnetic Bearing Technology for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.
2004-01-01
The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.
A study of female students enrollment in engineering technology stem programs
NASA Astrophysics Data System (ADS)
Habib, Ihab S.
The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).
Predictors of Associate's Degree Completion in Engineering and Engineering Technologies
NASA Astrophysics Data System (ADS)
Reys-Nickel, Lynsey L.
The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a gap in the literature of what is known about engineering and engineering technician students. It also contributes to the body of research on an understudied STEM educational and professional pathway, the associate's degree in engineering and engineering technologies.
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Integrating Rehabilitation Engineering Technology With Biologics
Collinger, Jennifer L.; Dicianno, Brad E.; Weber, Douglas J.; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M.; Boninger, Michael L.
2017-01-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. PMID:21703573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A.
Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here,more » we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.« less
Science and Technology Resources on the Internet: Standards Resources for Engineering and Technology
ERIC Educational Resources Information Center
Phillips, Margaret; Huber, Sarah
2017-01-01
The goal of this webliography is to provide an introduction to standards resources for librarians that support post-secondary engineering and technology programs, as well as engineering and technology faculty members and students. It serves as a reference on standards collection development and integrating standards information literacy into…
ERIC Educational Resources Information Center
Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline
2006-01-01
Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…
Technology Education Benefits from the Inclusion of Pre-Engineering Education
ERIC Educational Resources Information Center
Rogers, Steve; Rogers, George E.
2005-01-01
Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…
Primary School Students' Views about Science, Technology and Engineering
ERIC Educational Resources Information Center
Pekmez, Esin
2018-01-01
Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
NASA Technical Reports Server (NTRS)
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2010 CFR
2010-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2012 CFR
2012-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2014 CFR
2014-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2011 CFR
2011-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2013 CFR
2013-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
40 CFR 94.218 - Deterioration factor determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... family. (b) Calculation procedures—(1) For engines not utilizing aftertreatment technology (e.g... technology (e.g., catalyst). For each applicable emission constituent, a multiplicative deterioration factor.... (iii) Engineering analysis for established technologies. In the case where an engine family uses...
ERIC Educational Resources Information Center
Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong
2007-01-01
Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…
Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls
ERIC Educational Resources Information Center
Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.
2011-01-01
This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…
Rotorcraft convertible engine study
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Mar, H. M.
1982-01-01
The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.
Control technology for future aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.
1984-01-01
The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.
Turbine Engine Hot Section Technology (HOST)
NASA Technical Reports Server (NTRS)
1983-01-01
A two-day workshop on the research and plans for turbine engine hot section durability problems was held on October 25 and 26, 1983, at the NASA Lewis Research Center. Presentations were made during six sessions, including structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation, that dealt with the thermal and fluid environment around liners, blades, and vanes, and with material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components. The principal objective of each session was to disseminate the research results to date, along with future plans, in each of the six areas. Contract and government researchers presented results of their work.
Flow Simulation of N2B Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2012-01-01
The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.
Engineering Research and Development and Technology thrust area report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R.T.; Minichino, C.
1993-03-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less
Grain-boundary-dependent CO2 electroreduction activity.
Feng, Xiaofeng; Jiang, Kaili; Fan, Shoushan; Kanan, Matthew W
2015-04-15
Uncovering new structure-activity relationships for metal nanoparticle (NP) electrocatalysts is crucial for advancing many energy conversion technologies. Grain boundaries (GBs) could be used to stabilize unique active surfaces, but a quantitative correlation between GBs and catalytic activity has not been established. Here we use vapor deposition to prepare Au NPs on carbon nanotubes (Au/CNT). As deposited, the Au NPs have a relatively high density of GBs that are readily imaged by transmission electron microscopy (TEM); thermal annealing lowers the density in a controlled manner. We show that the surface-area-normalized activity for CO2 reduction is linearly correlated with GB surface density on Au/CNT, demonstrating that GB engineering is a powerful approach to improving the catalytic activity of metal NPs.
1996-12-04
The Mars Pathfinder began the journey to Mars with liftoff atop a Delta II expendable launch vehicle from launch Complex 17B on Cape Canaveral Air Station. The Mars Pathfinder traveled on a direct trajectory to Mars, and arrived there in July 1997. Mars Pathfinder sent a lander and small robotic rover, Sojourner, to the surface of Mars. The primary objective of the mission was to demonstrate a low-cost way of delivering a science package to the surface of Mars using a direct entry, descent and landing with the aid of small rocket engines, a parachute, airbags and other techniques. In addition, landers and rovers of the future will share the heritage of Mars Pathfinder designs and technologies first tested in this mission. Pathfinder also collected invaluable data about the Martian surface.
NASA Astrophysics Data System (ADS)
Ozkan, Seher
Tissue engineering involves the fabrication of biodegradable scaffolds, on which various types of cells are grown, to provide tissue constructs for tissue repair/regeneration. Native tissues have complex structures, with functions and properties changing spatially and temporally, and require special tailoring of tissue engineering scaffolds to allow mimicking of their complex elegance. The understanding of the rheological behavior of the biodegradable polymer and the thermo-mechanical history that the polymer experiences during processing is critical in fabricating scaffolds with appropriate microstructural distributions. This study has first focused on the rheological material functions of various gel-like fluids including biofluids and hydrogels, which can emulate the viscoelastic behavior of biofluids. Viscoplasticity and wall slip were recognized as key attributes of such systems. Furthermore, a new technology base involving twin-screw extrusion/spiral winding (TSESW) process was developed for the shaping of functionally-graded scaffolds. This novel scaffold fabrication technology was applied to the development of polycaprolactone (PCL) scaffolds, incorporated with tricalcium phosphate nanoparticles and various porogens in graded fashion. The protein encapsulation and controlled release capabilities of the TSESW process was also demonstrated by dispersing bovine serum albumin (BSA) protein into the PCL matrix. Effects of processing conditions and porosity distributions on compressive properties, surface topography, encapsulation efficiency, release profiles and the secondary structure of BSA were investigated. The PCL scaffolds were determined to be biocompatible, with the proliferation rates of human fetal osteoblast cells (hFOB) increasing with increasing porosity and decreasing concentration of TCP. BSA proteins were determined to be denatured to a greater extent with melt extrusion in the 80-100°C range (in comparison to wet extrusion using organic solvents). Finally, the surface topographies of melt processed poly(L-lactic acid) (ranging from nanoindentations to spherulitic protrusions) were determined to affect the orientation directions of fibroblast and osteoblast-like cells and the spherulitic surfaces giving rise to reduced proliferation rates of fibroblasts.
NASA Astrophysics Data System (ADS)
Dudas, Illes; Berta, Miklos; Cser, Istvan
1998-12-01
Up-to-date manufacturing equipments of production of rotational parts in small series are lathe-centers and CNC grinding machines with high concentration of manufacturing operations. By the use of these machine tools it can be produced parts with requirements of increased accuracy and surface quality. In the lathe centers, which contain the manufacturing procedures of lathes using stationary tools and of drilling-milling machine tools using rotational tools, non-rotational surfaces of rotational parts can also be produced. The high concentration of manufacturing operations makes necessary the planning and programing of the measuring, monitoring and quality control into the technological process during manufacturing operation. In this way, taking into consideration the technological possibilities of lathe canters, the scope of computer aided technological planning duties significantly increases. It is trivial requirement to give only once the descriptions of the prefabricated parts and ready made parts. Starting taking into account these careful considerations we have been developing the planning system of technology of body of revolution on the base of GTIPROG/EC system which useful for programming of lathe centers. Out paper deals with the results of development and the occurring problems.
Antibacterial Au nanostructured surfaces.
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-02-07
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.
Information technology security system engineering methodology
NASA Technical Reports Server (NTRS)
Childs, D.
2003-01-01
A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Damage of natural stone tablets exposed to exhaust gas under laboratory conditions
NASA Astrophysics Data System (ADS)
Farkas, Orsolya; Szabados, György; Török, Ákos
2016-04-01
Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.
Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie
2015-11-04
Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.
Recent Technology Advances in Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis
2017-01-01
This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National Science and Technology Council; Public Meetings AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meetings. SUMMARY...
Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1
NASA Technical Reports Server (NTRS)
Eng, R. D.; Evans, D. J.
1978-01-01
The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved.
Slicer Method Comparison Using Open-source 3D Printer
NASA Astrophysics Data System (ADS)
Ariffin, M. K. A. Mohd; Sukindar, N. A.; Baharudin, B. T. H. T.; Jaafar, C. N. A.; Ismail, M. I. S.
2018-01-01
Open-source 3D printer has been one of the popular choices in fabricating 3D models. This technology is easily accessible and low in cost. However, several studies have been made to improve the performance of this low-cost technology in term of the accuracy of the parts finish. This study is focusing on the selection of slicer mode between CuraEngine and Slic3r. The effect on this slicer has been observe in terms of accuracy and surface visualization. The result shows that if the accuracy is the top priority, CuraEngine is the better option to use as contribute more accuracy as well as less filament is needed compared to the Slice3r. Slice3r may be very useful for complicated parts such as hanging structure due to excessive material which act as support material. The study provides basic platform for the user to have an idea which option to be used in fabricating 3D model.
Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, William
The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less
ERIC Educational Resources Information Center
Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…
1993-11-01
Recover Nitramine (Yxidizers from Solid Propellants Using Liquid Ammonia * Co~ial Engine for Ducted Hybrid , and Gel BI-propu~uion Systems S ltravolet...Surface Optical Testing Device * Electron Beam Driven Negative Ion Source * Method of Manufacturing Hybrid Fber-Reinforced Composite Nozzle Materials...Modeling Software FRED Partner I ty * Class VDrnng Simulation Parow. Academia * Combustion and Tribology Partne. Academia * Hybrid Electric Drive/High
2015-11-01
ground surface (bgs) and is composed of crystalline igneous and metamorphic rocks . The ranges are located on Cajon soils (Jacobs Engineering Group...Twentynine Palms, California ESTCP Project MR-201229 NOVEMBER 2015 Steve Stacy ARCADIS- US , Inc. Distribution Statement A REPORT DOCUMENTATION PAGE...geophysical classification (AGC) technologies for Munitions Response (MR). This demonstration was designed to evaluate the use of AGC methodology
EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...
Diesel Technology: Engines. [Teacher and Student Editions.
ERIC Educational Resources Information Center
Barbieri, Dave; Miller, Roger; Kellum, Mary
Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…
Conventional engine technology. Volume 3: Comparisons and future potential
NASA Technical Reports Server (NTRS)
Dowdy, M. W.
1981-01-01
The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
A closed-loop air revitalization process technology demonstrator
NASA Astrophysics Data System (ADS)
Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark
Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.
ERIC Educational Resources Information Center
Lomask, Michal; Crismond, David; Hacker, Michael
2018-01-01
This paper reports on the use of teaching portfolios to assist in curriculum revision and the exploration of instructional practices used by middle school technology and engineering education teachers. Two new middle school technology and engineering education units were developed through the Engineering for All (EfA) project. One EfA unit focused…
Engineering innovation in healthcare: technology, ethics and persons.
Bowen, W Richard
2011-01-01
Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.
NASA Astrophysics Data System (ADS)
Spitznagel, J. A.; Wood, Susan
1988-08-01
The Software Engineering institute is a federally funded research and development center sponsored by the Department of Defense (DOD). It was chartered by the Undersecretary of Defense for Research and Engineering on June 15, 1984. The SEI was established and is operated by Carnegie Mellon University (CUM) under contract F19628-C-0003, which was competitively awarded on December 28, 1984, by the Air Force Electronic Systems Division. The mission of the SEI is to provide the means to bring the ablest minds and the most effective technology to bear on the rapid improvement of the quality of operational software in mission-critical computer systems; to accelerate the reduction to practice of modern software engineering techniques and methods; to promulgate the use of modern techniques and methods throughout the mission-critical systems community; and to establish standards of excellence for the practice of software engineering. This report provides a summary of the programs and projects, staff, facilities, and service accomplishments of the Software Engineering Institute during 1987.
High-Performance, Space-Storable, Bi-Propellant Program Status
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2002-01-01
Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.
An international survey and recommendations for modern hydrokinetic systems
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Basnet, Bipin; Dunsmore, Ian
2017-04-01
This study presents the results of a survey on some of the advantages of the novel and uniquehydrokinetic energy generation systems over other technologies available today. Recently, a comprehensive assessment study for the application of internationally leading hydrokinetic technologies in water engineering has been conducted. The study was carried with the collaboration of the School of Engineering, University of Glasgow and Scottish Water Horizons Ltd. The assessment involved the information collection, critical analysis of various features and financial viability analysis of various hydrokinetic systems available at this time. The outcomes of the study are summarized below: - The preliminary assessment of the hydrokinetic system and their application were carried out. The technologies were divided into different categories as per their core theory, scope of application as well as positive and negatives effects of their application. - A variety of criteria were used to assess the technical, economical and ecological potential from the application of hydrokinetic systems. - A number of companies representing a wide range of technologies available worldwide were ranked considering the performance of these against the above criteria. - Only a couple of the companies could satisfy the selection condition to be adopted into select sites of low flow and low pressure head. - A more detailed assessment for specific sites and further testing of these technologies is recommended to further assess the advantages and optimal performance of the selected technologies. A preliminary evaluation of the best performing systems demonstrates its effectiveness, particularly over other existing hydrokinetic technologies, when ecology of the open water surface system is considered. Specifically it will be of interest to use the selected technology in combination with a fish passage, as compared with other technologies this system has a minimal amount of fast moving components.
Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation
NASA Technical Reports Server (NTRS)
Hoffman, T.; Mack, J.; Mount, R.
1994-01-01
This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting...
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
Laser marking as a result of applying reverse engineering
NASA Astrophysics Data System (ADS)
Mihalache, Andrei; Nagîţ, Gheorghe; Rîpanu, Marius Ionuţ; Slǎtineanu, Laurenţiu; Dodun, Oana; Coteaţǎ, Margareta
2018-05-01
The elaboration of a modern manufacturing technology needs a certain quantum of information concerning the part to be obtained. When it is necessary to elaborate the technology for an existing object, such an information could be ensured by using the principles specific to the reverse engineering. Essentially, in the case of this method, the analysis of the surfaces and of other characteristics of the part must offer enough information for the elaboration of the part manufacturing technology. On the other hand, it is known that the laser marking is a processing method able to ensure the transfer of various inscriptions or drawings on a part. Sometimes, the laser marking could be based on the analysis of an existing object, whose image could be used to generate the same object or an improved object. There are many groups of factors able to affect the results of applying the laser marking process. A theoretical analysis was proposed to show that the heights of triangles obtained by means of a CNC marking equipment depend on the width of the line generated by the laser spot on the workpiece surface. An experimental research was thought and materialized to highlight the influence exerted by the line with and the angle of lines intersections on the accuracy of the marking process. By mathematical processing of the experimental results, empirical mathematical models were determined. The power type model and the graphical representation elaborated on the base of this model offered an image concerning the influences exerted by the considered input factors on the marking process accuracy.
Just the Right Amount of Reinforcement
NASA Technical Reports Server (NTRS)
Walton, Greg
1998-01-01
Lockheed Martin Skunk Works, is taking the next step towards economical low-Earth-orbit (LEO) operations with NASA's X-33 technology demonstrator, that uses composite tanks for liquid hydrogen (LH sub2) fuel storage and structural support, The X-33 is a 53% scale model of the VentureStar single-stage-to-orbit (SSTO) reusable launch vehicle(RLV) projected to orbit payloads at a rate, of $1,000 per pound beginning in 2004 In order to make VentureStar completely reusable and economical engineers are using composite materials throughout the spacecrafts structure. The first test of the design comes in 1999 on the X-33 technology demonstrator. Two of the primary structures that engineers will be evaluating are the carbon fiber/epoxy LH2 fuel tanks. The 29-ft long by 18-ft wide tanks, which fill two-thirds of the X-33's interior, serve a dual purpose carrying fuel and providing structural support to the walls of the spacecraft. Fiber placement makes it possible to build the fuel tanks, large, light and strong enough to satisfy X33's requirements. Lockheed Martin choose the fabrication technology to produce the eight sections of each tank because of fiber placement's ability to handle complex surfaces, speed and repeatability.
Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)
2002-01-01
Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.
Desert Research and Technology Studies 2008 Report
NASA Technical Reports Server (NTRS)
Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew
2009-01-01
During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.
Study on Stability Analysis and Monitoring Technology of Deep Concave Open-Pit Mine Slope
NASA Astrophysics Data System (ADS)
Xue, Dinglong; Ren, Fenghua; Li, Yuan
2018-05-01
In this paper, using the FLAC3D software to establish the numerical model of the rock slope in the south of Washan stope and to compare and verify with the monitoring result, reference is made to the original engineering and hydrogeological data of Washan stope. The results show that the stability of the South slope is mainly affected by the dominant structural plane, and the potential slip surface and the dominant structure surface are the same. During the recovery period of -120m platform residual mine, the disturbance stress is increasing but the overall amplitude is small and the slope is relatively stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heistand, R.N.; Atwood, R.A.; Richardson, K.L.
1980-06-01
From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.
Optical Properties and Plasmonic Performance of Titanium Nitride
Patsalas, Panos; Kalfagiannis, Nikolaos; Kassavetis, Spyros
2015-01-01
Titanium nitride (TiN) is one of the most well-established engineering materials nowadays. TiN can overcome most of the drawbacks of palsmonic metals due to its high electron conductivity and mobility, high melting point and due to the compatibility of its growth with Complementary Metal Oxide Semiconductor (CMOS) technology. In this work, we review the dielectric function spectra of TiN and we evaluate the plasmonic performance of TiN by calculating (i) the Surface Plasmon Polariton (SPP) dispersion relations and (ii) the Localized Surface Plasmon Resonance (LSPR) band of TiN nanoparticles, and we demonstrate a significant plasmonic performance of TiN.
NASA Astrophysics Data System (ADS)
Godefroy, J. C.; Gageant, C.; Francois, D.
Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.
Modification of the surface of metal products with carbide coatings by electrospark alloying
NASA Astrophysics Data System (ADS)
Koshuro, Vladimir A.; Fomina, Marina A.; Fomin, Aleksandr A.
2018-04-01
Electrospark alloying (ESA) technology has existed for a long time (since the middle of the 20th century) but its potential has not been exhausted yet. In the present paper it is proposed to increase the mechanical properties of steel and titanium products by doping with a hard carbide alloy based on "WC-TiC-Co" system. As a result, the hardness of coatings obtained by ESA reaches at least 18-22 GPa with a layer thickness of up to 0.5 mm. The proposed solution can improve the functional qualities of various friction surfaces that are used in engineering, as well as in friction elements.
Potential of Spark Ignition Engine : Engine Design Concepts
DOT National Transportation Integrated Search
1980-03-01
This report provides a review and assessment of potential improvements in fuel economy for a selected number of spark ignition engine design technologies for passenger cars and light trucks. The engine design technologies examined include: : a) optim...
Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2004-01-01
The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.
NASA Astrophysics Data System (ADS)
Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.
2015-09-01
Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.
1997-02-01
through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information
Precision genome engineering in lactic acid bacteria
2014-01-01
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.
2014-01-01
An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
International Symposium on Interfacial Joining and Surface Technology (IJST2013)
NASA Astrophysics Data System (ADS)
Takahashi, Yasuo
2014-08-01
Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013 Details of the committees are available in the PDF
Information Protection Engineering: Using Technology and Experience to Protect Assets
2001-07-01
SAIC’s highly experienced team has developed technology, techniques and expertise in protecting these information assets from electronic attack by...criminals, terrorists, hackers or nation states. INFORMATION PROTECTION ENGINEERING : Using Technology and Experience to Protect Assets William J. Marlow... Engineering : Using Technology and Experience to Protect Assets Contract or Grant Number Program Element Number Authors Marlow, William J. Project
ERIC Educational Resources Information Center
Daugherty, Jenny L.
2011-01-01
Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…
NASA Technical Reports Server (NTRS)
1972-01-01
Materials and design technology of the all-silica LI-900 rigid surface insulation (RSI) thermal protection system (TPS) concept for the shuttle spacecraft is presented. All results of contract development efforts are documented. Engineering design and analysis of RSI strain arrestor plate material selections, sizing, and weight studies are reported. A shuttle prototype test panel was designed, analyzed, fabricated, and delivered. Thermophysical and mechanical properties of LI-900 were experimentally established and reported. Environmental tests, including simulations of shuttle loads represented by thermal response, turbulent duct, convective cycling, and chemical tolerance tests are described and results reported. Descriptions of material test samples and panels fabricated for testing are included. Descriptions of analytical sizing and design procedures are presented in a manner formulated to allow competent engineering organizations to perform rational design studies. Results of parametric studies involving material and system variables are reported. Material performance and design data are also delineated.
Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio
2016-01-01
Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035
NASA Astrophysics Data System (ADS)
Hashemi, Azadeh; de Decker, Fanny; Orcheston-Findlay, Louise; Ali, M. Azam; Alkaisi, Maan M.; Nock, Volker
2017-11-01
This work introduces casein microstructures with surface features as a biodegradable biomedical platform technology for enhancing tissue-engineering applications. An optimized fabrication process is presented to reduce the hydrophobicity of intermediate polydimethylsiloxane (PDMS) molds and to transfer high-resolution regular and biomimetic features onto the surface of casein devices. Four different cross-linking reagents, glutaraldehyde, formaldehyde, citric acid and transglutaminase (TG) were investigated to increase the degradation time of casein and their influence on swelling and biocompatibility of the films was studied. TG was found to be the only cross-linker to effectively increase the degradation time and show reduced film swelling after immersion into media, while remaining compatible with cell-culture. The maximum expansion of the films cross-linked via TG was 33% after 24 hours of immersion in cell-culture media. C2C12 cells were successfully cultured on the patterned films for up to 72 hours. The patterned biodegradable casein substrates presented here have promising applications in stem-cell engineering, regenerative medicine, and implantable devices.
Plasma-assisted interface engineering of boron nitride nanostructure films.
Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri
2014-10-28
Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.
Experiments in charge control at geosynchronous orbit - ATS-5 and ATS-6
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1985-01-01
In connection with existing theoretical concepts, it was difficult to explain the negative potentials found in sunlight, first on Applied Technology Satellite-5 (ATS-5) and then on ATS-6. The problem became important when an association between spacecraft charging and anomalies in spacecraft behavior was observed. A study of daylight charging phenomena on ATS-6 was conducted, and an investigation was performed with the objective to determine effective methods of charge control, taking into account the feasibility to utilize the ATS-5 and ATS-6 ion engines as current sources. In the present paper, data and analysis for the ion engine experiments on ATS-5 and ATS-6 are presented. It is shown that electron emission from a satellite with insulating surfaces is not an effective method of charge control because the increase in differential charging which results limits the effectiveness of electron emitters and increases the possibility of electrostatic discharges between surfaces at different potentials.
Further industrial tests of ceramic thermal barrier coatings
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Levine, S. R.
1982-01-01
The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
2000-01-01
Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1973-01-01
The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.
NASA Astrophysics Data System (ADS)
Killingsworth, John
Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
Investigating Knowledge Creation Technology in an Engineering Course
ERIC Educational Resources Information Center
Jalonen, Satu; Lakkala, Minna; Paavola, Sami
2011-01-01
The aim of the present study was to examine the technological affordances of a web-based collaborative learning technology, Knowledge Practices Environment (KPE), for supporting different dimensions of knowledge creation processes. KPE was used by engineering students in a practically oriented undergraduate engineering course. The study…
The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...
Engineer's Notebook--A Design Assessment Tool
ERIC Educational Resources Information Center
Kelley, Todd R.
2011-01-01
As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…
Integrating Engineering Design into Technology Education: Georgia's Perspective
ERIC Educational Resources Information Center
Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…
2010-04-01
for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems
1995-01-01
through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and
CTE's Role in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Hyslop, Alisha
2010-01-01
For the last several years, concern has been brewing about America's underinvestment and underperformance in science, technology, engineering and mathematics--the fields collectively known as STEM. STEM can be described as an initiative for securing America's leadership in science, technology, engineering and mathematics fields and identifying…
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
Integrating rehabilitation engineering technology with biologics.
Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L
2011-06-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Xiao, Yan; Chen, Xianzhong; Shen, Wei; Yang, Haiquan; Fan, You
2015-12-01
Production of bioethanol using starch as raw material has become a very prominent technology. However, phytate in the raw material not only decreases ethanol production efficiency, but also increases phosphorus discharge. In this study, to decrease phytate content in an ethanol fermentationprocess, Saccharomyces cerevisiae was engineered forheterologous expression of phytase on the cell surface. The phy gene encoding phytase gene was fused with the C-terminal-half region of α-agglutinin and then inserted downstream of the secretion signal gene, to produce a yeast surface-display expression vector pMGK-AG-phy, which was then transformed into S. cerevisiae. The recombinant yeast strain, PHY, successfully displayed phytase on the surface of cells producing 6.4 U/g wet cells and its properties were further characterized. The growthrate and ethanol production of the PHY strain were faster than the parent S. cerevisiae strain in the fermentation medium by simultaneous saccharification and fermentation. Moreover, the phytate concentration decreased by 91% in dry vinasse compared to the control. In summary, we constructed recombinant S. cerevisiae strain displaying phytase on the cell surface, which could effectively reduce the content of phytate, improve the utilization value of vinasse and reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.
Advanced Subsonic Airplane Design and Economic Studies
NASA Technical Reports Server (NTRS)
Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.
1995-01-01
A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures
NASA Astrophysics Data System (ADS)
Lenda, Grzegorz; Uznański, Andrzej; Strach, Michał; Lewińska, Paulina
2016-06-01
The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.
NASA Astrophysics Data System (ADS)
Jean, Ming-Der; Jiang, Ji-Bin; Chien, Jia-Yi
2017-11-01
The purpose of this study was to construct the indicators of professional competencies of the nanotechnology-based sputtering system industry based on industry requirements and analyse the core competencies of the industry for promoting the human resource of physical vapour deposition technology. The document analysis, expert interview, and Delphi technique surveys were considered and the survey items with 32 items divided into 7 domains were selected according to consensus opinions of 10 experts by the Delphi survey technique. Through three questionnaire surveys' analysis, the professional competence scales for the K-S tests showed a good internal consistency. The findings of this study provide guidelines for professional competence for nanotechnology-based sputtering technology by applying surface heat-treatment industry. These guidelines can also reveal the practical competency requirements of nanotechnology-based sputtering technology to deal with any subsequent challenges, future developments, and invisible services for students in a technology institute programme.
Müller, Marcus; Traum, Matthew J
2012-01-01
To introduce bio- and micro-technologies into general undergraduate thermal-fluids classes, a hands-on interdisciplinary in-class demonstration is described that juxtaposes classical pressure loss pipe flow experiments against a modern micro-characterization technique, AFM profilometry. Both approaches measure surface roughness and can segue into classroom discussions related to material selection and design of bio-medical devices to handle biological fluids such as blood. Appealing to the range of engineering students populating a general thermal-fluids course, a variety of pipe/hose/tube materials representing a spectrum of disciplines can be tested using both techniques. This in-class demonstration relies on technical content already available in standard thermal-fluids textbooks, provides experimental juxtaposition between classical and micro-technology-enabled approaches to the same experiment, and can be taught by personnel with no specialized micro- or bio-technology expertise.
High-Temperature Surface-Acoustic-Wave Transducer
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang; Tittmann, Bernhard R.
2010-01-01
Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Desert Research and Technology Studies 2005 Report
NASA Technical Reports Server (NTRS)
Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.
2006-01-01
During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first year since the Apollo program that two pressurized suited test subjects have worked together simultaneously. Another first was the demonstration of recharge of cryogenic life support systems while in-use by the suited test subjects. The recharge capability allowed the simulated EVA test duration to be doubled, facilitating SCOUT proto-type rover testing. This paper summarizes Desert RATS 2005 test hardware, detailed test objectives, test operations and test results.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; England, Mark; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
Engineering technology programs are characterized by their focus on application and practice, and by their approximately 50/50 mix of theory and laboratory experience. Engineering technology graduates are employed across the technological spectrum and are often found in areas that deal with application, implementation, and production. Yet we know very little about the communications practices and information-use skills of engineering technology students. In this paper, we report selected results of an exploratory study of engineering technology students enrolled in three U.S. institutions of higher education. Data are presented for the following topics: career goals and aspirations; the importance of, receipt of, and helpfulness of communications and information-use skills instruction; collaborative writing; use of libraries; and the use of electronic (computer) networks.
Signori, Marcos R; Garcia, Renato
2010-01-01
This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.
47 CFR 5.55 - Filing of applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...