Sample records for surface entropy reduction

  1. A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction

    PubMed Central

    Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C

    2010-01-01

    Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072

  2. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  3. The Effect of the Agricultural Carbon Sequestration and Agrochemical Reduction on the Regional Water Environment Quality

    NASA Astrophysics Data System (ADS)

    Leyi, Wang; Baoli, Zhang; Xin, Li; Juan, Du

    2018-05-01

    This paper analysed the impact of the agricultural carbon reduction and emission reduction measures implementation on the environmental quality of surface water and groundwater in winter and summer in Henan and Anhui Province project areas by using entropy weight fuzzy matter element analysis method. The result showed that the reduction in the application of chemical fertilizers and pesticides had a certain impact on the improvement of the water environment by using agricultural carbon sequestration technologies.

  4. Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan

    This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.

  5. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    PubMed

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  6. Lexical Predictability During Natural Reading: Effects of Surprisal and Entropy Reduction.

    PubMed

    Lowder, Matthew W; Choi, Wonil; Ferreira, Fernanda; Henderson, John M

    2018-06-01

    What are the effects of word-by-word predictability on sentence processing times during the natural reading of a text? Although information complexity metrics such as surprisal and entropy reduction have been useful in addressing this question, these metrics tend to be estimated using computational language models, which require some degree of commitment to a particular theory of language processing. Taking a different approach, this study implemented a large-scale cumulative cloze task to collect word-by-word predictability data for 40 passages and compute surprisal and entropy reduction values in a theory-neutral manner. A separate group of participants read the same texts while their eye movements were recorded. Results showed that increases in surprisal and entropy reduction were both associated with increases in reading times. Furthermore, these effects did not depend on the global difficulty of the text. The findings suggest that surprisal and entropy reduction independently contribute to variation in reading times, as these metrics seem to capture different aspects of lexical predictability. Copyright © 2018 Cognitive Science Society, Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less

  8. Giant onsite electronic entropy enhances the performance of ceria for water splitting

    DOE PAGES

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less

  9. Scaling of the entropy budget with surface temperature in radiative-convective equilibrium

    NASA Astrophysics Data System (ADS)

    Singh, Martin S.; O'Gorman, Paul A.

    2016-09-01

    The entropy budget of the atmosphere is examined in simulations of radiative-convective equilibrium with a cloud-system resolving model over a wide range of surface temperatures from 281 to 311 K. Irreversible phase changes and the diffusion of water vapor account for more than half of the irreversible entropy production within the atmosphere, even in the coldest simulation. As the surface temperature is increased, the atmospheric radiative cooling rate increases, driving a greater entropy sink that must be matched by greater irreversible entropy production. The entropy production resulting from irreversible moist processes increases at a similar fractional rate as the entropy sink and at a lower rate than that implied by Clausius-Clapeyron scaling. This allows the entropy production from frictional drag on hydrometeors and on the atmospheric flow to also increase with warming, in contrast to recent results for simulations with global climate models in which the work output decreases with warming. A set of approximate scaling relations is introduced for the terms in the entropy budget as the surface temperature is varied, and many of the terms are found to scale with the mean surface precipitation rate. The entropy budget provides some insight into changes in frictional dissipation in response to warming or changes in model resolution, but it is argued that frictional dissipation is not closely linked to other measures of convective vigor.

  10. A simple model for heterogeneous nucleation of isotactic polypropylene

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Milner, Scott

    2013-03-01

    Flow-induced crystallization (FIC) is of interest because of its relevance to processes such as injection molding. It has been suggested that flow increases the homogeneous nucleation rate by reducing the melt state entropy. However, commercial polypropylene (iPP) exhibits quiescent nucleation rates that are much too high to be consistent with homogeneous nucleation in carefully purified samples. This suggests that heterogeneous nucleation is dominant for typical samples used in FIC experiments. We describe a simple model for heterogeneous nucleation of iPP, in terms of a cylindrical nucleus on a flat surface with the critical size and barrier set by the contact angle. Analysis of quiescent crystallization data with this model gives reasonable values for the contact angle. We have also employed atomistic simulations of iPP crystals to determine surface energies with vacuum and with Hamaker-matched substrates, and find values consistent with the contact angles inferred from heterogeneous nucleation experiments. In future work, these results combined with calculations from melt rheology of entropy reduction due to flow can be used to estimate the heterogeneous nucleation barrier reduction due to flow, and hence the increase in nucleation rate due to FIC for commecial iPP.

  11. Holographic charged Rényi entropies

    NASA Astrophysics Data System (ADS)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  12. The entropy reduction engine: Integrating planning, scheduling, and control

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.; Kedar, Smadar T.

    1991-01-01

    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.

  13. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.

    PubMed

    Lyalin, Andrey; Nakayama, Akira; Uosaki, Kohei; Taketsugu, Tetsuya

    2013-02-28

    The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O(2), O, OH, OOH, and H(2)O on N atom impurities in the h-BN monolayer (N(B)@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on N(B)@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

  14. Logarithmic black hole entropy corrections and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  15. Respiration and heart rate complexity: Effects of age and gender assessed by band-limited transfer entropy

    PubMed Central

    Nemati, Shamim; Edwards, Bradley A.; Lee, Joon; Pittman-Polletta, Benjamin; Butler, James P.; Malhotra, Atul

    2013-01-01

    Aging and disease are accompanied with a reduction of complex variability in the temporal patterns of heart rate. This reduction has been attributed to a break down of the underlying regulatory feedback mechanisms that maintain a homeodynamic state. Previous work has established the utility of entropy as an index of disorder, for quantification of changes in heart rate complexity. However, questions remain regarding the origin of heart rate complexity and the mechanisms involved in its reduction with aging and disease. In this work we use a newly developed technique based on the concept of band-limited transfer entropy to assess the aging-related changes in contribution of respiration and blood pressure to entropy of heart rate at different frequency bands. Noninvasive measurements of heart beat interval, respiration, and systolic blood pressure were recorded from 20 young (21–34 years) and 20 older (68–85 years) healthy adults. Band-limited transfer entropy analysis revealed a reduction in high-frequency contribution of respiration to heart rate complexity (p < 0.001) with normal aging, particularly in men. These results have the potential for dissecting the relative contributions of respiration and blood pressure-related reflexes to heart rate complexity and their degeneration with normal aging. PMID:23811194

  16. Entanglement Entropy of Black Holes.

    PubMed

    Solodukhin, Sergey N

    2011-01-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  17. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-10-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  18. Holographic entanglement entropy conjecture for general spacetimes

    NASA Astrophysics Data System (ADS)

    Sanches, Fabio; Weinberg, Sean J.

    2016-10-01

    We present a natural generalization of holographic entanglement entropy proposals beyond the scope of AdS /CFT by anchoring extremal surfaces to holographic screens. Holographic screens are a natural extension of the AdS boundary to arbitrary spacetimes and are preferred codimension-1 surfaces from the viewpoint of the covariant entropy bound. A broad class of screens have a unique preferred foliation into codimension-2 surfaces called leaves. Our proposal is to find the areas of extremal surfaces anchored to the boundaries of regions in leaves. We show that the properties of holographic screens are sufficient to prove, under generic conditions, that extremal surfaces anchored in this way always lie within a causal region associated with a given leaf. Within this causal region, a maximin construction similar to that of Wall proves that our proposed quantity satisfies standard properties of entanglement entropy like strong subadditivity. We conjecture that our prescription computes entanglement entropies in quantum states that holographically define arbitrary spacetimes, including those in a cosmological setting with no obvious boundary on which to anchor extremal surfaces.

  19. The gravity dual of Rényi entropy.

    PubMed

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.

  20. The gravity dual of Rényi entropy

    PubMed Central

    Dong, Xi

    2016-01-01

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity. PMID:27515122

  1. Integrating planning and reaction: A preliminary report

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Drummond, Mark

    1990-01-01

    The Entropy Reduction Engine architecture for integrating planning, scheduling, and control is examined. The architecture is motivated through a NASA mission scenario and a brief list of design goals. An overview is presented of the Entropy Reduction Engine architecture by describing its major components, their interactions, and the way in which these interacting components satisfy the design goals.

  2. Contour entropy: a new determinant of perceiving ground or a hole.

    PubMed

    Gillam, Barbara J; Grove, Philip M

    2011-06-01

    Figure-ground perception is typically described as seeing one surface occluding another. Figure properties, not ground properties, are considered the significant factors. In scenes, however, a near surface will often occlude multiple contours and surfaces, often at different depths, producing alignments that are improbable except under conditions of occlusion. We thus hypothesized that unrelated (high entropy) lines would tend to appear as ground in a figure-ground paradigm more often than similarly aligned ordered (low entropy) lines. We further hypothesized that for lines spanning a closed area, high line entropy should increase the hole-like appearance of that area. These predictions were confirmed in three experiments. The probability that patterned rectangles were seen as ground when alternated with blank rectangles increased with pattern entropy. A single rectangular shape appeared more hole-like when the entropy of the enclosed contours increased. Furthermore, these same contours, with the outline shape removed, gave rise to bounding illusory contours whose strength increased with contour entropy. We conclude that figure-ground and hole perception can be determined by properties of ground in the absence of any figural shape, or surround, factors.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xi

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  4. The gravity dual of Rényi entropy

    DOE PAGES

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  5. Trends in entropy production during ecosystem development in the Amazon Basin.

    PubMed

    Holdaway, Robert J; Sparrow, Ashley D; Coomes, David A

    2010-05-12

    Understanding successional trends in energy and matter exchange across the ecosystem-atmosphere boundary layer is an essential focus in ecological research; however, a general theory describing the observed pattern remains elusive. This paper examines whether the principle of maximum entropy production could provide the solution. A general framework is developed for calculating entropy production using data from terrestrial eddy covariance and micrometeorological studies. We apply this framework to data from eight tropical forest and pasture flux sites in the Amazon Basin and show that forest sites had consistently higher entropy production rates than pasture sites (0.461 versus 0.422 W m(-2) K(-1), respectively). It is suggested that during development, changes in canopy structure minimize surface albedo, and development of deeper root systems optimizes access to soil water and thus potential transpiration, resulting in lower surface temperatures and increased entropy production. We discuss our results in the context of a theoretical model of entropy production versus ecosystem developmental stage. We conclude that, although further work is required, entropy production could potentially provide a much-needed theoretical basis for understanding the effects of deforestation and land-use change on the land-surface energy balance.

  6. Regional entropy of functional imaging signals varies differently in sensory and cognitive systems during propofol-modulated loss and return of behavioral responsiveness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Shanshan; Wang, Lubin; Yang, Zheng; Li, Shi-Jiang; Binder, Jeffrey R; Hudetz, Anthony G

    2018-05-08

    The level and richness of consciousness depend on information integration in the brain. Altered interregional functional interactions may indicate disrupted information integration during anesthetic-induced unconsciousness. How anesthetics modulate the amount of information in various brain regions has received less attention. Here, we propose a novel approach to quantify regional information content in the brain by the entropy of the principal components of regional blood oxygen-dependent imaging signals during graded propofol sedation. Fifteen healthy individuals underwent resting-state scans in wakeful baseline, light sedation (conscious), deep sedation (unconscious), and recovery (conscious). Light sedation characterized by lethargic behavioral responses was associated with global reduction of entropy in the brain. Deep sedation with completely suppressed overt responsiveness was associated with further reductions of entropy in sensory (primary and higher sensory plus orbital prefrontal cortices) but not high-order cognitive (dorsal and medial prefrontal, cingulate, parietotemporal cortices and hippocampal areas) systems. Upon recovery of responsiveness, entropy was restored in the sensory but not in high-order cognitive systems. These findings provide novel evidence for a reduction of information content of the brain as a potential systems-level mechanism of reduced consciousness during propofol anesthesia. The differential changes of entropy in the sensory and high-order cognitive systems associated with losing and regaining overt responsiveness are consistent with the notion of "disconnected consciousness", in which a complete sensory-motor disconnection from the environment occurs with preserved internal mentation.

  7. Action and entanglement in gravity and field theory.

    PubMed

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.

  8. Thermodynamic foundations of applications of ab initio methods for determination of the adsorbate equilibria: hydrogen at the GaN(0001) surface.

    PubMed

    Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław

    2017-11-08

    Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.

  9. Consistent maximum entropy representations of pipe flow networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.

  10. Generation of skeletal mechanism by means of projected entropy participation indices

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Valorani, Mauro; Ciottoli, Pietro Paolo; Galassi, Riccardo Malpica

    2017-11-01

    When the dynamics of reactive systems develop very-slow and very-fast time scales separated by a range of active time scales, with gaps in the fast/active and slow/active time scales, then it is possible to achieve multi-scale adaptive model reduction along-with the integration of the ODEs using the G-Scheme. The scheme assumes that the dynamics is decomposed into active, slow, fast, and invariant subspaces. We derive expressions that establish a direct link between time scales and entropy production by using estimates provided by the G-Scheme. To calculate the contribution to entropy production, we resort to a standard model of a constant pressure, adiabatic, batch reactor, where the mixture temperature of the reactants is initially set above the auto-ignition temperature. Numerical experiments show that the contribution to entropy production of the fast subspace is of the same magnitude as the error threshold chosen for the identification of the decomposition of the tangent space, and the contribution of the slow subspace is generally much smaller than that of the active subspace. The information on entropy production associated with reactions within each subspace is used to define an entropy participation index that is subsequently utilized for model reduction.

  11. Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng

    2016-06-01

    In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.

  12. Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1990-01-01

    Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.

  13. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  14. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  15. Implications, Consequences and Interpretations of Generalized Entropy in the Cosmological Setups

    NASA Astrophysics Data System (ADS)

    Moradpour, H.

    2016-09-01

    Recently, it was argued (Tsallis and Cirto, Eur. Phys. J. C 73, 2487 2013) that the total entropy of a gravitational system should be related to the volume of system instead of the system surface. Here, we show that this new proposal cannot satisfy the unified first law of thermodynamics and the Friedmans equation simultaneously, unless the effects of dark energy candidate on the horizon entropy are considered. In fact, our study shows that some types of dark energy candidate may admit this proposal. Some general properties of required dark energy are also addressed. Moreover, our investigation shows that this new proposal for entropy, while combined with the second law of thermodynamics (as the backbone of Verlinde's proposal), helps us in provideing a thermodynamic interpretation for the difference between the surface and bulk degrees of freedom which, according to Padmanabhan's proposal, leads to the emergence of spacetime and thus the universe expansion. In fact, our investigation shows that the entropy changes of system may be equal to the difference between the surface and bulk degrees of freedom falling from surface into the system volume. Briefly, our results signal us that this new proposal for entropy may be in agreement with the thermodynamics laws, the Friedmann equation, Padmanabhan's holographic proposal for the emergence of spacetime and therefore the universe expansion. In fact, this new definition of entropy may be used to make a bridge between Verlinde's and Padmanabhan's proposals.

  16. Entropy coders for image compression based on binary forward classification

    NASA Astrophysics Data System (ADS)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  17. An Equation for Moist Entropy in a Precipitating and Icy Atmosphere

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Zeng, Xiping

    2003-01-01

    Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.

  18. Self-organization and entropy reduction in a living cell.

    PubMed

    Davies, Paul C W; Rieper, Elisabeth; Tuszynski, Jack A

    2013-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell's metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Central Charges and the Sign of Entanglement in 4D Conformal Field Theories.

    PubMed

    Perlmutter, Eric; Rangamani, Mukund; Rota, Massimiliano

    2015-10-23

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey a>c, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of a-c and the genus of the surface. Similarly, we show that in a>c theories, the logarithmic negativity does not always exceed the entanglement entropy.

  20. Entropic manifestations of topological order in three dimensions

    NASA Astrophysics Data System (ADS)

    Bullivant, Alex; Pachos, Jiannis K.

    2016-03-01

    We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general families of three-dimensional topological models. We show that the modification to the entropic area law due to three-dimensional topological properties is richer than the two-dimensional case. In addition to the reduction of the entropy caused by a nonzero vacuum expectation value of contractible loop operators, a topological invariant emerges that increases the entropy if the model consists of nontrivially braiding anyons. As a result the three-dimensional topological entanglement entropy provides only partial information about the two entropic topological invariants.

  1. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  2. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  3. Ligand Exchange Kinetics of Environmentally Relevant Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasci, Adele Frances

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb tomore » mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.« less

  4. Entanglement entropy and the Fermi surface.

    PubMed

    Swingle, Brian

    2010-07-30

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S∼L(d-1)logL, a result that should be contrasted with the usual boundary law S∼L(d-1). This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  5. On the effects of signal processing on sample entropy for postural control.

    PubMed

    Lubetzky, Anat V; Harel, Daphna; Lubetzky, Eyal

    2018-01-01

    Sample entropy, a measure of time series regularity, has become increasingly popular in postural control research. We are developing a virtual reality assessment of sensory integration for postural control in people with vestibular dysfunction and wished to apply sample entropy as an outcome measure. However, despite the common use of sample entropy to quantify postural sway, we found lack of consistency in the literature regarding center-of-pressure signal manipulations prior to the computation of sample entropy. We therefore wished to investigate the effect of parameters choice and signal processing on participants' sample entropy outcome. For that purpose, we compared center-of-pressure sample entropy data between patients with vestibular dysfunction and age-matched controls. Within our assessment, participants observed virtual reality scenes, while standing on floor or a compliant surface. We then analyzed the effect of: modification of the radius of similarity (r) and the embedding dimension (m); down-sampling or filtering and differencing or detrending. When analyzing the raw center-of-pressure data, we found a significant main effect of surface in medio-lateral and anterior-posterior directions across r's and m's. We also found a significant interaction group × surface in the medio-lateral direction when r was 0.05 or 0.1 with a monotonic increase in p value with increasing r in both m's. These effects were maintained with down-sampling by 2, 3, and 4 and with detrending but not with filtering and differencing. Based on these findings, we suggest that for sample entropy to be compared across postural control studies, there needs to be increased consistency, particularly of signal handling prior to the calculation of sample entropy. Procedures such as filtering, differencing or detrending affect sample entropy values and could artificially alter the time series pattern. Therefore, if such procedures are performed they should be well justified.

  6. Entropy flow and entropy production in the human body in basal conditions.

    PubMed

    Aoki, I

    1989-11-08

    Entropy inflow and outflow for the naked human body in basal conditions in the respiration calorimeter due to infrared radiation, convection, evaporation of water and mass-flow are calculated by use of the energetic data obtained by Hardy & Du Bois. Also, the change of entropy content in the body is estimated. The entropy production in the human body is obtained as the change of entropy content minus the net entropy flow into the body. The entropy production thus calculated becomes positive. The magnitude of entropy production per effective radiating surface area does not show any significant variation with subjects. The entropy production is nearly constant at the calorimeter temperatures of 26-32 degrees C; the average in this temperature range is 0.172 J m-2 sec-1 K-1. The forced air currents around the human body and also clothing have almost no effect in changing the entropy production. Thus, the entropy production of the naked human body in basal conditions does not depend on its environmental factors.

  7. Holographic Entanglement Entropy, SUSY & Calibrations

    NASA Astrophysics Data System (ADS)

    Colgáin, Eoin Ó.

    2018-01-01

    Holographic calculations of entanglement entropy boil down to identifying minimal surfaces in curved spacetimes. This generically entails solving second-order equations. For higher-dimensional AdS geometries, we demonstrate that supersymmetry and calibrations reduce the problem to first-order equations. We note that minimal surfaces corresponding to disks preserve supersymmetry, whereas strips do not.

  8. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    PubMed

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  9. Structure of the entanglement entropy of (3+1)-dimensional gapped phases of matter

    NASA Astrophysics Data System (ADS)

    Zheng, Yunqin; He, Huan; Bradlyn, Barry; Cano, Jennifer; Neupert, Titus; Bernevig, B. Andrei

    2018-05-01

    We study the entanglement entropy of gapped phases of matter in three spatial dimensions. We focus in particular on size-independent contributions to the entropy across entanglement surfaces of arbitrary topologies. We show that for low energy fixed-point theories, the constant part of the entanglement entropy across any surface can be reduced to a linear combination of the entropies across a sphere and a torus. We first derive our results using strong sub-additivity inequalities along with assumptions about the entanglement entropy of fixed-point models, and identify the topological contribution by considering the renormalization group flow; in this way we give an explicit definition of topological entanglement entropy Stopo in (3+1)D, which sharpens previous results. We illustrate our results using several concrete examples and independent calculations, and show adding "twist" terms to the Lagrangian can change Stopo in (3+1)D. For the generalized Walker-Wang models, we find that the ground state degeneracy on a 3-torus is given by exp(-3 Stopo[T2] ) in terms of the topological entanglement entropy across a 2-torus. We conjecture that a similar relationship holds for Abelian theories in (d +1 ) dimensional spacetime, with the ground state degeneracy on the d -torus given by exp(-d Stopo[Td -1] ) .

  10. Clausius entropy for arbitrary bifurcate null surfaces

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Visser, Matt

    2014-02-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation {\\rm{d}}S = \\unicode{x111} Q/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations.

  11. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  12. Shearlet-based measures of entropy and complexity for two-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Brazhe, Alexey

    2018-06-01

    New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.

  13. Entropy in the interior of a higher-dimensional black hole

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Zhi; Liu, Wen-Biao

    2018-07-01

    Recently Christodoulou and Rovelli brought out a sensible description for the black hole volume as the largest volume. Later the entropy related to this volume in a 4-dimensional Schwarzschild black hole was investigated, which showed that such entropy is proportional to the surface area of the black hole. We will probe into these issues in the context of higher-dimensional case. It is found that the proportion between this entropy and the Bekenstein-Hawking entropy will go down through dramatic change along with the increase of spacetime dimension.

  14. Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials.

    PubMed

    Yang, Chun Cheng; Li, Sean

    2011-12-23

    Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Seebeck Effects in N-Type and P-Type Polymers Driven Simultaneously by Surface Polarization and Entropy Differences Based on Conductor/Polymer/Conductor Thin-Film Devices

    DOE PAGES

    Hu, Dehua; Liu, Qing; Tisdale, Jeremy; ...

    2015-04-15

    This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less

  16. Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface

    NASA Astrophysics Data System (ADS)

    Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang

    2017-10-01

    Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.

  17. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Ijaz; Qayyum, Sumaira; Alsaedi, A.; Khan, M. Imran

    2018-03-01

    This research addressed entropy generation for MHD stagnation point flow of viscous nanofluid over a stretching surface. Characteristics of heat transport are analyzed through nonlinear radiation and heat generation/absorption. Nanoliquid features for Brownian moment and thermophoresis have been considered. Fluid in the presence of constant applied inclined magnetic field is considered. Flow problem is mathematically modeled and governing expressions are changed into nonlinear ordinary ones by utilizing appropriate transformations. The effects of pertinent variables on velocity, nanoparticle concentration and temperature are discussed graphically. Furthermore Brownian motion and thermophoresis effects on entropy generation and Bejan number have been examined. Total entropy generation is inspected through various flow variables. Consideration is mainly given to the convergence process. Velocity, temperature and mass gradients at the surface of sheet are calculated numerically.

  18. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence.

    PubMed

    Ryu, Shinsei; Takayanagi, Tadashi

    2006-05-12

    A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.

  19. Wess-Zumino consistency condition for entanglement entropy.

    PubMed

    Banerjee, Shamik

    2012-07-06

    In this Letter, we consider the variation of the entanglement entropy of a region as the shape of the entangling surface is changed. We show that the variation satisfies a Wess-Zumino-like integrability condition in field theories which can be consistently coupled to gravity. In this case, the "anomaly" is localized on the entangling surface. The solution of the integrability condition should give all the nontrivial finite local terms which can appear in the variation of the entanglement entropy. The answers depend on the intrinsic and extrinsic geometry of the entangling surface, but the form does not depend on the details of the field theory. The coefficients, which multiply the purely geometric contributions, will depend on the particular details of the field theory.

  20. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  1. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  2. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  3. Effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy

    DOE PAGES

    Wang, Z.; Gao, M. C.; Ma, S. G.; ...

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared tomore » traditional alloys, Al 0.25CoCrFe 1.25Ni 1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of Al xCoCrFe 1.25Ni 1.25 were predicted using the CALPHAD method.« less

  4. Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane

    PubMed Central

    Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A

    2010-01-01

    We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139

  5. Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes

    DOE PAGES

    Chen, Hung Cheng; Sreearunothai, Paiboon; Cook, Andrew R.; ...

    2017-03-01

    Bimolecular equilibria measured the one-electron reduction potentials and triplet free energies (ΔG° T) of oligo(9,9-dihexyl)fluorenes and a polymer with lengths of n = 1–10 and 57 repeat units. We can accurately measure one-electron potentials electrochemically only for the shorter oligomers. Starting at n = 1 the free energies change rapidly with increasing length and become constant for lengths longer than the delocalization length. Both the reduction potentials and triplet energies can be understood as the sum of a free energy for a fixed polaron and a positional entropy. Furthermore, the positional entropy increases gradually with length beyond the delocalization lengthmore » due to the possible occupation sites of the charge or the triplet exciton. Our results reinforce the view that charges and triplet excitons in conjugated chains exist as polarons and find that positional entropy can replace a popular empirical model of the energetics.« less

  6. Nonequilibrium thermodynamics and the transport phenomena in magnetically confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1987-09-01

    The neoclassical theory of transport in magnetically confined plasmas is reviewed. The emphasis is laid on a set of relationships existing among the banana transport coefficients. The surface-averaged entropy production in such plasmas is evaluated. It is shown that neoclassical effects emerge from the entropy production due to parallel transport processes. The Pfirsch-Schlueter effect can be clearly interpreted as due to spatial fluctuations of parallel fluxes on a magnetic surface: the corresponding entropy production is the measure of these fluctuations. The banana fluxes can be formulated in a quasithermodynamic form in which the average entropy production is a bilinear formmore » in the parallel fluxes and the conjugate generalized stresses. A formulation as a quadratic form in the thermodynamic forces is also possible, but leads to anomalies, which are discussed in some detail.« less

  7. Violation of the entanglement area law in bosonic systems with Bose surfaces: possible application to Bose metals.

    PubMed

    Lai, Hsin-Hua; Yang, Kun; Bonesteel, N E

    2013-11-22

    We show the violation of the entanglement area law for bosonic systems with Bose surfaces. For bosonic systems with gapless factorized energy dispersions on an N(d) Cartesian lattice in d dimensions, e.g., the exciton Bose liquid in two dimensions, we explicitly show that a belt subsystem with width L preserving translational symmetry along d-1 Cartesian axes has leading entanglement entropy (N(d-1)/3)lnL. Using this result, the strong subadditivity inequality, and lattice symmetries, we bound the entanglement entropy of a rectangular subsystem from below and above showing a logarithmic violation of the area law. For subsystems with a single flat boundary, we also bound the entanglement entropy from below showing a logarithmic violation, and argue that the entanglement entropy of subsystems with arbitrary smooth boundaries are similarly bounded.

  8. Local Conformational Stability of HIV-1 gp120 in Unliganded and CD4-Bound States as Defined by Amide Hydrogen/Deuterium Exchange▿ †

    PubMed Central

    Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.

    2010-01-01

    The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185

  9. An adaptive technique to maximize lossless image data compression of satellite images

    NASA Technical Reports Server (NTRS)

    Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe

    1994-01-01

    Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.

  10. Entanglement entropy at infinite-randomness fixed points in higher dimensions.

    PubMed

    Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko

    2007-10-05

    The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.

  11. Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics.

    PubMed

    Yeu, In Won; Park, Jaehong; Han, Gyuseung; Hwang, Cheol Seong; Choi, Jung-Hae

    2017-09-06

    A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

  12. Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon.

    PubMed

    Carlip, S

    2018-03-09

    Near the horizon, the obvious symmetries of a black hole spacetime-the horizon-preserving diffeomorphisms-are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.

  13. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .

  14. Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs

    NASA Astrophysics Data System (ADS)

    Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo

    2018-05-01

    We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.

  15. Calculation of heat transfer on shuttle type configurations including the effects of variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1972-01-01

    A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.

  16. A bound on holographic entanglement entropy from inverse mean curvature flow

    NASA Astrophysics Data System (ADS)

    Fischetti, Sebastian; Wiseman, Toby

    2017-06-01

    Entanglement entropies are notoriously difficult to compute. Large-N strongly-coupled holographic CFTs are an important exception, where the AdS/CFT dictionary gives the entanglement entropy of a CFT region in terms of the area of an extremal bulk surface anchored to the AdS boundary. Using this prescription, we show—for quite general states of (2  +  1)-dimensional such CFTs—that the renormalized entanglement entropy of any region of the CFT is bounded from above by a weighted local energy density. The key ingredient in this construction is the inverse mean curvature (IMC) flow, which we suitably generalize to flows of surfaces anchored to the AdS boundary. Our bound can then be thought of as a ‘subregion’ Penrose inequality in asymptotically locally AdS spacetimes, similar to the Penrose inequalities obtained from IMC flows in asymptotically flat spacetimes. Combining the result with positivity of relative entropy, we argue that our bound is valid perturbatively in 1/N, and conjecture that a restricted version of it holds in any CFT.

  17. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  18. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE PAGES

    Lany, Stephan

    2018-02-21

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  19. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  20. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  1. The Holographic Entropy Cone

    DOE PAGES

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; ...

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  2. Rényi entropy, stationarity, and entanglement of the conformal scalar

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseog; Lewkowycz, Aitor; Perlmutter, Eric; Safdi, Benjamin R.

    2015-03-01

    We extend previous work on the perturbative expansion of the Rényi entropy, S q , around q = 1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of super-Yang-Mills near q = 1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.

  3. On the morphological instability of a bubble during inertia-controlled growth

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Birzina, A. I.; Soboleva, A. S.

    2018-06-01

    The morphological stability of a spherical bubble growing under inertia control is analyzed. Based on the comparison of entropy productions for a distorted and undistorted surface and using the maximum entropy production principle, the morphological instability of the bubble under arbitrary amplitude distortions is shown. This result allows explaining a number of experiments where the surface roughness of bubbles was observed during their explosive-type growth.

  4. Entropy in molecular recognition by proteins

    PubMed Central

    Caro, José A.; Harpole, Kyle W.; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G.; Sharp, Kim A.

    2017-01-01

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein–ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein–ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein–ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or “entropy meter” also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water–protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins. PMID:28584100

  5. Entropy in molecular recognition by proteins.

    PubMed

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  6. Does horizon entropy satisfy a quantum null energy conjecture?

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald

    2016-12-01

    A modern version of the idea that the area of event horizons gives 4G times an entropy is the Hubeny-Rangamani causal holographic information (CHI) proposal for holographic field theories. Given a region R of a holographic QFTs, CHI computes A/4G on a certain cut of an event horizon in the gravitational dual. The result is naturally interpreted as a coarse-grained entropy for the QFT. CHI is known to be finitely greater than the fine-grained Hubeny-Rangamani-Takayanagi (HRT) entropy when \\partial R lies on a Killing horizon of the QFT spacetime, and in this context satisfies other non-trivial properties expected of an entropy. Here we present evidence that it also satisfies the quantum null energy condition (QNEC), which bounds the second derivative of the entropy of a quantum field theory on one side of a non-expanding null surface by the flux of stress-energy across the surface. In particular, we show CHI to satisfy the QNEC in 1  +  1 holographic CFTs when evaluated in states dual to conical defects in AdS3. This surprising result further supports the idea that CHI defines a useful notion of coarse-grained holographic entropy, and suggests unprecedented bounds on the rate at which bulk horizon generators emerge from a caustic. To supplement our motivation, we include an appendix deriving a corresponding coarse-grained generalized second law for 1  +  1 holographic CFTs perturbatively coupled to dilaton gravity.

  7. Center for Quantum Algorithms and Complexity

    DTIC Science & Technology

    2014-05-12

    precisely, it asserts that for any subset L of particles, the entanglement entropy between L and L̄ is bounded by the surface area of L (the area is...ground states of gapped local Hamiltonians. Roughly, it says that the entanglement in such states is very local, and the entanglement entropy scales...the theorem states that the entanglement entropy is bounded by exp(X), where X = log(d/?). Hastingss result implies that ground states of gapped 1D

  8. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  9. Enthalpy-entropy compensation: the role of solvation.

    PubMed

    Dragan, Anatoliy I; Read, Christopher M; Crane-Robinson, Colyn

    2017-05-01

    Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation-an intrinsically compensatory process-can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.

  10. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. Copyright © 2013 S. Karger AG, Basel.

  11. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c.

    PubMed

    Battistuzzi, G; Borsari, M; Sola, M; Francia, F

    1997-12-23

    The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.

  12. Differential network entropy reveals cancer system hallmarks

    PubMed Central

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  13. Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Lima Neto, G. B.; Capelato, H.; Durret, F.; Lanzoni, B.; Gerbal, D.

    2001-12-01

    In the present paper, we show that elliptical galaxies (Es) obey a scaling relation between potential energy and mass. Since they are relaxed systems in a post violent-relaxation stage, they are quasi-equilibrium gravitational systems and therefore they also have a quasi-constant specific entropy. Assuming that light traces mass, these two laws imply that in the space defined by the three Sérsic law parameters (intensity Sigma0 , scale a and shape nu ), elliptical galaxies are distributed on two intersecting 2-manifolds: the Entropic Surface and the Energy-Mass Surface. Using a sample of 132 galaxies belonging to three nearby clusters, we have verified that ellipticals indeed follow these laws. This also implies that they are distributed along the intersection line (the Energy-Entropy line), thus they constitute a one-parameter family. These two physical laws (separately or combined), allow to find the theoretical origin of several observed photometrical relations, such as the correlation between absolute magnitude and effective surface brightness, and the fact that ellipticals are located on a surface in the [log Reff, -2.5 log Sigma0, log nu ] space. The fact that elliptical galaxies are a one-parameter family has important implications for cosmology and galaxy formation and evolution models. Moreover, the Energy-Entropy line could be used as a distance indicator.

  14. Charged Rényi entropies in CFTs with Einstein-Gauss-Bonnet holographic duals

    NASA Astrophysics Data System (ADS)

    Pastras, Georgios; Manolopoulos, Dimitrios

    2014-11-01

    We calculate the Rényi entropy S q ( μ, λ), for spherical entangling surfaces in CFT's with Einstein-Gauss-Bonnet-Maxwell holographic duals. Rényi entropies must obey some interesting inequalities by definition. However, for Gauss-Bonnet couplings λ, larger than specific value, but still allowed by causality, we observe a violation of the inequality , which is related to the existence of negative entropy black holes, providing interesting restrictions in the bulk theory. Moreover, we find an interesting distinction of the behaviour of the analytic continuation of S q ( μ, λ) for imaginary chemical potential, between negative and non-negative λ.

  15. Emergent Geometry from Entropy and Causality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum generalizations are discussed, both at the classical and perturbatively quantum limits. In particular, several No Go Theorems are proven, indicative of a conclusion that supplementary approaches or information may be necessary to recover the full spacetime geometry. Part II of this thesis involves the relation between geometry and causality, the property that information cannot travel faster than light. Requiring this of any quantum field theory results in constraints on string theory setups that are dual to quantum field theories via the AdS/CFT correspondence. At the level of perturbative quantum gravity, it is shown that causality in the field theory constraints the causal structure in the bulk. At the level of nonperturbative quantum string theory, we find that constraints on causal signals restrict the possible ways in which curvature singularities can be resolved in string theory. Finally, a new program of research is proposed for the construction of bulk geometry from the divergences of correlation functions in the dual field theory. This divergence structure is linked to the causal structure of the bulk and of the field theory.

  16. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  17. Marginally trapped surfaces and AdS/CFT

    NASA Astrophysics Data System (ADS)

    Grado-White, Brianna; Marolf, Donald

    2018-02-01

    It has been proposed that the areas of marginally trapped or anti-trapped surfaces (also known as leaves of holographic screens) may encode some notion of entropy. To connect this to AdS/CFT, we study the case of marginally trapped surfaces anchored to an AdS boundary. We establish that such boundary-anchored leaves lie between the causal and extremal surfaces defined by the anchor and that they have area bounded below by that of the minimal extremal surface. This suggests that the area of any leaf represents a coarse-grained von Neumann entropy for the associated region of the dual CFT. We further demonstrate that the leading area-divergence of a boundary-anchored marginally trapped surface agrees with that for the associated extremal surface, though subleading divergences generally differ. Finally, we generalize an argument of Bousso and Engelhardt to show that holographic screens with all leaves anchored to the same boundary set have leaf-areas that increase monotonically along the screen, and we describe a construction through which this monotonicity can take the more standard form of requiring entropy to increase with boundary time. This construction is related to what one might call future causal holographic information, which in such cases also provides an upper bound on the area of the associated leaves.

  18. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability

    PubMed Central

    McIntosh, A. R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A. B.

    2014-01-01

    Recent theoretical and empirical work has focused on the variability of network dynamics in maturation. Such variability seems to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into healthy aging. Two different data sets, one EEG (total n = 48, ages 18–72) and one magnetoencephalography (n = 31, ages 20–75) were analyzed for such spatiotemporal dependency using multiscale entropy (MSE) from regional brain sources. In both data sets, the changes in MSE were timescale dependent, with higher entropy at fine scales and lower at more coarse scales with greater age. The signals were parsed further into local entropy, related to information processed within a regional source, and distributed entropy (information shared between two sources, i.e., functional connectivity). Local entropy increased for most regions, whereas the dominant change in distributed entropy was age-related reductions across hemispheres. These data further the understanding of changes in brain signal variability across the lifespan, suggesting an inverted U-shaped curve, but with an important qualifier. Unlike earlier in maturation, where the changes are more widespread, changes in adulthood show strong spatiotemporal dependence. PMID:23395850

  19. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    NASA Astrophysics Data System (ADS)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  20. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  1. Thermodynamics of giant planet formation: shocking hot surfaces on circumplanetary discs

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Mordasini, C.

    2017-02-01

    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the `hot-start' scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high-resolution, three-dimensional radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disc's upper layers on to the surface of the circumplanetary disc and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick; therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disc and protoplanet. This shows that circumplanetary discs play a key role in regulating a planet's thermodynamic state. Our simulations furthermore indicate that around the shock surface extended regions of atomic - sometimes ionized - hydrogen develop. Therefore, circumplanetary disc shock surfaces could influence significantly the observational appearance of forming gas giants.

  2. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  3. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  4. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  5. All the entropies on the light-cone

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2018-05-01

    We determine the explicit universal form of the entanglement and Renyi entropies, for regions with arbitrary boundary on a null plane or the light-cone. All the entropies are shown to saturate the strong subadditive inequality. This Renyi Markov property implies that the vacuum behaves like a product state. For the null plane, our analysis applies to general quantum field theories, and we show that the entropies do not depend on the region. For the light-cone, our approach is restricted to conformal field theories. In this case, the construction of the entropies is related to dilaton effective actions in two less dimensions. In particular, the universal logarithmic term in the entanglement entropy arises from a Wess-Zumino anomaly action. We also consider these properties in theories with holographic duals, for which we construct the minimal area surfaces for arbitrary shapes on the light-cone. We recover the Markov property and the universal form of the entropy, and argue that these properties continue to hold upon including stringy and quantum corrections. We end with some remarks on the recently proved entropic a-theorem in four spacetime dimensions.

  6. Fermi arc mediated entropy transport in topological semimetals

    NASA Astrophysics Data System (ADS)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larche, Michael R.; Prowant, Matthew S.; Bruillard, Paul J.

    This study compares different approaches for imaging the internal architecture of graphite/epoxy composites using backscattered ultrasound. Two cases are studied. In the first, near-surface defects in a thin graphite/epoxy plates are imaged. The same backscattered waveforms were used to produce peak-to-peak, logarithm of signal energy, as well as entropy images of different types. All of the entropy images exhibit better border delineation and defect contrast than the either peak-to-peak or logarithm of signal energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is amore » reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies. These plates were later destructively analyzed to determine size and location of near-surface defects and the results found to agree with the defect location and shape as indicated by the entropy images. In the second study, images of long carbon graphite fibers (50% by weight) in polypropylene thermoplastic are obtained as a first step toward ultrasonic determination of the distributions of fiber position and orientation.« less

  8. Develop and Test a Solvent Accessible Surface Area-Based Model in Conformational Entropy Calculations

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2012-01-01

    It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parameterized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For the convenience, TS, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for post-entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20 complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67 between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each set has 31 conformations) generated by the Rosetta software package. Again, good correlations were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55, respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions, correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable prediction performance to that of the scoring functions using NMA. It should be emphasized that no minimization was performed prior to the WSAS calculation in the last test. Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and thermodynamic integration (TI), it is computationally very efficient as only surface area calculation is involved and no structural minimization is required. Moreover, WSAS has achieved a comparable performance to normal mode analysis. We expect that this model could find its applications in the fields like high throughput screening (HTS), molecular docking and rational protein design. In those fields, efficiency is crucial since there are a large number of compounds, docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this work is provided for quick reference. PMID:22497310

  9. Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with QR-decomposition.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal; Ahmad, Siti Anom; Escudero, Javier

    2017-07-01

    The aim of the present study was to discriminate the electroencephalogram (EEG) of 5 patients with vascular dementia (VaD), 15 patients with stroke-related mild cognitive impairment (MCI), and 15 control normal subjects during a working memory (WM) task. We used independent component analysis (ICA) and wavelet transform (WT) as a hybrid preprocessing approach for EEG artifact removal. Three different features were extracted from the cleaned EEG signals: spectral entropy (SpecEn), permutation entropy (PerEn) and Tsallis entropy (TsEn). Two classification schemes were applied - support vector machine (SVM) and k-nearest neighbors (kNN) - with fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) as a dimensionality reduction technique. The FNPAQR dimensionality reduction technique increased the SVM classification accuracy from 82.22% to 90.37% and from 82.6% to 86.67% for kNN. These results suggest that FNPAQR consistently improves the discrimination of VaD, MCI patients and control normal subjects and it could be a useful feature selection to help the identification of patients with VaD and MCI.

  10. Metrics for evaluating performance and uncertainty of Bayesian network models

    Treesearch

    Bruce G. Marcot

    2012-01-01

    This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...

  11. Statistical Mechanical Proof of the Second Law of Thermodynamics based on Volume Entropy

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2007-10-01

    As pointed out in [M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290] the volume entropy (that is the logarithm of the volume of phase space enclosed by the constant energy hyper-surface) provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle (Sf>=Si) in a purely mechanical way and suggests that the volume entropy might explain the ``larger than'' sign (i.e. the Law of Entropy Increase) if non adiabatic transformations were considered. Based on the principles of quantum mechanics here we prove that, provided the initial equilibrium satisfy the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external sources of work on a insulated system. This can be regarded as a rigorous quantum mechanical proof of the Second Law.

  12. Hydration entropy change from the hard sphere model.

    PubMed

    Graziano, Giuseppe; Lee, Byungkook

    2002-12-10

    The gas to liquid transfer entropy change for a pure non-polar liquid can be calculated quite accurately using a hard sphere model that obeys the Carnahan-Starling equation of state. The same procedure fails to produce a reasonable value for hydrogen bonding liquids such as water, methanol and ethanol. However, the size of the molecules increases when the hydrogen bonds are turned off to produce the hard sphere system and the volume packing density rises. We show here that the hard sphere system that has this increased packing density reproduces the experimental transfer entropy values rather well. The gas to water transfer entropy values for small non-polar hydrocarbons is also not reproduced by a hard sphere model, whether one uses the normal (2.8 A diameter) or the increased (3.2 A) size for water. At least part of the reason that the hard sphere model with 2.8 A size water produces too small entropy change is that the size of water is too small for a system without hydrogen bonds. The reason that the 3.2 A model also produces too small entropy values is that this is an overly crowded system and that the free volume introduced in the system by the addition of a solute molecule produces too much of a relief to this crowding. A hard sphere model, in which the free volume increase is limited by requiring that the average surface-to-surface distance between the solute and water molecules is the same as that between the increased-size water molecules, does approximately reproduce the experimental hydration entropy values. Copyright 2002 Elsevier Science B.V.

  13. GABAergic excitation of spider mechanoreceptors increases information capacity by increasing entropy rather than decreasing jitter.

    PubMed

    Pfeiffer, Keram; French, Andrew S

    2009-09-02

    Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.

  14. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  15. Inhibition of calcite precipitation by natural organic material: Kinetics, mechanism, and thermodynamics

    USGS Publications Warehouse

    Lin, Y.-P.; Singer, P.C.; Aiken, G.R.

    2005-01-01

    The inhibition of calcite precipitation by natural organic material (NOM) in solutions seeded with calcite was investigated using a pH-stat system. Experiments were carried out using three NOMs with different physical/chemical properties. For each of the materials, inhibition was found to be more effective at lower carbonate/calcium ratios and lower pH values. The reduction in the precipitation rate could be explained by a Langmuir adsorption model using a conditional equilibrium constant. By identification of the type of site on the NOM molecules that is involved in the adsorption reaction, the "conditional" equilibrium constants obtained at different solution compositions converged to a single "nonconditional" value. The thermodynamic data determined at 25??C and 1 atm suggest that the interaction between NOM molecules and the calcite surface is chemisorptive in nature and that adsorption is an endothermic reaction driven by the entropy change. The greatest degree of inhibition was observed for the NOM with the highest molecular weight and aromatic carbon content. For a given type of NOM, the degree of inhibition of calcite precipitation was dictated by the balance between the enthalpy change and the entropy change of the adsorption reaction. ?? 2005 American Chemical Society.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dehua; Liu, Qing; Tisdale, Jeremy

    This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less

  17. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sumsmore » are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.« less

  18. Entanglement entropy of electromagnetic edge modes.

    PubMed

    Donnelly, William; Wall, Aron C

    2015-03-20

    The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.

  19. Renormalization of entanglement entropy from topological terms

    NASA Astrophysics Data System (ADS)

    Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo

    2018-05-01

    We propose a renormalization scheme for entanglement entropy of three-dimensional CFTs with a four-dimensional asymptotically AdS gravity dual in the context of the gauge/gravity correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. We provide an explicit prescription for the renormalized entanglement entropy, which is derived via the replica trick. This is achieved by considering a Euclidean gravitational action renormalized by the addition of the Chern form at the spacetime boundary, evaluated in the conically-singular replica manifold. We show that the addition of this boundary term cancels the divergent part of the entanglement entropy, recovering the results obtained by Taylor and Woodhead. We comment on how this prescription for renormalizing the entanglement entropy is in line with the general program of topological renormalization in asymptotically AdS gravity.

  20. Exploring the Function Space of Deep-Learning Machines

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2018-06-01

    The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.

  1. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  2. Extension of Murray's law using a non-Newtonian model of blood flow.

    PubMed

    Revellin, Rémi; Rousset, François; Baud, David; Bonjour, Jocelyn

    2009-05-15

    So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.

  3. Sort entropy-based for the analysis of EEG during anesthesia

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Huang, Wei-Zhi

    2010-08-01

    The monitoring of anesthetic depth is an absolutely necessary procedure in the process of surgical operation. To judge and control the depth of anesthesia has become a clinical issue which should be resolved urgently. EEG collected wiil be processed by sort entrop in this paper. Signal response of the surface of the cerebral cortex is determined for different stages of patients in the course of anesthesia. EEG is simulated and analyzed through the fast algorithm of sort entropy. The results show that discipline of phasic changes for EEG is very detected accurately,and it has better noise immunity in detecting the EEG anaesthetized than approximate entropy. In conclusion,the computing of Sort entropy algorithm requires shorter time. It has high efficiency and strong anti-interference.

  4. Effect of Temperature on the Physico-Chemical Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate) with Polyethylene Glycol Oligomer

    PubMed Central

    Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen

    2011-01-01

    A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460

  5. On extremal surfaces and de Sitter entropy

    NASA Astrophysics Data System (ADS)

    Narayan, K.

    2018-04-01

    We study extremal surfaces in the static patch coordinatization of de Sitter space, focusing on the future and past universes. We find connected timelike codim-2 surfaces on a boundary Euclidean time slice stretching from the future boundary I+ to the past boundary I-. In a limit, these surfaces pass through the bifurcation region and have minimal area with a divergent piece alone, whose coefficient is de Sitter entropy in 4-dimensions. These are reminiscent of rotated versions of certain surfaces in the AdS black hole. We close with some speculations on a possible dS / CFT interpretation of 4-dim de Sitter space as dual to two copies of ghost-CFTs in an entangled state. For a simple toy model of two copies of ghost-spin chains, we argue that similar entangled states always have positive norm and positive entanglement.

  6. Entropy and caloric curve for mononuclei considering both surface diffuseness and self-similar expansion degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, L.G.; Department of Physics, Washington University, St. Louis, Missouri 63130; Charity, R.J.

    2006-01-15

    The caloric curve for mononuclear configurations is studied with a model that allows for both increased surface diffusness and self-similar expansion. The evolution of the effective mass with density and excitation is included in a schematic fashion. The entropies, extracted in a local-density approximation, confirm that nuclei posess a soft mode that is predominately a surface expansion. We also find that the mononuclear caloric curve (temperature versus excitation energy) exhibits a plateau. Thus a plateau should be the expectation with or without a multifragmentationlike phase transition. This conclusion is relevant only for reactions that populate the mononuclear region of phasemore » space.« less

  7. Large entropy derived from low-frequency vibrations and its implications for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Chen, Hongshan

    2018-02-01

    Adsorption and desorption are driven by the energy and entropy competition, but the entropy effect is often ignored in hydrogen storage and the optimal adsorption strength for the ambient storage is controversial in the literature. This letter investigated the adsorption states of the H2 molecule on M-B12C6N6 (M = Li, Na, Mg, Ca, and Sc) and analyzed the correlation among the zero point energy (ZPE), the entropy change, and the adsorption energy and their effects on the delivery capacities. The ZPE has large correction to the adsorption energy due to the light mass of hydrogen. The computations show that the potential energies along the spherical surface centered at the alkali metals are very flat and it leads to large entropy (˜70 J/mol.K) of the adsorbed H2 molecules. The entropy change can compensate the enthalpy change effectively, and the ambient storage can be realized with relatively weak adsorption of ΔH = -12 kJ/mol. The results are encouraging and instructive for the design of hydrogen storage materials.

  8. Local conditions for the generalized covariant entropy bound

    NASA Astrophysics Data System (ADS)

    Gao, Sijie; Lemos, José P.

    2005-04-01

    A set of sufficient conditions for the generalized covariant entropy bound given by Strominger and Thompson is as follows: Suppose that the entropy of matter can be described by an entropy current sa. Let ka be any null vector along L and s≡-kasa. Then the generalized bound can be derived from the following conditions: (i) s'≤2πTabkakb, where s'=ka∇as and Tab is the stress-energy tensor; (ii) on the initial 2-surface B, s(0)≤-1/4θ(0), where θ is the expansion of ka. We prove that condition (ii) alone can be used to divide a spacetime into two regions: The generalized entropy bound holds for all light sheets residing in the region where s<-1/4θ and fails for those in the region where s>-1/4θ. We check the validity of these conditions in FRW flat universe and a scalar field spacetime. Some apparent violations of the entropy bounds in the two spacetimes are discussed. These holographic bounds are important in the formulation of the holographic principle.

  9. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.

    PubMed

    Chamberlin, Ralph V; Nasir, Derek M

    2014-07-01

    Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

  10. Ectopic beats in approximate entropy and sample entropy-based HRV assessment

    NASA Astrophysics Data System (ADS)

    Singh, Butta; Singh, Dilbag; Jaryal, A. K.; Deepak, K. K.

    2012-05-01

    Approximate entropy (ApEn) and sample entropy (SampEn) are the promising techniques for extracting complex characteristics of cardiovascular variability. Ectopic beats, originating from other than the normal site, are the artefacts contributing a serious limitation to heart rate variability (HRV) analysis. The approaches like deletion and interpolation are currently in use to eliminate the bias produced by ectopic beats. In this study, normal R-R interval time series of 10 healthy and 10 acute myocardial infarction (AMI) patients were analysed by inserting artificial ectopic beats. Then the effects of ectopic beats editing by deletion, degree-zero and degree-one interpolation on ApEn and SampEn have been assessed. Ectopic beats addition (even 2%) led to reduced complexity, resulting in decreased ApEn and SampEn of both healthy and AMI patient data. This reduction has been found to be dependent on level of ectopic beats. Editing of ectopic beats by interpolation degree-one method is found to be superior to other methods.

  11. Cardiorespiratory Information Dynamics during Mental Arithmetic and Sustained Attention

    PubMed Central

    Widjaja, Devy; Montalto, Alessandro; Vlemincx, Elke; Marinazzo, Daniele; Van Huffel, Sabine; Faes, Luca

    2015-01-01

    An analysis of cardiorespiratory dynamics during mental arithmetic, which induces stress, and sustained attention was conducted using information theory. The information storage and internal information of heart rate variability (HRV) were determined respectively as the self-entropy of the tachogram, and the self-entropy of the tachogram conditioned to the knowledge of respiration. The information transfer and cross information from respiration to HRV were assessed as the transfer and cross-entropy, both measures of cardiorespiratory coupling. These information-theoretic measures identified significant nonlinearities in the cardiorespiratory time series. Additionally, it was shown that, although mental stress is related to a reduction in vagal activity, no difference in cardiorespiratory coupling was found when several mental states (rest, mental stress, sustained attention) are compared. However, the self-entropy of HRV conditioned to respiration was very informative to study the predictability of RR interval series during mental tasks, and showed higher predictability during mental arithmetic compared to sustained attention or rest. PMID:26042824

  12. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    PubMed

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  13. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  14. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.

  15. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  16. Using Wavelet Entropy to Demonstrate how Mindfulness Practice Increases Coordination between Irregular Cerebral and Cardiac Activities.

    PubMed

    Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam

    2017-05-10

    In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities.

  17. Using Wavelet Entropy to Demonstrate how Mindfulness Practice Increases Coordination between Irregular Cerebral and Cardiac Activities

    PubMed Central

    Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam

    2017-01-01

    In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities. PMID:28518101

  18. Inhomogeneous Jacobi equation for minimal surfaces and perturbative change in holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Avirup; Mishra, Rohit

    2018-04-01

    The change in holographic entanglement entropy (HEE) for small fluctuations about pure anti-de Sitter (AdS) is obtained by a perturbative expansion of the area functional in terms of the change in the bulk metric and the embedded extremal surface. However it is known that change in the embedding appears at second order or higher. It was shown that these changes in the embedding can be calculated in the 2 +1 dimensional case by solving a "generalized geodesic deviation equation." We generalize this result to arbitrary dimensions by deriving an inhomogeneous form of the Jacobi equation for minimal surfaces. The solutions of this equation map a minimal surface in a given space time to a minimal surface in a space time which is a perturbation over the initial space time. Using this we perturbatively calculate the changes in HEE up to second order for boosted black brane like perturbations over AdS4.

  19. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  20. On the deduction of chemical reaction pathways from measurements of time series of concentrations.

    PubMed

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.

  1. Are superhydrophobic surfaces best for icephobicity?

    PubMed

    Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos

    2011-03-15

    Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.

  2. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  3. Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin

    PubMed Central

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2014-01-01

    Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution. PMID:25165981

  4. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model

    PubMed Central

    Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858

  5. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  6. Thermodynamics of finite systems: a key issues review

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.

    2018-07-01

    A little over ten years ago, Campisi, and Dunkel and Hilbert, published papers claiming that the Gibbs (volume) entropy of a classical system was correct, and that the Boltzmann (surface) entropy was not. They claimed further that the quantum version of the Gibbs entropy was also correct, and that the phenomenon of negative temperatures was thermodynamically inconsistent. Their work began a vigorous debate of exactly how the entropy, both classical and quantum, should be defined. The debate has called into question the basis of thermodynamics, along with fundamental ideas such as whether heat always flows from hot to cold. The purpose of this paper is to sum up the present status—admittedly from my point of view. I will show that standard thermodynamics, with some minor generalizations, is correct, and the alternative thermodynamics suggested by Hilbert, Hänggi, and Dunkel is not. Heat does not flow from cold to hot. Negative temperatures are thermodynamically consistent. The small ‘errors’ in the Boltzmann entropy that started the whole debate are shown to be a consequence of the micro-canonical assumption of an energy distribution of zero width. Improved expressions for the entropy are found when this assumption is abandoned.

  7. An entropy-assisted musculoskeletal shoulder model.

    PubMed

    Xu, Xu; Lin, Jia-Hua; McGorry, Raymond W

    2017-04-01

    Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantum darwinism in a mixed environment.

    PubMed

    Zwolak, Michael; Quan, H T; Zurek, Wojciech H

    2009-09-11

    Quantum Darwinism recognizes that we-the observers-acquire our information about the "systems of interest" indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment's entropy increase. For fairly mixed environments, this means a reduction by a factor 1-h, where h is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by approximately (1-h)(-1) to gain the same information about the system.

  9. Quantum Darwinism in a Mixed Environment

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2009-09-01

    Quantum Darwinism recognizes that we—the observers—acquire our information about the “systems of interest” indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment’s entropy increase. For fairly mixed environments, this means a reduction by a factor 1-h, where h is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by ˜(1-h)-1 to gain the same information about the system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Freidel, Laurent

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  11. Entropy generation analysis for film boiling: A simple model of quenching

    NASA Astrophysics Data System (ADS)

    Lotfi, Ali; Lakzian, Esmail

    2016-04-01

    In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

  12. Cattaneo-Christov based study of {TiO}_2 -CuO/EG Casson hybrid nanofluid flow over a stretching surface with entropy generation

    NASA Astrophysics Data System (ADS)

    Jamshed, Wasim; Aziz, Asim

    2018-06-01

    In the present research, a simplified mathematical model is presented to study the heat transfer and entropy generation analysis of thermal system containing hybrid nanofluid. Nanofluid occupies the space over an infinite horizontal surface and the flow is induced by the non-linear stretching of surface. A uniform transverse magnetic field, Cattaneo-Christov heat flux model and thermal radiation effects are also included in the present study. The similarity technique is employed to reduce the governing non-linear partial differential equations to a set of ordinary differential equation. Keller Box numerical scheme is then used to approximate the solutions for the thermal analysis. Results are presented for conventional copper oxide-ethylene glycol (CuO-EG) and hybrid titanium-copper oxide/ethylene glycol ({TiO}_2 -CuO/EG) nanofluids. The spherical, hexahedron, tetrahedron, cylindrical, and lamina-shaped nanoparticles are considered in the present analysis. The significant findings of the study is the enhanced heat transfer capability of hybrid nanofluids over the conventional nanofluids, greatest heat transfer rate for the smallest value of the shape factor parameter and the increase in Reynolds number and Brinkman number increases the overall entropy of the system.

  13. Shannon information entropy in the canonical genetic code.

    PubMed

    Nemzer, Louis R

    2017-02-21

    The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An entropy-based method for determining the flow depth distribution in natural channels

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.

    2013-08-01

    A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.

  15. Complexity quantification of cardiac variability time series using improved sample entropy (I-SampEn).

    PubMed

    Marwaha, Puneeta; Sunkaria, Ramesh Kumar

    2016-09-01

    The sample entropy (SampEn) has been widely used to quantify the complexity of RR-interval time series. It is a fact that higher complexity, and hence, entropy is associated with the RR-interval time series of healthy subjects. But, SampEn suffers from the disadvantage that it assigns higher entropy to the randomized surrogate time series as well as to certain pathological time series, which is a misleading observation. This wrong estimation of the complexity of a time series may be due to the fact that the existing SampEn technique updates the threshold value as a function of long-term standard deviation (SD) of a time series. However, time series of certain pathologies exhibits substantial variability in beat-to-beat fluctuations. So the SD of the first order difference (short term SD) of the time series should be considered while updating threshold value, to account for period-to-period variations inherited in a time series. In the present work, improved sample entropy (I-SampEn), a new methodology has been proposed in which threshold value is updated by considering the period-to-period variations of a time series. The I-SampEn technique results in assigning higher entropy value to age-matched healthy subjects than patients suffering atrial fibrillation (AF) and diabetes mellitus (DM). Our results are in agreement with the theory of reduction in complexity of RR-interval time series in patients suffering from chronic cardiovascular and non-cardiovascular diseases.

  16. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    PubMed

    Sprenger, K G; Pfaendtner, Jim

    2016-06-07

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.

  17. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet

    NASA Astrophysics Data System (ADS)

    Saeed Butt, Adnan; Ali, Asif

    2014-01-01

    The present article aims to investigate the entropy effects in magnetohydrodynamic flow and heat transfer over an unsteady permeable stretching surface. The time-dependent partial differential equations are converted into non-linear ordinary differential equations by suitable similarity transformations. The solutions of these equations are computed analytically by the Homotopy Analysis Method (HAM) then solved numerically by the MATLAB built-in routine. Comparison of the obtained results is made with the existing literature under limiting cases to validate our study. The effects of unsteadiness parameter, magnetic field parameter, suction/injection parameter, Prandtl number, group parameter and Reynolds number on flow and heat transfer characteristics are checked and analysed with the aid of graphs and tables. Moreover, the effects of these parameters on entropy generation number and Bejan number are also shown graphically. It is examined that the unsteadiness and presence of magnetic field augments the entropy production.

  18. Electrochemistry of cations in diopsidic melt - Determining diffusion rates and redox potentials from voltammetric curves

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Crane, Daniel

    1990-01-01

    Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.

  19. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  20. Visual wetness perception based on image color statistics.

    PubMed

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  1. Contour Entropy: A New Determinant of Perceiving Ground or a Hole

    ERIC Educational Resources Information Center

    Gillam, Barbara J.; Grove, Philip M.

    2011-01-01

    Figure-ground perception is typically described as seeing one surface occluding another. Figure properties, not ground properties, are considered the significant factors. In scenes, however, a near surface will often occlude multiple contours and surfaces, often at different depths, producing alignments that are improbable except under conditions…

  2. Instantons and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Hung, Ling-Yan; Melby-Thompson, Charles M.

    2017-10-01

    We would like to put the area law — believed to be obeyed by entanglement entropies in the ground state of a local field theory — to scrutiny in the presence of nonperturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton contributions are well understood, including U(1) gauge theory in 2+1 dimensions and false vacuum decay in ϕ 4 theory, and we demonstrate that the area law is indeed obeyed in these models. We also perform numerical computations for toy wavefunctions mimicking the theta vacuum of the (1+1)-dimensional Schwinger model. Our results indicate that such superpositions exhibit no more violation of the area law than the logarithmic behavior of a single Fermi surface.

  3. Entanglement entropy of AdS5 × S5 with massless flavors at nonzero temperature

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Wu, Guozhen

    2018-03-01

    We consider backreacted AdS5 × S5 coupled with Nf massless flavors introduced by D7-branes at nonzero temperature. The backreacted geometry is in the Veneziano limit. The temperature of this system is related to the event horizon at rh. Dividing one of the spatial directions into a line segment with length l, we will calculate the holographic entanglement entropy (HEE) between the two subspaces. We study the behavior near the event horizon, and finally find that there exists confinement/deconfinement phase transition phenomenon near the horizon since the difference between the entanglement entropy of the connected minimal surface and the disconnected one changes sign.

  4. Non-analyticity of holographic Rényi entropy in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Puletti, V. Giangreco M.; Pourhasan, Razieh

    2017-08-01

    We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.

  5. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.

    PubMed

    Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George

    2006-09-15

    The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.

  6. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the growing seasons from 2015-2017. Soil moisture profiles compared favorably to in situ data and simulated crop yields compared well with observed yields.

  7. Thermodynamics of the Sorption of Benzimidazoles on Octadecyl Silica Gel from Water-Methanol Eluents

    NASA Astrophysics Data System (ADS)

    Shafigulin, R. V.; Bulanova, A. V.

    2018-02-01

    The standard enthalpy and entropy component of transferring benzimidazoles from water-methanol solutions to surfaces of octadecyl silica gel are determined using reversed-phase high-performance liquid chromatography (RP HPLC). The dependences between the enthalpy and polarizability of the molecules of the studied benzimidazoles, the enthalpy and the entropy factor are studied, and the influence of the quantitative composition of the water-methanol solution on the enthalpy are studied.

  8. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  9. The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Gerbal, D.; Márquez, I.

    1999-10-01

    Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have in principle a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the fundamental parameters describing the mass (light) distribution in galaxies. Following recent photometrical work on elliptical galaxies by Caon et al., Graham & Colless and Prugniel & Simien, we use the Sérsic law to describe the light profile and an analytical approximation to its three-dimensional deprojection. The specific entropy is then calculated, supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal-gas equations of state. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in two rich clusters of galaxies (Coma and ABCG 85) and a group of galaxies (associated with NGC 4839, near Coma). We show that, for a given cluster, the galaxies follow closely a relation predicted by the constant specific entropy hypothesis with a typical dispersion (one standard deviation) of 9.5per cent around the mean value of the specific entropy. Moreover, assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between Coma, ABGC 85, and the group of NGC 4839. If the errors are due only to the determination of the specific entropy (about 10per cent), then the error in the relative distance determination should be less than 20per cent for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sérsic profile put forward by Young & Currie and recently discussed by Binggeli & Jerjen.

  10. Geospatial and Remote Sensing-based Indicators of Settlement Type---Differentiating Informal and Formal Settlements in Guatemala City

    NASA Astrophysics Data System (ADS)

    Owen, Karen K.

    This research addresses the need for reliable, repeatable, quantitative measures to differentiate informal (slum) from formal (planned) settlements using commercial very high resolution imagery and elevation data. Measuring the physical, spatial and spectral qualities of informal settlements is an important precursor for evaluating success toward improving the lives of 100 million slum dwellers worldwide, as pledged by the United Nations Millennium Development Goal Target 7D. A variety of measures were tested based on surface material spectral properties, texture, built-up structure, road network accessibility, and geomorphology from twelve communities in Guatemala City to reveal statistically significant differences between informal and formal settlements that could be applied to other parts of the world without the need for costly or dangerous field surveys. When information from satellite imagery is constrained to roads and residential boundaries, a more precise understanding of human habitation is produced. A classification and regression tree (CART) approach and linear discriminant function analysis enabled a variable dimensionality reduction from the original 23 to 6 variables that are sufficient to differentiate a settlement as informal or formal. The results demonstrate that the entropy texture of roads, the degree of asphalt road surface, the vegetation patch compactness and patch size, the percent of bare soil land cover, the geomorphic profile convexity of the terrain, and the road density distinguish informal from formal settlements with 87--92% accuracy when results are cross-validated. The variables with highest contribution to model outcome that are common to both approaches are entropy texture of roads, vegetation patch size, and vegetation compactness suggesting that road texture, surface materials and vegetation provide the necessary characteristics to distinguish the level of informality of a settlement. The results will assist urban planners and settlement analysts who must process vast amounts of imagery worldwide, enabling them to report annually on slum conditions. An added benefit is the ability to use the measures in data-poor regions of the world without field surveys.

  11. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    NASA Astrophysics Data System (ADS)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  12. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    PubMed

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  13. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    PubMed

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  14. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, T.

    2011-02-15

    It has been known for several decades that Einstein's field equations, when projected onto a null surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in which there appears a Lie derivative rather thanmore » a convective derivative. I discuss this difference, its importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.« less

  15. Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders.

    PubMed

    Mazaheri, Masood; Negahban, Hossein; Salavati, Mahyar; Sanjari, Mohammad Ali; Parnianpour, Mohamad

    2010-09-01

    Although the application of nonlinear tools including recurrence quantification analysis (RQA) has increasingly grown in the recent years especially in balance-disordered populations, there have been few studies which determine their measurement properties. Therefore, a methodological study was performed to estimate the intersession and intrasession reliability of some dynamic features provided by RQA for nonlinear analysis of center of pressure (COP) signals recorded during quiet standing in a sample of patients with musculoskeletal disorders (MSDs) including low back pain (LBP), anterior cruciate ligament (ACL) injury and functional ankle instability (FAI). The subjects completed postural measurements with three levels of difficulty (rigid surface-eyes open, rigid surface-eyes closed, and foam surface-eyes closed). Four RQA measures (% recurrence, % determinism, entropy, and trend) were extracted from the recurrence plot. Relative reliability of these measures was assessed using intraclass correlation coefficient and absolute reliability using standard error of measurement and coefficient of variation. % Determinism and entropy were the most reliable features of RQA for the both intersession and intrasession reliability measures. High level of reliability of % determinism and entropy in this preliminary investigation may show their clinical promise for discriminative and evaluative purposes of balance performance. 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water

    PubMed Central

    Athawale, Manoj V.; Goel, Gaurav; Ghosh, Tuhin; Truskett, Thomas M.; Garde, Shekhar

    2007-01-01

    We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer–water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:8324–8327] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer–water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor–liquid interface. PMID:17215352

  17. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  18. Physical process first law and increase of horizon entropy for black holes in Einstein-Gauss-Bonnet gravity.

    PubMed

    Chatterjee, Ayan; Sarkar, Sudipta

    2012-03-02

    We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.

  19. Direct Determination of Site-Specific Noncovalent Interaction Strengths of Proteins from NMR-Derived Fast Side Chain Motional Parameters.

    PubMed

    Rajeshwar T, Rajitha; Krishnan, Marimuthu

    2017-05-25

    A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.

  20. Holographic entanglement for Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  1. Measuring the potential utility of seasonal climate predictions

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  2. Preparation, electronic structure, and chemical bonding of lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3 solid solution

    NASA Astrophysics Data System (ADS)

    Sasikumar, S.; Saravanan, R.; Saravanakumar, S.; Robert, M. Charles

    2018-01-01

    Polycrystalline lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3, ((1 - x)KBT- xBT) ( x = 0.00, 0.08, 0.12) ceramics were synthesized via solid-state reaction method. The powder X-ray diffraction (PXRD) and structural refinement results confirm that a single-phase tetragonal structure with space group P4mm. Charge density distribution inside the unit cell of (1 - x)KBT- xBT was investigated by the maximum entropy method. Charge density analysis reveals the reduction in ionic nature along K/Bi-O bond and enhancement of covalent nature along Ti-O bond with the addition of BaTiO3. The charge density distribution studies done using maximum entropy method for (1 - x)KBT- xBT have not been done so far. The surface morphology study was done using scanning electron microscopy (SEM). Energy dispersive X-rays spectra (EDS) were used to investigate the elemental compositions present in the system. The dielectric constant and loss tangent were studied as a function of frequency. The dielectric constant and loss were decreased with increase of frequency. Room temperature dielectric constant ( ɛ) and loss (tan δ) were measured for x = 0.00 about 511 and 0.51, respectively, at a frequency of 10 kHz.

  3. Emergence of spacetime dynamics in entropy corrected and braneworld models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheykhi, A.; Dehghani, M.H.; Hosseini, S.E., E-mail: asheykhi@shirazu.ac.ir, E-mail: mhd@shirazu.ac.ir, E-mail: elahehhosseini90@gmail.com

    2013-04-01

    A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation ΔV = Δt(N{sub sur}−N{sub bulk}). In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, N{sub sur}, using the general entropy corrected formula S = A/(4L{sub p}{sup 2})+s(A). Then, as two example, by applyingmore » the Padmanabhan's idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP braneworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan's proposal.« less

  4. The Effect of n vs. iso Isomerization on the Thermophysical Properties of Aromatic and Non-aromatic Ionic Liquids.

    PubMed

    Rodrigues, Ana S M C; Almeida, Hugo F D; Freire, Mara G; Lopes-da-Silva, José A; Coutinho, João A P; Santos, Luís M N B F

    2016-09-15

    This work explores the n vs. iso isomerization effects on the physicochemical properties of different families of ionic liquids (ILs) with variable aromaticity and ring size. This study comprises the experimental measurements, in a wide temperature range, of the ILs' thermal behavior, heat capacities, densities, refractive indices, surface tensions, and viscosities. The results here reported show that the presence of the iso -alkyl group leads to an increase of the temperature of the glass transition, T g . The iso- pyrrolidinium (5 atoms ring cation core) and iso -piperidinium (6 atoms ring cation core) ILs present a strong differentiation in the enthalpy and entropy of melting. Non-aromatic ILs have higher molar heat capacities due to the increase of the atomic contribution, whereas it was not found any significant differentiation between the n and iso -alkyl isomers. A small increase of the surface tension was observed for the non-aromatic ILs, which could be related to their higher cohesive energy of the bulk, while the lower surface entropy observed for the iso isomers indicates a structural resemblance between the IL bulk and surface. The significant differentiation between ILs with a 5 and 6 atoms ring cation in the n -alkyl series (where 5 atoms ring cations have higher surface entropy) is an indication of a more efficient arrangement of the non-polar region at the surface in ILs with smaller cation cores. The ILs constituted by non-aromatic piperidinium cation, and iso -alkyl isomers were found to be the most viscous among the studied ILs due to their higher energy barriers for shear stress.

  5. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  6. Tsallis entropy and decoherence of CsI quantum pseudo dot qubit

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-05-01

    Polaron in CsI quantum pseudo dot under an electromagnetic field was considered, and the ground and first excited state energies were derived by employing the combining Pekar variational and unitary transformation methods. With the two-level system obtained, single qubit was envisioned and the decoherence was studied using non-extensive entropy (Tsallis entropy). Numerical results showed: (i) the increase (decrease) of the energy levels (period of oscillation) with the increase of chemical potential, the zero point of pseudo dot, cyclotron frequency, and transverse and longitudinal confinements; (ii) the Tsallis entropy evolved as a wave envelop that increase with the increase of non-extenxive parameter and with the increase of electric field strength, zero point of pseudo dot and cyclotron frequency the wave envelop evolve periodically with reduction of period; (iii) The transition probability increases from the boundary to the centre of the dot where it has its maximum value. It was also noted that the probability density oscillate with period T0 = ℏ / Δ Ε with the tunnelling of the chemical potential and zero point of the pseudo dot. These results are helpful in the control of decoherence in quantum systems and may also be useful for the design of quantum computers.

  7. Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids.

    PubMed

    Liu, Zhao; Bhatt, R N

    2016-11-11

    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.

  8. Gravity from entanglement and RG flow in a top-down approach

    NASA Astrophysics Data System (ADS)

    Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.

    2018-05-01

    The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.

  9. Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch-Davies vacuum

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY^3) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S^2, which divides the spatial slice of de Sitter (dS_4) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Rényi entropy in 3+1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion.

  10. Effect of electrode contact area on the information content of the recorded electrogastrograms: An analysis based on Rényi entropy and Teager-Kaiser Energy

    NASA Astrophysics Data System (ADS)

    Alagumariappan, Paramasivam; Krishnamurthy, Kamalanand; Kandiah, Sundravadivelu; Ponnuswamy, Mannar Jawahar

    2017-06-01

    Electrogastrograms (EGG) are electrical signals originating from the digestive system, which are closely correlated with its mechanical activity. Electrogastrography is an efficient non-invasive method for examining the physiological and pathological states of the human digestive system. There are several factors such as fat conductivity, abdominal thickness, change in electrode surface area etc, which affects the quality of the recorded EGG signals. In this work, the effect of variations in the contact area of surface electrodes on the information content of the measured electrogastrograms is analyzed using Rényi entropy and Teager-Kaiser Energy (TKE). Two different circular cutaneous electrodes with approximate contact areas of 201.14 mm2 and 283.64 mm2, have been adopted and EGG signals were acquired using the standard three electrode protocol. Further, the information content of the measured EGG signals were analyzed using the computed values of entropy and energy. Results demonstrate that the information content of the measured EGG signals increases by 6.72% for an increase in the contact area of the surface electrode by 29.09%. Further, it was observed that the average energy increases with increase in the contact surface area. This work appears to be of high clinical significance since the accurate measurement of EGG signals without loss in its information content, is highly useful for the design of diagnostic assistance tools for automated diagnosis and mass screening of digestive disorders.

  11. Shape dependence of entanglement entropy in conformal field theories

    DOE PAGES

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar

    2016-04-14

    Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less

  12. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  13. Entropy, extremality, euclidean variations, and the equations of motion

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Lewkowycz, Aitor

    2018-01-01

    We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.

  14. Smarr formula for Lovelock black holes: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Liberati, Stefano; Pacilio, Costantino

    2016-04-01

    The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.

  15. The Entropy of Non-Ergodic Complex Systems — a Derivation from First Principles

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Hanel, Rudolf

    In information theory the 4 Shannon-Khinchin1,2 (SK) axioms determine Boltzmann Gibbs entropy, S -∑i pilog pi, as the unique entropy. Physics is different from information in the sense that physical systems can be non-ergodic or non-Markovian. To characterize such strongly interacting, statistical systems - complex systems in particular - within a thermodynamical framework it might be necessary to introduce generalized entropies. A series of such entropies have been proposed in the past decades. Until now the understanding of their fundamental origin and their deeper relations to complex systems remains unclear. To clarify the situation we note that non-ergodicity explicitly violates the fourth SK axiom. We show that by relaxing this axiom the entropy generalizes to, S ∑i Γ(d + 1, 1 - c log pi), where Γ is the incomplete Gamma function, and c and d are scaling exponents. All recently proposed entropies compatible with the first 3 SK axioms appear to be special cases. We prove that each statistical system is uniquely characterized by the pair of the two scaling exponents (c, d), which defines equivalence classes for all systems. The corresponding distribution functions are special forms of Lambert-W exponentials containing, as special cases, Boltzmann, stretched exponential and Tsallis distributions (power-laws) - all widely abundant in nature. This derivation is the first ab initio justification for generalized entropies. We next show how the phasespace volume of a system is related to its generalized entropy, and provide a concise criterion when it is not of Boltzmann-Gibbs type but assumes a generalized form. We show that generalized entropies only become relevant when the dynamically (statistically) relevant fraction of degrees of freedom in a system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen. Systems governed by generalized entropies are therefore systems whose phasespace volume effectively collapses to a lower-dimensional 'surface'. We explicitly illustrate the situation for accelerating random walks, and a spin system on a constant-conectancy network. We argue that generalized entropies should be relevant for self-organized critical systems such as sand piles, for spin systems which form meta-structures such as vortices, domains, instantons, etc., and for problems associated with anomalous diffusion.

  16. Entropy Based Feature Selection for Fuzzy Set-Valued Information Systems

    NASA Astrophysics Data System (ADS)

    Ahmed, Waseem; Sufyan Beg, M. M.; Ahmad, Tanvir

    2018-06-01

    In Set-valued Information Systems (SIS), several objects contain more than one value for some attributes. Tolerance relation used for handling SIS sometimes leads to loss of certain information. To surmount this problem, fuzzy rough model was introduced. However, in some cases, SIS may contain some real or continuous set-values. Therefore, the existing fuzzy rough model for handling Information system with fuzzy set-values needs some changes. In this paper, Fuzzy Set-valued Information System (FSIS) is proposed and fuzzy similarity relation for FSIS is defined. Yager's relative conditional entropy was studied to find the significance measure of a candidate attribute of FSIS. Later, using these significance values, three greedy forward algorithms are discussed for finding the reduct and relative reduct for the proposed FSIS. An experiment was conducted on a sample population of the real dataset and a comparison of classification accuracies of the proposed FSIS with the existing SIS and single-valued Fuzzy Information Systems was made, which demonstrated the effectiveness of proposed FSIS.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tebben, Andrew J.; Ruzanov, Maxim; Gao, Mian

    The cytokine TGF-β modulates a number of cellular activities and plays a critical role in development, hemostasis and physiology, as well as in diseases including cancer and fibrosis. TGF-β signals through two transmembrane serine/threonine kinase receptors: TGFβR1 and TGFβR2. Multiple structures of the TGFβR1 kinase domain are known, but the structure of TGFβR2 remains unreported. Wild-type TGFβR2 kinase domain was refractory to crystallization, leading to the design of two mutated constructs: firstly, a TGFβR1 chimeric protein with seven ATP-site residues mutated to their counterparts in TGFβR2, and secondly, a reduction of surface entropy through mutation of six charged residues onmore » the surface of the TGFβR2 kinase domain to alanines. These yielded apo and inhibitor-bound crystals that diffracted to high resolution (<2 Å). Comparison of these structures with those of TGFβR1 reveal shared ligand contacts as well as differences in the ATP-binding sites, suggesting strategies for the design of pan and selective TGFβR inhibitors.« less

  18. Complexity of cardiovascular rhythms during head-up tilt test by entropy of patterns.

    PubMed

    Wejer, Dorota; Graff, Beata; Makowiec, Danuta; Budrejko, Szymon; Struzik, Zbigniew R

    2017-05-01

    The head-up tilt (HUT) test, which provokes transient dynamical alterations in the regulation of cardiovascular system, provides insights into complex organization of this system. Based on signals with heart period intervals (RR-intervals) and/or systolic blood pressure (SBP), differences in the cardiovascular regulation between vasovagal patients (VVS) and the healthy people group (CG) are investigated. Short-term relations among signal data represented symbolically by three-beat patterns allow to qualify and quantify the complexity of the cardiovascular regulation by Shannon entropy. Four types of patterns: permutation, ordinal, deterministic and dynamical, are used, and different resolutions of signal values in the the symbolization are applied in order to verify how entropy of patterns depends on a way in which values of signals are preprocessed. At rest, in the physiologically important signal resolution ranges, independently of the type of patterns used in estimates, the complexity of SBP signals in VVS is different from the complexity found in CG. Entropy of VVS is higher than CG what could be interpreted as substantial presence of noisy ingredients in SBP of VVS. After tilting this relation switches. Entropy of CG occurs significantly higher than VVS for SBP signals. In the case of RR-intervals and large resolutions, the complexity after the tilt becomes reduced when compared to the complexity of RR-intervals at rest for both groups. However, in the case of VVS patients this reduction is significantly stronger than in CG. Our observations about opposite switches in entropy between CG and VVS might support a hypothesis that baroreflex in VVS affects stronger the heart rate because of the inefficient regulation (possibly impaired local vascular tone alternations) of the blood pressure.

  19. Exploring total cardiac variability in healthy and pathophysiological subjects using improved refined multiscale entropy.

    PubMed

    Marwaha, Puneeta; Sunkaria, Ramesh Kumar

    2017-02-01

    Multiscale entropy (MSE) and refined multiscale entropy (RMSE) techniques are being widely used to evaluate the complexity of a time series across multiple time scales 't'. Both these techniques, at certain time scales (sometimes for the entire time scales, in the case of RMSE), assign higher entropy to the HRV time series of certain pathologies than that of healthy subjects, and to their corresponding randomized surrogate time series. This incorrect assessment of signal complexity may be due to the fact that these techniques suffer from the following limitations: (1) threshold value 'r' is updated as a function of long-term standard deviation and hence unable to explore the short-term variability as well as substantial variability inherited in beat-to-beat fluctuations of long-term HRV time series. (2) In RMSE, entropy values assigned to different filtered scaled time series are the result of changes in variance, but do not completely reflect the real structural organization inherited in original time series. In the present work, we propose an improved RMSE (I-RMSE) technique by introducing a new procedure to set the threshold value by taking into account the period-to-period variability inherited in a signal and evaluated it on simulated and real HRV database. The proposed I-RMSE assigns higher entropy to the age-matched healthy subjects than that of patients suffering from atrial fibrillation, congestive heart failure, sudden cardiac death and diabetes mellitus, for the entire time scales. The results strongly support the reduction in complexity of HRV time series in female group, old-aged, patients suffering from severe cardiovascular and non-cardiovascular diseases, and in their corresponding surrogate time series.

  20. Thermodynamics and computation during collective motion near criticality

    NASA Astrophysics Data System (ADS)

    Crosato, Emanuele; Spinney, Richard E.; Nigmatullin, Ramil; Lizier, Joseph T.; Prokopenko, Mikhail

    2018-01-01

    We study self-organization of collective motion as a thermodynamic phenomenon in the context of the first law of thermodynamics. It is expected that the coherent ordered motion typically self-organises in the presence of changes in the (generalized) internal energy and of (generalized) work done on, or extracted from, the system. We aim to explicitly quantify changes in these two quantities in a system of simulated self-propelled particles and contrast them with changes in the system's configuration entropy. In doing so, we adapt a thermodynamic formulation of the curvatures of the internal energy and the work, with respect to two parameters that control the particles' alignment. This allows us to systematically investigate the behavior of the system by varying the two control parameters to drive the system across a kinetic phase transition. Our results identify critical regimes and show that during the phase transition, where the configuration entropy of the system decreases, the rates of change of the work and of the internal energy also decrease, while their curvatures diverge. Importantly, the reduction of entropy achieved through expenditure of work is shown to peak at criticality. We relate this both to a thermodynamic efficiency and the significance of the increased order with respect to a computational path. Additionally, this study provides an information-geometric interpretation of the curvature of the internal energy as the difference between two curvatures: the curvature of the free entropy, captured by the Fisher information, and the curvature of the configuration entropy.

  1. Sensitivity of Tropical Cyclone Spinup Time to the Initial Entropy Deficit

    NASA Astrophysics Data System (ADS)

    Tang, B.; Corbosiero, K. L.; Rios-Berrios, R.; Alland, J.; Berman, J.

    2014-12-01

    The development timescale of a tropical cyclone from genesis to the start of rapid intensification in an axisymmetric model is hypothesized to be a function of the initial entropy deficit. We run a set of idealized simulations in which the initial entropy deficit between the boundary layer and free troposphere varies from 0 to 100 J kg-1 K-1. The development timescale is measured by changes in the integrated kinetic energy of the low-level vortex. This timescale is inversely related to the mean mass flux during the tropical cyclone gestation period. The mean mass flux, in turn, is a function of the statistics of convective updrafts and downdrafts. Contour frequency by altitude diagrams show that entrainment of dry air into updrafts is predominately responsible for differences in the mass flux between the experiments, while downdrafts play a secondary role. Analyses of the potential and kinetic energy budgets indicate less efficient conversion of available potential energy to kinetic energy in the experiments with higher entropy deficits. Entrainment leads to the loss of buoyancy and the destruction of available potential energy. In the presence of strong downdrafts, there can even be a reversal of the conversion term. Weaker and more radially confined radial inflow results in less convergence of angular momentum in the experiments with higher entropy deficits. The result is a slower vortex spinup and a reduction in steady-state vortex size, despite similar steady-state maximum intensities among the experiments.

  2. Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state

    PubMed Central

    Niven, Robert K.

    2010-01-01

    This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250

  3. Local statistics adaptive entropy coding method for the improvement of H.26L VLC coding

    NASA Astrophysics Data System (ADS)

    Yoo, Kook-yeol; Kim, Jong D.; Choi, Byung-Sun; Lee, Yung Lyul

    2000-05-01

    In this paper, we propose an adaptive entropy coding method to improve the VLC coding efficiency of H.26L TML-1 codec. First of all, we will show that the VLC coding presented in TML-1 does not satisfy the sibling property of entropy coding. Then, we will modify the coding method into the local statistics adaptive one to satisfy the property. The proposed method based on the local symbol statistics dynamically changes the mapping relationship between symbol and bit pattern in the VLC table according to sibling property. Note that the codewords in the VLC table of TML-1 codec is not changed. Since this changed mapping relationship also derived in the decoder side by using the decoded symbols, the proposed VLC coding method does not require any overhead information. The simulation results show that the proposed method gives about 30% and 37% reduction in average bit rate for MB type and CBP information, respectively.

  4. Entanglement entropies and fermion signs of critical metals

    NASA Astrophysics Data System (ADS)

    Kaplis, N.; Krüger, F.; Zaanen, J.

    2017-04-01

    The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.

  5. Calculation of the Intensity of Physical Time Fluctuations Using the Standard Solar Model and its Comparison with the Results of Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Morozov, A. N.

    2017-11-01

    The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.

  6. The complexity of identifying Ryu-Takayanagi surfaces in AdS 3/CFT 2

    DOE PAGES

    Bao, Ning; Chatwin-Davies, A.

    2016-11-07

    Here, we present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS 3/CFT 2 which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

  7. Coupling diffusion and maximum entropy models to estimate thermal inertia

    USDA-ARS?s Scientific Manuscript database

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  8. Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite

    PubMed Central

    2017-01-01

    Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from −7 to −13 kcal/mol and are by 1–2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy. PMID:28145699

  9. Surface free energy and some other properties of a crystal-vapor interface: Molecular dynamics simulation of a Lennard-Jones system

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Tipeev, A. O.; Protsenko, K. R.

    2017-07-01

    The surface tension γ and surface energy u bar have been calculated in molecular dynamics simulation of an FCC crystal-vapor equilibrium in systems containing from 54000 to 108000 Lennard-Jones (LJ) particles with a cutoff radius of the potential rc = 6.78 d . The surface entropy s bar and the surface free energy σ along the sublimation line have been determined by the method of thermodynamic integration from the zero of temperature, where the classical entropy has been obtained from the dynamical theory of crystal lattice by data on γ (T) and u bar (T) . Calculations were made on the planes (1 0 0), (1 1 0) and (1 1 1) of an LJ crystal. The anisotropy of surface properties is considerable at low temperatures and smooths over at the approach of the triple point. At a temperature 1/3 lower than the melting temperature of the bulk phase changes are observed in the character of temperature dependences of the properties of a crystal-vapor interface, which are connected with surface premelting. The temperature of the beginning of surface premelting correlates with that at which the metastable extension of the melting line meets the spinodal of a stretched liquid.

  10. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.

    PubMed Central

    Baptista, A M; Martel, P J; Soares, C M

    1999-01-01

    A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant. PMID:10354425

  11. Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach

    NASA Astrophysics Data System (ADS)

    Lopes, Fabrício M.; de Oliveira, Evaldo A.; Cesar, Roberto M.

    An important problem in the bioinformatics field is to understand how genes are regulated and interact through gene networks. This knowledge can be helpful for many applications, such as disease treatment design and drugs creation purposes. For this reason, it is very important to uncover the functional relationship among genes and then to construct the gene regulatory network (GRN) from temporal expression data. However, this task usually involves data with a large number of variables and small number of observations. In this way, there is a strong motivation to use pattern recognition and dimensionality reduction approaches. In particular, feature selection is specially important in order to select the most important predictor genes that can explain some phenomena associated with the target genes. This work presents a first study about the sensibility of entropy methods regarding the entropy functional form, applied to the problem of topology recovery of GRNs. The generalized entropy proposed by Tsallis is used to study this sensibility. The inference process is based on a feature selection approach, which is applied to simulated temporal expression data generated by an artificial gene network (AGN) model. The inferred GRNs are validated in terms of global network measures. Some interesting conclusions can be drawn from the experimental results, as reported for the first time in the present paper.

  12. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    NASA Astrophysics Data System (ADS)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  13. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions

    PubMed Central

    Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P.

    2016-01-01

    In addition to its scientific importance, the degradation of azo dyes is of practical significance from the perspective of environmental protection. Although encouraging progress has been made on developing degradation approaches and materials, it is still challenging to fully resolve this long-standing problem. Herein, we report that high entropy alloys, which have been emerging as a new class of metallic materials in the last decade, have excellent performance in degradation of azo dyes. In particular, the newly developed AlCoCrTiZn high-entropy alloy synthesized by mechanical alloying exhibits a prominent efficiency in degradation of the azo dye (Direct Blue 6: DB6), as high as that of the best metallic glass reported so far. The newly developed AlCoCrTiZn HEA powder has low activation energy barrier, i.e., 30 kJ/mol, for the degrading reaction and thus make the occurrence of reaction easier as compared with other materials such as the glassy Fe-based powders. The excellent capability of our high-entropy alloys in degrading azo dye is attributed to their unique atomic structure with severe lattice distortion, chemical composition effect, residual stress and high specific surface area. Our findings have important implications in developing novel high-entropy alloys for functional applications as catalyst materials. PMID:27677462

  14. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study

    PubMed Central

    Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2012-01-01

    Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220

  15. Statistical thermodynamics of amphiphile chains in micelles

    PubMed Central

    Ben-Shaul, A.; Szleifer, I.; Gelbart, W. M.

    1984-01-01

    The probability distribution of amphiphile chain conformations in micelles of different geometries is derived through maximization of their packing entropy. A lattice model, first suggested by Dill and Flory, is used to represent the possible chain conformations in the micellar core. The polar heads of the chains are assumed to be anchored to the micellar surface, with the other chain segments occupying all lattice sites in the interior of the micelle. This “volume-filling” requirement, the connectivity of the chains, and the geometry of the micelle define constraints on the possible probability distributions of chain conformations. The actual distribution is derived by maximizing the chain's entropy subject to these constraints; “reversals” of the chains back towards the micellar surface are explicitly included. Results are presented for amphiphiles organized in planar bilayers and in cylindrical and spherical micelles of different sizes. It is found that, for all three geometries, the bond order parameters decrease as a function of the bond distance from the polar head, in accordance with recent experimental data. The entropy differences associated with geometrical changes are shown to be significant, suggesting thereby the need to include curvature (environmental)-dependent “tail” contributions in statistical thermodynamic treatments of micellization. PMID:16593492

  16. Entropy, Ergodicity, and Stem Cell Multipotency

    NASA Astrophysics Data System (ADS)

    Ridden, Sonya J.; Chang, Hannah H.; Zygalakis, Konstantinos C.; MacArthur, Ben D.

    2015-11-01

    Populations of mammalian stem cells commonly exhibit considerable cell-cell variability. However, the functional role of this diversity is unclear. Here, we analyze expression fluctuations of the stem cell surface marker Sca1 in mouse hematopoietic progenitor cells using a simple stochastic model and find that the observed dynamics naturally lie close to a critical state, thereby producing a diverse population that is able to respond rapidly to environmental changes. We propose an information-theoretic interpretation of these results that views cellular multipotency as an instance of maximum entropy statistical inference.

  17. Black hole entropy and Lorentz-diffeomorphism Noether charge

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Mohd, Arif

    2015-12-01

    We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.

  18. Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High-Entropy Alloys (Preprint)

    DTIC Science & Technology

    2011-07-01

    research seems to emphasize alloys based Approved for public release; distribution unlimited. 2 on the late transition metals such as Cr, Mn, Fe, Co, Ni ...of the Nb25Mo25Ta25W25 alloy , with larger grains at the regions experiencing slower solidification , i.e. near the surfaces not contacting with the...20-30 µm, indicating similar solidification conditions. 3.2.3 Fractography of samples deformed at room temperature The high entropy alloy

  19. Linearity of holographic entanglement entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    Here, we consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certainmore » such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in general systems with a large number of degrees of freedom.« less

  20. Linearity of holographic entanglement entropy

    DOE PAGES

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-02-14

    Here, we consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certainmore » such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in general systems with a large number of degrees of freedom.« less

  1. Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aranya; Roy, Shibaji

    2018-06-01

    Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.

  2. Entropy emission properties of near-extremal Reissner-Nordström black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-05-01

    Bekenstein and Mayo have revealed an interesting property of evaporating (3 +1 )-dimensional Schwarzschild black holes: their entropy emission rates S˙Sch are related to their energy emission rates P by the simple relation S˙Sch=CSch×(P /ℏ)1/2, where CSch is a numerically computed dimensionless coefficient. Remembering that (1 +1 )-dimensional perfect black-body emitters are characterized by the same functional relation, S˙1 +1=C1 +1×(P /ℏ)1/2 [with C1 +1=(π /3 )1/2], Bekenstein and Mayo have concluded that, in their entropy emission properties, (3 +1 )-dimensional Schwarzschild black holes behave effectively as (1 +1 )-dimensional entropy emitters. Later studies have shown that this intriguing property is actually a generic feature of all radiating (D +1 )-dimensional Schwarzschild black holes. One naturally wonders whether all black holes behave as simple (1 +1 )-dimensional entropy emitters? In order to address this interesting question, we shall study in this paper the entropy emission properties of Reissner-Nordström black holes. We shall show, in particular, that the physical properties which characterize the neutral sector of the Hawking emission spectra of these black holes can be studied analytically in the near-extremal TBH→0 regime (here TBH is the Bekenstein-Hawking temperature of the black hole). We find that the Hawking radiation spectra of massless neutral scalar fields and coupled electromagnetic-gravitational fields are characterized by the nontrivial entropy-energy relations S˙RNScalar=-CRNScalar×(A P3/ℏ3)1/4ln (A P /ℏ) and S˙RN Elec -Grav=-CRNElec -Grav×(A4P9/ℏ9)1 /10ln (A P /ℏ) in the near-extremal TBH→0 limit (here {CRNScalar,CRNElec -Grav} are analytically calculated dimensionless coefficients and A is the surface area of the Reissner-Nordström black hole). Our analytical results therefore indicate that not all black holes behave as simple (1 +1 )-dimensional entropy emitters.

  3. Tropical-Cyclone Formation: Theory and Idealized Modelling

    DTIC Science & Technology

    2010-11-01

    to saturation at the sea-surface temperature and the positive entropy flux from the ocean surface...and Atmospheric Administration; IFEX = Intensity Forecasting Experiment. 15GFS = NOAA Global Forecasting System ; NOGAPS = Navy Operational Global... Atmospheric Prediction System ; UKMET = United Kingdom Meteorological Office. 16 http://www.met.nps.edu/~mtmontgo/storms2010.html 18 overcomes

  4. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  5. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  6. Extra-thermodynamic study on surface diffusion in reversed-phase liquid chromatography using silica gels bonded with alkyl ligands of different chain lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyabe, Kanji; Guiochon, Georges A

    2005-06-01

    Surface diffusion on adsorbents made of silica gels bonded to C{sub 1}, C{sub 4}, C{sub 8}, and C{sub 18} alkyl ligands was studied in reversed-phase liquid chromatography (RPLC) from the viewpoints of two extrathermodynamic relationships: enthalpy-entropy compensation (EEC) and linear free-energy relationship (LFER). First, the values of the surface diffusion coefficient (D{sub s}), normalized by the density of the alkyl ligands, were analyzed with the modified Arrhenius equation, following the four approaches proposed in earlier research. This showed that an actual EEC resulting from substantial physicochemical effects occurs for surface diffusion and suggested a mechanistic similarity of molecular migration bymore » surface diffusion, irrespective of the alkyl chain length. Second, a new model based on EEC was derived to explain the LFER between the logarithms of D{sub s} measured under different RPLC conditions. This showed that the changes of free energy, enthalpy, and entropy of surface diffusion are linearly correlated with the carbon number in the alkyl ligands of the bonded phases and that the contribution of the C{sub 18} ligand to the changes of the thermodynamic parameters corresponds to that of the C{sub 10} ligand. The new LFER model correlates the slope and intercept of the LFER to the compensation temperatures derived from the EEC analyses and to several parameters characterizing the molecular contributions to the changes in enthalpy and entropy. Finally, the new model was used to estimate D{sub s} under various RPLC conditions. The values of D{sub s} that were estimated from only two original experimental D{sub s} data were in agreement with corresponding experimental D{sub s} values, with relative errors of {approx}20%, irrespective of some RPLC conditions.« less

  7. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c.

    PubMed

    Monari, Stefano; Millo, Diego; Ranieri, Antonio; Di Rocco, Giulia; van der Zwan, Gert; Gooijer, Cees; Peressini, Silvia; Tavagnacco, Claudio; Hildebrandt, Peter; Borsari, Marco

    2010-11-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.

  8. Is Water at the Graphite Interface Vapor-like or Ice-like?

    PubMed

    Qiu, Yuqing; Lupi, Laura; Molinero, Valeria

    2018-04-05

    Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.

  9. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  10. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    PubMed Central

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  11. Time, Chance, and Reduction

    NASA Astrophysics Data System (ADS)

    Ernst, Gerhard; Hüttemann, Andreas

    2010-01-01

    List of contributors; 1. Introduction Gerhard Ernst and Andreas Hütteman; Part I. The Arrows of Time: 2. Does a low-entropy constraint prevent us from influencing the past? Mathias Frisch; 3. The part hypothesis meets gravity Craig Callender; 4. Quantum gravity and the arrow of time Claus Kiefer; Part II. Probability and Chance: 5. The natural-range conception of probability Jacob Rosenthal; 6. Probability in Boltzmannian statistical mechanics Roman Frigg; 7. Humean mechanics versus a metaphysics of powers Michael Esfeld; Part III. Reduction: 8. The crystallisation of Clausius's phenomenological thermodynamics C. Ulises Moulines; 9. Reduction and renormalization Robert W. Batterman; 10. Irreversibility in stochastic dynamics Jos Uffink; Index.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar

    Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less

  13. Entanglement, replicas, and Thetas

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang

    2018-01-01

    We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.

  14. Thermodynamic studies of different black holes with modifications of entropy

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  15. Determination of the magnetocaloric entropy change by field sweep using a heat flux setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, J. C. B., E-mail: jolmiui@gmail.com; Reis, R. D. dos; Mansanares, A. M.

    2014-08-18

    We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. Wemore » found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.« less

  16. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer.

    PubMed

    Henderson, Shelley; Purdie, Colin; Michie, Caroline; Evans, Andrew; Lerski, Richard; Johnston, Marilyn; Vinnicombe, Sarah; Thompson, Alastair M

    2017-11-01

    To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. • Texture analysis provides a means of measuring lesion heterogeneity on MRI images. • Heterogeneity changes between baseline/interim MRI can be linked with ultimate pathological response. • Heterogeneity changes give good diagnostic accuracy of pCR response across all immunophenotypes. • Percentage reduction in heterogeneity is associated with pCR with good accuracy and NPV.

  17. Statistical mechanics of monatomic liquids

    NASA Astrophysics Data System (ADS)

    Wallace, Duane C.

    1997-10-01

    Two key experimental properties of elemental liquids, together with an analysis of the condensed-system potential-energy surface, lead us logically to the dynamical theory of monatomic liquids. Experimentally, the ion motional specific heat is approximately 3Nk for N ions, implying the normal modes of motion are approximately 3N independent harmonic oscillators. This implies the potential surface contains nearly harmonic valleys. The equilibrium configuration at the bottom of each valley is a ``structure.'' Structures are crystalline or amorphous, and amorphous structures can have a remnant of local crystal symmetry, or can be random. The random structures are by far the most numerous, and hence dominate the statistical mechanics of the liquid state, and their macroscopic properties are uniform over the structure class, for large-N systems. The Hamiltonian for any structural valley is the static structure potential, a sum of harmonic normal modes, and an anharmonic correction. Again from experiment, the constant-density entropy of melting contains a universal disordering contribution of NkΔ, suggesting the random structural valleys are of universal number wN, where lnw=Δ. Our experimental estimate for Δ is 0.80. In quasiharmonic approximation, the liquid theory for entropy agrees with experiment, for all currently analyzable experimental data at elevated temperatures, to within 1-2% of the total entropy. Further testable predictions of the theory are mentioned.

  18. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface: a molecular dynamics simulation.

    PubMed

    Euston, S R; Hughes, P; Naser, Md A; Westacott, R E

    2008-05-01

    Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.

  19. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    PubMed

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  20. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.

    PubMed

    Zhang, Liqun

    2017-04-01

    Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids.

    PubMed

    Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L

    2002-05-01

    To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp

    In this paper, we study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N = 4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Ourmore » results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.« less

  3. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.

    PubMed

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  4. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  5. Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early Alzheimer's disease and aging.

    PubMed

    Chen, Ying; Pham, Tuan D

    2013-05-15

    We apply for the first time the sample entropy (SampEn) and regularity dimension model for measuring signal complexity to quantify the structural complexity of the brain on MRI. The concept of the regularity dimension is based on the theory of chaos for studying nonlinear dynamical systems, where power laws and entropy measure are adopted to develop the regularity dimension for modeling a mathematical relationship between the frequencies with which information about signal regularity changes in various scales. The sample entropy and regularity dimension of MRI-based brain structural complexity are computed for early Alzheimer's disease (AD) elder adults and age and gender-matched non-demented controls, as well as for a wide range of ages from young people to elder adults. A significantly higher global cortical structure complexity is detected in AD individuals (p<0.001). The increase of SampEn and the regularity dimension are also found to be accompanied with aging which might indicate an age-related exacerbation of cortical structural irregularity. The provided model can be potentially used as an imaging bio-marker for early prediction of AD and age-related cognitive decline. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.

    PubMed

    Singh; Nilsson

    1999-05-01

    The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.

  7. Shallow water equations: viscous solutions and inviscid limit

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  8. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics 3. United Nations (UN) (2012), World Water Development Report 4, UNESCO Publishing

  9. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    PubMed Central

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  10. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    PubMed

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  11. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  12. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  13. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface

    PubMed Central

    Dilanji, Gabriel E.; Teplitski, Max; Hagen, Stephen J.

    2014-01-01

    Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively ‘surfing’ on those forces. PMID:24741008

  14. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach, part 2

    NASA Technical Reports Server (NTRS)

    Hsia, Wei Shen

    1989-01-01

    A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.

  15. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms.

    PubMed

    Zhang, Xin; Fu, Lingdi; Geng, Yuehua; Zhai, Xiang; Liu, Yanhua

    2014-03-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.

  16. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  17. On the sufficiency of pairwise interactions in maximum entropy models of networks

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Merchan, Lina

    Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.

  18. Suppression of magnetostructural transition on GdSiGe thin film after thermal cyclings

    DOE PAGES

    Pires, A. L.; Belo, J. H.; Gomes, I. T.; ...

    2016-09-08

    The influence of thermal cycling on the microstructure, magnetic phase transition and magnetic entropy change of a Gd 5Si 1.3Ge 2.7 thin film up to 1000 cycles is investigated. The authors found that after 1000 cycles a strong reduction of the crystallographic phase responsible for the magnetostructural transition (Orthorhombic II phase) occurs. We attribute this to the chemical disorder, caused by the large number of expansion/compression cycles that the Orthorhombic II phase undergoes across the magnetostructural transition. The suppression of the magnetostructural transition corresponds to a drastic decrease of the thin film magnetic entropy change. Our results reveal the importancemore » of studying the thermal/magnetic cycles influence on magnetostructural transitions as they can damage a real-life device.« less

  19. Complex character analysis of heart rate variability following brain asphyxia.

    PubMed

    Cai, Yuanyuan; Qiu, Yihong; Wei, Lan; Zhang, Wei; Hu, Sijun; Smith, Peter R; Crabtree, Vincent P; Tong, Shanbao; Thakor, Nitish V; Zhu, Yisheng

    2006-05-01

    In the present study Renyi entropy and L-Z complexity were used to characterize heart rate variability (HRV) of rats that were suffered from brain asphyxia and ischemia. Two groups of rats were studied: (a) rats (n=5) injected with NAALADase inhibitor, 2-PMPA, which has been proven neuroprotective in asphyxia injury and (b) control subjects (n=5) without medication. Renyi entropy and L-Z complexity of the R-R intervals (RRI) at different experiment stages were investigated in the two groups. The results show that both measures indicate less injury and better recovery in the drug injection group. The dynamic change of 90 min RRI signal after the asphyxia was investigated. The sudden reduction of the two parameters shows their sensitivity to the asphyxia insult.

  20. To be at the right place at the right time

    PubMed Central

    2011-01-01

    Aim To analyze the hypothesis of events or neighborhood interactions that is based upon recognizable structures of systems which possess a surface in a four dimensional space - time constellation {x, y, z, t}. To include the theory of hierarchic order of structures and aspects of thermodynamically open systems, especially entropy, structural entropy and entropy flow. Hypothesis Any structure is a space - time constellation that occupies a unique space in its environment. The environment can be a system too, and is assumed to be (nearly) constant. Structures can interact in their environment and create a new structure at a higher order level. Interacting structures that create a surface are called a system. Starting from the bottom, such a system is characterized by its inner structures, its surface function, and its neighborhood. Interaction with a neighboring system is called an event. An event can alter a system, create new systems or induce the decay of a system, dependent upon the surrounding lower level system (background). Results The hypothesis results in a uniform theory about matter, life, diseases, or behavior. Concrete applications permit the estimation of duration of life in man, for example the effect of solid cancer in man, or appearance of protozoans in sexual or asexual reduplication. In addition, it can successfully describe the development of the universe (small exceed of matter above antimatter at the big bang), or the increase of structures (and systems) with increasing time (development of intelligent systems). The three dimensional space possesses the lowest number of mandatory dimensions to implement such a system. PMID:21781323

  1. To be at the right place at the right time.

    PubMed

    Kayser, Klaus; Borkenfeld, Stephan; Goldmann, Torsten; Kayser, Gian

    2011-07-22

    To analyze the hypothesis of events or neighborhood interactions that is based upon recognizable structures of systems which possess a surface in a four dimensional space-time constellation {x, y, z, t}. To include the theory of hierarchic order of structures and aspects of thermodynamically open systems, especially entropy, structural entropy and entropy flow. Any structure is a space-time constellation that occupies a unique space in its environment. The environment can be a system too, and is assumed to be (nearly) constant. Structures can interact in their environment and create a new structure at a higher order level. Interacting structures that create a surface are called a system. Starting from the bottom, such a system is characterized by its inner structures, its surface function, and its neighborhood. Interaction with a neighboring system is called an event. An event can alter a system, create new systems or induce the decay of a system, dependent upon the surrounding lower level system (background). The hypothesis results in a uniform theory about matter, life, diseases, or behavior. Concrete applications permit the estimation of duration of life in man, for example the effect of solid cancer in man, or appearance of protozoans in sexual or asexual reduplication. In addition, it can successfully describe the development of the universe (small exceed of matter above antimatter at the big bang), or the increase of structures (and systems) with increasing time (development of intelligent systems). The three dimensional space possesses the lowest number of mandatory dimensions to implement such a system.

  2. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  3. Light cone thermodynamics

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Tommaso; Perez, Alejandro

    2018-02-01

    We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.

  4. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  5. Entropic depletion in colloidal suspensions and polymer liquids: Role of nanoparticle surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S.

    2015-01-01

    Here, we employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition betweenmore » ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.« less

  6. Development of multiscale complexity and multifractality of fetal heart rate variability.

    PubMed

    Gierałtowski, Jan; Hoyer, Dirk; Tetschke, Florian; Nowack, Samuel; Schneider, Uwe; Zebrowski, Jan

    2013-11-01

    During fetal development a complex system grows and coordination over multiple time scales is formed towards an integrated behavior of the organism. Since essential cardiovascular and associated coordination is mediated by the autonomic nervous system (ANS) and the ANS activity is reflected in recordable heart rate patterns, multiscale heart rate analysis is a tool predestined for the diagnosis of prenatal maturation. The analyses over multiple time scales requires sufficiently long data sets while the recordings of fetal heart rate as well as the behavioral states studied are themselves short. Care must be taken that the analysis methods used are appropriate for short data lengths. We investigated multiscale entropy and multifractal scaling exponents from 30 minute recordings of 27 normal fetuses, aged between 23 and 38 weeks of gestational age (WGA) during the quiet state. In multiscale entropy, we found complexity lower than that of non-correlated white noise over all 20 coarse graining time scales investigated. Significant maturation age related complexity increase was strongest expressed at scale 2, both using sample entropy and generalized mutual information as complexity estimates. Multiscale multifractal analysis (MMA) in which the Hurst surface h(q,s) is calculated, where q is the multifractal parameter and s is the scale, was applied to the fetal heart rate data. MMA is a method derived from detrended fluctuation analysis (DFA). We modified the base algorithm of MMA to be applicable for short time series analysis using overlapping data windows and a reduction of the scale range. We looked for such q and s for which the Hurst exponent h(q,s) is most correlated with gestational age. We used this value of the Hurst exponent to predict the gestational age based only on fetal heart rate variability properties. Comparison with the true age of the fetus gave satisfying results (error 2.17±3.29 weeks; p<0.001; R(2)=0.52). In addition, we found that the normally used DFA scale range is non-optimal for fetal age evaluation. We conclude that 30 min recordings are appropriate and sufficient for assessing fetal age by multiscale entropy and multiscale multifractal analysis. The predominant prognostic role of scale 2 heart beats for MSE and scale 39 heart beats (at q=-0.7) for MMA cannot be explored neither by single scale complexity measures nor by standard detrended fluctuation analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Structure of Scientific Evolution

    PubMed Central

    2013-01-01

    Science is the construction and testing of systems that bind symbols to sensations according to rules. Material implication is the primary rule, providing the structure of definition, elaboration, delimitation, prediction, explanation, and control. The goal of science is not to secure truth, which is a binary function of accuracy, but rather to increase the information about data communicated by theory. This process is symmetric and thus entails an increase in the information about theory communicated by data. Important components in this communication are the elevation of data to the status of facts, the descent of models under the guidance of theory, and their close alignment through the evolving retroductive process. The information mutual to theory and data may be measured as the reduction in the entropy, or complexity, of the field of data given the model. It may also be measured as the reduction in the entropy of the field of models given the data. This symmetry explains the important status of parsimony (how thoroughly the data exploit what the model can say) alongside accuracy (how thoroughly the model represents what can be said about the data). Mutual information is increased by increasing model accuracy and parsimony, and by enlarging and refining the data field under purview. PMID:28018043

  8. A continuum theory of grain size evolution and damage

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Bercovici, D.

    2009-01-01

    Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.

  9. Shannon and Renyi Entropies to Classify Effects of Mild Traumatic Brain Injury on Postural Sway

    PubMed Central

    Gao, Jianbo; Hu, Jing; Buckley, Thomas; White, Keith; Hass, Chris

    2011-01-01

    Background Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for assessing recovery from the injury. Methodology/Principal Findings We assess postural sway by motion of the center of pressure (COP). Methods for data reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects (a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the optimal length of the time series for analysis and a new interpretation of the area of COP. Conclusions Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it appears promising as a sensitive measure of effects of mTBI on postural sway. Availability The programs for analyses may be obtained from the authors. PMID:21931720

  10. Shannon and Renyi entropies to classify effects of Mild Traumatic Brain Injury on postural sway.

    PubMed

    Gao, Jianbo; Hu, Jing; Buckley, Thomas; White, Keith; Hass, Chris

    2011-01-01

    Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for assessing recovery from the injury. We assess postural sway by motion of the center of pressure (COP). Methods for data reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects (a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the optimal length of the time series for analysis and a new interpretation of the area of COP. Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it appears promising as a sensitive measure of effects of mTBI on postural sway. The programs for analyses may be obtained from the authors.

  11. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  12. Ab initio study of the temperature-dependent structural properties of Al(110)

    NASA Astrophysics Data System (ADS)

    Scharoch, Pawel

    2009-09-01

    Temperature-dependent structural properties of Al(110) surface have been studied ab initio employing the concepts of the potential-energy surface (PES) and the free-energy surface (FES), with the latter based on the harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface melting has been noticed. A softening phonon mode has been identified which is responsible for both: the entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The latter can be associated with the anisotropic surface melting. The methodology applied has been found to be complementary to previous theoretical works [N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999); S. Narasimhan, Phys. Rev. B 64, 125409 (2001)], by offering another point of view and additional insight into the relative contribution of different physical effects to the temperature-dependent structural phenomena in Al(110) surface.

  13. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin

    PubMed Central

    Treuheit, Nicholas A.; Beach, Muneera A.; Komives, Elizabeth A.

    2011-01-01

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethylketone to the active site serine, as well as non-covalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1, however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-L-arginine-(3-methyl-1,5-pantanediyl) amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause the same reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or to exosite 1. PMID:21526769

  14. Anomalous influence of spin fluctuations on the heat capacity and entropy in a strongly correlated helical ferromagnet MnSi

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2017-02-01

    The influence of spin fluctuations on the thermodynamic properties of a helical ferromagnet MnSi has been investigated in the framework of the Hubbard model with the electronic spectrum determined from the first-principles LDA + U + SO calculation, which is extended taking into account the Hund coupling and the Dzyaloshinskii-Moriya antisymmetric exchange. It has been shown that the ground state of the magnetic material is characterized by large zero-point fluctuations, which disappear at the temperature T* (< T c is the temperature of the magnetic phase transition). In this case, the entropy abruptly increases, and a lambdashaped anomaly appears in the temperature dependence of the heat capacity at constant volume ( C V ( T)). In the temperature range T* < T < T c , thermal fluctuations lead to the disappearance of the inhomogeneous magnetization. The competition between the increase in the entropy due to paramagnon excitations and its decrease as a result of the reduction in the amplitude of local magnetic moments, under the conditions of strong Hund exchange, is responsible for in the appearance of a "shoulder" in the dependence C V ( T)).

  15. Positive gravitational subsystem energies from CFT cone relative entropies

    NASA Astrophysics Data System (ADS)

    Neuenfeld, Dominik; Saraswat, Krishan; Van Raamsdonk, Mark

    2018-06-01

    The positivity of relative entropy for spatial subsystems in a holographic CFT implies the positivity of certain quantities in the dual gravitational theory. In this note, we consider CFT subsystems whose boundaries lie on the lightcone of a point p. We show that the positive gravitational quantity which corresponds to the relative entropy for such a subsystem A is a novel notion of energy associated with a gravitational subsystem bounded by the minimal area extremal surface à associated with A and by the AdS boundary region  corresponding to the part of the lightcone from p bounded by ∂ A. This generalizes the results of arXiv:1605.01075 for ball-shaped regions by making use of the recent results in arXiv:1703.10656 for the vacuum modular Hamiltonian of regions bounded on lightcones. As part of our analysis, we give an analytic expression for the extremal surface in pure AdS associated with any such region A. We note that its form immediately implies the Markov property of the CFT vacuum (saturation of strong subadditivity) for regions bounded on the same lightcone. This gives a holographic proof of the result proven for general CFTs in arXiv:1703.10656. A similar holographic proof shows the Markov property for regions bounded on a lightsheet for non-conformal holographic theories defined by relevant perturbations of a CFT.

  16. Concepts in receptor optimization: targeting the RGD peptide.

    PubMed

    Chen, Wei; Chang, Chia-en; Gilson, Michael K

    2006-04-12

    Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.

  17. Thermodynamics of Terrestrial Evolution

    PubMed Central

    Kirkaldy, J. S.

    1965-01-01

    The causal element of biological evolution and development can be understood in terms of a potential function which is generalized from the variational principles of irreversible thermodynamics. This potential function is approximated by the rate of entropy production in a configuration space which admits of macroscopic excursions by fluctuation and regression as well as microscopic ones. Analogously to Onsager's dissipation function, the potential takes the form of a saddle surface in this configuration space. The path of evolution following from an initial high dissipation state within the fixed constraint provided by the invariant energy flux from the sun tends toward the stable saddle point by a series of spontaneous regressions which lower the entropy production rate and by an alternating series of spontaneous fluctuations which introduce new internal constraints and lead to a higher entropy production rate. The potential thus rationalizes the system's observed tendency toward “chemical imperialism” (high dissipation) while simultaneously accommodating the development of “dynamic efficiency” and complication (low dissipation). PMID:5884019

  18. Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy

    NASA Astrophysics Data System (ADS)

    Oh, Mingi; Kim, Sehyun; Lim, Kyuseong; Kim, Soo Yong

    2018-06-01

    An attempt to interpret a large-scale climate phenomenon in the Southern Ocean (SO), the Antarctic Circumpolar Wave (ACW), has been made using an information entropy method, symbolic transfer entropy (STE). Over the areas of 50-60∘S latitude belt, information flow for four climate variables, sea surface temperature (SST), sea-ice edge (SIE), sea level pressure (SLP) and meridional wind speed (MWS) is examined. We found a tendency that eastward flow of information is preferred only for oceanic variables, which is a main characteristic of the ACW, an eastward wave making a circuit around the Antarctica. Since the ACW is the coherent pattern in both ocean and atmosphere it is reasonable to infer that the tendency reflects the Antarctic Circumpolar Current (ACC) encircling the Antarctica, rather than an evidence of the ACW. We observed one common feature for all four variables, a strong information flow over the area of the eastern Pacific Ocean, which suggest a signature of El Nino Southern Oscillation (ENSO).

  19. Side-chain mobility in the folded state of Myoglobin

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Onuchic, Jose

    We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.

  20. Inference of gene regulatory networks from time series by Tsallis entropy

    PubMed Central

    2011-01-01

    Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720

  1. Exploring nonlocal observables in shock wave collisions

    DOE PAGES

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; ...

    2016-11-09

    In this paper, we study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N = 4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Ourmore » results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.« less

  2. On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes.

    PubMed

    Ganassin, Alberto; Sebastián, Paula; Climent, Víctor; Schuhmann, Wolfgang; Bandarenka, Aliaksandr S; Feliu, Juan

    2017-04-28

    Studies over the entropy of components forming the electrode/electrolyte interface can give fundamental insights into the properties of electrified interphases. In particular, the potential where the entropy of formation of the double layer is maximal (potential of maximum entropy, PME) is an important parameter for the characterization of electrochemical systems. Indeed, this parameter determines the majority of electrode processes. In this work, we determine PMEs for Ir(111) electrodes. The latter currently play an important role to understand electrocatalysis for energy provision; and at the same time, iridium is one of the most stable metals against corrosion. For the experiments, we used a combination of the laser induced potential transient to determine the PME, and CO charge-displacement to determine the potentials of zero total charge, (E PZTC ). Both PME and E PZTC were assessed for perchlorate solutions in the pH range from 1 to 4. Surprisingly, we found that those are located in the potential region where the adsorption of hydrogen and hydroxyl species takes place, respectively. The PMEs demonstrated a shift by ~30 mV per a pH unit (in the RHE scale). Connections between the PME and electrocatalytic properties of the electrode surface are discussed.

  3. Bit Threads and Holographic Entanglement

    NASA Astrophysics Data System (ADS)

    Freedman, Michael; Headrick, Matthew

    2017-05-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  4. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.

    2016-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  5. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  6. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  7. SU-F-R-56: Early Assessment of Treatment Response During Radiation Therapy Delivery for Esophageal Cancer Using Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D; Chen, X; Li, X

    2016-06-15

    Purpose: To investigate the feasibility of assessing treatment response using CTs during delivery of radiation therapy (RT) for esophageal cancer. Methods: Daily CTs acquired using a CT-on-Rails during the routine CT-guided RT for 20 patients with stage II to IV esophageal cancers were analyzed. All patients were treated with combined chemotherapy and IMRT of 45–50 Gy in 25 fractions, and were followed up for two years. Contours of GTV, spinal cord, and non-specified tissue (NST) irradiated with low dose were generated on each daily CT. A series of CT-texture metrics including Hounsfield Unit (HU) histogram, mean HU, standard derivation (STD),more » entropy, and energy were obtained in these contours on each daily CT. The changes of these metrics and GTV volume during RT delivery were calculated and correlated with treatment outcome. Results: Changes in CT texture (e.g., HU histogram) in GTV and spinal cord (but not in NST) were observed during RT delivery and were consistently increased with radiation dose. For the 20 cases studied, the mean HU in GTV was reduced on average by 4.0HU from the first to the last fractions, while 8 patients (responders) had larger reductions in GTV mean HU (average 7.8 HU) with an average GTV reduction of 51% and had increased consistently in GTV STD and entropy with radiation dose. The rest of 12 patients (non-responders) had lower reductions in GTV mean HU (average 1.5HU) and almost no change in STD and entropy. For the 8 responders, 2 experienced complete response, 7 (88%) survived and 1 died. In contrast, for the 12 non-responders, 4 (33%) survived and 8 died. Conclusion: Radiation can induce changes in CT texture in tumor (e.g., mean HU) during the delivery of RT for esophageal cancer. If validated with more data, such changes may be used for early prediction of RT response for esophageal cancer.« less

  8. On holographic entanglement entropy with second order excitations

    NASA Astrophysics Data System (ADS)

    He, Song; Sun, Jia-Rui; Zhang, Hai-Qing

    2018-03-01

    We study the low-energy corrections to the holographic entanglement entropy (HEE) in the boundary CFT by perturbing the bulk geometry up to second order excitations. Focusing on the case that the boundary subsystem is a strip, we show that the area of the bulk minimal surface can be expanded in terms of the conserved charges, such as mass, angular momentum and electric charge of the AdS black brane. We also calculate the variation of the energy in the subsystem and verify the validity of the first law-like relation of thermodynamics at second order. Moreover, the HEE is naturally bounded at second order perturbations if the cosmic censorship conjecture for the dual black hole still holds.

  9. Spectral entropy monitoring for adults and children undergoing general anaesthesia.

    PubMed

    Chhabra, Anjolie; Subramaniam, Rajeshwari; Srivastava, Anurag; Prabhakar, Hemanshu; Kalaivani, Mani; Paranjape, Saloni

    2016-03-14

    Anaesthetic drugs during general anaesthesia are titrated according to sympathetic or somatic responses to surgical stimuli. It is now possible to measure depth of anaesthesia using electroencephalography (EEG). Entropy, an EEG-based monitor can be used to assess the depth of anaesthesia using a strip of electrodes applied to the forehead, and this can guide intraoperative anaesthetic drug administration. The primary objective of this review was to assess the effectiveness of entropy monitoring in facilitating faster recovery from general anaesthesia. We also wanted to assess mortality at 24 hours, 30 days, and one year following general anaesthesia with entropy monitoring.The secondary objectives were to assess the effectiveness of the entropy monitor in: preventing postoperative recall of intraoperative events (awareness) following general anaesthesia; reducing the amount of anaesthetic drugs used; reducing cost of the anaesthetic as well as in reducing time to readiness to leave the postanaesthesia care unit (PACU). We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 10), MEDLINE via Ovid SP (1990 to September 2014) and EMBASE via Ovid SP (1990 to September 2014). We reran the search in CENTRAL, MEDLINE via Ovid SP and EMBASE via Ovid SP in January 2016. We added one potential new study of interest to the list of 'Studies awaiting Classification' and we will incorporate this study into the formal review findings during the review update. We included randomized controlled trials (RCTs) conducted in adults and children (aged greater than two years of age), where in one arm entropy monitoring was used for titrating anaesthesia, and in the other standard practice (increase in heart rate, mean arterial pressure, lacrimation, movement in response to noxious surgical stimuli) was used for titrating anaesthetic drug administration. We also included trials with an additional third arm, wherein another EEG monitor, the Bispectral index (BIS) monitor was used to assess anaesthetic depth. We used standard methodological procedures expected by Cochrane. Two review authors independently extracted details of trial methodology and outcome data from trials considered eligible for inclusion. All analyses were made on an intention-to-treat basis. We used a random-effect model where there was heterogeneity. For assessments of the overall quality of evidence for each outcome that included pooled data from RCTs, we downgraded evidence from 'high quality' by one level for serious (or by two for very serious) study limitations (risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect or potential publication bias). We included 11 RCTs (962 participants). Eight RCTs (762 participants) were carried out on adults (18 to 80 years of age), two (128 participants) involved children (two to 16 years) and one RCT (72 participants) included patients aged 60 to 75 years. Of the 11 included studies, we judged three to be at low risk of bias, and the remaining eight RCTs at unclear or high risk of bias.Six RCTs (383 participants) estimated the primary outcome, time to awakening after stopping general anaesthesia, which was reduced in the entropy as compared to the standard practice group (mean difference (MD) -5.42 minutes, 95% confidence interval (CI) -8.77 to -2.08; moderate quality of evidence). We noted heterogeneity for this outcome; on performing subgroup analysis this was found to be due to studies that included participants undergoing major, long duration surgeries (off-pump coronary artery bypass grafting, major urological surgery). The MD for time to awakening with four studies on ambulatory procedures was -3.20 minutes (95% CI -3.94 to -2.45). No trial reported the second primary outcome, mortality at 24 hours, 30 days, and one year with the use of entropy monitoring.Eight trials (797 participants) compared the secondary outcome, postoperative recall of intraoperative events (awareness) in the entropy and standard practice groups. Awareness was reported by only one patient in the standard practice group, making meaningful estimation of benefit of entropy monitoring difficult; moderate quality of evidence.All 11 RCTs compared the amount of anaesthetic agent used between the entropy and standard practice groups. Six RCTs compared the amount of propofol, four compared the amount of sevoflurane and one the amount of isoflurane used between the groups. Analysis of three studies (166 participants) revealed that the MD of propofol consumption between the entropy group and control group was -11.56 mcg/kg/min (95% CI -24.05 to 0.92); low quality of evidence. Analysis of another two studies (156 participants) showed that the MD in sevoflurane consumption in the entropy group compared to the control group was -3.42 mL (95% CI -6.49 to -0.35); moderate quality of evidence.No trial reported on the secondary outcome of the cost of general anaesthesia.Three trials (170 participants) estimated MD in time to readiness to leave the PACU of the entropy group as compared to the control group (MD -5.94 minutes, 95% CI -16.08 to 4.20; low quality of evidence). Heterogeneity was noted, which was due to the difference in anaesthetic technique (propofol-based general anaesthesia) in one study. The remaining two studies had used volatile-based general anaesthesia. The MD in time to readiness to leave the PACU was -4.17 minutes (95% CI -6.84 to -1.51) with these two studies. The evidence as regards time to awakening, recall of intraoperative awareness and reduction in inhalational anaesthetic agent use was of moderate quality. The quality of evidence of as regards reduction in intravenous anaesthetic agent (propofol) use, as well as time to readiness to leave the PACU was found to be of low quality. As the data are limited, further studies consisting of more participants will be required for ascertaining benefits of entropy monitoring.Further studies are needed to assess the effect of entropy monitoring on focal issues such as short-term and long-term mortality, as well as cost of general anaesthesia.

  10. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  11. Branch length similarity entropy-based descriptors for shape representation

    NASA Astrophysics Data System (ADS)

    Kwon, Ohsung; Lee, Sang-Hee

    2017-11-01

    In previous studies, we showed that the branch length similarity (BLS) entropy profile could be successfully used for the shape recognition such as battle tanks, facial expressions, and butterflies. In the present study, we proposed new descriptors, roundness, symmetry, and surface roughness, for the recognition, which are more accurate and fast in the computation than the previous descriptors. The roundness represents how closely a shape resembles to a circle, the symmetry characterizes how much one shape is similar with another when the shape is moved in flip, and the surface roughness quantifies the degree of vertical deviations of a shape boundary. To evaluate the performance of the descriptors, we used the database of leaf images with 12 species. Each species consisted of 10 - 20 leaf images and the total number of images were 160. The evaluation showed that the new descriptors successfully discriminated the leaf species. We believe that the descriptors can be a useful tool in the field of pattern recognition.

  12. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    NASA Astrophysics Data System (ADS)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  13. Unusual Entropy of Adsorbed Methane on Zeolite-Templated Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadie, Nicholas P.; Murialdo, Maxwell; Ahn, Channing C.

    2015-11-25

    Methane adsorption at high pressures and across a wide range of temperatures was investigated on the surface of three porous carbon adsorbents with complementary structural properties. The measured adsorption equilibria were analyzed using a method that can accurately account for nonideal fluid properties and distinguish between absolute and excess quantities of adsorption, and that also allows the direct calculation of the thermodynamic potentials relevant to adsorption. On zeolite-templated carbon (ZTC), a material that exhibits extremely high surface area with optimal pore size and homogeneous structure, methane adsorption occurs with unusual thermodynamic properties that are greatly beneficial for deliverable gas storage:more » an enthalpy of adsorption that increases with site occupancy, and an unusually low entropy of the adsorbed phase. The origin of these properties is elucidated by comparison of the experimental results with a statistical mechanical model. The results indicate that temperature-dependent clustering (i.e., reduced configurations) of the adsorbed phase due to enhanced lateral interactions can account for the peculiarities of methane adsorbed on ZTC.« less

  14. Introducing sampling entropy in repository based adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Zheng, Han; Zhang, Yingkai

    2009-12-01

    Determining free energy surfaces along chosen reaction coordinates is a common and important task in simulating complex systems. Due to the complexity of energy landscapes and the existence of high barriers, one widely pursued objective to develop efficient simulation methods is to achieve uniform sampling among thermodynamic states of interest. In this work, we have demonstrated sampling entropy (SE) as an excellent indicator for uniform sampling as well as for the convergence of free energy simulations. By introducing SE and the concentration theorem into the biasing-potential-updating scheme, we have further improved the adaptivity, robustness, and applicability of our recently developed repository based adaptive umbrella sampling (RBAUS) approach [H. Zheng and Y. Zhang, J. Chem. Phys. 128, 204106 (2008)]. Besides simulations of one dimensional free energy profiles for various systems, the generality and efficiency of this new RBAUS-SE approach have been further demonstrated by determining two dimensional free energy surfaces for the alanine dipeptide in gas phase as well as in water.

  15. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  16. A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites.

    PubMed

    Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G

    2013-01-01

    The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.

  17. A surface acoustic wave response detection method for passive wireless torque sensor

    NASA Astrophysics Data System (ADS)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  18. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  19. Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings.

    PubMed

    Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun

    2016-12-01

    This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients  > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  1. Kinetic Monte Carlo Simulations of Rod Eutectics and the Surface Roughening Transition in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.

    2003-01-01

    In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.

  2. Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures.

    PubMed

    Wu, Yunfeng; Chen, Pinnan; Luo, Xin; Huang, Hui; Liao, Lifang; Yao, Yuchen; Wu, Meihong; Rangayyan, Rangaraj M

    2016-07-01

    Injury of knee joint cartilage may result in pathological vibrations between the articular surfaces during extension and flexion motions. The aim of this paper is to analyze and quantify vibroarthrographic (VAG) signal irregularity associated with articular cartilage degeneration and injury in the patellofemoral joint. The symbolic entropy (SyEn), approximate entropy (ApEn), fuzzy entropy (FuzzyEn), and the mean, standard deviation, and root-mean-squared (RMS) values of the envelope amplitude, were utilized to quantify the signal fluctuations associated with articular cartilage pathology of the patellofemoral joint. The quadratic discriminant analysis (QDA), generalized logistic regression analysis (GLRA), and support vector machine (SVM) methods were used to perform signal pattern classifications. The experimental results showed that the patients with cartilage pathology (CP) possess larger SyEn and ApEn, but smaller FuzzyEn, over the statistical significance level of the Wilcoxon rank-sum test (p<0.01), than the healthy subjects (HS). The mean, standard deviation, and RMS values computed from the amplitude difference between the upper and lower signal envelopes are also consistently and significantly larger (p<0.01) for the group of CP patients than for the HS group. The SVM based on the entropy and envelope amplitude features can provide superior classification performance as compared with QDA and GLRA, with an overall accuracy of 0.8356, sensitivity of 0.9444, specificity of 0.8, Matthews correlation coefficient of 0.6599, and an area of 0.9212 under the receiver operating characteristic curve. The SyEn, ApEn, and FuzzyEn features can provide useful information about pathological VAG signal irregularity based on different entropy metrics. The statistical parameters of signal envelope amplitude can be used to characterize the temporal fluctuations related to the cartilage pathology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  4. Magnetic cooling at a single molecule level: a spectroscopic investigation of isolated molecules on a surface.

    PubMed

    Corradini, Valdis; Ghirri, Alberto; Candini, Andrea; Biagi, Roberto; del Pennino, Umberto; Dotti, Gianluca; Otero, Edwige; Choueikani, Fadi; Blagg, Robin J; McInnes, Eric J L; Affronte, Marco

    2013-05-28

    A sub-monolayer distribution of isolated molecular Fe14 (bta)6 nanomagnets is deposited intact on a Au(111) surface and investigated by X-ray magnetic circular dichroism spectroscopy. The entropy variation with respect to the applied magnetic field is extracted from the magnetization curves and evidences high magnetocaloric values at the single molecule level. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. α '-corrected black holes in String Theory

    NASA Astrophysics Data System (ADS)

    Cano, Pablo A.; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2018-05-01

    We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α ' that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α ' corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α '-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α '-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α ' corrections coming from Wald's formula prove crucial for this result.

  6. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.

    PubMed

    Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk

    2017-01-12

    High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase's instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.

  7. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk

    2017-01-01

    High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase’s instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.

  8. Test images for the maximum entropy image restoration method

    NASA Technical Reports Server (NTRS)

    Mackey, James E.

    1990-01-01

    One of the major activities of any experimentalist is data analysis and reduction. In solar physics, remote observations are made of the sun in a variety of wavelengths and circumstances. In no case is the data collected free from the influence of the design and operation of the data gathering instrument as well as the ever present problem of noise. The presence of significant noise invalidates the simple inversion procedure regardless of the range of known correlation functions. The Maximum Entropy Method (MEM) attempts to perform this inversion by making minimal assumptions about the data. To provide a means of testing the MEM and characterizing its sensitivity to noise, choice of point spread function, type of data, etc., one would like to have test images of known characteristics that can represent the type of data being analyzed. A means of reconstructing these images is presented.

  9. Upper entropy axioms and lower entropy axioms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Li, E-mail: phd5816@163.com; Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover,more » different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.« less

  10. Chemical library subset selection algorithms: a unified derivation using spatial statistics.

    PubMed

    Hamprecht, Fred A; Thiel, Walter; van Gunsteren, Wilfred F

    2002-01-01

    If similar compounds have similar activity, rational subset selection becomes superior to random selection in screening for pharmacological lead discovery programs. Traditional approaches to this experimental design problem fall into two classes: (i) a linear or quadratic response function is assumed (ii) some space filling criterion is optimized. The assumptions underlying the first approach are clear but not always defendable; the second approach yields more intuitive designs but lacks a clear theoretical foundation. We model activity in a bioassay as realization of a stochastic process and use the best linear unbiased estimator to construct spatial sampling designs that optimize the integrated mean square prediction error, the maximum mean square prediction error, or the entropy. We argue that our approach constitutes a unifying framework encompassing most proposed techniques as limiting cases and sheds light on their underlying assumptions. In particular, vector quantization is obtained, in dimensions up to eight, in the limiting case of very smooth response surfaces for the integrated mean square error criterion. Closest packing is obtained for very rough surfaces under the integrated mean square error and entropy criteria. We suggest to use either the integrated mean square prediction error or the entropy as optimization criteria rather than approximations thereof and propose a scheme for direct iterative minimization of the integrated mean square prediction error. Finally, we discuss how the quality of chemical descriptors manifests itself and clarify the assumptions underlying the selection of diverse or representative subsets.

  11. On the recent warming in the subcloud layer entropy and vertically integrated moist static energy over South Asian Monsoon region.

    NASA Astrophysics Data System (ADS)

    Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.

    2017-12-01

    In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.

  12. Entanglement entropy and the colored Jones polynomial

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar

    2018-05-01

    We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

  13. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  14. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  15. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation efficiency compared with MDFA. Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure. Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA. PMID:25741277

  16. Shannon entropy in the research on stationary regimes and the evolution of complexity

    NASA Astrophysics Data System (ADS)

    Eskov, V. M.; Eskov, V. V.; Vochmina, Yu. V.; Gorbunov, D. V.; Ilyashenko, L. K.

    2017-05-01

    The questions of the identification of complex biological systems (complexity) as special self-organizing systems or systems of the third type first defined by W. Weaver in 1948 continue to be of interest. No reports on the evaluation of entropy for systems of the third type were found among the publications currently available to the authors. The present study addresses the parameters of muscle biopotentials recorded using surface interference electromyography and presents the results of calculation of the Shannon entropy, autocorrelation functions, and statistical distribution functions for electromyograms of subjects in different physiological states (rest and tension of muscles). The results do not allow for statistically reliable discrimination between the functional states of muscles. However, the data obtained by calculating electromyogram quasiatttractor parameters and matrices of paired comparisons of electromyogram samples (calculation of the number k of "coinciding" pairs among the electromyogram samples) provide an integral characteristic that allows the identification of substantial differences between the state of rest and the different states of functional activity. Modifications and implementation of new methods in combination with the novel methods of the theory of chaos and self-organization are obviously essential. The stochastic approach paradigm is not applicable to systems of the third type due to continuous and chaotic changes of the parameters of the state vector x( t) of an organism or the contrasting constancy of these parameters (in the case of entropy).

  17. Analysis and Performance Evaluation of Electrocardiogram Data compression Techniques.

    DTIC Science & Technology

    1980-12-01

    techniques were investigated for potential real time implementation on an 8 bit Motorola 6800 microprocessor. Research indicated entropy reduction transform...EKG has been an area of active research since the late nineteen sixties. References (1) , (7) , (12) ,(26) ,(28) , (29) .(32) ,(33) , and (35) are...representative of the research efforts performed in the last ten years . The reasons for compressing EKG data are twofold: 1) digita" storage costs are

  18. Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.

    A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution atmore » higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.« less

  19. The moving-window Bayesian maximum entropy framework: estimation of PM(2.5) yearly average concentration across the contiguous United States.

    PubMed

    Akita, Yasuyuki; Chen, Jiu-Chiuan; Serre, Marc L

    2012-09-01

    Geostatistical methods are widely used in estimating long-term exposures for epidemiological studies on air pollution, despite their limited capabilities to handle spatial non-stationarity over large geographic domains and the uncertainty associated with missing monitoring data. We developed a moving-window (MW) Bayesian maximum entropy (BME) method and applied this framework to estimate fine particulate matter (PM(2.5)) yearly average concentrations over the contiguous US. The MW approach accounts for the spatial non-stationarity, while the BME method rigorously processes the uncertainty associated with data missingness in the air-monitoring system. In the cross-validation analyses conducted on a set of randomly selected complete PM(2.5) data in 2003 and on simulated data with different degrees of missing data, we demonstrate that the MW approach alone leads to at least 17.8% reduction in mean square error (MSE) in estimating the yearly PM(2.5). Moreover, the MWBME method further reduces the MSE by 8.4-43.7%, with the proportion of incomplete data increased from 18.3% to 82.0%. The MWBME approach leads to significant reductions in estimation error and thus is recommended for epidemiological studies investigating the effect of long-term exposure to PM(2.5) across large geographical domains with expected spatial non-stationarity.

  20. Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.; Shen, Fengyu; Lu, Kathy

    2018-01-01

    Oxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.

  1. Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy.

    PubMed

    Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A

    2017-01-01

    We study the critical behavior and the ground-state entanglement of a large class of su(1|1) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1+1)-dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1+1)-dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.

  2. Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Wei, Jiangfeng; Bosilovich, Michael G.; Mocko, David M.

    2014-01-01

    A quasi-isentropic back trajectory scheme is applied to output from the Modern Era Retrospective-analysis for Research and Applications and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979-2005. The evaporative source patterns for any location and time period are effectively two dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50-400 larger than at monthly time scales. Significant differences suggest that moisture transport may be the key to precipitation extremes. Where evaporative sources do not change significantly, it implies other local causes may underlie the extreme events.

  3. Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.

    2017-01-01

    We study the critical behavior and the ground-state entanglement of a large class of su (1 |1 ) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1 +1 ) -dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1 +1 ) -dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.

  4. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.

    PubMed

    Kumar, Pradeep; Han, Sungho

    2012-09-21

    We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.

  5. Comparison of Analytic Hierarchy Process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems

    NASA Astrophysics Data System (ADS)

    Jenifer, M. Annie; Jha, Madan K.

    2017-05-01

    Groundwater is a treasured underground resource, which plays a central role in sustainable water management. However, it being hidden and dynamic in nature, its sustainable development and management calls for precise quantification of this precious resource at an appropriate scale. This study demonstrates the efficacy of three GIS-based multi-criteria decision analysis (MCDA) techniques, viz., Analytic Hierarchy Process (AHP), Catastrophe and Entropy in evaluating groundwater potential through a case study in hard-rock aquifer systems. Using satellite imagery and relevant field data, eight thematic layers (rainfall, land slope, drainage density, soil, lineament density, geology, proximity to surface water bodies and elevation) of the factors having significant influence on groundwater occurrence were prepared. These thematic layers and their features were assigned suitable weights based on the conceptual frameworks of AHP, Catastrophe and Entropy techniques and then they were integrated in the GIS environment to generate an integrated raster layer depicting groundwater potential index of the study area. The three groundwater prospect maps thus yielded by these MCDA techniques were verified using a novel approach (concept of 'Dynamic Groundwater Potential'). The validation results revealed that the groundwater potential predicted by the AHP technique has a pronounced accuracy of 87% compared to the Catastrophe (46% accuracy) and Entropy techniques (51% accuracy). It is concluded that the AHP technique is the most reliable for the assessment of groundwater resources followed by the Entropy method. The developed groundwater potential maps can serve as a scientific guideline for the cost-effective siting of wells and the effective planning of groundwater development at a catchment or basin scale.

  6. [Maximum entropy model versus remote sensing-based methods for extracting Oncomelania hupensis snail habitats].

    PubMed

    Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang

    2016-12-02

    To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.

  7. Refined two-index entropy and multiscale analysis for complex system

    NASA Astrophysics Data System (ADS)

    Bian, Songhan; Shang, Pengjian

    2016-10-01

    As a fundamental concept in describing complex system, entropy measure has been proposed to various forms, like Boltzmann-Gibbs (BG) entropy, one-index entropy, two-index entropy, sample entropy, permutation entropy etc. This paper proposes a new two-index entropy Sq,δ and we find the new two-index entropy is applicable to measure the complexity of wide range of systems in the terms of randomness and fluctuation range. For more complex system, the value of two-index entropy is smaller and the correlation between parameter δ and entropy Sq,δ is weaker. By combining the refined two-index entropy Sq,δ with scaling exponent h(δ), this paper analyzes the complexities of simulation series and classifies several financial markets in various regions of the world effectively.

  8. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  9. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  10. Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter

    NASA Astrophysics Data System (ADS)

    Dolz, M. I.; Fasano, Y.; Cejas Bolecek, N. R.; Pastoriza, H.; Mosser, V.; Li, M.; Konczykowski, M.

    2015-09-01

    We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi2 Sr2 CaCu2 O8 vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

  11. Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter.

    PubMed

    Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M

    2015-09-25

    We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

  12. Core surface magnetic field evolution 2000-2010

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.

    2012-05-01

    We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.

  13. Segregation at the surfaces of CuxPd1-x alloys in the presence of adsorbed S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James B.; Priyadarshini, Deepika; Gellman, Andrew J.

    2012-10-01

    The influence of adsorbed S on surface segregation in Cu{sub x}Pd{sub 1 - x} alloys (S/Cu{sub x}Pd{sub 1 - x)} was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/Cu{sub x}Pd{sub 1 - x} CSAF was observed at all bulk compositions, x, but themore » extent of Cu segregation to the S/Cu{sub x}Pd{sub 1 - x} surface was lower than the Cu segregation to the surface of a clean Cu{sub x}Pd{sub 1 - x} CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔH{sub seg}(x) and ΔS{sub seg}(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean Cu{sub x}Pd{sub 1 - x} is exothermic (ΔH{sub seg} < 0) for all bulk Cu compositions, it is endothermic (ΔH{sub seg} > 0) for S/Cu{sub x}Pd{sub 1 - x}. Segregation to the S/Cu{sub x}Pd{sub 1 - x} surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto Cu{sub x}Pd{sub 1 - x} appear to be related to formation of energetically favored Pd{single bond}S bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.« less

  14. Microcanonical entropy for classical systems

    NASA Astrophysics Data System (ADS)

    Franzosi, Roberto

    2018-03-01

    The entropy definition in the microcanonical ensemble is revisited. We propose a novel definition for the microcanonical entropy that resolve the debate on the correct definition of the microcanonical entropy. In particular we show that this entropy definition fixes the problem inherent the exact extensivity of the caloric equation. Furthermore, this entropy reproduces results which are in agreement with the ones predicted with standard Boltzmann entropy when applied to macroscopic systems. On the contrary, the predictions obtained with the standard Boltzmann entropy and with the entropy we propose, are different for small system sizes. Thus, we conclude that the Boltzmann entropy provides a correct description for macroscopic systems whereas extremely small systems should be better described with the entropy that we propose here.

  15. On S-mixing entropy of quantum channels

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Watanabe, Noboru

    2018-06-01

    In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya's S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

  16. Surface self-organization: From wear to self-healing in biological and technical surfaces

    NASA Astrophysics Data System (ADS)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-04-01

    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  17. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  18. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  19. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  20. Entropy and equilibrium via games of complexity

    NASA Astrophysics Data System (ADS)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  1. Quantile based Tsallis entropy in residual lifetime

    NASA Astrophysics Data System (ADS)

    Khammar, A. H.; Jahanshahi, S. M. A.

    2018-02-01

    Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α. In this paper, we derive the quantile form of this nonadditive's entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi's residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.

  2. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA.

    PubMed

    Hughesman, Curtis B; Turner, Robin F B; Haynes, Charles A

    2011-06-14

    Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.

  3. Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

    NASA Astrophysics Data System (ADS)

    Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang

    2018-05-01

    This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.

  4. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    PubMed

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.

  5. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less

  6. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  7. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  8. Hidden regularity and universal classification of fast side chain motions in proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajeshwar, Rajitha; Smith, Jeremy C.; Krishnam, Marimuthu

    Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 s MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O axis 2), populationsmore » of side chain rotamer states (ρ), conformational entropies (S conf), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O axis 2 and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O axis 2 and the side chain rotamer populations (ρ). In conclusion, the apparent universality in O axis 2 versus correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.« less

  9. Corner entanglement as a probe of quantum criticality

    NASA Astrophysics Data System (ADS)

    Witczak-Krempa, William; Bueno, Pablo; Myers, Robert C.

    The entanglement entropy in many gapless quantum systems in 2+1D receives a contribution from corners in the entangling surface. It is characterized by a universal function a (θ) that depends non-trivially on the corner opening angle θ. Focusing on a large family of quantum critical theories with emergent Lorentz invariance (CFTs), we argue that the smooth limit a (θ ~ π) is entirely determined by the energy-density or stress tensor 2-point function coefficient. This explains recent results obtained via cutting edge simulations on the quantum critical Ising, XY and Heisenberg models. We also show how to extract the full thermal entropy of the quantum critical system using corner entanglement of the groundstate alone. ** Bueno, Myers, WK, Phys. Rev. Lett. (2015) Work supported by Perimeter Institute and NSERC.

  10. On the effect of hydrostatic pressure on the conformational stability of globular proteins.

    PubMed

    Graziano, Giuseppe

    2015-12-01

    The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245-14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure- volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure-volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc.

  11. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE PAGES

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    2018-05-31

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  12. Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Cheyne, Jonathan; Mattingly, David

    2018-03-01

    Holographic relationships between entanglement entropy on the boundary of a spacetime and the area of minimal surfaces in the bulk provide an important entry in the bulk/boundary dictionary. While constructing the necessary causal and entanglement wedges is well understood in asymptotically AdS spacetimes, less is known about the equivalent constructions in spacetimes with different asymptotics. In particular, recent attempts to construct entanglement and causal wedges for asymptotically Lifshitz solutions in relativistic gravitational theories have proven problematic. We note a simple observation, that a Lifshitz bulk theory, specifically a covariant formulation of Hořava-Lifshitz gravity coupled to matter, has causal propagation defined by Lifshitz modes. We use these modes to construct causal and entanglement wedges and compute the geometric entanglement entropy, which in such a construction matches the field theory prescription.

  13. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  14. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    PubMed

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  15. Uniqueness and characterization theorems for generalized entropies

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Tempesta, Piergiulio

    2017-12-01

    The requirement that an entropy function be composable is key: it means that the entropy of a compound system can be calculated in terms of the entropy of its independent components. We prove that, under mild regularity assumptions, the only composable generalized entropy in trace form is the Tsallis one-parameter family (which contains Boltzmann-Gibbs as a particular case). This result leads to the use of generalized entropies that are not of trace form, such as Rényi’s entropy, in the study of complex systems. In this direction, we also present a characterization theorem for a large class of composable non-trace-form entropy functions with features akin to those of Rényi’s entropy.

  16. Causal impact of magnetic fluctuations in slow and fast L–H transitions at TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligen, B. Ph. van; Estrada, T.; Ascasíbar, E.

    2016-07-15

    This work focuses on the relationship between L–H (or L–I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to “fast”more » and “slow” transitions. With the “slow” transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of “information transfer” from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the “fast” transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.« less

  17. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    NASA Astrophysics Data System (ADS)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  18. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions.

    PubMed

    Abe, Sumiyoshi

    2002-10-01

    The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Rényi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown that, among the three, the Tsallis entropy is stable and can provide an entropic basis for the q-exponential distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.

  19. Gene selection for tumor classification using neighborhood rough sets and entropy measures.

    PubMed

    Chen, Yumin; Zhang, Zunjun; Zheng, Jianzhong; Ma, Ying; Xue, Yu

    2017-03-01

    With the development of bioinformatics, tumor classification from gene expression data becomes an important useful technology for cancer diagnosis. Since a gene expression data often contains thousands of genes and a small number of samples, gene selection from gene expression data becomes a key step for tumor classification. Attribute reduction of rough sets has been successfully applied to gene selection field, as it has the characters of data driving and requiring no additional information. However, traditional rough set method deals with discrete data only. As for the gene expression data containing real-value or noisy data, they are usually employed by a discrete preprocessing, which may result in poor classification accuracy. In this paper, we propose a novel gene selection method based on the neighborhood rough set model, which has the ability of dealing with real-value data whilst maintaining the original gene classification information. Moreover, this paper addresses an entropy measure under the frame of neighborhood rough sets for tackling the uncertainty and noisy of gene expression data. The utilization of this measure can bring about a discovery of compact gene subsets. Finally, a gene selection algorithm is designed based on neighborhood granules and the entropy measure. Some experiments on two gene expression data show that the proposed gene selection is an effective method for improving the accuracy of tumor classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure.more » The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.« less

  1. On the entropy variation in the scenario of entropic gravity

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Bai, Shi-Yang

    2018-05-01

    In the scenario of entropic gravity, entropy varies as a function of the location of the matter, while the tendency to increase entropy appears as gravity. We concentrate on studying the entropy variation of a typical gravitational system with different relative positions between the mass and the gravitational source. The result is that the entropy of the system doesn't increase when the mass is displaced closer to the gravitational source. In this way it disproves the proposal of entropic gravity from thermodynamic entropy. It doesn't exclude the possibility that gravity originates from non-thermodynamic entropy like entanglement entropy.

  2. How is the presence of horizons and localized matter encoded in the entanglement entropy?

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Jain, Parul

    2017-05-01

    Motivated by the new theoretical paradigm that views space-time geometry as emerging from the entanglement of a pre-geometric theory, we investigate the issue of the signature of the presence of horizons and localized matter on the entanglement entropy (EE) SE for the case of three-dimensional AdS (AdS3) gravity. We use the holographically dual two-dimensional CFT on the torus and the related modular symmetry in order to treat bulk black holes and conical singularities (sourced by pointlike masses not shielded by horizons) on the same footing. In the regime where boundary tori can be approximated by cylinders, we are able to give universal expressions for the EE of black holes and conical singularities. We argue that the presence of horizons/localized matter in the bulk is encoded in the EE in terms of (i) enhancement/reduction of the entanglement of the AdS3 vacuum, (ii) scaling as area/volume of the leading term of the perturbative expansion of SE, (iii) exponential/periodic behavior of SE and (iv) presence of unaccessible regions in the noncompact/compact dimension of the boundary cylinder. In particular, we show that the reduction effect of matter on the entanglement of the vacuum found by Verlinde for the de Sitter vacuum extends to the AdS3 vacuum.

  3. The moving-window Bayesian Maximum Entropy framework: Estimation of PM2.5 yearly average concentration across the contiguous United States

    PubMed Central

    Akita, Yasuyuki; Chen, Jiu-Chiuan; Serre, Marc L.

    2013-01-01

    Geostatistical methods are widely used in estimating long-term exposures for air pollution epidemiological studies, despite their limited capabilities to handle spatial non-stationarity over large geographic domains and uncertainty associated with missing monitoring data. We developed a moving-window (MW) Bayesian Maximum Entropy (BME) method and applied this framework to estimate fine particulate matter (PM2.5) yearly average concentrations over the contiguous U.S. The MW approach accounts for the spatial non-stationarity, while the BME method rigorously processes the uncertainty associated with data missingnees in the air monitoring system. In the cross-validation analyses conducted on a set of randomly selected complete PM2.5 data in 2003 and on simulated data with different degrees of missing data, we demonstrate that the MW approach alone leads to at least 17.8% reduction in mean square error (MSE) in estimating the yearly PM2.5. Moreover, the MWBME method further reduces the MSE by 8.4% to 43.7% with the proportion of incomplete data increased from 18.3% to 82.0%. The MWBME approach leads to significant reductions in estimation error and thus is recommended for epidemiological studies investigating the effect of long-term exposure to PM2.5 across large geographical domains with expected spatial non-stationarity. PMID:22739679

  4. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  5. Maximum Relative Entropy of Coherence: An Operational Coherence Measure.

    PubMed

    Bu, Kaifeng; Singh, Uttam; Fei, Shao-Ming; Pati, Arun Kumar; Wu, Junde

    2017-10-13

    The operational characterization of quantum coherence is the cornerstone in the development of the resource theory of coherence. We introduce a new coherence quantifier based on maximum relative entropy. We prove that the maximum relative entropy of coherence is directly related to the maximum overlap with maximally coherent states under a particular class of operations, which provides an operational interpretation of the maximum relative entropy of coherence. Moreover, we show that, for any coherent state, there are examples of subchannel discrimination problems such that this coherent state allows for a higher probability of successfully discriminating subchannels than that of all incoherent states. This advantage of coherent states in subchannel discrimination can be exactly characterized by the maximum relative entropy of coherence. By introducing a suitable smooth maximum relative entropy of coherence, we prove that the smooth maximum relative entropy of coherence provides a lower bound of one-shot coherence cost, and the maximum relative entropy of coherence is equivalent to the relative entropy of coherence in the asymptotic limit. Similar to the maximum relative entropy of coherence, the minimum relative entropy of coherence has also been investigated. We show that the minimum relative entropy of coherence provides an upper bound of one-shot coherence distillation, and in the asymptotic limit the minimum relative entropy of coherence is equivalent to the relative entropy of coherence.

  6. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.

    PubMed

    Towse, Clare-Louise; Akke, Mikael; Daggett, Valerie

    2017-04-27

    Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.

  7. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosla, D.; Singh, M.

    The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less

  9. Concentration Waves in High-Entropy Alloys - a new alloy design approach

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    2015-03-01

    Chemical short-range order (SRO) in solid solutions can be interpreted as a ``concentration wave'' - a Fourier decomposition of nascent order - identified experimentally via Warren-Cowley SRO parameters. We present a rigorous thermodynamic theory to predict and uniquely interpret the SRO in N -component alloys. Based on KKR-CPA electronic structure, we implemented this method using thermodynamic linear-response to include all alloying effects, e.g., band-filling, hybridization, Fermi -surface nesting and van Hove instabilities. We apply this first-principles method to high-entropy alloys (HEAs), i.e., solid solutions with N >4 that inhibit small-cell order due to large entropy competing against ordering enthalpy, as their properties are sensitive to SRO. We validated theory with comparison to experiments in A2 Nb-Al-Ti and A1 Cu-Ni-Zn . We then predict and analyze SRO and mechanical trends in Ni-Ti-Zr-Cu-Al and Co-Cr-Fe-Mn-Ni systems - showcasing this new first-principles-based alloy design method. Work was supported by the USDoE, Office of Sci., Basic Energy Sci., Materials Sci. and Eng. Division for `Materials Discovery.' Research was performed at Ames Lab, operated by Iowa State University under Contract #DE-AC02-07CH11358.

  10. Evaluation of entropy for monitoring the depth of anesthesia compared with bispectral index: a multicenter clinical trial.

    PubMed

    Gao, Jian-dong; Zhao, Yu-jie; Xu, Chen-shi; Zhao, Jing; Huang, Yu-guang; Wang, Tian-long; Pei, Ling; Wang, Jian; Yao, Li-nong; Ding, Qian; Tan, Zhi-ming; Zhu, Zhi-rong; Yue, Yun

    2012-04-01

    As a new electroencephalogram (EEG) signal processing technique for monitoring the depth of anesthesia, entropy consists of two indices: reaction entropy (RE) and state entropy (SE). Our study compared entropy with classical bispectral index (BIS) in reduction of myoelectrical interference and noxious stimuli with EEG signals. Two hundred and eighty patients (ASA I-II, 18-60 years old) undergoing scheduled surgeries from seven medical centers were enrolled. Anesthesia induction was managed with propofol via the target-controlled infusion (TCI) system. The results of BIS, RE, SE, mean arterial pressure (MAP) and heart rate (HR) were recorded before anesthesia induction, at the moment of unconsciousness, before and 2 minutes after administration of muscle relaxant, and before and one and three minutes after the tracheal intubation. The values of half maximum effective concentrations (EC50), 5% effective concentrations (EC05) and 95% effective concentrations (EC95) of propofol effect-site concentration at the onset of unconsciousness were 1.2 (1.1-1.3 µg/ml), 2.5 (2.4-2.5 µg/ml) and 3.7 (3.7-3.8 µg/ml), while those of the predicted plasma propofol concentration were 2.8 (2.7-2.9 µg/ml), 3.9 (3.8-3.9 µg/ml) and 4.9 (4.8-5.0 µg/ml), respectively. The values of BIS, SE and RE were 62, 59 and 63 when 50% of patients lost consciousness, and 79, 80, 85 and 42, 37, 44, respectively, when 5% and 95% of patients were unconscious. The values of BIS, RE and SE dropped two minutes after the injection of muscle relaxant, but there were no significant differences between RE and SE. MAP and HR increased visibly, which indicated a reaction to tracheal intubation; the values of BIS, RE and SE, however, did not display any significant changes. This large-sample multicentric study confirmed the values of RE and SE as approximating BIS value, at the onset of unconsciousness during propofol TCI anesthesia. After elimination of myoelectrical activation, all values of RE, SE and BIS decreased significantly and the three indices were less sensitive to noxious stimuli than cardiovascular responses.

  11. Studies on pressure-gain combustion engines

    NASA Astrophysics Data System (ADS)

    Matsutomi, Yu

    Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient fuel near the ignition source. However, it is difficult to conclude its fuel distribution with the current setup. Additional measurement near the rotor interfaces and better fuel control are required for the future test.

  12. The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration

    NASA Astrophysics Data System (ADS)

    Magnanelli, Elisa; Wilhelmsen, Øivind; Acquarone, Mario; Folkow, Lars P.; Kjelstrup, Signe

    2017-01-01

    Reindeer in the arctic region live under very harsh conditions and may face temperatures below 233 K. Therefore, efficient conservation of body heat and water is important for their survival. Alongside their insulating fur, the reindeer nasal mechanism for heat and mass exchange during respiration plays a fundamental role. We present a dynamic model to describe the heat and mass transport that takes place inside the reindeer nose, where we account for the complicated geometrical structure of the subsystems that are part of the nose. The model correctly captures the trend in experimental data for the temperature, heat and water recovery in the reindeer nose during respiration. As a reference case, we model a nose with a simple cylindrical-like geometry, where the total volume and contact area are the same as those determined in the reindeer nose. A comparison of the reindeer nose with the reference case shows that the nose geometry has a large influence on the velocity, temperature and water content of the air inside the nose. For all investigated cases, we find that the total entropy production during a breathing cycle is lower for the reindeer nose than for the reference case. The same trend is observed for the total energy consumption. The reduction in the total entropy production caused by the complicated geometry is higher (up to -20 %) at more extreme ambient conditions, when energy efficiency is presumably more important for the maintenance of energy balance in the animal. In the literature, a hypothesis has been proposed, which states that the most energy-efficient design of a system is characterized by equipartition of the entropy production. In agreement with this hypothesis, we find that the local entropy production during a breathing cycle is significantly more uniform for the reindeer nose than for the reference case. This suggests that natural selection has favored designs that give uniform entropy production when energy efficiency is an issue. Animals living in the harsh arctic climate, such as the reindeer, can therefore serve as inspiration for a novel industrial design with increased efficiency.

  13. Step patterns on vicinal reconstructed surfaces

    NASA Astrophysics Data System (ADS)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  14. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  15. Effect of entropy on anomalous transport in ITG-modes of magneto-plasma

    NASA Astrophysics Data System (ADS)

    Yaqub Khan, M.; Qaiser Manzoor, M.; Haq, A. ul; Iqbal, J.

    2017-04-01

    The ideal gas equation and S={{c}v}log ≤ft(P/ρ \\right) (where S is entropy, P is pressure and ρ is the mass density) define the interconnection of entropy with the temperature and density of plasma. Therefore, different phenomena relating to plasma and entropy need to be investigated. By employing the Braginskii transport equations for a nonuniform electron-ion magnetoplasma, two new parameters—the entropy distribution function and the entropy gradient drift—are defined, a new dispersion relation is obtained, and the dependence of anomalous transport on entropy is also proved. Some results, like monotonicity, the entropy principle and the second law of thermodynamics, are proved with a new definition of entropy. This work will open new horizons in fusion processes, not only by controlling entropy in tokamak plasmas—particularly in the pedestal regions of the H-mode and space plasmas—but also in engineering sciences.

  16. Quantifying and minimizing entropy generation in AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1997-12-31

    Entropy generation in an AMTEC cell represents inherent power loss to the AMTEC cell. Minimizing cell entropy generation directly maximizes cell power generation and efficiency. An internal project is on-going at AMPS to identify, quantify and minimize entropy generation mechanisms within an AMTEC cell, with the goal of determining cost-effective design approaches for maximizing AMTEC cell power generation. Various entropy generation mechanisms have been identified and quantified. The project has investigated several cell design techniques in a solar-driven AMTEC system to minimize cell entropy generation and produce maximum power cell designs. In many cases, various sources of entropy generation aremore » interrelated such that minimizing entropy generation requires cell and system design optimization. Some of the tradeoffs between various entropy generation mechanisms are quantified and explained and their implications on cell design are discussed. The relationship between AMTEC cell power and efficiency and entropy generation is presented and discussed.« less

  17. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  18. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    PubMed

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  19. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics

    PubMed Central

    Kusaba, Akira; von Spakovsky, Michael R.; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-01-01

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and Nad-H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on Nad-H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches. PMID:28809816

  20. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Ma, Xu; Zeng, Yunmin

    2017-02-01

    Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO2 and CH4 were studied at 298 K, 308 K and 318 K over the pressure range of 0-1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO2 and CH4 are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔHΘ), standard Gibbs free energy (ΔGΘ) and standard entropy change (ΔSΘ) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.

  1. A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2013-12-01

    The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the solar photon flux. A small part of the energy of the photon goes into the production of more organic pigments and supporting biomass, while most of the energy is dissipated and channeled into the hydrological cycle through the latent heat of vaporization of surface water. By dissipating the surface to atmosphere temperature gradient, the hydrological cycle further increases the entropy production of Earth. This thermodynamic perspective of solar photon dissipation by life has implications to the possibility of finding extra-terrestrial life in our solar system and the Universe.

  2. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    PubMed

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  3. Nanotransition Materials (NTMs): Photocatalysis, Validated High Effective Sorbent Models Study for Organic Dye Degradation and Precise Mathematical Data’s at Standardized Level

    PubMed Central

    Khan, Farheen; Wahab, Rizwan; Hagar, Mohamed; Alnoman, Rua; Lutfullah; Rashid, Mohd

    2018-01-01

    The present work describes the synthesis of copper oxide nanoparticles (CuONPs) via a solution process with the aim of applying the nano-adsorbent for the reduction of methylene blue (MB) dye in alkaline media. These NPs were characterized via Field emission scanning electron microscopy (FE-SEM), X-ray diffraction, high-resolution Transmission electron microscopy (TEM), and ultra violet UV-visible spectroscopy to confirm their morphology and crystalline and optical properties in order to design an adsorption-degradation process. The photocatalytic CuONPs exhibited dynamic properties, great adsorption affinity during the chemisorption process, and operated at various modes with a strong interaction between the adsorbent and the adsorptive species, and equilibrium isotherm, kinetic isotherm, and thermodynamic activities in the presence of UV light. All basic quantities, such as concentration, pH, adsorbent dose, time, and temperature, were determined by an optimization process. The best-fitted adsorption Langmuir model (R2 = 0.9988) and performance, including adsorption capacity (350.87 mg/g), photocatalytic efficiency (90.74%), and degradation rate constant (Ks = 2.23 ×10−2 min−1), illustrate good feasibility with respect to sorption-reduction reactions but followed a pseudo-second-order kinetic on the adsorbent surface, reaching an equilibrium point in 80 min. The thermodynamic analysis suggests that the adsorption reaction is spontaneous and endothermic in nature. The thermodynamic parameters such as enthalpy (∆H°), entropy (∆S°), and Gibbs free energy (∆G°) give effective results to support a chemical reduction reaction at 303 K temperature. The equilibrium isotherm and kinetic and thermodynamic models with error function analysis explore the potential, acceptability, accuracy, access to adsorbents, and novelty of an unrivaled-sorption system. PMID:29495511

  4. A short essay on quantum black holes and underlying noncommutative quantized space-time

    NASA Astrophysics Data System (ADS)

    Tanaka, Sho

    2017-01-01

    We emphasize the importance of noncommutative geometry or Lorenz-covariant quantized space-time towards the ultimate theory of quantum gravity and Planck scale physics. We focus our attention on the statistical and substantial understanding of the Bekenstein-Hawking area-entropy law of black holes in terms of the kinematical holographic relation (KHR). KHR manifestly holds in Yang’s quantized space-time as the result of kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry, and plays an important role in our approach without any recourse to the familiar hypothesis, so-called holographic principle. In the present paper, we find a unified form of KHR applicable to the whole region ranging from macroscopic to microscopic scales in spatial dimension d  =  3. We notice a possibility of nontrivial modification of area-entropy law of black holes which becomes most remarkable in the extremely microscopic system close to Planck scale.

  5. Black holes, quantum theory and cosmology

    NASA Astrophysics Data System (ADS)

    Penrose, Roger

    2009-06-01

    Some reasons are given for believing that the rules of quantum (field) theory must be changed when general relativity becomes seriously involved. If full quantum mechanical respect is paid to the principle of equivalence, we find that a superposition of gravitational fields leads to an illegal superposition of different vacua, giving support to a proposal for spontaneous quantum state reduction made earlier by Diósi, and then independently by the author. A different line of attack involves the over-riding role of black holes in the total entropy content of the universe, and in the operation of the 2nd Law of thermodynamics. The author's proposal of conformal cyclic cosmology is reviewed in order to highlight a seeming paradox, according to which the entropy of the universe of the remote future seems to return to the small kind of value that it had at the big bang. The paradox is resolved when we take into account the information loss that, from this perspective, necessarily occurs in Hawking's black-hole evaporation, with the accompanying loss of unitarity.

  6. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  7. A consideration of the nature of work and the consequences for the human-oriented design of production and products.

    PubMed

    Bubb, Heiner

    2006-07-01

    In this article, it is shown that human work can be understood as a process of creating order, and that order can be seen as a form of information. Since information can be considered as negative entropy, work is associated with energy consumption. Therefore, it is important to investigate the nature of human necessities in more detail in order to meet the desire for comfort through the efficient application of energy. Temporary increases of information cause accelerated increases in entropy. This explains the appearance of living organisms, and the historic development of increasingly complex technology. Through technical progress, repetitive human work is being replaced by automation, so that primarily creative work remains. Now the question arises of how much creative work a human can manage. In addition, one goal of automation should be the reduction of human errors, but in doing so, an optimal balance should be found between supporting the operator both during normal procedures and during unforeseen circumstances.

  8. Design of two-dimensional zero reference codes with cross-entropy method.

    PubMed

    Chen, Jung-Chieh; Wen, Chao-Kai

    2010-06-20

    We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.

  9. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: origins of bundle formation.

    PubMed

    He, Gui-Li; Merlitz, Holger; Sommer, Jens-Uwe

    2014-03-14

    Molecular dynamics simulations are applied to investigate salt-free planar polyelectrolyte brushes under poor solvent conditions. Starting above the Θ-point with a homogeneous brush and then gradually reducing the temperature, the polymers initially display a lateral structure formation, forming vertical bundles of chains. A further reduction of the temperature (or solvent quality) leads to a vertical collapse of the brush. By varying the size and selectivity of the counterions, we show that lateral structure formation persists and therefore demonstrate that the entropy of counterions being the dominant factor for the formation of the bundle phase. By applying an external compression force on the brush we calculate the minimal work done on the polymer phase only and prove that the entropy gain of counterions in the bundle state, as compared to the homogeneously collapsed state at the same temperature, is responsible for the lateral microphase segregation. As a consequence, the observed lateral structure formation has to be regarded universal for osmotic polymer brushes below the Θ-point.

  10. Diagnostics of the Heat Sources and Sinks of the Asiatic Monsoon and the Thermally-Forced Planetary Scale Response.

    DTIC Science & Technology

    1981-01-01

    Scotia and the Northern Atlantic is evidence of winter monsoonal flow with polar air imoving equatorward and zonally from continental regions to the...inviscid motion must be tangent to both the entropy and energy surfaces and 2) the condition emphasized earlier in the discussion that, in the time

  11. Attention Demand and Postural Control in Children with Hearing Deficit

    ERIC Educational Resources Information Center

    Derlich, Malgorzata; Krecisz, Krzysztof; Kuczynski, Michal

    2011-01-01

    To elucidate the mechanisms responsible for deteriorated postural control in children with hearing deficit (CwHD), we measured center-of-pressure (COP) variability, mean velocity and entropy in bipedal quiet stance (feet together) with or without the concurrent cognitive task (reaction to visual stimulus) on hard or foam surface in 29 CwHD and a…

  12. Recent Studies of Chemical Interactions on Surfaces Using Molecular Beams

    DTIC Science & Technology

    1976-01-26

    going to the mobile chemisorbed state. Procop and Volter report an entropy increase of about 20 cal/mole OK for hydrogen chemisorption on platinum, for...31. I) 35. A. George Stoll, Jr., Ph.D. Thsis, Depam t of Chmial Nagineering, U.C.B. 36. it. P. eiurr-., private commication. 0 37. N. Procop and J

  13. Mechanics of active surfaces

    NASA Astrophysics Data System (ADS)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  14. Thermodynamic and Differential Entropy under a Change of Variables

    PubMed Central

    Hnizdo, Vladimir; Gilson, Michael K.

    2013-01-01

    The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates. PMID:24436633

  15. Entropy for Mechanically Vibrating Systems

    NASA Astrophysics Data System (ADS)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators, which demonstrates the applicability of entropy-based approaches to real-world systems. Three systems are considered to demonstrate these findings: 1) a rod end-coupled to a simple oscillator, 2) two end-coupled rods, and 3) two end-coupled beams. The aforementioned work utilizes the weak coupling assumption to determine the entropy of composite systems. Following this discussion, a direct method of finding entropy is developed which does not rely on this limiting assumption. The resulting entropy provides a useful benchmark for evaluating the accuracy of the weak coupling approach, and is validated using systems of coupled oscillators. The later chapters of this work discuss Khinchin's entropy as applied to nonlinear and nonconservative systems, respectively. The discussion of entropy for nonlinear systems is motivated by the desire to expand the applicability of SEA techniques beyond the linear regime. The discussion of nonconservative systems is also crucial, since real-world systems interact with their environment, and it is necessary to confirm the validity of an entropy approach for systems that are relevant in the context of SEA. Having developed a mathematical framework for determining entropy under a number of previously unexplored cases, the relationship between thermodynamics and statistical vibroacoustics can be better understood. Specifically, vibroacoustic temperatures can be obtained for systems that are not necessarily linear or weakly coupled. In this way, entropy provides insight into how the power flow proportionality of statistical energy analysis (SEA) can be applied to a broader class of vibroacoustic systems. As such, entropy is a useful tool for both justifying and expanding the foundational results of SEA.

  16. Entropy is more resistant to artifacts than bispectral index in brain-dead organ donors.

    PubMed

    Wennervirta, Johanna; Salmi, Tapani; Hynynen, Markku; Yli-Hankala, Arvi; Koivusalo, Anna-Maria; Van Gils, Mark; Pöyhiä, Reino; Vakkuri, Anne

    2007-01-01

    To evaluate the usefulness of entropy and the bispectral index (BIS) in brain-dead subjects. A prospective, open, nonselective, observational study in the university hospital. 16 brain-dead organ donors. Time-domain electroencephalography (EEG), spectral entropy of the EEG, and BIS were recorded during solid organ harvest. State entropy differed significantly from 0 (isoelectric EEG) 28%, response entropy 29%, and BIS 68% of the total recorded time. The median values during the operation were state entropy 0.0, response entropy 0.0, and BIS 3.0. In four of 16 organ donors studied the EEG was not isoelectric, and nonreactive rhythmic activity was noted in time-domain EEG. After excluding the results from subjects with persistent residual EEG activity state entropy, response entropy, and BIS values differed from zero 17%, 18%, and 62% of the recorded time, respectively. Median values were 0.0, 0.0, and 2.0 for state entropy, response entropy, and BIS, respectively. The highest index values in entropy and BIS monitoring were recorded without neuromuscular blockade. The main sources of artifacts were electrocauterization, 50-Hz artifact, handling of the donor, ballistocardiography, electromyography, and electrocardiography. Both entropy and BIS showed nonzero values due to artifacts after brain death diagnosis. BIS was more liable to artifacts than entropy. Neither of these indices are diagnostic tools, and care should be taken when interpreting EEG and EEG-derived indices in the evaluation of brain death.

  17. Mathematical investigations of branch length similarity entropy profiles of shapes for various resolutions

    NASA Astrophysics Data System (ADS)

    Jeon, Wonju; Lee, Sang-Hee

    2012-12-01

    In our previous study, we defined the branch length similarity (BLS) entropy for a simple network consisting of a single node and numerous branches. As the first application of this entropy to characterize shapes, the BLS entropy profiles of 20 battle tank shapes were calculated from simple networks created by connecting pixels in the boundary of the shape. The profiles successfully characterized the tank shapes through a comparison of their BLS entropy profiles. Following the application, this entropy was used to characterize human's emotional faces, such as happiness and sad, and to measure the degree of complexity for termite tunnel networks. These applications indirectly indicate that the BLS entropy profile can be a useful tool to characterize networks and shapes. However, the ability of the BLS entropy in the characterization depends on the image resolution because the entropy is determined by the number of nodes for the boundary of a shape. Higher resolution means more nodes. If the entropy is to be widely used in the scientific community, the effect of the resolution on the entropy profile should be understood. In the present study, we mathematically investigated the BLS entropy profile of a shape with infinite resolution and numerically investigated the variation in the pattern of the entropy profile caused by changes in the resolution change in the case of finite resolution.

  18. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  19. Entropy generation of nanofluid flow in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  20. Entropy and entropy production in Fokker–Plank equation under the generalized fluctuation–dissipation relation

    NASA Astrophysics Data System (ADS)

    Guo, Ran

    2018-04-01

    In this paper, we investigate the definition of the entropy in the Fokker–Planck equation under the generalized fluctuation–dissipation relation (FDR), which describes a Brownian particle moving in a complex medium with friction and multiplicative noise. The friction and the noise are related by the generalized FDR. The entropy for such a system is defined first. According to the definition of the entropy, we calculate the entropy production and the entropy flux. Lastly, we make a numerical calculation to display the results in figures.

  1. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  2. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs. PMID:26555444

  3. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.

  4. Relating different quantum generalizations of the conditional Rényi entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomamichel, Marco; School of Physics, The University of Sydney, Sydney 2006; Berta, Mario

    2014-08-15

    Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here, we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) = 0 of the conditional von Neumann entropy for tripartite pure states to Rényi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Rényi entropies and derive a new entropicmore » uncertainty relation.« less

  5. Exact analytical thermodynamic expressions for a Brownian heat engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  6. Exact analytical thermodynamic expressions for a Brownian heat engine.

    PubMed

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  7. Effects of electron doping on the stability of the metal hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  8. Modeling the Overalternating Bias with an Asymmetric Entropy Measure

    PubMed Central

    Gronchi, Giorgio; Raglianti, Marco; Noventa, Stefano; Lazzeri, Alessandro; Guazzini, Andrea

    2016-01-01

    Psychological research has found that human perception of randomness is biased. In particular, people consistently show the overalternating bias: they rate binary sequences of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by the normative criteria of Shannon's entropy. Within data mining for medical applications, Marcellin proposed an asymmetric measure of entropy that can be ideal to account for such bias and to quantify subjective randomness. We fitted Marcellin's entropy and Renyi's entropy (a generalized form of uncertainty measure comprising many different kinds of entropies) to experimental data found in the literature with the Differential Evolution algorithm. We observed a better fit for Marcellin's entropy compared to Renyi's entropy. The fitted asymmetric entropy measure also showed good predictive properties when applied to different datasets of randomness-related tasks. We concluded that Marcellin's entropy can be a parsimonious and effective measure of subjective randomness that can be useful in psychological research about randomness perception. PMID:27458418

  9. Entropy for the Complexity of Physiological Signal Dynamics.

    PubMed

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  10. Information Entropy Analysis of the H1N1 Genetic Code

    NASA Astrophysics Data System (ADS)

    Martwick, Andy

    2010-03-01

    During the current H1N1 pandemic, viral samples are being obtained from large numbers of infected people world-wide and are being sequenced on the NCBI Influenza Virus Resource Database. The information entropy of the sequences was computed from the probability of occurrence of each nucleotide base at every position of each set of sequences using Shannon's definition of information entropy, [ H=∑bpb,2( 1pb ) ] where H is the observed information entropy at each nucleotide position and pb is the probability of the base pair of the nucleotides A, C, G, U. Information entropy of the current H1N1 pandemic is compared to reference human and swine H1N1 entropy. As expected, the current H1N1 entropy is in a low entropy state and has a very large mutation potential. Using the entropy method in mature genes we can identify low entropy regions of nucleotides that generally correlate to critical protein function.

  11. Generalized Entanglement Entropy and Holography

    NASA Astrophysics Data System (ADS)

    Obregón, O.

    2018-04-01

    A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ 2) distribution that depends on β and also on pl . The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2dCFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV (for c = 1) ones and also than those due to the area dependent AdS 3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS 3 area dependent entropy.

  12. Self-organization, preferential flow and rainfall runoff behavior - is there a connection?

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Blume, Theresa; Kleidon, Axel; Ehret, Uwe; Scherer, Ulrike; Westhoff, Martijn

    2013-04-01

    In line with the studies of Kleidon et al. (2012) and Zehe et al. (2010) the proposed study analyzes mass flow related flows of free energy in open hydrological systems - hillslopes and small catchments - using thermodynamics methods. Why a thermodynamic treatment? A small part of the kinetic energy input from incoming rainfall is dissipated into heat and to break up soil aggregates. Depending on the partitioning of the incoming rainfall into overland flow and soil water, the remaining part of the incoming kinetic energy is partly transformed into potential energy of surface water and subsequently partly exported as kinetic energy of overland flow from the system; the rest is dissipated by frictional losses. The other part of rainfall infiltrates thereby increasing potential energy of soil water but depleting at the same time (gradients in) capillary binding energy of soil water, which again comprises energy dissipation into heat of immersion. Although, these mass fluxes are not associated with large heat fluxes, they reflect the overall conservation of energy as well as the second law of thermodynamics. They require thus a thermodynamic treatment, because tiny amounts of kinetic energy, surface energy and potential energy are dissipated into heat: this implies irreversibility and explains why water does not flow uphill. Soil hydraulic equilibrium (HE), arising from a balance in potential and capillary binding energy in soil, can be interpreted as a state of maximum entropy in soil. Soil water potential, defined as sum of matric potential and gravity potential, is in HE equal to zero along the soil profile. This corresponds to a state of maximum entropy due to a zero potential gradient, which implies due to Zehe et al. (2010) a state of minimum (Helmholtz) free energy. Our first main objective is to quantify to which extent connected preferential flow path, in our case vertical macropores and the river network enhance flow velocities at a given driving gradient and thus power in the associated mass fluxes. This implies either an enhanced export of free energy in form of kinetic energy in case of the river net, or an accelerated reduction of potential energy of infiltrating surface water which implies a reduction free energy in form of capillary binding energy of soil water. We hypothesize (H1) that network like structures act as dissipative structures "serving the purpose" of reducing the relaxation time to a state of lower "free" energy in the entire system. This is because they minimize dissipative losses of kinetic energy along their extent. This faster relaxation towards a state of smaller free energy is deemed to be favorable for mechanic stability of the entire hydrological system because a) mass flows perform due to the enhanced export of kinetic energy less work on the system itself and b) mechanical stress from ponded surface water is quickly reduced by fast infiltration and preferential flow. Our second main objective is, in line with the study of Zehe et al. (2010), the search for thermodynamic optimal hillslope architectures both with respect to the surface density of vertical macropores in soil and with respect to the spatial arrangement of soil types and macropores at the hillslope scale. In line with H1 we suggest (H2) that a hydro-geo-ecosystem is closer to a functional optimum than other possible configurations if it dissipates and exports more of the kinetic energy input from incoming rainfall by redistributing water against internal gradients and exporting water against macroscale geo-potential gradients. Note that H2 does not postulate that functionally optimal hillslope architectures necessarily exist, if they exist H2 implies however that they maximize entropy production and thus reduction of total free energy of the system at a "wisely" selected time scale. The surface density of apparent macropores does for instance control the tradeoff between Hortonian overland flow formation and infiltration, which implies a tradeoff between the amount of kinetic energy input from rainfall that is converted in to power associated with overland flow and power associated with soil water flows depleting gradients in soil water potential. Does this tradeoff imply an optimum surface density of macropores at the hillslope scale in the sense that power in soil water flow is maximized or reduction of free energy is maximized? In case such an optimum hillslope architecture existed, and in case that the evolution of the hydrological systems of interested was indeed in accordance with hypothesis H2, this optimal architecture should allow an acceptable uncalibrated simulation of the systems rainfall -runoff behavior (if the selected model structure can properly represent this architecture). We will address these questions and test the main implications of our hypotheses by means of numerical experiments with the physically based hydrological model CATFLOW. We use behavioral model structures as basic model setup, which have been shown to closely portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and catchment scale discharge and represent the observed structural and textural signatures of soils, flow networks and vegetation. Our test areas are the Weiherbach (Germany) and the Malalcahuello research headwaters (Chile), which are located in distinctly different hydro-climatic and hydro-pedological settings. Within the numerical experiments we will simulate the full concert of hydrological processes at the hillslope and headwater scales for meaningful perturbations of the behavioral model structure and compare them with respect to dynamics of free energy and production of power. These perturbations affect a) the river network and the geomorphology of the Weiherbach catchment, b) surface density of macropores in both catchments c) the spatial arrangement of soils and preferential pathways at the hillslope scale in the Weiherbach catchment. References: Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents, Hydrol. Earth Syst. Sci. Discuss., 9, 7317-7378, 10.5194/hessd-9-7317-2012, 2012. Zehe, E., Blume, T., and Blöschl, G.: The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures, Phil. Trans. R. Soc. B, 1-10, doi:10.1098/rstb.2009.0308, 2010.

  13. Quench action and Rényi entropies in integrable systems

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-09-01

    Entropy is a fundamental concept in equilibrium statistical mechanics, yet its origin in the nonequilibrium dynamics of isolated quantum systems is not fully understood. A strong consensus is emerging around the idea that the stationary thermodynamic entropy is the von Neumann entanglement entropy of a large subsystem embedded in an infinite system. Also motivated by cold-atom experiments, here we consider the generalization to Rényi entropies. We develop a new technique to calculate the diagonal Rényi entropy in the quench action formalism. In the spirit of the replica treatment for the entanglement entropy, the diagonal Rényi entropies are generalized free energies evaluated over a thermodynamic macrostate which depends on the Rényi index and, in particular, is not the same state describing von Neumann entropy. The technical reason for this perhaps surprising result is that the evaluation of the moments of the diagonal density matrix shifts the saddle point of the quench action. An interesting consequence is that different Rényi entropies encode information about different regions of the spectrum of the postquench Hamiltonian. Our approach provides a very simple proof of the long-standing issue that, for integrable systems, the diagonal entropy is half of the thermodynamic one and it allows us to generalize this result to the case of arbitrary Rényi entropy.

  14. Radiative entropy generation in a gray absorbing, emitting, and scattering planar medium at radiative equilibrium

    NASA Astrophysics Data System (ADS)

    Sadeghi, Pegah; Safavinejad, Ali

    2017-11-01

    Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.

  15. Current progress in multiple-image blind demixing algorithms

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    2000-06-01

    Imagery edges occur naturally in human visual systems as a consequence of redundancy reduction towards `sparse and orthogonality feature maps,' which have been recently derived from the maximum entropy information-theoretical first principle of artificial neural networks. After a brief match review of such an Independent Component Analysis or Blind Source Separation of edge maps, we explore the de- mixing condition for more than two imagery objects recognizable by an intelligent pair of cameras with memory in a time-multiplex fashion.

  16. Data on Support Vector Machines (SVM) model to forecast photovoltaic power.

    PubMed

    Malvoni, M; De Giorgi, M G; Congedo, P M

    2016-12-01

    The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  17. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts.

    PubMed

    Køhler, Jonatan; Schönbeck, Christian; Westh, Peter; Holm, René

    2016-01-28

    The structure and thermodynamics of inclusion complexes of seven different γ-cyclodextrins (γCDs) and three biologically relevant bile salts (BS) were investigated in the present study. Natural γCD and six modified γCDs [two methyl-γCDs, one sulfobutyl ether-γCD (SBEγCD), and three 2-hydroxypropyl-γCDs (HPγCD)] and their complexes with BS were investigated by isothermal titration calorimetry, NMR, and molecular dynamics simulations. With the exception of the fully methylated γCD, which did not bind the BSs investigated, all of the γCDs formed 1:1 complexes with the BS, and the structures were similar to those with natural γCD; i.e., the modifications of the γCD had limited structural impact on the formation of complexes. Isothermal titration calorimetry was carried out over in the temperature interval 5-55 °C to enable the calculation of the stability constant (K) and the thermodynamic parameters enthalpy (ΔH°), entropy (ΔS°), and heat capacity (ΔCp°). The stability constants decreased with an increased degree of substitution (DS), with methyl substituents having a lower effect on the stability constant than the sulfobutyl ether and hydroxypropyl substituents on the stability constants. Enthalpy-entropy compensation was observed, since both enthalpy and entropy increased with the degree of substitution, which may reflect dehydration of the hydrophobic surface on both CD and BS. Calculations based on ΔCp° data suggested that each of the substituents dehydrated 10-20 (hydroxypropyl), 22-33 (sulfobutyl ether), and 10-15 Å(2) (methyl) of the BS surface area, in reasonable agreement with estimates from the molecular dynamics simulations. Combined with earlier investigations on modified βCDs, these results indicate general trends of the substituents on the thermodynamics of complex formation.

  18. Thermodynamics of the Coma Cluster Outskirts

    NASA Astrophysics Data System (ADS)

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Mantz, A.; Matsushita, K.; Nulsen, P. E. J.; Sanders, J. S.; Sasaki, T.; Sato, T.; Takei, Y.; Walker, S. A.

    2013-09-01

    We present results from a large mosaic of Suzaku observations of the Coma Cluster, the nearest and X-ray brightest hot (~8 keV), dynamically active, non-cool core system, focusing on the thermodynamic properties of the intracluster medium on large scales. For azimuths not aligned with an infalling subcluster toward the southwest, our measured temperature and X-ray brightness profiles exhibit broadly consistent radial trends, with the temperature decreasing from about 8.5 keV at the cluster center to about 2 keV at a radius of 2 Mpc, which is the edge of our detection limit. The southwest merger significantly boosts the surface brightness, allowing us to detect X-ray emission out to ~2.2 Mpc along this direction. Apart from the southwestern infalling subcluster, the surface brightness profiles show multiple edges around radii of 30-40 arcmin. The azimuthally averaged temperature profile, as well as the deprojected density and pressure profiles, all show a sharp drop consistent with an outwardly-propagating shock front located at 40 arcmin, corresponding to the outermost edge of the giant radio halo observed at 352 MHz with the Westerbork Synthesis Radio Telescope. The shock front may be powering this radio emission. A clear entropy excess inside of r 500 reflects the violent merging events linked with these morphological features. Beyond r 500, the entropy profiles of the Coma Cluster along the relatively relaxed directions are consistent with the power-law behavior expected from simple models of gravitational large-scale structure formation. The pressure is also in agreement at these radii with the expected values measured from Sunyaev-Zel'dovich data from the Planck satellite. However, due to the large uncertainties associated with the Coma Cluster measurements, we cannot yet exclude an entropy flattening in this system consistent with that seen in more relaxed cool core clusters.

  19. Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree

    NASA Astrophysics Data System (ADS)

    Chen, Qiyu; Liu, Gang; Ma, Xiaogang; Mariethoz, Gregoire; He, Zhenwen; Tian, Yiping; Weng, Zhengping

    2018-05-01

    Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently.

  20. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    PubMed Central

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  1. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  2. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita

    Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less

  3. Will molecular dynamics simulations of proteins ever reach equilibrium?

    PubMed

    Genheden, Samuel; Ryde, Ulf

    2012-06-28

    We show that conformational entropies calculated for five proteins and protein-ligand complexes with dihedral-distribution histogramming, the von Mises approach, or quasi-harmonic analysis do not converge to any useful precision even if molecular dynamics (MD) simulations of 380-500 ns length are employed (the uncertainty is 12-89 kJ mol(-1)). To explain this, we suggest a simple protein model involving dihedrals with effective barriers forming a uniform distribution and show that for such a model, the entropy increases logarithmically with time until all significantly populated dihedral states have been sampled, in agreement with the simulations (during the simulations, 52-70% of the available dihedral phase space has been visited). This is also confirmed by the analysis of the trajectories of a 1 ms simulation of bovine pancreatic trypsin inhibitor (31 kJ mol(-1) difference in the entropy between the first and second part of the simulation). Strictly speaking, this means that it is practically impossible to equilibrate MD simulations of proteins. We discuss the implications of such a lack of strict equilibration of protein MD simulations and show that ligand-binding free energies estimated with the MM/GBSA method (molecular mechanics with generalised Born and surface-area solvation) vary by 3-15 kJ mol(-1) during a 500 ns simulation (the higher estimate is caused by rare conformational changes), although they involve a questionable but well-converged normal-mode entropy estimate, whereas free energies estimated by free-energy perturbation vary by less than 0.6 kJ mol(-1) for the same simulation.

  4. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  5. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  6. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  7. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  8. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  9. Estimating the entropy and quantifying the impurity of a swarm of surface-hopping trajectories: A new perspective on decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Wenjun; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu

    2014-05-28

    In this article, we consider the intrinsic entropy of Tully's fewest switches surface hopping (FSSH) algorithm (as estimated by the impurity of the density matrix) [J. Chem. Phys. 93, 1061 (1990)]. We show that, even for a closed system, the total impurity of a FSSH calculation increases in time (rather than stays constant). This apparent failure of the FSSH algorithm can be traced back to an incorrect, approximate treatment of the electronic coherence between wavepackets moving along different potential energy surfaces. This incorrect treatment of electronic coherence also prevents the FSSH algorithm from correctly describing wavepacket recoherences (which is amore » well established limitation of the FSSH method). Nevertheless, despite these limitations, the FSSH algorithm often predicts accurate observables because the electronic coherence density is modulated by a phase factor which varies rapidly in phase space and which often integrates to almost zero. Adding “decoherence” events on top of a FSSH calculation completely destroys the incorrect FSSH electronic coherence and effectively sets the Poincaré recurrence time for wavepacket recoherence to infinity; this modification usually increases FSSH accuracy (assuming there are no recoherences) while also offering long-time stability for trajectories. In practice, we show that introducing “decoherence” events does not change the total FSSH impurity significantly, but does lead to more accurate evaluations of the impurity of the electronic subsystem.« less

  10. Entropic contributions enhance polarity compensation for CeO2(100) surfaces

    NASA Astrophysics Data System (ADS)

    Capdevila-Cortada, Marçal; López, Núria

    2017-03-01

    Surface structure controls the physical and chemical response of materials. Surface polar terminations are appealing because of their unusual properties but they are intrinsically unstable. Several mechanisms, namely metallization, adsorption, and ordered reconstructions, can remove thermodynamic penalties rendering polar surfaces partially stable. Here, for CeO2(100), we report a complementary stabilization mechanism based on surface disorder that has been unravelled through theoretical simulations that: account for surface energies and configurational entropies; show the importance of the ion distribution degeneracy; and identify low diffusion barriers between conformations that ensure equilibration. Disordered configurations in oxides might also be further stabilized by preferential adsorption of water. The entropic stabilization term will appear for surfaces with a high number of empty sites, typically achieved when removing part of the ions in a polar termination to make the layer charge zero. Assessing the impact of surface disorder when establishing new structure-activity relationships remains a challenge.

  11. Surveillance versus Reconnaissance: An Entropy Based Model

    DTIC Science & Technology

    2012-03-22

    sensor detection since no new information is received. (Berry, Pontecorvo, & Fogg , Optimal Search, Location and Tracking of Surface Maritime Targets by...by Berry, Pontecorvo and Fogg (Berry, Pontecorvo, & Fogg , July, 2003) facilitates the optimal solutions to dynamically determining the allocation and...region (Berry, Pontecorvo, & Fogg , July, 2003). Phase II: Locate During the locate phase, the objective was to determine the location of the targets

  12. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  13. Modeling Loop Entropy

    PubMed Central

    Chirikjian, Gregory S.

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting ‘the’ tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of ‘entropy’ is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice; each of the above with different solvation and solvent models; thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics and information theory. PMID:21187223

  14. Black Holes as Brains: Neural Networks with Area Law Entropy

    NASA Astrophysics Data System (ADS)

    Dvali, Gia

    2018-04-01

    Motivated by the potential similarities between the underlying mechanisms of the enhanced memory storage capacity in black holes and in brain networks, we construct an artificial quantum neural network based on gravity-like synaptic connections and a symmetry structure that allows to describe the network in terms of geometry of a d-dimensional space. We show that the network possesses a critical state in which the gapless neurons emerge that appear to inhabit a (d-1)-dimensional surface, with their number given by the surface area. In the excitations of these neurons, the network can store and retrieve an exponentially large number of patterns within an arbitrarily narrow energy gap. The corresponding micro-state entropy of the brain network exhibits an area law. The neural network can be described in terms of a quantum field, via identifying the different neurons with the different momentum modes of the field, while identifying the synaptic connections among the neurons with the interactions among the corresponding momentum modes. Such a mapping allows to attribute a well-defined sense of geometry to an intrinsically non-local system, such as the neural network, and vice versa, it allows to represent the quantum field model as a neural network.

  15. Use of mutual information to decrease entropy: Implications for the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S.

    1989-05-15

    Several theorems on the mechanics of gathering information are proved, and the possibility of violating the second law of thermodynamics by obtaining information is discussed in light of these theorems. Maxwell's demon can lower the entropy of his surroundings by an amount equal to the difference between the maximum entropy of his recording device and its initial entropy, without generating a compensating entropy increase. A demon with human-scale recording devices can reduce the entropy of a gas by a negligible amount only, but the proof of the demon's impracticability leaves open the possibility that systems highly correlated with their environmentmore » can reduce the environment's entropy by a substantial amount without increasing entropy elsewhere. In the event that a boundary condition for the universe requires it to be in a state of low entropy when small, the correlations induced between different particle modes during the expansion phase allow the modes to behave like Maxwell's demons during the contracting phase, reducing the entropy of the universe to a low value.« less

  16. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors.

  17. Adsorption of normal pentane on the surface of rutile. Experimental results and simulations.

    PubMed

    Rakhmatkariev, G U; Carvalho, A J Palace; Ramalho, J P Prates

    2007-07-03

    Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.

  18. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  19. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  20. Statistical mechanical theory of liquid entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, D.C.

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n{ge}3, is significant in only a few liquid metals, andmore » its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature.« less

  1. Characterization of time series via Rényi complexity-entropy curves

    NASA Astrophysics Data System (ADS)

    Jauregui, M.; Zunino, L.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2018-05-01

    One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.

  2. Beyond the Shannon–Khinchin formulation: The composability axiom and the universal-group entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tempesta, Piergiulio, E-mail: p.tempesta@fis.ucm.es

    2016-02-15

    The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann–Gibbs (BG) entropy and could be applicable in thermodynamics, quantum mechanics and information theory. In Khinchin (1957), by extending previous ideas of Shannon (1948) and Shannon and Weaver (1949), Khinchin proposed a characterization of the BG entropy, based on four requirements, nowadays known as the Shannon–Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behindmore » the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent systems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal family of trace-form entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with Lazard’s universal formal group of algebraic topology, the new general entropy introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.« less

  3. Formal groups and Z-entropies

    PubMed Central

    2016-01-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180–197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies. PMID:27956871

  4. New classes of Lorenz curves by maximizing Tsallis entropy under mean and Gini equality and inequality constraints

    NASA Astrophysics Data System (ADS)

    Preda, Vasile; Dedu, Silvia; Gheorghe, Carmen

    2015-10-01

    In this paper, by using the entropy maximization principle with Tsallis entropy, new distribution families for modeling the income distribution are derived. Also, new classes of Lorenz curves are obtained by applying the entropy maximization principle with Tsallis entropy, under mean and Gini index equality and inequality constraints.

  5. Entropy change of biological dynamics in COPD.

    PubMed

    Jin, Yu; Chen, Chang; Cao, Zhixin; Sun, Baoqing; Lo, Iek Long; Liu, Tzu-Ming; Zheng, Jun; Sun, Shixue; Shi, Yan; Zhang, Xiaohua Douglas

    2017-01-01

    In this century, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of large amount of data in human physiological signals. Entropy is a key metric for quantifying the irregularity contained in physiological signals. In this review, we focus on how entropy changes in various physiological signals in COPD. Our review concludes that the entropy change relies on the types of physiological signals under investigation. For major physiological signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, the entropy of a patient with COPD is lower than that of a healthy person. However, in case of hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. This result should give valuable guidance for the use of entropy for physiological signals measured by wearable medical device as well as for further research on entropy in COPD.

  6. Visualizing Entropy

    NASA Astrophysics Data System (ADS)

    Lechner, Joseph H.

    1999-10-01

    This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations. (i) A sealed "rainbow tube" contains six smaller vessels, each filled with a different brightly colored solution (low entropy). When the tube is inverted, the solutions mix together and react to form an amorphous precipitate (high entropy). The change from low entropy to high entropy is irreversible as long as the tube remains sealed. (ii) When U.S. currency is withdrawn from circulation, intact bills (low entropy) are shredded into small fragments (high entropy). Shredding is quick and easy; the reverse process is clearly nonspontaneous. It is theoretically possible, but it is time-consuming and energy-intensive, to reassemble one bill from a pile that contains fragments of hundreds of bills. We calculate the probability P of drawing pieces of only one specific bill from a mixture containing one pound of bills, each shredded into n fragments. This result can be related to Boltzmann's entropy formula S?=klnW.

  7. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    PubMed Central

    Ito, Sosuke

    2016-01-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120

  8. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke

    2016-11-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.

  9. Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding.

    PubMed

    Stadler, Andreas M; Demmel, Franz; Ollivier, Jacques; Seydel, Tilo

    2016-08-03

    Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.

  10. Wavelet entropy characterization of elevated intracranial pressure.

    PubMed

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  11. A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model

    NASA Astrophysics Data System (ADS)

    Pembroke, Asher

    In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.

  12. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  13. The energetic basis of the DNA double helix: a combined microcalorimetric approach

    PubMed Central

    Vaitiekunas, Paulius; Crane-Robinson, Colyn; Privalov, Peter L.

    2015-01-01

    Microcalorimetric studies of DNA duplexes and their component single strands showed that association enthalpies of unfolded complementary strands into completely folded duplexes increase linearly with temperature and do not depend on salt concentration, i.e. duplex formation results in a constant heat capacity decrement, identical for CG and AT pairs. Although duplex thermostability increases with CG content, the enthalpic and entropic contributions of an AT pair to duplex formation exceed that of a CG pair when compared at the same temperature. The reduced contribution of AT pairs to duplex stabilization comes not from their lower enthalpy, as previously supposed, but from their larger entropy contribution. This larger enthalpy and particularly the greater entropy results from water fixed by the AT pair in the minor groove. As the increased entropy of an AT pair exceeds that of melting ice, the water molecule fixed by this pair must affect those of its neighbors. Water in the minor groove is, thus, orchestrated by the arrangement of AT groups, i.e. is context dependent. In contrast, water hydrating exposed nonpolar surfaces of bases is responsible for the heat capacity increment on dissociation and, therefore, for the temperature dependence of all thermodynamic characteristics of the double helix. PMID:26304541

  14. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    NASA Technical Reports Server (NTRS)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  15. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  16. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    NASA Astrophysics Data System (ADS)

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  17. Age-related motor unit remodeling in the Tibialis Anterior.

    PubMed

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar

    2015-01-01

    Limited studies exist on the use of surface electromyogram (EMG) signal features to detect age-related motor unit remodeling in the Tibialis Anterior. Motor unit remodeling leads to declined muscle strength and force steadiness during submaximal contractions which are factors for risk of falls in the elderly. This study investigated the remodeling phenomena in the Tibialis Anterior using sample entropy and higher order statistics. Eighteen young (26.1 ± 2.9 years) and twelve elderly (68.7 ± 9.0 years) participants performed isometric dorsiflexion of the ankle at 20% maximal voluntary contraction (MVC) and their Tibialis Anterior (TA) EMG was recorded. Sample entropy, Gaussianity and Linearity Test statistics were calculated from the recorded EMG for each MVC. Shapiro-Wilk test was used to determine normality, and either a two-tail student t-test or Wilcoxon rank sum test was performed to determine significant difference in the EMG features between the young and old cohorts. Results show age-related motor unit remodeling to be depicted by decreased sample entropy (p <; 0.1), increased non-Gaussianity (p <; 0.05) and lesser degree of linearity in the elderly. This is due to the increased sparsity of the MUAPs as a result of the denervation-reinnervation process, and the decrease in total number of motor units.

  18. The Effect of Magnesium Carbonate (Chalk) on Geometric Entropy, Force, and Electromyography During Rock Climbing.

    PubMed

    Kilgas, Matthew A; Drum, Scott N; Jensen, Randall L; Phillips, Kevin C; Watts, Phillip B

    2016-12-01

    Rock climbers believe chalk dries the hands of sweat and improves the static coefficient of friction between the hands and the surface of the rock. The purpose of this study was to assess whether chalk affects geometric entropy or muscular activity during rock climbing. Nineteen experienced recreational rock climbers (13 males, 6 females; 173.5 ± 7.0 cm; 67.5 ± 3.4 kg) completed 2 climbing trails with and without chalk. The body position of the climber and muscular activity of the finger flexors was recorded throughout the trial. Following the movement sequence participants hung from a standard climbing hold until they slipped from the climbing structure, while the coefficient of friction and the ratio of the vertical forces on the hands and feet were determined. Although there were no differences in the coefficient of friction (P = .748), geometric entropy (P = .359), the ratio of the vertical forces between the hands and feet (P = .570), or muscular activity (P = .968), participants were able to hang longer after the use of chalk 62.9 ± 36.7 s and 49.3 ± 25.2 s (P = .046). This is advantageous because it may allow for prolonged rests, and more time to plan the next series of climbing moves.

  19. SANTA BARBARA CLUSTER COMPARISON TEST WITH DISPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Takayuki R.; Makino, Junichiro, E-mail: saitoh@elsi.jp

    2016-06-01

    The Santa Barbara cluster comparison project revealed that there is a systematic difference between entropy profiles of clusters of galaxies obtained by Eulerian mesh and Lagrangian smoothed particle hydrodynamics (SPH) codes: mesh codes gave a core with a constant entropy, whereas SPH codes did not. One possible reason for this difference is that mesh codes are not Galilean invariant. Another possible reason is the problem of the SPH method, which might give too much “protection” to cold clumps because of the unphysical surface tension induced at contact discontinuities. In this paper, we apply the density-independent formulation of SPH (DISPH), whichmore » can handle contact discontinuities accurately, to simulations of a cluster of galaxies and compare the results with those with the standard SPH. We obtained the entropy core when we adopt DISPH. The size of the core is, however, significantly smaller than those obtained with mesh simulations and is comparable to those obtained with quasi-Lagrangian schemes such as “moving mesh” and “mesh free” schemes. We conclude that both the standard SPH without artificial conductivity and Eulerian mesh codes have serious problems even with such an idealized simulation, while DISPH, SPH with artificial conductivity, and quasi-Lagrangian schemes have sufficient capability to deal with it.« less

  20. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    PubMed

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  1. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  2. Biophysics and clinical practice for regenerative processes in cirrhosis of the liver/of liver cirrhosis assisted by Delta-S Entropy Variation Systems.

    PubMed

    Marineo, G; Fesce, E

    2006-12-01

    The therapy in question uses an innovative bioengineering device denoted as ''Delta-S DVD Entropy Variation System''. Previous research indicated regression of cirrhosis as evaluated in its morphofunctional and symptomatological aspects. The aim of the study is to confirm and extend previous experimental observations by enhancing hemodynamic evaluation techniques. In order to clarify scar regression, it was decided to include in the endpoints a quantitative evaluation of portal hypertension called HVPG, which is sensitive to the breakdown of hepatic architecture and the influence of regeneration nodules and therefore the advance of cirrhosis. The experimental design consists of a self-controlled study carried out on Child A-B cirrhosis patients with portal hypertension (hepatic venous pressure gradient, HVPG > or = 10 mmHg). Five patients were enrolled, 4 HCV positive, one with autoimmune cirrhosis, all showing extensive symptoms. At the end of the treatment all patients showed a reduction in portal hypertension (mean reduction HVPG = 40.2%, P<0.011), together with an improved ultrasound flowmeter pattern and a sharp decrease or disappearance of the symptoms. No adverse effects were reported. Efficacy on autoimmune cirrhosis was unaffected. By means of a quantitative analysis of portal hypertension and of functional aspects, this study confirms that the Delta-S DVD system can lead to the regression of the scar component of cirrhosis, promote the regeneration of functioning liver tissue with positive effects on hepatic functionality and prevent symptoms and the risk of varicose vein rupture.

  3. The second law of thermodynamics under unitary evolution and external operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Tatsuhiko N., E-mail: ikeda@cat.phys.s.u-tokyo.ac.jp; Physics Department, Boston University, Boston, MA 02215; Sakumichi, Naoyuki

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed withoutmore » reference to the microscopic state of the system.« less

  4. Nonadditive entropies yield probability distributions with biases not warranted by the data.

    PubMed

    Pressé, Steve; Ghosh, Kingshuk; Lee, Julian; Dill, Ken A

    2013-11-01

    Different quantities that go by the name of entropy are used in variational principles to infer probability distributions from limited data. Shore and Johnson showed that maximizing the Boltzmann-Gibbs form of the entropy ensures that probability distributions inferred satisfy the multiplication rule of probability for independent events in the absence of data coupling such events. Other types of entropies that violate the Shore and Johnson axioms, including nonadditive entropies such as the Tsallis entropy, violate this basic consistency requirement. Here we use the axiomatic framework of Shore and Johnson to show how such nonadditive entropy functions generate biases in probability distributions that are not warranted by the underlying data.

  5. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  6. Maximum Tsallis entropy with generalized Gini and Gini mean difference indices constraints

    NASA Astrophysics Data System (ADS)

    Khosravi Tanak, A.; Mohtashami Borzadaran, G. R.; Ahmadi, J.

    2017-04-01

    Using the maximum entropy principle with Tsallis entropy, some distribution families for modeling income distribution are obtained. By considering income inequality measures, maximum Tsallis entropy distributions under the constraint on generalized Gini and Gini mean difference indices are derived. It is shown that the Tsallis entropy maximizers with the considered constraints belong to generalized Pareto family.

  7. Effect of Sulfate Aerosol Geoengineering on Tropical cyclones

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Moore, J.; Ji, D.

    2017-12-01

    Variation in tropical cyclone (TC) number and intensity is driven in part by changes in the thermodynamics that can be defined by ocean and atmospheric variables. Genesis Potential Index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that quantify thermodynamic forcing of TC activity under changed climates, and can be calculated from climate model output. Here we use five CMIP5 models running the RCP45 experiment the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment to calculate the two indices over the 2020 to 2069 period. Globally, GPI under G4 is lower than under RCP45, though both have a slight increasing trend. Spatial patterns in the relative effectiveness of geoengineering show reductions in TC in all models in the North Atlantic basin, and northern Indian Ocean in all except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. VI generally coincide with the GPI patterns. Most models project Potential intensity and Relative Humidity to be the dominant variable to affect genesis potential. Changes in vertical wind shear and vorticity are small with scatter across different models and ocean basins. We find that tropopause temperature maybe as important as sea surface temperature in effecting TC genesis. Thus stratospheric aerosol geoengineering impacts on potential intensity and hence TC intensity are reasonably consistent, but probably underestimated by statistical forecasts of Tropical North Atlantic hurricane activity driven by sea surface temperatures alone. However the impacts of geoengineering on other ocean basins are more difficult to assess, and require more complete understanding of their driving parameters under present day climates. Furthermore, the possible effects of stratospheric injection on chemical reactions in the stratosphere, such as ozone, are not well rendered in the models used so far.

  8. Diffusive mixing and Tsallis entropy

    DOE PAGES

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  9. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy.

    PubMed

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  11. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  12. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  13. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    PubMed Central

    Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas

    2009-01-01

    Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183

  14. Homological Order in Three and Four dimensions: Wilson Algebra, Entanglement Entropy and Twist Defects

    NASA Astrophysics Data System (ADS)

    Roy, Abhishek; Chen, Xiao; Teo, Jeffrey

    2013-03-01

    We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship

  15. Shape dependence of holographic Rényi entropy in general dimensions

    DOE PAGES

    Bianchi, Lorenzo; Chapman, Shira; Dong, Xi; ...

    2016-11-29

    We present a holographic method for computing the response of Rényi entropies in conformal field theories to small shape deformations around a flat (or spherical) entangling surface. Our strategy employs the stress tensor one-point function in a deformed hyperboloid background and relates it to the coefficient in the two-point function of the displacement operator. We obtain explicit numerical results for d = 3, · · · , 6 spacetime dimensions, and also evaluate analytically the limits where the Rényi index approaches 1 and 0 in general dimensions. We use our results to extend the work of 1602.08493 and disprove amore » set of conjectures in the literature regarding the relation between the Rényi shape dependence and the conformal weight of the twist operator. As a result, we also extend our analysis beyond leading order in derivatives in the bulk theory by studying Gauss-Bonnet gravity.« less

  16. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Weibing; Lan, Si; Gao, Libo

    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less

  17. Permutation entropy with vector embedding delays

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-12-01

    Permutation entropy (PE) is a statistic used widely for the detection of structure within a time series. Embedding delay times at which the PE is reduced are characteristic timescales for which such structure exists. Here, a generalized scheme is investigated where embedding delays are represented by vectors rather than scalars, permitting PE to be calculated over a (D -1 ) -dimensional space, where D is the embedding dimension. This scheme is applied to numerically generated noise, sine wave and logistic map series, and experimental data sets taken from a vertical-cavity surface emitting laser exhibiting temporally localized pulse structures within the round-trip time of the laser cavity. Results are visualized as PE maps as a function of embedding delay, with low PE values indicating combinations of embedding delays where correlation structure is present. It is demonstrated that vector embedding delays enable identification of structure that is ambiguous or masked, when the embedding delay is constrained to scalar form.

  18. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    PubMed Central

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  19. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys.

    PubMed

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  20. What can nuclear collisions teach us about the boiling of water or the formation of multi-star systems

    NASA Astrophysics Data System (ADS)

    Gross, D. H. E.

    2001-11-01

    Phase transitions in nuclei, small atomic clusters and self-gravitating systems demand the extension of thermo-statistics to "Small" systems. The main obstacle is the thermodynamic limit. It is shown how the original definition of the entropy by Boltzmann as the volume of the energy-manifold of the N-body phase space allows a geometrical definition of the entropy as function of the conserved quantities. Without invoking the thermodynamic limit the whole "zoo" of phase transitions and critical points/lines can be unambiguously defined. The relation to the Yang-Lee singularities of the grand-canonical partition sum is pointed out. It is shown that just phase transitions in non-extensive systems give the complete set of characteristic parameters of the transition including the surface tension. Nuclear heavy-ion collisions are an experimental playground to explore this extension of thermo-statistics

  1. Allostery: Absence of a change in shape does not imply that allostery is not at play

    PubMed Central

    Tsai, Chung-Jung; Sol, Antonio del; Nussinov, Ruth

    2009-01-01

    Allostery is essential for controlled catalysis, signal transmission, receptor trafficking, turning genes on and off, and apoptosis. It governs the organism’s response to environmental and metabolic cues, dictating transient partner interactions in the cellular network. Textbooks taught us that allostery is a change of shape at one site on the protein surface brought about by ligand binding to another. For already several years it has been broadly accepted that the change of shape is not induced; rather, it is observed simply because a larger protein population presents it. Current data indicate that while side-chains can reorient and rewire, allostery may not even involve a change of (backbone) shape. Assuming that the enthalpy change does not reverse the free energy change due to the change in entropy, entropy is mainly responsible for binding. PMID:18353365

  2. Recurrence measure of conditional dependence and applications.

    PubMed

    Ramos, Antônio M T; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E N; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  3. Recurrence measure of conditional dependence and applications

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E. N.; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  4. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-12-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  5. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly.

    PubMed

    Alberstein, Robert; Suzuki, Yuta; Paesani, Francesco; Tezcan, F Akif

    2018-04-30

    De novo design and construction of stimuli-responsive protein assemblies that predictably switch between discrete conformational states remains an essential but highly challenging goal in biomolecular design. We previously reported synthetic, two-dimensional protein lattices self-assembled via disulfide bonding interactions, which endows them with a unique capacity to undergo coherent conformational changes without losing crystalline order. Here, we carried out all-atom molecular dynamics simulations to map the free-energy landscape of these lattices, validated this landscape through extensive structural characterization by electron microscopy and established that it is predominantly governed by solvent reorganization entropy. Subsequent redesign of the protein surface with conditionally repulsive electrostatic interactions enabled us to predictably perturb the free-energy landscape and obtain a new protein lattice whose conformational dynamics can be chemically and mechanically toggled between three different states with varying porosities and molecular densities.

  6. A comparative study of the adsorption equilibrium of progesterone by a carbon black and a commercial activated carbon

    NASA Astrophysics Data System (ADS)

    Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.

    2007-04-01

    In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.

  7. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  8. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  9. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  10. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  11. Information-Based Analysis of Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.

    2013-12-01

    Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.

  12. Entropy of Stationary Nonequilibrium Measures of Boundary Driven Symmetric Simple Exclusion Processes

    NASA Astrophysics Data System (ADS)

    Bernardin, Cédric; Landim, Claudio

    2010-12-01

    We examine the entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes. In contrast with the Gibbs-Shannon entropy (Bahadoran in J. Stat. Phys. 126(4-5):1069-1082, 2007; Derrida et al. in J. Stat. Phys. 126(4-5):1083-1108, 2007), the entropy of nonequilibrium stationary states differs from the entropy of local equilibrium states.

  13. Classical and quantum entropy of parton distributions

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2018-05-01

    We introduce the semiclassical Wehrl entropy for the nucleon as a measure of complexity of the multiparton configuration in phase space. This gives a new perspective on the nucleon tomography. We evaluate the entropy in the small-x region and compare with the quantum von Neumann entropy. We also argue that the growth of entropy at small x is eventually slowed down due to the Pomeron loop effect.

  14. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.

  15. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  16. Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

    DTIC Science & Technology

    2007-03-01

    mirror fabrication, 2) mirror actuation, and 3) control algorithms with a focus on potential for future space based applications. For a...electrodes transported via a conducting electrolyte [19]. When placed under a voltage potential , cations in a polymer matrix immediately swell...has the potential to create an over- damped surface preventing Wavescope from detecting any strains. The final step in the mirror fabrication is to

  17. The Applicability of Nonlinear Systems Dynamics Chaos Measures to Cardiovascular Physiology Variables

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1991-01-01

    Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).

  18. Numerical Investigation of Second-Law Characteristics of Ramjet Throttling

    DTIC Science & Technology

    2012-01-01

    25 th International Congress of the Aeronautical Sciences, 2006. [6] Marley, C., and Riggins, D., “The Thermodynamics of Exergy Losses and...subsystems across an aircraft. This common loss metric is provided by analyzing exergy destruction or entropy generation [4] [5] ; exergy destruction...increased, the internal wetted surfaces of the ramjet become exposed. Subsequently, when the solid rocket propellant is exhausted, the engine is operated in

  19. Selected Thermophysical Properties of 2,2 Dimethylcyclopentyl Methylphosphonofluoridate (GP) and 2,2 Dimethylcyclopentanol (DMCP)

    DTIC Science & Technology

    2016-09-01

    Thermophysical properties, including vapor pressure, density, viscosity, surface tension, and flash point, are reported for 2,2-dimethylcyclopentyl...methylphosphonofluoridate (GP; Chemical Abstracts Service [CAS] no. 453574-97-5). Density data above the melting point, and vapor pressure of the liquid and solid...experimental vapor pressure data and were used to calculate the temperature-dependent enthalpy of vaporization , volatility, and entropy of

  20. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

Top