USDA-ARS?s Scientific Manuscript database
Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...
NASA Astrophysics Data System (ADS)
Buchholz, Arno; Kaiser, Andreas; Neugirg, Fabian; Schindewolf, Marcus; Schmidt, Jürgen
2017-04-01
Throughout the Mediterranean Basin soil erosion is both a widely spread and a landscape shaping process. In order to increase the understanding of morphodynamics inside large Italian badland areas, so called Calanchi, the process based erosion model EROSION 3D was parameterized by artificial rainfall simulations, soil sampling and an UAV based high resolution digital elevation model. Vegetation structures were removed with the CANUPO-classifier in CloudCompare. The rainfall experiments proved to be a convenient but costly tool for deriving the model input parameters. While building up the model, different composition of the inhomogeneous soil surface was considered. A diverse behavior against erosion by water was observed. The results showed that the deposition surfaces of rotational or translational slides, besides calanco depth contour, tend to degrade. Although these deposits present a comparatively low bulk density, they reduce the infiltration due to soil surface clogging and cause less erosion resistances. The differential consideration of erosion sub-processes turns out as particularly challenging. The simulation of a reference year showed an annual soil export from the catchment of 43 t/ha, which corresponds to an average surface lowering of 3 mm. Sheet erosion represents an amount of about 5% of the total erosion of badlands. Furthermore, infiltration depth, amount of runoff, sediment concentration, and grain size composition of the deposits were calculated. This study makes a contribution to the understanding of denudation processes in Calanchi badlands. The presented process-based modeling of badlands is contributing a new aspect to erosion research.
Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.
2016-09-01
This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.
Identification and characterization of natural pipe systems in forested tropical soils
NASA Astrophysics Data System (ADS)
Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel
2017-04-01
Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.
How surface mounds and depressions change during rainfall events
USDA-ARS?s Scientific Manuscript database
The soil roughness, or microrelief, controls processes occurring on the surface. Although there are numerous studies on how soil roughness affects soil erosion processes, little are focused on quantifying different roughness functions on surface hydrology and erosion, i.e., water diverging and soil...
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Challenges in soil erosion research and prediction model development
USDA-ARS?s Scientific Manuscript database
Quantification of soil erosion has been traditionally considered as a surface hydrologic process with equations for soil detachment and sediment transport derived from the mechanics and hydraulics of the rainfall and surface flow. Under the current erosion modeling framework, the soil has a constant...
Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze
2017-01-01
Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652
Mechanics of aeolian processes: Soil erosion and dust production
NASA Technical Reports Server (NTRS)
Mehrabadi, M. M.
1989-01-01
Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.
Coupling surface and mantle dynamics: A novel experimental approach
NASA Astrophysics Data System (ADS)
Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea
2015-05-01
Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.
Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel.
Selvam, Karthikeyan; Mandal, Priya; Grewal, Harpreet Singh; Arora, Harpreet Singh
2018-06-01
Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Erosion of a grooved surface caused by impact of particle-laden flow
NASA Astrophysics Data System (ADS)
Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young
2016-11-01
Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.
Spatial bedrock erosion distribution in a natural gorge
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.; Kirchner, J. W.
2015-12-01
Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half of the total eroded material. Our results demonstrate the practicability of TLS for highly resolved spatio-temporal erosion monitoring in the field and quantitatively confirm concepts of spatially varying erosion rates based current thinking. Furthermore, we introduce an easy-to-apply method for qualitative spatial erosion detection by paint.
Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion
USDA-ARS?s Scientific Manuscript database
Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...
Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting
NASA Astrophysics Data System (ADS)
Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.
2016-04-01
Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed during flushing events. Further, the photographs clearly show the erosional development of a UFCS (upstream-facing convex surface) feature with an upstream-facing surface full of impact marks, a sharp crest-line, and an adjacent downstream-facing surface preserved from sediment impacts. This pilot study documents that bedrock erosion painting provides an easy, cost-efficient and clear qualitative method for detecting the spatial distribution of bedrock erosion and inferring its controlling factors. Our results show that the susceptibility of a painted surface to abrasion is controlled by its position in the channel and its spatial orientation relative to the sediment-laden flow. Erosion painting is a scientifically useful form of graffiti that could be widely applied in both natural and laboratory settings, providing insight into patterns and processes of erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawel, Steven J
2009-11-01
A nitro-carburizing surface treatment known domestically as the Melonite process was applied to type 316LN stainless steel test pieces and exposed to sonication conditions in mercury using a vibratory horn technique. Cavitation-erosion damage was evaluated for extended exposures and compared to other surface treatments on the same substrate alloy. The results indicate that the Melonite process substantially retards weight loss and crater development for extended periods, but gradually is eroded/destroyed leading to exposure of the substrate and cavitation-erosion behavior similar to untreated specimens. Compared with other surface treatments, cavitation-erosion results indicate that specimens treated with Melonite perform similarly to specimensmore » treated with a simple nitriding process. Neither the simple nitriding nor the Melonite treatment is quite as effective as a previously evaluated low temperature carburizing treatment, the latter being about a factor of three better than Melonite in terms of weight loss during sonication in mercury.« less
2011-03-09
This image from NASA Mars Odyssey is located west of Zephyria Planum. Surfaces in this region have undergone extensive erosion by the wind. Wind is one of the most active processes of erosion on the surface of Mars today.
Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.
Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren
2017-11-01
Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.
Methods for monitoring erosion using optical coherence tomography
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel
Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
NASA Astrophysics Data System (ADS)
Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław
2013-04-01
The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser scanning shows that anthropogenic activities in the form of forest management and their effects in the form of dense network of forest roads and skid trails and obtaining wood diminish correct functioning of a forest or even increase the phenomenon of erosion. Submit the results of the analysis consider the problem of dynamics and intensity of erosion processes in mountain areas, and show the effectiveness of the methodology of research.
Issues of upscaling in space and time with soil erosion models
NASA Astrophysics Data System (ADS)
Brazier, R. E.; Parsons, A. J.; Wainwright, J.; Hutton, C.
2009-04-01
Soil erosion - the entrainment, transport and deposition of soil particles - is an important phenomenon to understand; the quantity of soil loss determines the long term on-site sustainability of agricultural production (Pimental et al., 1995), and has potentially important off-site impacts on water quality (Bilotta and Brazier, 2008). The fundamental mechanisms of the soil erosion process have been studied at the laboratory scale, plot scale (Wainwright et al., 2000), the small catchment scale (refs here) and river basin scale through sediment yield and budgeting work. Subsequently, soil erosion models have developed alongside and directly from this empirical work, from data-based models such as the USLE (Wischmeier and Smith, 1978), to ‘physics or process-based' models such as EUROSEM (Morgan et al., 1998) and WEPP (Nearing et al., 1989). Model development has helped to structure our understanding of the fundamental factors that control soil erosion process at the plot and field scale. Despite these advances, however, our understanding of and ability to predict erosion and sediment yield at the same plot, field and also larger catchment scales remains poor. Sediment yield has been shown to both increase and decrease as a function of drainage area (de Vente et al., 2006); the lack of a simple relationship demonstrates complex and scale-dependant process domination throughout a catchment, and emphasises our uncertainty and poor conceptual basis for predicting plot to catchment scale erosion rates and sediment yields (Parsons et al., 2006b). Therefore, this paper presents a review of the problems associated with modelling soil erosion across spatial and temporal scales and suggests some potential solutions to address these problems. The transport-distance approach to scaling erosion rates (Wainwright, et al., 2008) is assessed and discussed in light of alternative techniques to predict erosion across spatial and temporal scales. References Bilotta, G.S. and Brazier, R.E., 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12): 2849-2861. de Vente, J., Poesen, J., Bazzoffi, P., Van Ropaey, A.V. and Verstraeten, G., 2006. Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surface Processes And Landforms, 31: 1017-1034. Morgan, R.P.C. et al., 1998. The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields to small catchments. Earth Surface Processes And Landforms, 23: 527-544. Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner. 1989. A process-based soil erosion model for USDA Water Erosion Prediction Project technology. Trans. ASAE 32(5): 1587-1593. Parsons, A.J., Brazier, R.E., Wainwright, J. and Powell, D.M., 2006a. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms, 31(11): 1384-1393. Parsons, A.J., Wainwright, J., Brazier, R.E. and Powell, D.M., 2006b. Is sediment delivery a fallacy? Earth Surface Processes and Landforms, 31(10): 1325-1328. Pimental, D. et al., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267:1117-1122. Wainwright, J., Parsons, A.J. and Abrahams, A.D., 2000. Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrological Processes, 14(16-17): 2921-2943. Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall erosion losses - a guide for conservation planning., 537.
Soil erosion under multiple time-varying rainfall events
NASA Astrophysics Data System (ADS)
Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.
2010-05-01
Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.
Simulation of the erosion and drainage development of Loess surface based on GIS
NASA Astrophysics Data System (ADS)
Wang, Chun; Tang, Guoan; Ge, Shanshan; Li, Zhanbin; Zhou, Jieyu
2006-10-01
The research probes into the temporal-spatial process of drainage development of Loess Plateau on the basis of a carefully designed experiment. In the experiment, the development of a simulated loess watershed is tested under the condition of lab-simulated rainfall. A close-range photogrammetry survey is employed to establish a series of high precision and resolution DEM (Digit Elevation Model) of the simulated loess surface. Based on the established DEM, the erosion loss, the slope distribution, the topographic index , the gully-brink, and the drainage networks are all derived and discussed through comparison analysis and experimental validation. All the efforts aim at revealing the process and mechanism of erosion and drainage development of loess surface .This study demonstrates: 1) the stimulation result can effectively reflect the truth if those experimental conditions, i.e. loess soil structure, simulated rainfall, are adjusted in accord with true situation; 2) the remarkable character of the erosion and drainage up-growth of loess surface include the drainage traced to the source, the increased of the drainage's density, the enlarged of gully, the durative variety of multiple terrain factor's mean value and its distribution, such as slope and topographic index; 3) The slope spectrum is the more felicitous terrain factor for depicting the erosion and drainage development of loess surface, including the rule of erosion and evolution process. It is the new way and mean for studying the loess physiognomy.
Arbuscule mycorrhizae: A linkage between erosion and plant processes in a southwest grassland
Mary O' Dea; D. Phillip Guertin; C. P. P. Reid
2000-01-01
Plant and soil processes within a natural ecosystem interact with surface hydrology through their influence on surface roughness, soil structure, and evaporation, and through their relation with soil biota. In the Southwest, decreases in perennial grass cover and erosion on uplands and stream channels can initiate a decline in watershed condition. Agronomic literature...
"Keynote address, Theme 4, Management of steepland erosion: an overview"
Robert R. Ziemer
1981-01-01
Abstract - Steepland erosion is a composite of surface, channel, and mass erosion. The relative importance of each process is determined by an interaction between climate, soil, geology, topography, and vegetation. A change in any of these components can increase or decrease the rate of erosion. The key to successful management of erosion is the ability to 1)...
Erosion and lateral surface processes
USDA-ARS?s Scientific Manuscript database
: Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...
Surface kinetic roughening caused by dental erosion: An atomic force microscopy study
NASA Astrophysics Data System (ADS)
Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco
2008-05-01
Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.
Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C
2015-10-09
Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.
Soil erosion in humid regions: a review
Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover
2015-01-01
Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...
Geospatial application of the Water Erosion Prediction Project (WEPP) Model
D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot
2011-01-01
The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...
Vegetation in drylands: Effects on wind flow and aeolian sediment transport
USDA-ARS?s Scientific Manuscript database
Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru
It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.
Water and processes of degradation in the Martian landscape
NASA Technical Reports Server (NTRS)
Milton, D. J.
1973-01-01
It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.
NASA Astrophysics Data System (ADS)
Mayer, D. P.; Kite, E. S.
2016-12-01
Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.
Impact of rainfall pattern on interrill erosion process
USDA-ARS?s Scientific Manuscript database
The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...
AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands
NASA Astrophysics Data System (ADS)
Galloza, M.; Webb, N.; Herrick, J.
2015-12-01
Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.
Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting
2015-02-01
Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport rate for all the tests was linearly related to runoff rate and sediment concentration.
Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-04-01
Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.
NASA Astrophysics Data System (ADS)
Hobbs, S. W.; Paull, D. J.; Clarke, J. D. A.; Roach, Ian C.
2016-03-01
Comparison of the similarities and differences between terrestrial and Martian hillside gullies promotes understanding of how surface processes operate on both planets. Here we tested the viability of subsurface flow of water as a process affecting gully evolution. We compared gullies within the Monaro Volcanic Province near Cooma, New South Wales, Australia, to gullies possessing strong structural control near Gasa Crater, Terra Cimmeria, Mars. Although cursory examination of the Monaro gullies initially suggested strong evidence for aquifer erosion, detailed field surveys showed the evidence to be ambiguous. Instead a complex regime of erosion dependent on multiple conditions and processes such as local geology, surface runoff, dry mass wasting, and animal activity emerged. We found the morphology of gullies near Gasa Crater to be consistent with erosion caused by liquid water, while also being heavily influenced by the local environment, including slope and geology. Additionally, erosion at the Martian site was not consistent with evidence of subsequent, smaller scale erosion and channel modification by dry mass wasting. Local conditions thus play an important role in gully evolution, further highlighting that processes forming Martian gullies may be more diverse than initially thought.
NASA Astrophysics Data System (ADS)
Vanacker, V.
2012-04-01
The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.
Gazola, Eloá Aguiar; Rego, Marcos Augusto; Brandt, William Cunha; D’Arce, Maria Beatriz Freitas; Liporoni, Priscila Christiane Suzy
2015-01-01
Abstract Objective: The aim of this study was to evaluate the Knoop hardness number (KHN) of methacrylate (MC) and silorane (SC) composites after being submitted to erosion and abrasion processes. Material and methods: Forty samples were made with each composite: MC and SC. The samples were divided into eight groups (n = 10) according to the type of composite (G1–G4, MC; G5–G8, SC) and the beverages involved in the erosion process (G1 and G5 – Control (C), without erosion, with abrasion; G2 and G6 – Orange Juice (OJ), abrasion; G3 and G7 – Smirnoff Ice® (SI), abrasion; G4 and G8 – Gatorade® (GA), abrasion). The KHN test was performed 24 h after the last cycle of erosion/abrasion. Results: The MC groups showed smaller KHN values for the SI group (p < 0.05) when compared to the Control and OJ groups; however, for the SC groups, no differences were found (p > 0.05). Conclusion: Methacrylate composite when submitted to acidic beverages erosive challenge combined with abrasive process might alter its surface microhardness. However, the beverages used in the present study were not able to interfere in silorane composite surface microhardness. PMID:28642903
USDA-ARS?s Scientific Manuscript database
The Water Erosion Prediction Project (WEPP) model was originally developed for hillslope and small watershed applications. The model simulates complex interactive processes influencing erosion, such as surface runoff, soil-water changes, vegetation growth and senescence, and snow accumulation and me...
THE IMPACT OF HUMANS ON CONTINENTAL EROSION AND SEDIMENTATION (Invited)
NASA Astrophysics Data System (ADS)
Wilkinson, B.; McElroy, B.
2009-12-01
Tectonic uplift and erosional denudation of orogenic belts have long been the most important geologic processes that serve to shape continental surfaces, but the rate of geomorphic change resulting from these natural phenomena has now been outstripped by human activities associated with agriculture, construction, and mining. Although humans are now the most important geomorphic agent on the planet’s surface, natural and anthropogenic processes serve to modify quite different parts of the Earth landscape. In order to better understand the impact of humans on continental erosion, we have examined both long-term and short-term data on rates of sediment transfer in response to glacio-fluvial and anthropogenic processes. Phanerozoic rates of subaerial denudation inferred from preserved volumes of sedimentary rock require a mean continental erosion rate on the order of 16 meters per million years (m/My), resulting in the accumulation of about 5 giga-tons of sediment per year (Gt/y). Erosion irregularly increased over the ~542 million year span of Phanerozoic time to a Pliocene value of 81 m/My (~19 Gt/y). Current estimates of large river sediment loads are similar to this late Neogene value, and require net denudation of ice-free land surfaces at a rate of about 74 m/My (~25 Gt/y). Consideration of variation in large river sediment loads and the geomorphology of respective river basin catchments suggests that natural erosion is primarily confined to drainage headwaters; ~83% of the global river sediment flux is derived from the highest 10% of the Earth’s surface. Subaerial erosion as a result of human activity, primarily through agricultural practices, has resulted in a sharp increase in net rates of continental denudation; although less well constrained than estimates based on surviving rock volumes or current river loads, available data suggest that present farmland denudation is proceeding at a rate of about 600 m/My (~74 Gt/y), and is largely confined to lower elevations of the Earth’s land surface, primarily along passive continental margins; ~83% of cropland erosion occurs over the lower 65% of the Earth’s surface. The conspicuous disparity between natural sediment fluxes suggested by data on rock volumes and river loads (~25 Gt/y) and anthropogenic fluxes inferred from measured and modeled cropland soil losses (74 Gt/y) is readily resolved by data on thicknesses and ages of alluvial sediment that has been deposited immediately down slope from eroding croplands over the history of human agriculture. Accumulation of post-settlement alluvium on higher order tributary channels and floodplains (mean rate ~12,600 m/My) is the most important geomorphic process in terms of the erosion and deposition of sediment that is currently shaping the landscape of the Earth. It far exceeds even the impact of Pleistocene continental glaciers or the current impact of alpine erosion by glacial and/or fluvial processes. Human beings are therefore the dominant agent of topographic change operating on the surface of the planet today.
Land use and surface process domains on alpine hillslopes
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias
2015-04-01
Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental quality, services and hazards.
Characterization of cathode keeper wear by surface layer activation
NASA Technical Reports Server (NTRS)
Polk, James E.
2003-01-01
In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.
NASA Astrophysics Data System (ADS)
Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.
2007-10-01
Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.
Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel
NASA Astrophysics Data System (ADS)
Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.
2018-03-01
Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.
Erosion of mountain plateaus along Sognefjord, Norway, constrained by cosmogenic nuclides
NASA Astrophysics Data System (ADS)
Andersen, Jane Lund; Egholm, David L.; Knudsen, Mads F.; Linge, Henriette; Jansen, John D.
2016-04-01
Norway is famous for its deeply incised, steep-sided fjords, carved out by glacial erosion. The high relief of the fjords stands in contrast to the extensive areas of relatively low relief found between the fjords. The origin and development of these low-relief areas remain debated. The classical interpretation relates them to a Mesozoic peneplanation surface, uplifted to the current high elevation in the early Cenozoic (e.g. Nesje, 1994). The validity of this interpretation has, however, been repeatedly questioned in recent times (e.g. Nielsen et al. 2009, Steer et al. 2012). Recent studies point instead to a significant impact of glacial and periglacial erosion processes on the long-term development of the low-relief surfaces (Egholm et al. 2015). Here, we present a large new dataset of in-situ produced cosmogenic 10Be and 26Al in bedrock and boulders from the high, flat summit surfaces along a transect from the coast to the inner parts of Sognefjorden in Norway. Our results indicate substantial glacial modification of the sampled low-relief surfaces within the last 50 ka. Close to the coast, at an elevation of around 700 meters, the cosmogenic nuclide signal was reset around the Younger Dryas due to extensive glacial erosion. Regarding the higher surfaces further inland, our results indicate a maximum cosmogenic nuclide inheritance of 20-30 ka prior to the last deglaciation. We do not find any signs of exceptional longevity of the low-relief landscape. In contrast, our results indicate that the low-relief areas were continuously eroded by glacial and periglacial processes in the Quaternary. Nesje & Whillans. Erosion of Sognefjord, Norway. Geomorphology 9(1), 33-45, 1994. Nielsen et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. Journal of Geodynamics 47(2), 72-95, 2009. Steer et al. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nature Geoscience 5(9), 635-639, 2012. Egholm et al. The periglacial engine of mountain erosion - Part 2: Modelling large-scale landscape evolution. Earth Surface Dynamics 3(4), 463-482, 2015.
2010-09-01
was reexposed by erosion following the initial event (Figure 9). Erosion of the fan toe in the vicinity of the downstream array is primarily...Digitally Capture the Topography of Sand Dunes in High Spatial Resolution. Earth Surface Processes and Landforms 29:391-398. Queensland, G. 2008
Effect of stone coverage on soil erosion
NASA Astrophysics Data System (ADS)
Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.
2010-12-01
Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in negligible changes in the bulk density during the erosion event. Since the main process contributing to surface sealing development is the compaction due to the raindrop kinetic energy and associated physico-chemical changes, the protection provided by the stone cover is consistent with the area-averaging approach used in applying the HR model.
Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin
2018-02-22
This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.
Modeling of gun barrel surface erosion: Historic perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, A.C.
1996-08-01
Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less
Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.
2011-01-01
Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.
Infiltration and soil erosion modelling on Lausatian post mine sites
NASA Astrophysics Data System (ADS)
Kunth, Franziska; Schmidt, Jürgen
2013-04-01
Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to depict infiltration and erosion processes on water repellent dump soils. For infiltration modelling with EROSION 2D calibration factors (e.g. water repellency factor, skin-factor, etc.) were determined in different steps by calibrating computer modelled infiltration, respectively volume rate of flow to the measured data.
Characterizing low-Z erosion and deposition in the DIII-D divertor using aluminum
Chrobak, Chris P.; Doerner, R. P.; Stangeby, Peter C.; ...
2017-01-28
Here, we present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ~100nm thick were applied to ideal (smooth) and realistic (rough) surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition and re-erosion in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non spectroscopic measurements. The gross Al erosion yield estimated from both Hemore » and D plasma exposures was ~40-70% of the expected erosion yield based on theoretical physical sputtering yields. However, the multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration, was found to be influenced by the surface roughness and/or porosity. On rough surfaces, the fraction of the eroded Al coating found redeposited outside the original coating area was 25x higher than on smooth surfaces. The amount of Al found redeposited on the rough substrate was in fact proportional to the net eroded Al, suggesting an accumulation of deposited Al in surface pores and other areas shadowed from re-erosion. In order to determine the fraction and distribution of eroded Al returning to the surface, a simple model for erosion and redeposition was developed and fitted to the measurements. The model presented here reproduces many of the observed results in these experiments by using theoretically calculated sputtering yields, calculating surface composition changes and erosion rates in time, assuming a spatial distribution function for redepositing atoms, and accounting for deposit trapping in pores. The results of the model fits reveal that total redeposition fraction increases with higher plasma temperature (~30% for 15-18eV plasmas, and ~45% for 25-30eV plasmas), and that 50% of the atoms redepositing on rough surfaces accumulated in shadowed areas.« less
NASA Astrophysics Data System (ADS)
Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo
2015-04-01
Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography and Earth surface processes at very low-cost. This methodology should be of great help for farmers and/or technician who work at Land Reclamation Consortia or at Civil Protection for taking suitable post-event field surveys in support to flood risk and soil management.
NASA Astrophysics Data System (ADS)
Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.
2018-04-01
Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.
Design, construction and calibration of a portable boundary layer wind tunnel for field use
USDA-ARS?s Scientific Manuscript database
Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...
Radionuclides in Soils Along a Mountain-Basin Transect in the Koratepa Mountains of Uzbekistan
USDA-ARS?s Scientific Manuscript database
Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...
Impacts of fire on hydrology and erosion in steep mountain big sagebrush communities
Frederick B. Pierson; Peter R. Robichaud; Kenneth E. Spaeth; Corey A. Moffet
2003-01-01
Wildfire is an important ecological process and management issue on western rangelands. Major unknowns associated with wildfire are its affects on vegetation and soil conditions that influence hydrologic processes including infiltration, surface runoff, erosion, sediment transport, and flooding. Post wildfire hydrologic response was studied in big sagebrush plant...
Structural and functional connectivity as a driver of hillslope erosion following disturbance
C. Jason Williams; Frederick B. Pierson; Pete Robichaud; Osama Z. Al-Hamdan; Jan Boll; Eva K. Strand
2016-01-01
Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to...
NASA Astrophysics Data System (ADS)
Deal, Eric; Braun, Jean
2017-04-01
Climatic forcing undoubtedly plays an important role in shaping the Earth's surface. However, precisely how climate affects erosion rates, landscape morphology and the sedimentary record is highly debated. Recently there has been a focus on the influence of short-term variability in rainfall and river discharge on the relationship between climate and erosion rates. Here, we present a simple probabilistic argument, backed by modelling, that demonstrates that the way the Earth's surface responds to short-term climatic forcing variability is primarily determined by the existence and magnitude of erosional thresholds. We find that it is the ratio between the threshold magnitude and the mean magnitude of climatic forcing that determines whether variability matters or not and in which way. This is a fundamental result that applies regardless of the nature of the erosional process. This means, for example, that we can understand the role that discharge variability plays in determining fluvial erosion efficiency despite doubts about the processes involved in fluvial erosion. We can use this finding to reproduce the main conclusions of previous studies on the role of discharge variability in determining long-term fluvial erosion efficiency. Many aspects of the landscape known to influence discharge variability are affected by human activity, such as land use and river damming. Another important control on discharge variability, rainfall intensity, is also expected to increase with warmer temperatures. Among many other implications, our findings help provide a general framework to understand and predict the response of the Earth's surface to changes in mean and variability of rainfall and river discharge associated with the anthropogenic activity. In addition, the process independent nature of our findings suggest that previous work on river discharge variability and erosion thresholds can be applied to other erosional systems.
NASA Astrophysics Data System (ADS)
Graveleau, F.; Hurtrez, J.-E.; Dominguez, S.; Malavieille, J.
2011-12-01
We developed a new granular material (MatIV) to study experimentally landscape evolution in active mountain belt piedmonts. Its composition and related physical properties have been determined using empirical criteria derived from the scaling of deformation, erosion-transport and sedimentation natural processes. MatIV is a water-saturated composite material made up with 4 granular components (silica powder, glass microbeads, plastic powder and graphite) whose physical, mechanical and erosion-related properties were measured with different laboratory tests. Mechanical measurements were made on a modified Hubbert-type direct shear apparatus. Erosion-related properties were determined using an experimental set-up that allows quantifying the erosion/sedimentation budget from tilted relaxation topographies. For MatIV, we also investigated the evolution of mean erosion rates and stream power erosion law exponents in 1D as a function of slope. Our results indicate that MatIV satisfies most of the defined criteria. It deforms brittlely according to the linear Mohr-Coulomb failure criterion and localizes deformation along discrete faults. Its erosion pattern is characterized by realistic hillslope and channelized processes (slope diffusion, mass wasting, channel incision). During transport, eroded particles are sorted depending on their density and shape, which results in stratified alluvial deposits displaying lateral facies variations. To evaluate the degree of similitude between model and nature, we used a new experimental device that combines accretionary wedge deformation mechanisms and surface runoff erosion processes. Results indicate that MatIV succeeded in producing detailed morphological and sedimentological features (drainage basin, channel network, terrace, syntectonic alluvial fan). Geometric, kinematic and dynamic similarity criteria have been investigated to compare precisely model to nature. Although scaling is incomplete, it yields particularly informative orders of magnitude. With all these characteristics, MatIV appears as a very promising material to investigate experimentally a wide range of scientific questions dealing with relief dynamics and interactions between tectonics, erosion and sedimentation processes.
Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2016-04-01
Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner
NASA Astrophysics Data System (ADS)
Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.
2007-12-01
Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu
Constructing a sequence of palaeoDEMs to obtain erosion rates in a drainage basin.N
NASA Astrophysics Data System (ADS)
Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran
2017-04-01
DEMs made in a present-day drainage basin, considering it as a geomorphic unit, represent the end result of a landscape evolution. This process has had to follow a model of erosion. Trying to establish a conceptual erosion model in landscape evolution represents the first difficulty in constructing a sequence of palaeoDEMs. But if one is able to do it, the result will be easier and believable. The next step to do is to make a catalogue of base level types present in the drainage basin. The list has to include elements with determinate position and elevation (x, y, z) from the centre of the basin until hillslopes. A list of base level types may contain fluvial terrace remnants, erosive surfaces, palaeosols, alluvial covers of glacis, alluvial fans, rockfalls, landslides and scree zones. It is very important to know the spatial and temporal relations between the elements of the list, even if they are disconnected by erosion processes. Relative chronologies have to be set for all elements of the catalogue, and as far as possible absolute chronologies. To do it,it is essential to have established first the spatial relations between them, including those elements that are gone. Moreover, it is also essential to have adapted all the elements to the conceptual erosion model proposed. In this step, it has to be kept in mind that erosion rates can be very different in determinate areas within the same geomorphic unit. Erosion processes are focused in specific zones while other areas are maintained in stability. A good technique to construct a palaeoDEM is to start making, by hand, a map of contour lines. At this point, it is valuable to use the elements' catalogue. The use of those elements belonging to the same palaeosurface will result in a map. Several maps can be obtained from a catalogue. Contour maps can be gridded into a 3D surface by means of a specific application and a set of surfaces will be obtained. Algebraic operations can be done with palaeoDEMs obtaining positive or negative volumes corresponding to processes of erosion or aggradation. A case study of the application of palaeoDEMs is presented in the process of homoclinal shifting that is the origin of the strike valley of La Plana de Vic in the NE of Iberian Peninsula.
NASA Astrophysics Data System (ADS)
McShane, Gareth; James, Mike R.; Quinton, John; Anderson, Karen; DeBell, Leon; Evans, Martin; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Tim; Wetherelt, Andy; Brazier, Richard
2014-05-01
3D topographic or surface models are increasingly being utilised for a wide range of applications and are established tools in geomorphological research. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods of collecting topographic measurements via remote sensing for detailed studies of dynamic processes such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, processed using structure-from-motion (SfM) 3D reconstruction software. The methods will be applied in regions of different land use, including arable and horticultural, upland and semi natural habitats, and grassland, to quantify visible erosion pathways at the site scale. Volumetric estimates of soil loss will be quantified using the digital surface models (DSMs) provided by each technique and a modelled pre-erosion surface. Visible erosion and severity will be independently established through each technique, with their results compared and combined effectiveness assessed. A fixed delta-wing UAV (QuestUAV, http://www.questuav.com/) captures photos from a range of altitudes and angles over the study area, with automated SfM-based processing enabling rapid orthophoto production to support ground-based data acquisition. At sites with suitable scale erosion features, UAV data will also provide a DSM for volume loss measurement. Terrestrial laser scanning will provide detailed, accurate, high density measurements of the ground surface over long (100s m) distances. Ground-based photography is anticipated to be most useful for characterising small and difficult to view features. By using a consumer-grade digital camera and an SfM-based approach (using Agisoft Photoscan version 1.0.0, http://www.agisoft.ru/products/photoscan/), less expertise and fewer control measurements are required compared with traditional photogrammetry, and image processing is automated. Differential GPS data will be used to geo-reference the models to facilitate comparison. The relative advantages, limitations and cost-effectiveness of each approach will be established, and which technique, or combination of techniques, is most appropriate to monitor, model and estimate soil erosion at the national scale, determined.
The role of erosion, abrasion and attrition in tooth wear.
Barbour, Michele E; Rees, Gareth D
2006-01-01
There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.
In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat
NASA Technical Reports Server (NTRS)
Oskin, Michael; Burbank, Doug
2005-01-01
Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.
Sediment dynamics in an overland flow-prone forest catchment
NASA Astrophysics Data System (ADS)
Zimmermann, Alexander; Elsenbeer, Helmut
2010-05-01
Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.
The role of electronic mechanisms in surface erosion and glow phenomena
NASA Technical Reports Server (NTRS)
Haglund, Richard F., Jr.
1987-01-01
Experimental studies of desorption induced by electronic transitions (DIET) are described. Such studies are producing an increasingly complete picture of the dynamical pathways through which incident electronic energy is absorbed and rechanneled to produce macroscopic erosion and glow. These mechanistic studies can determine rate constants for erosion and glow processes in model materials and provide valuable guidance in materials selection and development. Extensive experiments with electron, photon, and heavy particle irradiation of alkali halides and other simple model materials have produced evidence showing that: (1) surface erosion, consisting primarily in the ejection or desorption of ground-state neutral atoms, occurs with large efficiencies for all irradiated species; (2) surface glow, resulting from the radiative decay of desorbed atoms, likewise occurs for all irradiating species; (3) the typical mechanism for ground-state neutral desorption is exciton formation, followed by relaxation to a permanent, mobile electronic defect which is the precursor to bond-breaking in the surface or near-surface bulk of the material; and (4) the mechanisms for excited atom formation may include curve crossing in atomic collisions, interactions with surface defect or impurity states, or defect diffusion.
NASA Astrophysics Data System (ADS)
Qiu, Huatan
A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.
Geomorphological characterization of conservation agriculture
NASA Astrophysics Data System (ADS)
Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta
2017-04-01
Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.
NASA Astrophysics Data System (ADS)
Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.
2012-07-01
Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.
Interrill Erodibility of P and C on conventially and organically farmed Devon soils
NASA Astrophysics Data System (ADS)
Kuhn, N. J.
2012-04-01
Soil erosion can have significant off-site effects on water quality and thus human and habitat health. Apart from sedimentation, the transfer of nutrients, both dissolved and particulate, is a major concern. The particulate transfer of nutrients from agricultural land can occur either by rill or interrill erosion. Rill erosion is non-selective and affects only a limited extent of agricultural land. Interrill processes such as crusting, splash and raindrop-impacted wash, on the other hand, act on all cropland and affect the quality of the water from all areas generating runoff. A significant amount of phosphorus (P) is contained in the surface soil layer transformed by interrill processes annually. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes and erosion for regional nutrient cycling requires close attention. Interrill erosion is a complex phenomenon, involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles which are often enriched in clay, P and organic C. Commonly, the risk of erosion associated with organically farmed soils is lower than those farmed in a conventional way. This is attributed to greater aggregate stability and thus greater infiltration and lower erodibility. Erosion of nutrients on organically farmed soils is therefore considered to be reduced by the same order of magnitude than the amount of eroded soil compared to conventionally farmed soils. However, the selective nature of interrill erosion potentially counteracts this effect by the preferential removal of fine particles enriched in nutrients and soil organic matter. In this study, an experiment comparing the erodibility of P and C on organically and conventially farmed soils from Devon is presented. The results show a disproportional increase of P in sediment from the organically farmed soil, reducing the perceived benefit of organic farming on nutrient erosion by 80%. The pronounced P enrichment in the organically farmed soil is attributed to the higher concentrations of C and P as well as lower densities of the small particle fraction. The results, while very preliminary, indicate that the impact of soil management on off-site effects of erosion such as water quality can only be fully assessed when we understand the relevant erosion processes. They also indicate that some less than expected positive effects of changing soil management to improve water quality might be caused by the preferential erosion of P-bearing soil particles.
NASA Astrophysics Data System (ADS)
Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed
2017-02-01
This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.
Intensification of citrus production and soil loss in Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdà, A.; González Peñaloza, F. A.; Burguet, M.; Giménez Morera, A.
2012-04-01
After land abandonment for five decades (Arnáez et al., 2010; Belmonte Serrato et al., 1999) as a widespread process in Spain, agriculture intensification is taken place. This is changing the nature of the soil erosion processes as they were known (Cerdà, 1997; Cammeraat and Imeson, 1999; Ruiz Sinoga et al., 2010; Zavala et al., 2010). Citrus production are being reallocated on slopes due to the new irrigation systems (drip-irrigation), the thermic inversion on the bottom of the valley and then the frost affecting the plantations, the high prices of the bottom valley lands and the investment in agriculture from other economic sectors such as tourism and industry. Those new plantations are based on intense pesticides and herbicides use, and erosion processes are triggered due to the sloping surface developed (Cerdà et al., 2010). Five study sites were selected in the Montesa Municipality research zone, where an increase in the orange and clementines plantations were found during the last 20 years. Measurements were perfomed by a simple method, which consist in measuring the surface characteristics: stoniness, crust, herbs, bare soil, sheet flow, rills and gullies. One thousand meters were monitored at each of the study sites and measurements were done in January and August with a precision of 1 cm. The results show that the erosion rates are controlled by the sheet erosion (78,4 %), although rill and gullies exist (< 1 %) and they are active and contribute to high erosion rates. Stones and vegetation cover was found to by low. The infiltration rates of the soils were measured by means of rainfall simulation experiments and cylinder infiltrometer. The results show that the new citrus plantations results in low infiltration rates, and high erosion rates. This is contributing to a non-sustainable agriculture production due to the high erosion rates. And also a lack in soil services as the surface runoff and then the soil erosion is enhanced; and soil infiltration reduce. The economical value of the land and water lost is making this new intense chemically managed new citrus plantation non sustainable. The intensification of agriculture is triggering new soil erosion processes to be added to the traditional ones (García Ruiz and López Bermúdez, 2009). This research study is being supported by the the research project CGL2008-02879/BTE
Erosion mechanisms of monocrystalline silicon under a microparticle laden air jet
NASA Astrophysics Data System (ADS)
Li, Q. L.; Wang, J.; Huang, C. Z.
2008-08-01
Microabrasive air-jet machining is considered as a promising precision processing technology for silicon substrates. In this paper, the impressions produced on a monocrystalline silicon by the impacts of microsolid particles entrained by an air jet and the associated microscopic erosion mechanisms are presented and discussed. It is shown that the impressions can be classified into three categories, namely, craters, scratches, and microdents, of which two types of craters and two types of scratches can lead to large-scale fractures. Craters with cleavage fracture surfaces have been found to play an important role in the material removal process. In addition, it is shown that most particles bounced away from the target surface without sliding or rolling during an impact so that most impressions formed are crater-type erosions.
An important erosion process on steep burnt hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary
2016-04-01
Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.
NASA Astrophysics Data System (ADS)
West, A.; Fox, M.; Walker, R. T.; Carter, A.; Watts, A. B.; Gantulga, B.
2012-12-01
Potential feedbacks between climate-driven erosion and the development of intra-continental topography have received relatively little attention, particularly compared to the significant efforts to understand the interplay of climate, erosion, and uplift in orogenic settings. But such links may be vital for understanding the topographic evolution of epeirogenic topography and for making inferences about geodynamic processes based on associated sedimentary and geomorphic signals. In this study, we consider the role of orographically-driven climate variability in shaping continental topography by focusing on the Hangay mountain range, a uplifted dome in central Mongolia. The work presented here is based on results from a topographic analysis of the Hangay, making use of the flat-topped peaks that effectively represent preserved remnants of a pre-erosional surface. We have determined the scale and distribution of erosion by recreating this pre-erosional surface and subtracting the present-day, dissected topography. Our results show that the extent of erosion correlates with spatial variation in mean annual precipitation, but not with the extent of total surface uplift. The morphology of the range reflects the higher, climate-driven fluvial erosion rates by northern rivers that receive higher precipitation when compared to the southern rivers, which have steeper relief as a result of the asymmetric main drainage divide. Overall asymmetry in inferred isostatic response to erosional unloading is not mirrored in asymmetry of total surface uplift, hinting at interaction between surface erosion and the forces sustaining topography. This has important implications for understanding the geodynamics of epeirogenic uplift. In addition to these main outcomes from our topographic analysis, we will also present preliminary findings from detrital thermochronology and cosmogenic analyses that help to pinpoint the location of erosion and provide a basis for quantifying rates.
Manufacturing issues which affect coating erosion performance in wind turbine blades
NASA Astrophysics Data System (ADS)
Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.
2017-10-01
Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.
2013-01-01
Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface and final landscape form as constrained by DEMs. We have also simulated fluvial and lacustrine modification of icy satellites landscapes to evaluate the degree to which fluvial erosion of representative initial landscapes can replicate the present Titan landscape.
Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva
NASA Astrophysics Data System (ADS)
Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T. S.
2016-10-01
During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing only ions (AS), human saliva dialysed against artificial saliva, containing salivary proteins and ions (HS/AS), and human saliva dialysed against deionised water, containing only salivary proteins but no ions (HS/DW). Enamel specimens underwent four cycles of immersion in either HS, AS, HS/AS, HS/DW, or a humid chamber (Ctrl), followed by erosion with citric acid. During the cycling process, the surface hardness and the calcium released from the surface of the specimens were measured. The different kinds of saliva provided different levels of protection, HS/DW exhibiting significantly better protection than all the other groups (p < 0.0001). Different components of saliva, therefore, have different effects on the protective properties of the pellicle and the right proportions of these components in saliva are critical for the ability to form a protective pellicle.
Erosion performance studies on sansevieria cylindrica reinforced vinylester composite
NASA Astrophysics Data System (ADS)
Johnson, R. Deepak Joel; Arumugaprabu, V.; Uthayakumar, M.; Vigneshwaran, S.; Manikandan, V.; Bennet, C.
2018-03-01
The intent of the research is to study the erosion behaviour of NaOH treated and untreated sansevieria cylindrica reinforced vinyl ester composites (SCVEC). The SCVEC was fabricated by varying fiber length as 30 mm and 40 mm and the fiber concentration as 30 wt%, 40 wt% and 50 wt% respectively for both NaOH treated and untreated sansevieria cylindrica fibres. The fabricated SCVEC was subjected to erosion studies using abrasive air jet erosion test rig. Full factorial design of experiment for conducting the erosion studies was made using Taguchi technique. The erosion test process variables like impingement angle 30°, 60° and 90°, impact velocity 28, 41 and 72 m s‑1, erodent feed rate or discharge 2.5, 3.3 and 4 g min‑1 and exposure time 5, 10 and 15 min were used to study the erosion rate of the SCVEC specimen. From the Taguchi analysis the optimized erosion process parameter and fabrication process parameters were found to be as fiber length 30 mm, NaOH treated fiber, fiber content 40 wt.%, impingement angle 90°, impact velocity 41 m s‑1, erodent discharge 4 g min‑1 and exposure time 15 min. Further, the erosion mechanism on the surface of the eroded SCVEC specimen was studied using Scanning electron microscope (SEM).
NASA Astrophysics Data System (ADS)
Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming
2016-08-01
In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.
Influence of liquid temperature and flow rate on enamel erosion and surface softening.
Eisenburger, M; Addy, M
2003-11-01
Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratore, C.; Korenyi-Both, A.; Bultman, J. E.
2007-07-15
The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relativemore » to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.« less
The similarity of river evolution at the initial stage of channel erosion
NASA Astrophysics Data System (ADS)
Lin, Jiun-Chuan
2014-05-01
The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.
Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif
2017-01-01
Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The influence of badland surfaces and erosion processes on vegetation cover
NASA Astrophysics Data System (ADS)
Hardenbicker, Ulrike; Matheis, Sarah
2014-05-01
To assess the links between badland geomorphology and vegetation cover, we used detailed mapping in the Avonlea badlands, 60 km southwest of Regina, Saskatchewan Canada. Three badlands surfaces are typical in the study area: a basal pediment surface, a mid-slope of bentonitic mudstone with typical popcorn surface, and an upper slope with mud-cemented sandstone. Badland development was triggered by rapid post Pleistocene incision of a meltwater channel in Upper Cretaceous marine and lagoonal sediments. After surveying and mapping of a test area, sediment samples were taken to analyze geophysical parameters. A detailed geomorphic map and vegetation map (1:1000) were compared and analyzed in order to determine the geomorphic environment for plant colonization. The shrink-swell capacity of the bentonitic bedrock, slaking potential and dispersivity are controlled by soil texture, clay mineralogy and chemistry, strongly influencing the timing and location of runoff and the relative significance of surface and subsurface erosional processes. The absence of shrink-swell cracking of the alluvial surfaces of the pediments indicates a low infiltration capacity and sheetflow. The compact lithology of the sandstone is responsible for its low permeability and high runoff coefficient. Slope drainage of steep sandstone slopes is routed through a deep corrasional pipe network. Silver sagebrush (Artemisia cana) is the only species growing on the popcorn surface of the mudrock, which is in large parts vegetation free. The basal pediment shows a distinct 2 m band surrounding the mudrock outcrop without vegetation as a result of high sedimentation rate due to slope wash. Otherwise the typical pioneer vegetation of this basal pediment are grasses. In the transition zone below the steep sandstone cliffs and above the gentle bentonitic mudrock surfaces patches of short-grass vegetation are found, marking slumped blocks with intact vegetation and soil cover. These patches are surrounded by less dense pioneer vegetation consisting of grasses and sage bushes indicating minimal surface erosion or sedimentation. Geomorphic mapping documented a high density of active pipes in this area, transporting silt and fine sand from the sandstone cliffs to lower and basal pediments. Vegetation cover alone is a poor indicator of badland surfaces and erosion processes because of the three-dimensional nature of badland erosion processes, and the shrink-swell capacity of the bentonitic bedrock. A combination of geomorphic and vegetation mapping is needed to identify badland surfaces and processes in the study area.
Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system
DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.
2014-01-01
We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment.
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
Solute transport by flow yields geometric shocks in shape evolution
NASA Astrophysics Data System (ADS)
Huang, Jinzi (Mac); Davies Wykes, Megan; Hajjar, George; Ristroph, Leif; Shelley, Michael
2017-11-01
Geological processes such as erosion and dissolution of surfaces often lead to striking shapes with strikingly sharp features. We present observations of such features forming in dissolution under gravity. In our experiment, a dissolving body with initially smooth surface evolves into an increasingly sharp needle shape. A mathematical model of its shape dynamics, derived from a boundary layer theory, predicts that a geometric shock forms at the tip of dissolved body, with the tip curvature becoming infinite in finite time. We further discuss the model's application to similar processes, such as flow driven erosion which can yield corners.
Maden, Eda Arat; Acar, Özge; Altun, Ceyhan; Polat, Günseli Güven
This study aimed to investigate the effect of acidulated phosphate fluoride (APF) gel and casein phosphopeptide/amorphous calciumphosphate (CPP-ACP) on the dental erosion produced by carbonated soft drink in primary teeth. This study evaluated by an in vitro model the effect of APF gel and CPP-ACP on the dental enamel previously subjected to erosive challenge with carbonated soft drink. Sixty sound human primary molars were prepared by embedding the crown sections in acrylic resin blocks leaving the enamel surfaces exposed. The surface roughness of the enamel was measured with prophilometry at baseline. Specimens were randomly divided into three treatment groups (n:20): artificial saliva, CPP-ACP, 1.23% APF gel. All specimens were then exposed to an erosive challenge of carbonated soft drink and artificial saliva for 20 cycles of 20 seconds each. Demineralization-remineralization cycles was repeated twice at eight-hour intervals and roughness values were measured. Enamel samples were treated with artificial saliva, CPP-ACP, 1.23% APF gel applied for 10 min after erosive challenge. The arithmetic average roughness (Ra) readings were recorded after remineralization agents were applied. The mean surface roughness in all groups increased significantly after erosion process and decreased after remineralization treatment. After treatment, the mean surface roughness of the 1.23% APF gel group was significantly less than the other groups and the mean surface roughness of the artificial saliva group was significantly more than the other groups. 1.23% APF gel showed the highest protective effect against erosive enamel loss. Under the conditions of this study, artificial saliva, CPP-ACP and 1.23% APF treatments were able to reduce erosive enamel loss produced by carbonated soft drink in primary teeth. However, 1.23% APF gel showed the highest protective effect against erosive enamel loss.
Development of functionally-oriented technological processes of electroerosive processing
NASA Astrophysics Data System (ADS)
Syanov, S. Yu
2018-03-01
The stages of the development of functionally oriented technological processes of electroerosive processing from the separation of the surfaces of parts and their service functions to the determination of the parameters of the process of electric erosion, which will provide not only the quality parameters of the surface layer, but also the required operational properties, are described.
Simulating CRN derived erosion rates in a transient Andean catchment using the TTLEM model
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Herman, Frédéric; Schwanghart, Wolfgang; Tenrorio Poma, Gustavo; Govers, Gerard
2017-04-01
Assessing the impact of mountain building and erosion on the earth surface is key to reconstruct and predict terrestrial landscape evolution. Landscape evolution models (LEMs) are an essential tool in this research effort as they allow to integrate our growing understanding of physical processes governing erosion and transport of mass across the surface. The recent development of several LEMs opens up new areas of research in landscape evolution. Here, we want to seize this opportunity by answering a fundamental research question: does a model designed to simulate landscape evolution over geological timescales allows to simulate spatially varying erosion rates at a millennial timescale? We selected the highly transient Paute catchment in the Southeastern Ecuadorian Andes as a study area. We found that our model (TTLEM) is capable to better explain the spatial patterns of ca. 30 Cosmogenic Radio Nuclide (CRN) derived catchment wide erosion rates in comparison to a classical, statistical approach. Thus, the use of process-based landscape evolution models may not only be of great help to understand long-term landscape evolution but also in understanding spatial and temporal variations in sediment fluxes at the millennial time scale.
WebStart WEPS: Remote data access and model execution functionality added to WEPS
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) is a daily time step, process based wind erosion model developed by the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). WEPS simulates climate and management driven changes to the surface/vegetation/soil state on a daily b...
Threshold friction velocity of crusted windblown soils in the Columbia Plateau
USDA-ARS?s Scientific Manuscript database
Wind erosion processes are governed by soil physical properties and surface characteristics. Erosion is initiated when the friction velocity exceeds the threshold friction velocity (u*t) of soils. Although u*t is influenced by soil physical properties such as wetness and crusting, there is little in...
NASA Astrophysics Data System (ADS)
Benaud, P.; Anderson, K.; Quine, T. A.; James, M. R.; Quinton, J.; Brazier, R. E.
2016-12-01
While total sediment capture can accurately quantify soil loss via water erosion, it isn't practical at the field scale and provides little information on the spatial nature of soil erosion processes. Consequently, high-resolution, remote sensing, point cloud data provide an alternative method for quantifying soil loss. The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to spatially quantify soil erosion. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. Accordingly, this study looks to understand how the ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be integrated with a multi-element sediment tracer to develop a mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash, inter-rill erosion, and rill erosion, at two experimental scales (0.15 m2 and 3 m2). Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) has been employed to assess spatial discrepancies within the SfM data sets and to provide an alternative measure of volumetric change. Preliminary results show the SfM approach used can achieve a ground resolution of less than 0.2 mm per pixel, and a RMSE of less than 0.3 mm. Consequently, it is expected that the ultra-high-resolution SfM point clouds can be utilised to provide a detailed assessment of soil loss via water erosion processes.
Mechanical weathering and rock erosion by climate-dependent subcritical cracking
NASA Astrophysics Data System (ADS)
Eppes, Martha-Cary; Keanini, Russell
2017-06-01
This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.
Soil erosion in mountainous areas: how far can we go?
NASA Astrophysics Data System (ADS)
Egli, Markus
2017-04-01
Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow. The comparison of soil production and erosion rates indicates that the present-day management of grassland soils in several alpine and mountain regions will lead in the long-term to very shallow soils (showing the characteristics of young soils). Shallow soils go along with high 'tolerable' erosion rates. It is, however, strongly doubtful whether this matches the deeper sense of sustainability.
Analysis of erosion and transportation features from lunar orbiter and Apollo photography
NASA Technical Reports Server (NTRS)
Gold, T.
1980-01-01
Certain classes of surface features in Lunar Orbiter and Apollo Panoramic Photographs are identifed and possible correlations between the occurrence of these features and their geographical location on the Moon are studied. Whether evidence of erosion and transport processes not encountered on Earth exists is investigated using the lunar photographs. The variety and intensity of transport processes on the Moon resulting from exposure to plasmas is discussed.
NASA Astrophysics Data System (ADS)
Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi
2016-04-01
Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital Terrain Models (DTMs) derived from the smartphone reveled to be comparable to DTMs derived from the reflex camera. The results underlined the effectiveness of SfM for detecting topographic changes in agricultural lands affected by erosion processes, even when pictures are taken from a smartphone. This methodology could be very useful for farmers and/or technician for post-event analyses of erosion processes to implement technical measures to mitigate the problem of soil erosion by water. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) References Boardman, J., Foster, I.D.L., Dearing, J.A., 1990. Soil Erosion on Agricultural Land. John Wiley and Sons Ltd., Chichester. Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. Garcìa-Ruiz, J.M., 2010. The effects of land uses on soil erosion in Spain: A review. Catena 81, 1-11. Micheletti, N., Chandler, J.H., Lane, S.N., 2014. Investigating the geomorphological potential of freely available and accessible Structure-from-Motion photogrammetry using a smartphone. Earth Surface Processes and Landforms 40(4), 473-486. DOI: 10.1002/esp.3648 Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prosdocimi, M., Calligaro, S., Sofia, G., Dalla Fontana, G., Tarolli, P., 2015. Bank rosion in agricultural drainage networks: new challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surface Prosses and Landform 40(14), 1891-1906. DOI: 10.1002/esp.3767. Snapir, B., Hobbs, S., Waine, T.W., 2014. Roughness measurements over an agricultural soil surface with Structure from Motion. ISPRS Journal of Photogrammetry and Remote Sensing 96, 210-223. Tarolli, P., 2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216, 295-312.
The similarity of river evolution at the initial stage of channel erosion
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
The similarity of river evolution at the initial stage of channel erosion Jiun-Chuan Lin Department of Geography, National Taiwan University Abstract The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.
Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah
2016-12-01
Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.
NASA Astrophysics Data System (ADS)
Schmid, Manuel; Ehlers, Todd; Werner, Christian; Hickler, Thomas
2017-04-01
Recent studies hypothesize that vegetation and the morphology of landscapes are strongly coupled. On a small scale, plants influence the erosivity of soil and sediments and therefore systematically impact catchment erosion and topography. Previous landscape evolution modeling studies primarily focus on changes in fluvial and hillslope erosion due to variations in climate and tectonics, without explicit consideration of vegetation effects. In this study, we complement previous work by investigating the effects of vegetation and vegetation change on hillslope and fluvial processes by combining LPJ-GUESS, a dynamic global vegetation model, with a modified version of the Landlab surface process model. The LandLab model was extended to account for vegetation-dependent sediment fluxes for both hillslope and detachment-limited fluvial erosion. The models are coupled by using predicted changes in surface vegetation from LPJ-GUESS for different climate scenarios as input for vegetation dependent erosional coefficients in Landlab. Simulations were conducted with the general climate and vegetation conditions representative between 25° and 40°S along the Coastal Cordillera of Chile. This region is the focus of the EarthShape research program (www.earthshape.net). These areas present a natural climatic and associated vegetation gradient that ranges from hyper-arid (Atacama desert) to humid-temperate conditions without a dry season and pristine temperate Araucaria forest. All study areas considered have a similar and uniform granite substrate, which minimizes lithologic variations and their effect on catchment erosion. Simulations are in progress that were designed to independently determine the climatic or vegetation controls on topography and erosion histories over the last 21 kyr. Our preliminary findings suggest that an increase in the surface vegetation results in a modulation of the mean hillslope angle and the average drainage density. In addition, we find that a decrease in surface vegetation density within a landscape can act as a trigger for sudden pulses of erosion, leading towards a new equilibrium topography. Our study suggests that vegetation changes (e.g. from the Last Glacial Maximum to present) act as a main agent of perturbing topographic equilibria. Reducing surface vegetation increases erosional efficiency and therefore sediment transport until a new stable state is reached.
NASA Astrophysics Data System (ADS)
Ruthenberg, Jonas; Tumbrink, Jonas; Wilms, Tobias; Peter, Klaus Daniel; Wirtz, Stefan; Ries, Johannes B.
2015-04-01
As there is a massive increase of livestock husbandry in semi-arid and arid landscapes, the investigation of trampling-induced soil erosion has become indispensable for a better understanding of erosive processes such as loosening and translocation of sediment, as well as the genesis of rill erosion and gully systems. Our work will support other studies focusing on desertification and land-use changes in the investigated landscapes. Up to this date, research on livestock-induced soil erosion, even in relation to other erosion processes such as aeolian and fluvial/pluvial sediment translocation, is very scarcely found in literature. The presented study on trampling-induced soil erosion by sheep and goats in arid and semi-arid landscapes aims to create a general understanding, an estimation and quantification of the influencing factors of these erosive processes. Within this study, we present the first results of several field rainfall experiments on rock fragment translocation as well as loosening and transportation of coarse and fine sediment depending on the motion sequence and the individual weight, size, and hoof beat of the animals. Furthermore, we conducted additional experiments to investigate the trampling-induced erosion processes for various other sediments, especially those in the range of clay, silt, and sand. To do so, we used a specially designed test plot, equipped with sediment traps on each side. For a clear and reliable analysis of the measured parameters, univariate as well as multivariate statistical methods have been used. For all field methods, we developed relevant statements concerning flock size. The rock fragment translocation experiments done so fare have shown that a flock of 45 sheep or goats moved 87 % of 320 spread out rock fragments with a mean translocation distance of 0.123 m when trampling across a test plot of 3.2 m^2. Besides that we found out that the soil surface was worked up in a way that the loosened fine sediment proved to be easily detachable by secondary erosive processes such as rainfall. The conducted rainfall simulations confirmed this assumption. They have shown that sediment yields were significantly higher on trail areas than on intershrub or shrub areas. The preliminary work done up until now suggests that the grazing and trampling of sheep and goats can be regarded as an important factor for soil degradation in semi-arid and arid landscapes. However, the understanding of the erosive processes in detail remains to be defined, i.e. the exact movement of the sheep and goats, the energy they can impart with their hooves, and how that energy affects different sediments or surfaces they tread upon, as well as the general quantification of trampling-induced erosion rates and transport processes of clastic sediments.
NASA Astrophysics Data System (ADS)
Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao
2014-12-01
The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.
Cavitation induced by high speed impact of a solid surface on a liquid jet
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Tinguely, Marc; Rouvinez, Mathieu
2009-11-01
A solid surface may suffer from severe erosion if it impacts a liquid jet at high speed. The physics behind the erosion process remains unclear. In the present study, we have investigated the impact of a gun bullet on a laminar water jet with the help of a high speed camera. The bullet has a flat front and 11 mm diameter, which is half of jet diameter. The impact speed was varied between 200 and 500 ms-1. Immediately after the impact, a systematic shock wave and high speed jetting were observed. As the compression waves reflect on the jet boundary, a spectacular number of vapour cavities are generated within the jet. Depending on the bullet velocity, these cavities may grow and collapse violently on the bullet surface with a risk of cavitation erosion. We strongly believe that this transient cavitation is the main cause of erosion observed in many industrial applications such as Pelton turbines.
Erosive Wear Characterization of Materials for Lunar Construction
NASA Technical Reports Server (NTRS)
Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III
2012-01-01
NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.
Rainfall and sheet power model for interrill erosion in steep slope
NASA Astrophysics Data System (ADS)
Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun
2015-04-01
The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).
Erosion measurement techniques for plasma-driven railgun barrels
NASA Astrophysics Data System (ADS)
Jamison, K. A.; Niiler, Andrus
1987-04-01
Plasma-driven railguns are now in operation at several locations throughout the world. All share common problems in barrel erosion arising from the fact that the bore surface must contain a high temperature plasma armature which transmits the acceleration force to a projectile. The plasma temperature at the core of the armature is estimated to be 30 000 K or higher. Such conditions are erosive to most materials even when the exposure time is 100 μs or less. We have adapted two accelerator based techniques to aid in the study of this erosion. The first technique involves the collection and analysis of material ablated and left behind by the plasma. This analysis is based on the unfolding of the Rutherford backscattered (RBS) spectra of 1 MeV deuterons incident on residue collected from a railgun bore. The second technique is an erosion measurement involving thin layer activation (TLA) of surfaces. In this process, the copper rail surface is activated by 2.4 MeV protons creating a relatively thin (3 m) layer sparsely seeded with a long lived zinc isotope. Monitoring the decay of the activated sample before and after a firing can detect surface wear of about 0. 1 m. Results from the RBS and TLA experiments on the BRL plasma driven railgun are described.
Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2015-04-01
More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
NASA Astrophysics Data System (ADS)
Matsuoka, Norikazu; Thomachot, Céline E.; Oguchi, Chiaki T.; Hatta, Tamao; Abe, Masahiro; Matsuzaki, Hiroyuki
2006-11-01
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma - 1 . The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.
Fire-induced water repellency: An erosional factor in wildland environments
Leonard F. DeBano
2000-01-01
Watershed managers and scientists throughout the world have been aware of fire-induced water-repellent soils for over three decades. Water repellency affects many hydrologic processes, including infiltration, overland flow, and surface erosion (rill and sheet erosion). This paper describes; the formation of fire-induced water-repellent soils, the effect of soil water...
USDA-ARS?s Scientific Manuscript database
Sediment is the most common cause of stream impairment. Great progress has been made in understanding processes of soil erosion due to surface runoff and incorporating these in prediction technologies. However, in many landscapes the dominant source of sediment is derived from mass wasting of hillsl...
Modeling Paragenesis: Erosion Opposite to Gravity in Cave Channels
NASA Astrophysics Data System (ADS)
Cooper, M. P.; Covington, M. D.
2017-12-01
Sediment plays an important role in bedrock channels, providing both tools and cover that influence patterns of bed erosion. It has also been shown that sediment load influences bedrock channel width, with increased sediment leading to wider channels. A variety of models have been developed to explore these effects. In caves, it is hypothesized that sediments covering the floors of fully flooded channels that are forming beneath the water table (phreatic zone) can force dissolution upwards towards the water table, leading to upward erosion balanced by gradual deposition of sediment within the channel bottom. This strange process is termed paragenesis, and while there are conceptual and experimental models of the process, no prior mathematical models of cave passage evolution has captured these effects. Consequently, there is little quantitative understanding of the processes that drive paragenesis and how they link to the morphology of the cave channels that develop. We adapt a previously developed algorithm for estimating boundary shear stress within channels with free-surface flows to enable calculation of boundary shear stress in pipe-full conditions. This model successfully duplicates scaling relationships in surface channels, and geometries of caves formed in the phreatic zone such as phreatic tubes. Once sediment flux is incorporated the model successfully duplicates the hypothesized processes of paragenetic gallery formation: the cover effect prevents dissolution in the direction of gravity; passages are enlarged upwards reducing the sediment transport capacity; sediment is deposited and the process drives a continuing feedback loop. Simulations reveal that equilibrium paragenetic channel widths scale with both sediment flux and discharge. Unlike in open channel settings, increased sediment load actually narrows paragenetic channels. The cross section evolution model also reveals that the existence of equilibrium widths in such galleries requires erosion to scale with shear stress, suggesting a role of either mechanical erosion or transport limited dissolution. These types of erosion contrast with current numerical models of speleogenesis, where chemically limited dissolution, a process independent of shear stress, is predicted to occur in most turbulent flow settings.
Desert winds: Monitoring wind-related surface processes in Arizona, New Mexico, and California
Breed, Carol S.; Reheis, Marith C.
1999-01-01
The 18-year Desert Winds Project established instrumented field sites in the five major regions of the North American Desert to obtain meteorological, geological, and vegetation data for natural desert sites affected by wind erosion. The eight chapters in this volume describe the settings and operation of the stations and summarize eolian-related research to date around the stations. The report includes studies of the sand-moving effectiveness of storm winds, wind-erosion susceptibility of different ground-surface types, relations of dust storms to meteorological conditions, mediation of wind erosion by vegetation, remote sensing to detect vegetation changes related to climate change, and comparison of regional dust deposition to that near Owens (dry) Lake.
NASA Astrophysics Data System (ADS)
Linsmeier, Christian
2004-12-01
The deposition of carbon on metals is the unavoidable consequence of the application of different wall materials in present and future fusion experiments like ITER. Presently used and prospected materials besides carbon (CFC materials in high heat load areas) are tungsten and beryllium. The simultaneous application of different materials leads to the formation of surface compounds due to the erosion, transport and re-deposition of material during plasma operations. The formation and erosion processes are governed by widely varying surface temperatures and kinetic energies as well as the spectrum of impinging particles from the plasma. The knowledge of the dependence on these parameters is crucial for the understanding and prediction of the compound formation on wall materials. The formation of surface layers is of great importance, since they not only determine erosion rates, but also influence the ability of the first wall for hydrogen isotope inventory accumulation and release. Surface compound formation, diffusion and erosion phenomena are studied under well-controlled ultra-high vacuum conditions using in-situ X-ray photoelectron spectroscopy (XPS) and ion beam analysis techniques available at a 3 MV tandem accelerator. XPS provides chemical information and allows distinguishing elemental and carbidic phases with high surface sensitivity. Accelerator-based spectroscopies provide quantitative compositional analysis and sensitivity for deuterium in the surface layers. Using these techniques, the formation of carbidic layers on metals is studied from room temperature up to 1700 K. The formation of an interfacial carbide of several monolayers thickness is not only observed for metals with exothermic carbide formation enthalpies, but also in the cases of Ni and Fe which form endothermic carbides. Additional carbon deposited at 300 K remains elemental. Depending on the substrate, carbon diffusion into the bulk starts at elevated temperatures together with additional carbide formation. Depending on the bond nature in the carbide (metallic in the transition metal carbides, ionic e.g. in Be2C), the surface carbide layer is dissolved upon further increased temperatures or remains stable. Carbide formation can also be initiated by ion bombardment, both of chemically inert noble gas ions or C+ or CO+ ions. In the latter case, a deposition-erosion equilibrium develops which leads to a ternary surface layer of constant thickness. A chemical erosion channel is also discussed for the enhanced erosion of thin carbon films on metals by deuterium ions.
NASA Astrophysics Data System (ADS)
Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.
2017-12-01
Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.
NASA Technical Reports Server (NTRS)
Bolotov, A. V.; Yukhimchuk, S. A.
1985-01-01
An analysis is made of the electrophysical processes occurring at the end surface of rod electrodes during constant and alternating arc discharge in hydrogen. Experiments are reported on the effect of surface temperature of tungsten electrodes on their erosion. The influence of activating additions of thorium oxide, the structure of the tungsten, and the gas surrounding the electrode on the specific thermal loading and the erosion of the electrodes is discussed.
Erosion of ejecta at Meteor Crater, Arizona
NASA Technical Reports Server (NTRS)
Grant, John A.; Schultz, Peter H.
1993-01-01
New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.
Why can postwildfire runoff and erosion vary from negligible to extreme?
NASA Astrophysics Data System (ADS)
Noske, P.; Nyman, P.; Lane, P. N. J.; Van der Sant, R.; Sheridan, G. J.
2016-12-01
Soil surface properties vary with aridity, as does runoff and erosion after wildfire. Here we draw on studies conducted in different upland eucalypt forests of Victoria Australia, to compare and contrast the hydrological effects of wildfire. The study central to this presentation was conducted in two small (0.2-0.3 ha) dry forested headwater catchments burned during the 2009 Black Saturday wildfire. Surface runoff ratios during rainfall events approached 0.45 in the first year postwildfire. High runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Average annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Surface runoff and erosion differed substantially between the equatorial and polar-facing catchments; this was most likely due to higher rates of infiltration and surface roughness on polar-facing slopes. Data collected from a plot scale study from 5 different burned forest locations of differing aridity produced a range of runoff ratios that support the findings of the central study. Additional data from burned catchments supporting wetter forests are also presented to further illustrate the contrast in rates of runoff and recovery from a different forest type. Results show that rates of postwildfire erosion and runoff in eucalypt forests in south-east Australia are highly variable. Large differences in erosion and runoff occur with relatively small changes in aridity.
NASA Astrophysics Data System (ADS)
Benaud, Pia; Anderson, Karen; Quine, Timothy; James, Mike; Quinton, John; Brazier, Richard E.
2017-04-01
The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to quantify soil erosion spatially. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. The broad aim of this study, therefore, was to understand how ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be utilised to develop a spatially explicit, mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash erosion, inter-rill erosion, and rill erosion. Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) was employed to assess spatial discrepancies within the SfM datasets and to provide an alternative measure of volumetric change. The body of work will present the workflow that has been developed for the laboratory-scale studies and provide information on the importance of DTM resolution for volumetric calculations of soil loss, under different soil surface conditions. To-date, using the methodology presented, point clouds with ca. 3.38 x 107 points per m2, and RMSE values of 0.17 to 0.43 mm (relative precision 1:2023-5117), were constructed. Preliminary results suggest a decrease in DTM resolution from 0.5 to 10 mm does not result in a significant change in volumetric calculations (p = 0.088), while affording a 24-fold decrease in processing times, but may impact negatively on mechanistic understanding of patterns of erosion. It is argued that the approach can be an invaluable tool for the spatially-explicit evaluation of soil erosion models.
The search for a topographic signature of life.
Dietrich, William E; Perron, J Taylor
2006-01-26
Landscapes are shaped by the uplift, deformation and breakdown of bedrock and the erosion, transport and deposition of sediment. Life is important in all of these processes. Over short timescales, the impact of life is quite apparent: rock weathering, soil formation and erosion, slope stability and river dynamics are directly influenced by biotic processes that mediate chemical reactions, dilate soil, disrupt the ground surface and add strength with a weave of roots. Over geologic time, biotic effects are less obvious but equally important: biota affect climate, and climatic conditions dictate the mechanisms and rates of erosion that control topographic evolution. Apart from the obvious influence of humans, does the resulting landscape bear an unmistakable stamp of life? The influence of life on topography is a topic that has remained largely unexplored. Erosion laws that explicitly include biotic effects are needed to explore how intrinsically small-scale biotic processes can influence the form of entire landscapes, and to determine whether these processes create a distinctive topography.
NASA Astrophysics Data System (ADS)
Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.
2017-12-01
Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock
rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellán, Antonio; Guerin, Antoine; Jaboyedoff, Michel; Voumard, Jérémie
2014-05-01
The morphology of the Swiss Plateau is modeled by numerous steep cliffs of Molasse. These cliffs are mainly composed of sub-horizontal alternated layers of sandstone, shale and conglomerates deposed in the Alps foreland basin during the Tertiary period. These Molasse cliffs are affected by erosion processes inducing numerous rockfall events. Thus, it is relevant to understand how different external factors influence Molasse erosion rates. In this study, we focus on analyzing temperature variation during a winter season. As pilot study area we selected a cliff which is formed by a sub-horizontal alternation of outcropping sandstone and shale. The westward facing test site (La Cornalle, Vaud, Switzerland), which is a lateral scarp of a slow moving landslide area, is currently affected by intense erosion. Regarding data acquisition, we monitored both in-situ rock and air temperatures at 15 minutes time-step since October 2013: (1) on the one hand we measured Ground Surface Temperature (GST) at near-surface (0.1 meter depth) using a GST mini-datalogger M-Log5W-Rock model; (2) On the other hand we monitored atmospheric conditions using a weather station (Davis Vantage pro2 plus) collecting numerous parameters (i.e. temperature, irradiation, rain, wind speed, etc.). Furthermore, the area was also seasonally monitored by Ground-Based (GB) LiDAR since 2010 and monthly monitored since September 2013. In order to understand how atmospheric conditions (such as freeze and thaw effect) influence the erosion of the cliff, we modeled the temperature diffusion through the rock mass. To this end, we applied heat diffusion and radiation equation using a 1D temperature profile, obtaining as a result both temperature variations at different depths together with the location of the 0°C isotherm. Our model was calibrated during a given training set using both in-situ rock temperatures and atmospheric conditions. We then carried out a comparison with the rockfall events derived from the 3D GB-LiDAR datasets in order to quantify the erosion rates and to correlate it with atmospheric conditions, aiming to analyze which parameters influence Molasse erosion process.
NASA Astrophysics Data System (ADS)
Li, J.; Okin, G.; Hartman, L.; Epstein, H.
2005-12-01
Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.
NASA Astrophysics Data System (ADS)
van Dijk, A. I. J. M.; Bruijnzeel, L. A.
2009-04-01
Soil erosion and sediment transport at different scales of space and time are dominated by a variable set of landscape properties and processes. Research results from West Java (Indonesia) and southeast Australia are presented, taking a natural resources management perspective. The dominant role of vegetation and soil health, rainfall infiltration, and connectivity between hillslope and stream are elaborated on. In humid volcanic upland West Java, vegetative cover and associated infiltration capacity are the dominant control on surface runoff and sediment generation, with additional variation attributed to slope and soil surface structure. Use of process models to replicate and upscale field measurements highlighted that a predictive theory to link vegetative cover and infiltration capacity is lacking, and that full knowledge of the covariance between terrain attributes that promote sediment generation is needed for process based modelling. At the hillslope to catchment scale, slope gradient and a less erodible substrate became additional constraints on sediment yield. A conceptual framework relating processes, scale and sediment delivery ratio was developed. In water-limited southeast Australia, measures to reduce erosion and sediment production generally aim to intercept surface runoff, allowing runoff to infiltrate and sediment to settle on vegetated buffer strips or roadsides or in leaky dams. It is illustrated how remote sensing can help to assess the sources of sediment and hydrological connectivity at different scales and to identify opportunities for mitigation.
Mapping of Titan: Results from the first Titan radar passes
Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maccherini, Simona; Vergari, Francesca; Santi, Elisa; Marignani, Michela; Della Seta, Marta; Rossi, Mauro; Torri, Dino; Del Monte, Maurizio
2014-05-01
In this work we present the results of multidisciplinary and long-lasting investigations on the complex cause-effect relationship among water erosion processes and vegetation cover on the Lucciolabella Natural Reserve, located in Upper Orcia Valley (Southern Tuscany). The area is a Site of Community Importance, where the cultural landscape of biancane badlands - water erosion landforms generated on Plio-Pleistocene marine clay outcrops - is preserved. We explored the direction and rate of change in land use and natural habitats of the biancana badland landscapes over the last 50 years, evaluating the erosion-vegetation dynamics and examining the processes involved in the biancana badland area. Historical information, such as early cadastral documents and diachronically analyzed aerial photographs, has been used to construct a database of the natural trends of modifications relative to habitat and plant species distribution, with the analysis of the consequent variations on the frequency of instability events. Old and recent land use maps were compared by using the TWINSPAN classification. Soil erodibility evaluation on the eroded biancana surfaces, regosols and well-developed vertisols, was carried out together with a decadal erosion monitoring program and the investigation of the physico-chemical properties of parent material. We also considered the effects of a few roots on saturated soil shear strength to introduce direct links between plants and soil processes. Moreover we run the LANDPLANER model in order to deepen the effect of the fragmentation of the vegetation cover on water erosion processes affecting biancana badlands. Long-lasting geomorphological survey and field erosion monitoring highlighted that biancana stations experience a very strong surface lowering rate due to water erosion, attaining an average rate of 2.4 - 2.6 cm/a. Moreover, biancanas in a more juvenile development phase, such as the ones of Lucciolabella Natural Reserve, show the maximum erosion rate, which reach more than 4 cm/a, and the most relevant dispersive clay fraction. The surface proneness to water erosion is enhanced by the wide presence of piping in the area. We showed that rills and subsurface micropipes are characterized by analogous erosion processes, meaning that they can be contrasted and eventually halted through a common mitigation strategy, and we observed a clear positive trend that will substantially suppress rilling at very low plant cover (no more than 20%). The analysis of the landscape changes showed a decrease in bare or scarcely vegetated spots of 0.9 ha/a during the last decades. Even if vegetation cover seems to stabilize upper layers of soil profile, rural abandonment and the lack of appropriate management practices have contributed to vegetation encroaching on biancana badland slopes mainly ascribed to generalist ruderal species, causing a loss of elements of high ecological and cultural values. If the encroachment continues to progress at this rate, in 35-40 years from now all the biancana domes will be completely re-vegetated. Badlands were previously kept alive by limited but nonetheless devastating grazing activities. If this picture is correct, then mimicking traditional badland grazing practices seems to be a necessary step towards saving the landscape and biodiversity that the protected areas were established to preserve.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C.; Klemaszewski, James E.; Greeley, Ronald
1999-01-01
The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 10(exp 8) years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.
Laser interferometric measurement of ion electrode shape and charge exchange erosion
NASA Technical Reports Server (NTRS)
Macrae, Gregory S.; Mercer, Carolyn R.
1991-01-01
A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.
Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R
2018-03-14
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.
Fuentes, Hector R.
2018-01-01
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335
Small scale rainfall simulators: Challenges for a future use in soil erosion research
NASA Astrophysics Data System (ADS)
Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel
2013-04-01
Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.
Development of an inexpensive optical method for studies of dental erosion process in vitro
NASA Astrophysics Data System (ADS)
Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.
2008-09-01
Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.
NASA Astrophysics Data System (ADS)
Maerker, Michael; Schillaci, Calogero; Melis, Rita; Mussi, Margherita
2014-05-01
The area of Melka Kunture (central Ethiopia) is one of the most important clusters of Paleolithic sites in Eastern Africa. The archaeological record spans from c. 1.7 Ma onwards, with a number of stratified occurrences of Oldowan, Acheulean, Middle Stone Age and Late Stone Age industries, together with faunal remains and human fossils. However, the archaeological sites are endangered by flooding and soil erosion. The main excavation area lies close to the convergence of the Awash river with the Atabella river, one of the main tributaries of the upper Awash catchment. In the semi-arid Ethiopian highlands, gully networks develop especially in the vicinity of the active and inactive river meanders. Various erosion processes are linked to specific driving factors such as the rainfall regime, the land use/cover changes and vertic soils with a specific hydrological behaviour. It was documented in the field and by previous research that the origin of most of the man made erosion channels is due to animal pathways and car tracks. However, paleolandscape features increase the general erosion risk. Former wetland areas and deposition zones are particularly affected by soil erosion processes. Hence, the spatial distribution and characteristics of present day geomorphic processes also reveal information on the paleolandscape. In order to assess landscape evolution and present day geomorphologic dynamics, we mapped the geomorphology describing in detail the present-day slope processes at a 10.000 scale. We performed a detailed terrain analysis based on high resolution DEMs such as SRTM-X with 25m resolution and ALOS/PRISM with 10m resolution to characterize the main erosion processes and surface runoff dynamics. The latter ones are simulated using a Soil Conservation Service Curve Number method. Landuse was delineated for a larger area using ASTER 25m multispectral data. Finally, using calibrated topographic indices and a simple hydrological model we were able to detect and quantify the major present day soil erosion and surface runoff processes. Based on the analysis of the processes and the respective terrain features derived from the digital elevation models we also identified the major paelolandscape features. This will be the basis for assessing conservation risks related to modern land use and climate.
Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)
NASA Astrophysics Data System (ADS)
Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.
2018-04-01
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.
Critical role of wind-wave induced erosion on the morphodynamic evolution of shallow tidal basins
NASA Astrophysics Data System (ADS)
D'Alpaos, Andrea; Carniello, Luca; Rinaldo, Andrea
2014-05-01
Wind-wave induced erosion processes are among the chief processes which govern the morphodynamic evolution of shallow tidal basins, both in the vertical and in the horizontal plane. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Moreover, the impact of wind-waves on salt-marsh margins can lead to the lateral erosion of marsh boundaries thus promoting the disappearance of salt-marsh ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. The interarrival time of wave-induced erosion events is, in fact, an exponentially distributed random variable, as well as the duration and intensity of overthreshold events. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon from the 19th to the 21st century, shows that the interarrival times of erosion events have dramatically decreased through the last two centuries, whereas the intensities of erosion events have experienced a surprisingly high increase. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.
Spiders: water-driven erosive structures in the southern hemisphere of Mars.
Prieto-Ballesteros, Olga; Fernández-Remolar, David C; Rodríguez-Manfredi, José Antonio; Selsis, Franck; Manrubia, Susanna C
2006-08-01
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.
Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans.
Resmeriță, Ana-Maria; Coroaba, Adina; Darie, Raluca; Doroftei, Florica; Spiridon, Iuliana; Simionescu, Bogdan C; Navard, Patrick
2018-02-01
A sea water wave tank fitted in an artificial UV light weathering chamber was built to study the behaviour of polypropylene (PP) injected pieces in close ocean-like conditions. In air, the same pieces sees a degradation in the bulk with a decrease of mechanical properties, a little change of crystal properties and nearly no change of surface chemistry. Weathering in the sea water wave tank shows only a surface changes, with no effect on crystals or mechanical properties with loss of small pieces of matter in the sub-micron range and a change of surface chemistry. This suggests an erosion dispersion mechanism. Such mechanism could explain why no particle smaller than about one millimeter is found when collecting plastic debris at sea: there are much smaller, eroded from plastic surfaces by a mechano-chemical process similar to the erosion mechanism found in the dispersion of agglomerate under flow. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bosch, R.; Ward, D.
2017-12-01
Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially available multiphysics simulation software for modeling various flow conditions, erosional processes, and their complex coupled interactions in cave passages and in surface stream channels to expand knowledge and understanding of overall cave system development and river profile erosion.
NASA Astrophysics Data System (ADS)
Zubeldia, Elizabeth H.; Fourtakas, Georgios; Rogers, Benedict D.; Farias, Márcio M.
2018-07-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is developed to model the scouring of two-phase liquid-sediments flows with large deformation. The rheology of sediment scouring due to flows with slow kinematics and high shear forces presents a challenge in terms of spurious numerical fluctuations. This paper bridges the gap between the non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer mechanics which are needed to predict accurately the local erosion phenomena. A critical bed-mobility condition based on the Shields criterion is imposed to the particles located at the sediment surface. Thus, the onset of the erosion process is independent on the pressure field and eliminates the numerical problem of pressure dependant erosion at the interface. This is combined with the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been implemented in the open-source DualSPHysics code accelerated with a graphics processing unit (GPU). The multi-phase model has been compared with 2-D reference numerical models and new experimental data for scour with convergent results. Numerical results for a dry-bed dam break over an erodible bed shows improved agreement with experimental scour and water surface profiles compared to well-known SPH multi-phase models.
A Study on Tribological Behavior of Glass-Epoxy Composite Filled with Granite Dust
NASA Astrophysics Data System (ADS)
Ray, Subhrajit; Rout, Arun Ku; KuSahoo, Ashok
2017-08-01
Granite powder is one of the solid wastes generated from stone processing industry used as organic filler replacing the conventional ceramic fillers in polymer matrix composite to increase the mechanical properties. The present work investigates the addition of granite powder on erosion wear properties of epoxy-glass fiber composite. The solid particle erosion wear rates of these hybrid composites are recorded considering various control parameters as impingement angles, erodent sizes and impact velocities following erosion resistance test in an air erosion test device at room temperatures. The test was conducted as per the Taguchi experimental design to minimize the erosion loss of material. The SEM views show the surface resistivity for the granite added specimens. The microscopic study also indicates various methods of material removal, crater wear and other subjective allocation during erosion experiment of the samples.
Dental erosion among 12 year-old Libyan schoolchildren.
Huew, R; Waterhouse, P J; Moynihan, P J; Maguire, A
2012-12-01
As there are limited data on dental erosion in Libya, the aim of this study was to assess the prevalence and severity of dental erosion in a sample of 12 year-old children in Benghazi, Libya. Cross-sectional observational study. Elementary schools in Benghazi, Libya. A random sample of 791 12 year-old children (397 boys and 394 girls) attending 36 schools. Clinical dental examination for erosion using UK National Diet and Nutrition Survey (2000) criteria and self-completion questionnaire. The area and depth of dental erosion affecting the labial and palatal surfaces of the upper permanent incisors and occlusal surfaces of the first permanent molars. Dental erosion was observed in 40.8% of subjects; into enamel affecting 32.5%, into dentine affecting 8.0% and into pulp affecting 0.3% of subjects. Based on area affected, 323 subjects (40.8%) exhibited dental erosion (code > 0), with 32.6% of these subjects having erosion affecting more than two thirds of one or more surfaces examined. Mean total scores for dental erosion for all surfaces per mouth by area and by depth were both 2.69 (sd 3.81). Of the 9492 tooth surfaces examined, 2128 surfaces (22.4%) had dental erosion. Girls had more experience of erosion than boys at all levels of severity (p = 0.001). In a cohort of 12 year-old Libyan schoolchildren, more than one third of children examined showed dental erosion, requiring clinical preventive counselling. Significantly more erosion occurred in girls than boys.
Natural Erosion of Sandstone as Shape Optimisation.
Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan
2017-12-11
Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.
NASA Astrophysics Data System (ADS)
Chen, Yichin
2017-04-01
Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.
Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery
Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.
2016-01-01
Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to quantitatively monitor surface change over time relative to management activities.
NASA Astrophysics Data System (ADS)
Smithells, R. A.
2015-12-01
Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature sediment routing system on rift development. Our models show that migrating fault activity may be triggered by migration of sediment deposition filling the accommodation space provided by the associated half grabens. The asymmetric development of the rift can be explained by the preferred erosion and deposition of the southern flank of the Gulf of Corinth.
Effect of mechanical properties on erosion resistance of ductile materials
NASA Astrophysics Data System (ADS)
Levin, Boris Feliksovih
Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.
Passos, Vanara Florêncio; Rodrigues, Lidiany Karla Azevedo; Santiago, Sérgio Lima
2018-02-01
To evaluate, in vitro, the effect of Mg(OH) 2 dentifrice, and the influence of the number of experimental days, on the extrinsic (citric acid -CA) and intrinsic (hydrochloric acid -HCl) enamel erosion models. Human enamel slabs were selected according to surface hardness and randomly assigned to 3 groups (n=9) as follows: non-fluoridated (negative control), NaF (1450ppm F- positive control) and Mg(OH) 2 (2%) dentifrices. The slabs were daily submitted to a 2-h period of pellicle formation and, over a period of 5days, submitted to cycles (3×/day) of erosive challenge (CA 0.05M, pH=3.75 or HCl 0.01M, pH=2 for 30s), treatment (1min -1:3w/w of dentifrice/distilled water) and remineralization (artificial saliva/120min). Enamel changes were determined by surface hardness loss (SHL) for each day and mechanical profilometry analysis. Data were analyzed by two-way ANOVA followed by Tukey's test to % SHL and one-way ANOVA to profilometry (p<0.05). The number of experimental days influenced the erosion process for the two types of erosion models (p<0.001). Mg(OH) 2 -containing dentifrices were effective in reducing enamel extrinsic acid erosion as determined by % SHL (p<0.001) when compared to the control group, being better than positive control (p<0.001); however, the dentifrices were not effective for the intrinsic model (p=0.295). With regards to surface wear, no statistically significant differences were found among the groups for CA (p=0.225) and HCl (p=0.526). The findings suggest that Mg(OH) 2 dentifrices might protect enamel against slight erosion, but protection was not effective for stronger acid erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces
NASA Astrophysics Data System (ADS)
Schmid, K.; Mayer, M.; Adelhelm, C.; Balden, M.; Lindig, S.; ASDEX Upgrade Team
2010-10-01
As was already observed experimentally, the erosion of tungsten (W) coated graphite (C) tiles in ASDEX-Upgrade (AUG) exhibits regular erosion patterns on the micrometre rough surfaces whose origin is not fully understood: surfaces inclined towards the magnetic field direction show strong net W erosion while surfaces facing away from the magnetic field are shadowed from erosion and may even exhibit net W deposition. This paper presents a model which explains the observed erosion/deposition pattern. It is based on the calculation of ion trajectories dropping through the plasma sheath region to the rough surface with combined magnetic and electrical fields. The surface topography used in the calculations is taken from atomic force microscope measurement of real AUG tiles. The calculated erosion patterns are directly compared with secondary electron microscopy images of the erosion zones from the same location. The erosion on surfaces inclined towards the magnetic field is due to ions from the bulk plasma which enter the sheath gyrating along the magnetic field lines, while the deposition of W on surfaces facing away from the magnetic field is due to promptly re-deposited W that is ionized still within the magnetic pre-sheath.
NASA Astrophysics Data System (ADS)
Bykov, A. V.; Kolesnikov, A. V.; Kulakova, N. Yu.; Shabanova, N. P.
2008-08-01
In the clay semidesert of the Caspian Lowland, the surface runoff is transformed to soil runoff due to the presence of a system of social vole ( Microtus socialis Pall.) passageways in the soils that promotes the retention of soil moisture and prevents the development of soil erosion. A quantitative assessment of this process is given. We describe the mechanism of intense soil erosion arising after the disturbance of vole underground passageways responsible for the formation of specific relief elements and plant communities.
Carbon redistribution by erosion processes in an intensively disturbed catchment
NASA Astrophysics Data System (ADS)
Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana
2016-04-01
Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and reforestation works. However the organic carbon in deposited sediments comes not only from surface erosion processes, but also from deeper soil or sediment layers mobilized by concentrated erosion processes. Sediment richer in organic carbon comes from the soil surface of vegetated (reforested) areas close and well connected to the channels. Subcatchments dominated by laminar erosion processes showed two times higher TOC/total erosion ratio than subcatchments dominated by concentrated flow erosion processes. Lithology, soils and geomorphology exert a more important control on organic carbon redistribution than land use and vegetation cover in this geomorphologically very active catchment.
NASA Astrophysics Data System (ADS)
Bechet, J.; Duc, J.; Loye, A.; Jaboyedoff, M.; Mathys, N.; Malet, J.-P.; Klotz, S.; Le Bouteiller, C.; Rudaz, B.; Travelletti, J.
2015-12-01
The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to weathering processes. Since 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope erosion processes at the scale of elementary gullies. Since 2007, a monitoring of surface changes has been performed by comparing of high-resolution digital elevation models (HR-DEMs) produced from Terrestrial Laser Scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the DEM at the centimetre scale. The topographic changes over a time span of 4 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes contributing to the recharge of tributary gullies and rills are presented. According to the transport capacity generated by runoff, loose regolith soil sources are eroded at different periods of the year. These are forming transient deposits in the main reach when routed downstream, evolving from a transport-limited to a supply-limited regime through the year. The monitoring allows a better understanding of the seasonal pattern of erosion processes for black marls badland-type slopes and illustrates the mode of sediment production and the temporal storage/entrainment in similar slopes. The observed surface changes caused by erosion (ablation/deposition) are quantified for the complete TLS time-series, and sediment budget maps are presented for each season. Comparisons of the TLS sediment budget map with the in situ sediment monitoring (limnigraph and sedigraph) in the stream are discussed. Intense and long duration rainfall events are the triggering factor of the major erosive events.
NASA Astrophysics Data System (ADS)
Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.
2009-04-01
Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.
Landscape evolution (A Review)
Sharp, Robert P.
1982-01-01
Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images
A field experiment on the controls of sediment transport on bedrock erosion
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.
2012-12-01
The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.
NASA Technical Reports Server (NTRS)
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis
2016-04-01
This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM
Sediment Tracking Using Carbon and Nitrogen Stable Isotopes
NASA Astrophysics Data System (ADS)
Fox, J. F.; Papanicolaou, A.
2002-12-01
As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.
Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...
Climate-driven reduction in soil loss due to the dynamic role of vegetation
NASA Astrophysics Data System (ADS)
Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.
2016-12-01
Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.
NASA Astrophysics Data System (ADS)
Manome, Ryo; Onda, Yuichi; Patin, Jeremy; Stefani, Chiara; Yoshimura, Kazuya; Parsons, Tony; Cooper, James
2014-05-01
Radioactive materials are generally associated with soil particles in terrestrial environment and therefore the better understanding soil erosion processes is expected to improve the mitigation of radioactive risks. Spatial variability in soil erosion has been one of critical issues for soil erosion management. This study attempts to track soil particle movement on soil surfaces by employing Radio Frequency Identification (RFID) tags for the better understanding radiocesium behavior. A RFID tag contains a specific electronically identifier and it permits tracing its movement by reading the identifier. In this study, we made artificial soil particles by coating the RFID tags with cement material. The particle diameters of the artificial soil particles approximately ranged from 3 to 5 mm. The artificial soil particles were distributed in a reticular pattern on a soil erosion plot (bare soil surface, 22.13 m length × 5 m width, 4.4° slope) in Kawamata town where radiocesium deposited because of the Fukushima Dai-ichi power plant accident. After their distribution on October 2012, we had read the identifiers of RFID tags and recorded their locations on the plot for 14 times by September 2013. Moving distance (MD) was calculated based on the difference of the location for each sampling date. The topographical changes on the plot were also monitored with a laser scanner to describe interrill erosion and rill erosion area on 11occasions. Median MD is 10.8cm for all the observations. Median MD on interrill and rill erosion areas were 9.8 cm and 20.7 cm, respectively. Seasonal variation in MD was observed; an extremely large MD was found in May 2013, at the first reading after the winter season. This large MD after winter suggests that snowmelt runoff was the dominant process which transported the soil particles. Comparing the MD with the observed amounts of rainfall, sediment and runoff on the plot, significant positive correlation were found if the data of May, 2013. The coefficient of correlation with the amounts of surface runoff, sediment discharge and R-factor were 0.79 (p < 0.05, n = 13), 0.92 (p < 0.05, n = 13) and 0.79 (p < 0.05, n = 13), respectively. These positive correlations supported a possible use of RFID tag for tracking soil particles. There was a negative relationship between Cs-137 in sediment eroded from the plot and median MD (r = -0.40, p > 0.05, n = 13). One possible explanation for this negative relationship is that sediments on the rill area, which contain relatively low concentration of Cs-137, were discharged during intensive rainfall events and they resulted in low concentrations of Cs-137 in sediment eroded from the plot. These results suggest that the spatial distribution on Cs-137 and erosion processes should be considered for predicting radiocesium behavior even at the scale of our erosion plot.
Effect of simulated rill erosion on overland flow connectivity in synthetically generated fields
NASA Astrophysics Data System (ADS)
Penuela Fernandez, Andres; Rocio Rodriguez Pleguezuelo, Carmen; Javaux, Mathieu; Bielders, Charles L.
2014-05-01
Preferential flow paths developed during rill erosion processes connect different parts of the soil surface that may increase the degree of connectivity and hence the hydrological response of the soil surface. However, few studies have tried to quantify the effect of rill networks on overland flow connectivity. For this purpose, simulated rill networks were generated by the RillGrow erosion model (Favis-Mortlock, 1998; Favis-Mortlock et al. 2000) on synthetically generated fields. To characterize the hydrological connectivity a functional connectivity indicator called the relative surface connection function (RSCf) (Antoine et al. 2009) was used. This indicator, which relates the area connected to the outflow boundary to the degree of filling of maximum depression storage (MDS), is fast to compute and was previously shown to be able to efficiently discriminate between contrasted connectivity scenarios. The RSCf function was calculated for different DEM obtained at different times during the development of the simulated rill networks. The evolution of overland flow connectivity was then quantified and compared at these different time steps. The results of this study showed that the changes in microtopography resulting from the simulated rill erosion have a strong impact on the hydrological connectivity as reflected in the RSCf. Furthermore, the results show that the evolution of the RSCf may allow identifying different types of erosion since the shape of the RSCf only starts to change when rill networks are visualized on the surface.
Allen, Craig D.
2007-01-01
Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear “pest” outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non-linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.
2014-09-01
that 1) identifies the processes and mechanisms that might result in erosion, 2) determines the most appropriate methods to use in assessing...fluid mechanics , driving forces of flows in surface waters, turbulence, hydrodynamic governing equations, scale analysis, and types of hydrodynamic...2 requires the following: 1) establishing the MNR mechanisms responsible for declining contaminant concentrations (e.g., burial as the major
NASA Astrophysics Data System (ADS)
Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.
2015-12-01
In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength and increase the hillslope erosion during heavy rainfall. By studying the erosion rate of Hoping River watershed we can understand more about surface processes in dynamic landscape, and more over, to establish a comprehensive understanding about the evolution of the ongoing Taiwan arc-continental collision process.
Impact erosion of the primordial atmosphere of Mars.
Melosh, H J; Vickery, A M
1989-04-06
Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.
The American Geophysical Union Chapman Conference on Tectonics and Topography
NASA Technical Reports Server (NTRS)
1992-01-01
The Chapman Conference on Tectonics and Topography was held 31 Aug. - 4 Sep. 1992. The conference was designed to bring together disparate groups of earth scientists who increasingly found themselves working on similar problems but in relative isolation. Thus, process geomorphologists found themselves face-to-face with numerical modelers and field geomorphologists, hydrologists encountered geologists, and tectonophysicists found people with related data. The keynote speakers represented a wide variety of disciplines, all of which were relevant to the interdisciplinary theme of the conference. One of the most surprising issues that surfaced was the relative dearth of data that exists about erosion--process and rates. This was exacerbated by a reminder that erosion is critical to the evaluation of surface uplift.
Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels
NASA Astrophysics Data System (ADS)
Goyal, Deepak Kumar; Singh, Harpreet; Kumar, Harmesh; Sahni, Varinder
2012-09-01
In this study, Cr2O3 coatings were deposited on CF8M and CA6NM turbine steels by high-velocity oxy-fuel (HVOF)-spray process and analyzed with regard to their performance under slurry erosion conditions. High Speed Erosion Test Rig was used for slurry erosion tests, and the effects of three parameters, namely, average particle size, speed (rpm), and slurry concentration on slurry erosion of these materials were investigated. SEM micrographs on the surface of samples, before and after slurry erosion tests, were taken to study the erosion mechanism. For the uncoated steels, CA6NM steel showed better erosion resistance in comparison with CF8M steel. The HVOF-sprayed Cr2O3-coated CF8M and CA6NM steels showed better slurry erosion resistance in comparison with their uncoated counterparts. It may be due to the higher hardness as a result of HVOF-sprayed Cr2O3 coating in comparison with the uncoated CF8M and CA6NM steels.
Visualization and mechanisms of splashing erosion of electrodes in a DC air arc
NASA Astrophysics Data System (ADS)
Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi
2017-11-01
The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.
Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.
2000-01-01
Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
NASA Astrophysics Data System (ADS)
Ding, Hongqin; Qiu, Yujiang
2017-04-01
In this study, sputter-deposited Cr3Si film was prepared by double cathode glow discharge (DCGD) technique onto 304 stainless steel. The phase constituents, surface microstructure and chemical compositions of the film were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After the DCGD process, the hardness of Cr3Si film was 26 GPa, about 10 times of the stainless steel, 2.5 GPa. The cavitation erosion resistance of Cr3Si film and stainless steel were investigated by using an ultrasonic vibration cavitation erosion system. After 30 hours of cavitation tests, the cumulative mass loss of Cr3Si film was only 60% of the stainless steel. Compared with the untreated stainless steel, the cavitation erosion resistance of Cr3Si film was improved. The cavitation mechanism of Cr3Si film is due to the delamination and spalling of local surface layer derived from its inherent brittleness.
Post-fire soil nutrient redistribution in northern Chihuahuan Desert
NASA Astrophysics Data System (ADS)
Wang, G.; Li, J. J.; Ravi, S.; Sankey, J. B.; Duke, D.; Gonzales, H. B.; Van Pelt, S.
2016-12-01
The desert grassland in the southwestern US has undergone dramatic land degradation with woody shrub encroachment over the last 150 years. Wind erosion and periodic fires are major drivers of vegetation dynamics in these ecosystems. Due to climate change and anthropogenic disturbances, many drylands are undergoing changes in fire regimes, which can largely alter the nutrient loss rate as well as the soil resource heterogeneity. In this study, we used manipulative field experiments, laboratory and geostatistical analyses to investigate the distribution of fertile islands, nutrient loss rate and spatial variation. Replicated burned and control experimental plots were set up in a desert grassland in northern Chihuahuan Desert in March 2016. Windblown sediments were monitored by multiple MWAC sediment collectors on each plot. Surface soil samples, with their locations accurately recorded (i.e., under shrub, under grass, and bare interspace) were collected twice per year in spring and again in summer after the experimental setup. Our preliminary results show that the spatial heterogeneity of soil C and N in the burned plots has changed notably compared to the control plots. Our results further demonstrated that areas with burned shrubs is most vulnerable to wind erosion, therefore the soil nutrient loss is most significant, almost five times of the nutrient loss rate of bare areas. Interspace bare areas is in the lowest micro-land and some of the surface has caliche, which makes the surface resistant to wind erosion. And areas with burned grass receive the lightest wind erosion and nutrient loss, around one third of the erosion on bare areas, because burned grasses still cover the surface and the dead bodies can eliminate wind erosion to a large extent. Hence, periodic fire in desert grassland favors the evenness distribution of soil nutrients and can retard the shrub encroachment process.
The Bossons glacier protects Europe's summit from erosion
NASA Astrophysics Data System (ADS)
Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.
2013-08-01
The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.
Extensive rill erosion and gullying on abandoned pit mining sites in Lusatia, Germany
NASA Astrophysics Data System (ADS)
Kunth, Franziska; Kaiser, Andreas; Vláčilová, Markéta; Schindewolf, Marcus; Schmidt, Jürgen
2015-04-01
As the major economic driver in the province of Lusatia, Eastern Germany, the large open-cast lignite mining sites characterize the landscape and leave vast areas of irreversible changed post-mining landscapes behind. Cost-intensive renaturation projects have been implemented in order to restructure former mine sites into stabile self-sustaining ecosystems and local recreation areas. With considerable expenditure the pits are stabilized, flooded and surrounding areas are restructured. Nevertheless, heavy soil erosion, extensive gullying and slope instability are challenges for the restructuring and renaturation of the abandoned open-cast mining sites. The majority of the sites remain inaccessible to the public due to instable conditions resulting in uncontrolled slides and large gullies. In this study a combined approach of UAV-based aerial imagery, 3D multi-vision surface reconstruction and physically-based soil erosion modelling is carried out in order to document, quantify and better understand the causes of erosion processes on mining sites. Rainfall simulations have been carried out in lausatian post mining areas to reproduce soil detachment processes and observe the responsible mechanisms for the considerable erosion rates. Water repellency and soil sealing by biological crusts were hindering infiltration and consequently increasing runoff rates despite the mainly sandy soil texture. On non-vegetated experimental plots runoff coefficients up to 87 % were measured. In a modelling routine for a major gully catchment regarding a 50 years rainfall event, simulation results reveal runoff coefficients of up to 84% and erosion rates of 118 Mg*ha^-1. At the sediment pass over point 450Mg of sediments enter the surface water bodies. A system response of this order of magnitude were unexpected by the authorities. By applying 3D multi-vision surface reconstruction a model validation is now possible and further may illustrate the great importance of soil conservation measures under the described conditions.
Surface modification of hydroturbine steel using friction stir processing
NASA Astrophysics Data System (ADS)
Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.
2013-03-01
Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.
Søvik, Jenny Bogstad; Tveit, Anne Bjørg; Storesund, Trond; Mulic, Aida
2014-10-01
This study aimed to investigate the prevalence, distribution and severity of erosive wear in a group of 16-18-year-olds in the western part of Norway. A second aim was to describe possible associations between caries experience, socioeconomic background and origin of birth. Adolescents (n = 795) attending recall examinations at Public Dental Service (PDS) clinics were also examined for dental erosive wear on index surfaces, using the Visual Erosion Dental Examination scoring system (VEDE). In total, 795 individuals were examined. Dental erosive wear was diagnosed in 59% of the population (44% erosive wear in enamel only, 14% combination of enamel and dentine lesions, 1% erosive wear in dentine only). The palatal surfaces of upper central incisors and occlusal surfaces of first lower molars were affected the most (33% and 48% of all surfaces, respectively). Cuppings on molars were registered in 66% of the individuals with erosive wear. Erosive wear was significantly more prevalent among men (63%) than women (55%) (p = 0.018). There were no significant associations between dental erosive wear and caries experience, socioeconomic background or origin of birth.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji
2013-08-01
The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.
Pluto's Paleoglaciation: Processes and Bounds
NASA Astrophysics Data System (ADS)
Umurhan, Orkan; Howard, Alan D.; White, Oliver L.; Moore, Jeffrey M.; Grundy, William M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Lauer, Tod R.; Cheng, Andrew F.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; New Horizons Science Team
2017-10-01
New Horizons imaging of Pluto’s surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto’s washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto’s ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features.To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier’s base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2’s rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings.Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto’s ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.
Pluto's Paleoglaciation: Processes and Bounds.
NASA Astrophysics Data System (ADS)
Umurhan, O. M.; Howard, A. D.; White, O. L.; Moore, J. M.; Grundy, W. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Lauer, T.; Cheng, A. F.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.
2017-12-01
New Horizons imaging of Pluto's surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto's washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto's ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features. To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier's base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2's rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings. Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto's ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.
Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows
NASA Astrophysics Data System (ADS)
Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.
2016-12-01
Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.
NASA Astrophysics Data System (ADS)
Wernet, A. K.; Beighley, R. E.
2006-12-01
Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory results are presented.
NASA Astrophysics Data System (ADS)
Eltner, A.; Schneider, D.; Maas, H.-G.
2016-06-01
Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.
Process based modelling of soil organic carbon redistribution on landscape scale
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt
2014-05-01
Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the grain size distribution (clay, silt and sand) of the transported sediment. A test slope is modeled covering certain land use and soil management scenarios referring to different rainfall events. Results allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on landscape scale. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International vol. 29: 437-450.
Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates
NASA Technical Reports Server (NTRS)
Niemi, Nathan; Oskin, Mike; Burbank, Douglas; Heimsath, Arjun
2005-01-01
The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation.
NASA Astrophysics Data System (ADS)
Larimer, J. E.; Yanites, B.
2017-12-01
River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary results suggest that tensile strength is a good predictor of channel morphology in abrasion dominated reaches, morphology is better predicted through a damage perspective in macro-abrasion dominated reaches, and reduction in P-wave velocity near the surface correlates with damage susceptibility.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Mellon, Michael T.; Zent, Aaron P.
1996-01-01
The polar terrains of Mars are covered in many places with irregular pits and retreating scarps, as are some of the surfaces of the outer-planet satellites. These features are interpreted by us as diagnostic of exogenic degradation due to the loss of a volatile rock-forming matrix or cement. In this study we propose that sublimation degradation is a plausible Solar Systemwide geological process. Candidate examples have been identified on Mars, Io, and Triton, and possibly Europa and Ganymede. We envision this process as having two end-member expressions (pits and scarps), for which we hypothesize two end-member mechanisms (massive localized lenses and areally extensive basal layers). In this study we focus on the role this process may play on the surfaces of the galilean satellites. Our principle modeling results are that for these satellites, H2S, CO2, and NH3 are the only viable candidate volatiles for sublimation degradation of landforms, in light of galilean satellite cosmochemistry. For Io's polar regions only H2S, and then only from slopes that face the Sun and have thin lags, is volatile enough to cause the observed sublimation-induced erosion at those latitudes. SO2 is not a viable candidate as an agent of erosion, especially for these polar landforms. In the case of Europa, only CO2 and H2S are viable candidates (given surface age constraints). Both species could be efficient eroders in nonpolar regions. H2S could generate erosion within the polar regions if the deposition and erosion conditions were essentially identical as those we invoked for Io's polar regions. For Ganymede (and Callisto) NH3 might be an agent of erosion in equatorial terrains of great age. The sublimation of CO2 and H2S is much more robust than NH3. The much slower rate of sublimation degradation from NH3 might be detectable by Galileo and used as a compositional indicator.
Fluvial erosion and post-erosional processes on Titan
Jaumann, R.; Brown, R.H.; Stephan, K.; Barnes, J.W.; Soderblom, L.A.; Sotin, Christophe; Le, Mouelic S.; Clark, R.N.; Soderblom, J.; Buratti, B.J.; Wagner, R.; McCord, T.B.; Rodriguez, S.; Baines, K.H.; Cruikshank, D.P.; Nicholson, P.D.; Griffith, C.A.; Langhans, M.; Lorenz, R.D.
2008-01-01
The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30?? W, 7?? S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features. ?? 2008 Elsevier Inc.
Groundwater sapping processes, Western Desert, Egypt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, W.; Arvidson, R.E.; Sultan, M.
1997-01-01
Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. Scallop-shaped escarpment edges and stubby-looking channels that cut into the plateau units are suggestive of slumping of limestones by ground-water sapping at the limestone-shale interfaces, removal of slump blocks by weathering and fluvial erosion, and consequent scarp retreat. Spring-derived tufa deposits found near the limestone escarpments provide additional evidence formore » possible ground-water sapping during previous wet periods. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. The {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years, as northeastern Africa became hyperarid. The model thus provides a promising predictive tool for studying long-term landform evolution that involves surface and subsurface processes and climatic change.« less
NASA Astrophysics Data System (ADS)
Armstrong, E.; Ling, A.; Kuhn, N. J.
2012-04-01
Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows that the net P export from organically farmed soils is not reduced by a similar degree than soil erosion compared to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate fragments control P and C enrichment. Due to complex and dynamic interactions between P, SOC and interrill erosional processes, the nutrient and C status of sediments cannot be predicted based on soil P content, SOC or interrill erodibility alone. Clearly, further research on crust formation and the composition of fragments generated by aggregate breakdown and their transport in raindrop impacted flow under different rainfall conditions is required. Attaining this critical missing knowledge would enable a comprehensive assessment of the benefits of organic farming on nutrient budgets, off-site effects of interrill erosion and its role in the global C cycle.
Channelization in porous media driven by erosion and deposition.
Jäger, R; Mendoza, M; Herrmann, H J
2017-01-01
We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.
Trend of Soil Erosion Processes within the Southern Half of the Russian Plain for the Last Decades
NASA Astrophysics Data System (ADS)
Golosov, V. N.; Yermolaev, O. P.; Safina, G. R.; Maltsev, K. A.; Gusarov, A. V.; Rysin, I. I.
2018-01-01
Complex approach is applied for assessment of recent trends of sheet, rill and gully erosion in different landscape zones of study area. Investigation is undertaken in 6 selected sectors (area of each transect is about 6-10 thousand km2), uniformly distributed over the area of the Russian Plain. Changes of the different factors, including some meteorological and hydrological parameters, land use change, USLE C-factor, were determined for the period 1980-2015. A set of field methods was used for quantification of sediment redistribution rates for the key small catchments. It was found that erosion rate decreased in forest and forest-steppe zone. Gully density decreases considerably in all landscape zones. The reduction of surface runoff from cultivated slope during snow-melting is the main reason of decreasing of sheet, rill and gully erosion rates in the forest, forest steppe and the north of steppe landscape zones. Increasing the proportion of perennial grasses in crop-rotation is the other factor of serious reduction of erosion processes in the forest zone.
Tafoni - A Llink Between Mars and Earth
NASA Astrophysics Data System (ADS)
Iacob, R. H.; Iacob, C. E.
2013-12-01
Remarkable rock erosion structures on the planetary surface, tafoni represent an important instrument for investigating the specific environmental conditions causing such rock formations. From simple cavities to refined honeycomb or other intricate patterns, tafoni are a reflection of the complex interaction between the rock structure and the environmental factors. On the genesis of tafoni, there is no unique breakdown mechanism at work, but a multitude of physical and chemical processes developing over time. However, some of these formation mechanisms are typically predominant. Tafoni can be found on a variety of rock substrates, from sandstone and vesicular lava rocks to granite and basalt, and in a variety of environments, from wet coastal areas to the extreme dry zones of hot deserts, high plateaus or frozen lands of Antarctica. During various NASA missions, tafoni were also identified on rock formations on Mars. Comparative study of the environmental conditions leading to the formation of tafoni on Earth and Mars can help explain past and present surface erosion mechanisms on the Red Planet. The mechanisms responsible for tafoni formation on Earth include wind erosion, exfoliation, frost shattering, and, in the majority of cases, salt weathering. Microclimate variations of temperature, evaporation of salt water, disaggregation of mineral grains, as well as sandblasting, are among most common contributors that initiate the pitting of the rock surface, giving way to further development of tafoni alveoli, cavities and other erosion patterns. Dissolution of calcium carbonates and siliceous cements, or hydration of feldspars, are representative examples of tafoni erosion involving rain water, sea water or air moisture. Live organisms and biochemical processes are significant contributors to the formation and evolution of tafoni, especially in humid or water reach environments. In many instances, tafoni reflect erosion mechanism specific to environmental conditions that no longer exist. NASA's current Mars Science Laboratory mission offers exceptional opportunities to perform a comparative study between tafoni formations on Mars and those on Earth. The present mission of Curiosity at Gale Crater, benefiting not only from the most advanced technology for in-situ investigations but also from a terrain rich in rock breakdown features, was able to reveal new tafoni formations. Gale Crater's landscape presents a variety of surface erosion elements, witnesses of major planetary transformations suffered by Mars during the past 3 billion years. While the wind and sand-blasting erosion are the most recent causes of the surface erosion at Gale Crater, leading to the smoothing, thinning, exfoliation and piercing of various rock layers, other geological formations such as alluvial fans, moat areas, gravel sediments, round shaped mounds and toadstool formations demonstrate that liquid water was vigorously shaping the surface of Mars billions of years ago. In such a context, the study of tafoni formations revealed during Curiosity's trek from Bradbury Landing through the Glenelg area of Gale Crater, will help advance the understanding of the Martian past and present environment, providing scenarios for the evolution of the Red Planet. The presentation contains various images of tafoni samples from Mars and Earth, explaining by similitude presumptive weathering mechanisms on Mars.
NASA Astrophysics Data System (ADS)
Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu
2016-04-01
Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes, the ratio of the dismantled volume vs. initial volume ranges between 5 to 30 % and up to almost 40 % if volumes removed by landslides are considered. The most preserved volcano is the New Mikeno erupted inside the landslide having affected the older stage of this volcano, whereas the most dismantled one is the Sabinyo volcano. The three-pointed star-like erosion pattern with main valleys having more or less the same orientation, which was observed on four volcanoes, may point to a strong constraint of the erosion processes by the regional tectonic pattern.
Can we manipulate root system architecture to control soil erosion?
NASA Astrophysics Data System (ADS)
Ola, A.; Dodd, I. C.; Quinton, J. N.
2015-09-01
Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.
Rock fragment movement in shallow rill flow - A laboratory study
NASA Astrophysics Data System (ADS)
Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.
2014-05-01
Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.
Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion.
Zhuo, Shengnan; Yan, Xu; Liu, Dan; Si, Mengying; Zhang, Kejing; Liu, Mingren; Peng, Bing; Shi, Yan
2018-01-01
Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn 3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion after lignocellulose breakdown via other physicochemical methods. Nonetheless, phenyl or phenoxy radicals were used by laccase and manganese peroxidase in B-6 for lignin attack or lignin depolymerization. These particular mediators released from the recalcitrance network of lignocellulose openings are important for the efficacy of this bacterial pretreatment. Our findings thus offer a novel perspective on the effective design of biological pretreatment methods for lignocellulose.
Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow
NASA Astrophysics Data System (ADS)
Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min
2018-04-01
The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.
Dust storms on Mars: Considerations and simulations
NASA Technical Reports Server (NTRS)
Greeley, R.; White, B. R.; Pollack, J. B.; Iverson, J. D.; Leach, R. N.
1977-01-01
Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel, an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other conditions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion.
NASA Astrophysics Data System (ADS)
Godin, E.; Fortier, D.
2011-12-01
Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.
NASA Astrophysics Data System (ADS)
Foster, M.; Whipple, K. X.; Heimsath, A. M.; Jungers, M.
2014-12-01
Soil thickness plays an essential role in hydrology, ecology, biogeochemistry, and erosion and transport processes at the Earth's surface. Controls on soil production rate set this important characteristic, however, relative roles of these controls have not been quantitatively assessed. I take advantage of uniform lithology and climate on anenigmatic perched, low-relief high elevation landscape in the Pinaleno Mountains in southeastern Arizona to examine controls of formation and preservation of the upper, low-relief soil mantled landscape. This landscape is sharply bounded on all sides by steep, rugged terrain where soil cover is patchy but pervasive. Knickpoints appear along channel profiles around the edges of the low-relief landscape, suggesting a transient response to some tectonic disturbance, either due to rock uplift and basin subsidence during Basin and Range tectonic forcing, or more recent base-level drop in adjacent drainage systems. Slow erosion rates recently measured along the flanks of this range support the hypothesis that this upper transient surface has been preserved after a late Miocene-Pliocene basin and range disturbance that has since been followed by slow topographic decay. To shed light on the processes driving weathering, soil production and erosion in this landscape that maintains steep, rocky catchments only below knickpoints on channels draining the upper low-relief landscape, we utilize high-resolution soil thickness measurements coupled with terrestrial cosmogenic nuclide soil production rate measurements. In order to determine soil thicknesses at the high-resolution scale useful to describe hillslope process, we utilize shallow seismic survey data, calibrated by soil pit measurements of soil down through saprolite and fractured bedrock. Broadly applicable, these high-resolution soil thickness measurements coupled with soil production and erosion rate data can be useful disentangle relationships among catchment-mean erosion rate, mean soil thickness, and soil production efficiency.
NASA Astrophysics Data System (ADS)
Kim, J. K.; Kim, M. S.; Yang, D. Y.
2017-12-01
Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.
2013-09-01
A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.
Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils
NASA Astrophysics Data System (ADS)
Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf
2010-05-01
Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.
The evolving science of hydrogeomorphology encompasses the interaction of water with landforms in time and space. This includes the processes of surface and mass erosion as well as the effects of land management. These hydrogeomorphic processes and management effects are examined...
NASA Astrophysics Data System (ADS)
Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.
2013-04-01
Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.
Can we manipulate root system architecture to control soil erosion?
NASA Astrophysics Data System (ADS)
Ola, A.; Dodd, I. C.; Quinton, J. N.
2015-03-01
Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We clearly demonstrate the importance of root system architecture for the control of soil erosion. We also demonstrate that some plant species respond to nutrient enriched patches by increasing lateral root proliferation. The soil response to root proliferation will depend upon its location: at the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff and thus erosion; whereas at depth local increases in shear strength may reinforce soils against structural failure at the shear plane. Additionally, in nutrient deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilising nutrient placement at depth may represent a potentially new, easily implemented, management strategy on nutrient poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen
2003-01-01
Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.
Wind tunnel simulation of Martian sand storms
NASA Technical Reports Server (NTRS)
Greeley, R.
1980-01-01
The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2014-12-01
Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.
NASA Astrophysics Data System (ADS)
Rijsdijk, K. F.; Seijmonsbergen, A. C.; Kamminga, T.; Koon, A.; Assenjee, A.; Goolaup, P.
2009-04-01
Economic and agricultural growth on Mauritius has resulted in severe environmental pressure during the last decades. Forest fragmentation (>98%), agricultural intervention, prolonged bare soil periods and changing soil properties in combination with a short rainy cyclone season has led to an increase in surface erosion processes and loss of soil fertility. The sensitivity to soil erosion depends on spatial differences in surface conditions. To reveal hot spots of erosion, the Revised Universal Soil Loss Equation (RUSLE) model was applied for the whole of Mauritius (scale 1:50 000) through ArcGIS algorithms. Although RUSLE is not designed to calculate monthly potential erosion we demonstrate it may indicate realistic spatiotemporal patterns. Subannual soil loss values in 2005 and averaged for a 30 yrs period between 1978-2008, were reclassified into six potential soil erosion categories, from very low to extremely high. In 2005 peaks in potential erosion values in February and March (>1.5t ha-1 month-1) coincide with the cyclone season and very low potential soil loss values from October through December (<0.05t ha-1 month-1) relate to the dry season, which confirms the influence of the R-factor. The calculated values and patterns of potential soil erosion hot spots compare realistically with available soil loss data for various land cover units. Hotspots that would otherwise masked by the annual mean of the annual based RUSLE equation. The outcome provide essential subannual spatiotemporal information to identify areas with increased vulnerability to soil erosion that should prioritized for taking effective measures against future soil loss. In a monocrop setting subannual RUSLE analyses can provide regional and temporal foci to base agrodiversity strategies upon. Further it helps to identify vulnerable spots in buffer zones of threatened ecosystems.
Insights into lateral marsh retreat mechanism through localized field measurements
NASA Astrophysics Data System (ADS)
Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H.
2016-02-01
Deterioration of salt marshes may be due to several factors related to increased anthropic pressure, sea level rise, and erosive processes. While salt marshes can reach equilibrium in the vertical direction, adapting to sea level rise, they are inherently unstable in the horizontal direction. Marsh boundaries are characterized by scarps with bare sediment below the vegetated surface layer that can be easily removed by wave-induced erosion. In this work, we explore the different mechanisms involved in the erosion of marsh borders through the interpretation of field data. The analysis is based on a systematic field monitoring of a salt marsh in the Venice Lagoon subject to lateral erosion. Measurements included horizontal retreat of the scarp at various locations and wave height in front of the marsh during three storm surges. Continuous erosion and mass failures alternated during the observed period, leading to an average retreat up to 80 cm/yr. The data, collected roughly every month for 1.5 year, indicate that the linear relation that links the observed erosion rate to the impinging wave power exhibits a larger slope than that already estimated in literature on the basis of long-term surveys. Moreover, an increase in the gradient of erodibility is detected along the marsh scarp, due to the combined action of soil strengthening by vegetation on the marsh surface and the impact of wave breaking at the bank toe, which promote cantilever failures and increase the lateral erosion rate.
ERIC Educational Resources Information Center
Cheek, Kim A.
2013-01-01
Earth's surface is constantly changing. Weathering, erosion, and deposition break down Earth materials, transport those materials, and place them in new locations. Children see evidence of these processes all around them. The sidewalk or playground surface cracks and has plants growing in it. Pieces of a rock wall or the sides of a building…
NASA Astrophysics Data System (ADS)
DeLong, Stephen B.; Youberg, Ann M.; DeLong, Whitney M.; Murphy, Brendan P.
2018-01-01
Flooding and erosion after wildfires present increasing hazard as climate warms, semi-arid lands become drier, population increases, and the urban interface encroaches farther into wildlands. We quantify post-wildfire erosion in a steep, initially unchannelized, 7.5 ha headwater catchment following the 2011 Horseshoe 2 Fire in the Chiricahua Mountains of southeastern Arizona. Using time-lapse cameras, rain gauges, and repeat surveys by terrestrial laser scanner, we quantify the response of a burned landscape to subsequent precipitation events. Repeat surveys provide detailed pre-and post-rainfall measurements of landscape form associated with a range of weather events. The first post-fire precipitation led to sediment delivery equivalent to 0.017 m of erosion from hillslopes and 0.12 m of erosion from colluvial hollows. Volumetrically, 69% of sediment yield was generated from hillslope erosion and 31% was generated from gully channel establishment in colluvial hollows. Processes on hillslopes included erosion by extensive shallow overland flow, formation of rills and gullies, and generation of sediment-laden flows and possibly debris flows. Subsequent smaller rain events caused ongoing hillslope erosion and local deposition and erosion in gullies. Winter freeze-thaw led to soil expansion, likely related to frost-heaving, causing a net centimeter-scale elevation increase across soil-mantled slopes. By characterizing landscape form, the properties of near-surface materials, and measuring both precipitation and landscape change, we can improve our empirical understanding of landscape response to environmental forcing. This detailed approach to studying landscape response to wildfires may be useful in the improvement of predictive models of flood, debris flow and sedimentation hazards used in post-wildfire response assessments and land management, and may help improve process-based models of landscape evolution.
DeLong, Stephen B.; Youberg, Ann M.; DeLong, Whitney M.; Murphy, Brendan P.
2018-01-01
Flooding and erosion after wildfires present increasing hazard as climate warms, semi-arid lands become drier, population increases, and the urban interface encroaches farther into wildlands. We quantify post-wildfire erosion in a steep, initially unchannelized, 7.5 ha headwater catchment following the 2011 Horseshoe 2 Fire in the Chiricahua Mountains of southeastern Arizona. Using time-lapse cameras, rain gauges, and repeat surveys by terrestrial laser scanner, we quantify the response of a burned landscape to subsequent precipitation events. Repeat surveys provide detailed pre-and post-rainfall measurements of landscape form associated with a range of weather events. The first post-fire precipitation led to sediment delivery equivalent to 0.017 m of erosion from hillslopes and 0.12 m of erosion from colluvial hollows. Volumetrically, 69% of sediment yield was generated from hillslope erosion and 31% was generated from gully channel establishment in colluvial hollows. Processes on hillslopes included erosion by extensive shallow overland flow, formation of rills and gullies, and generation of sediment-laden flows and possibly debris flows. Subsequent smaller rain events caused ongoing hillslope erosion and local deposition and erosion in gullies. Winter freeze-thaw led to soil expansion, likely related to frost-heaving, causing a net centimeter-scale elevation increase across soil-mantled slopes. By characterizing landscape form, the properties of near-surface materials, and measuring both precipitation and landscape change, we can improve our empirical understanding of landscape response to environmental forcing. This detailed approach to studying landscape response to wildfires may be useful in the improvement of predictive models of flood, debris flow and sedimentation hazards used in post-wildfire response assessments and land management, and may help improve process-based models of landscape evolution.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
A fast, parallel algorithm to solve the basic fluvial erosion/transport equations
NASA Astrophysics Data System (ADS)
Braun, J.
2012-04-01
Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.
Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations
NASA Astrophysics Data System (ADS)
Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.
2017-12-01
The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by comparing with other soil erosion models. The model performed well when the average soil particle size is relatively large. The performance of the soil erosion model has been further validated by comparing with selected experimental datasets from the literature.
Erosion in radial inflow turbines. Volume 4: Erosion rates on internal surfaces
NASA Technical Reports Server (NTRS)
Clevenger, W. B., Jr.; Tabakoff, W.
1975-01-01
An analytic study of the rate at which material is removed by ingested dust impinging on the internal surfaces of a typical radial inflow turbine is presented. Results show that there are several regions which experience very severe erosion loss, and other regions that experience moderate levels of erosion loss: (1) the greatest amount of material loss occurs on the trailing edges of the nozzle blades where very high velocity, moderate angle impacts occur. The tip regions of ductile materials are also subjected to serious levels of erosion loss; (2) moderate amounts of erosion occur near the end of the scroll and on a few of the nozzle blades near this location. Results are presented in the form of surface contours that exist on the scroll and blade surfaces after continuous particulate ingestion with time.
Mass Loss of Coal Particles Burning in Fluidized Bed
NASA Astrophysics Data System (ADS)
Pełka, Piotr
2017-06-01
In this work many conclusions resulting from research carried out on the coal combustion process of the chosen coal type and its accompanying erosion in a two-phase flow of inert material have been presented. The purpose of this flow was to present a model of the conditions of the central and upper zone of the combustion chamber of the fluidized boiler. In the opinion of many authors (Basu, 1999; Chirone et al., 1991), the erosion process results from the contact of a fuel particle with particles of inert material that is responsible for generating fine fuel particles of less than 100 mm. If the particles are in the upper zone of the boiler where there is oxygen deficit, they can increase the loss of incomplete combustion substantially. The results of research do not confirm this common thesis, but rather indicate that the process of comminution that results from erosion under oxidative conditions contributes to the increase of substantial mass loss of a coal particle, however the increased mass loss of particle during combustion is first and foremost due to the whole process of removal of ash from the reactionary surface of a fuel particle. Nevertheless, in the conditions of oxygen deficit the comminution of particles as a result of the erosion process is negligible
Protective effect of zinc-hydroxyapatite toothpastes on enamel erosion: An in vitro study.
Poggio, Claudio; Gulino, Chiara; Mirando, Maria; Colombo, Marco; Pietrocola, Giampiero
2017-01-01
The aim of the present study was to test the impact of different toothpastes with Zinc-Hydroxyapatite (Zn-HAP) on preventing and repairing enamel erosion compared to toothpastes with and without fluoride. The following four toothpastes were tested: two toothpastes with Zn-HAP, one toothpaste with fluoride and one toothpaste without fluoride. An additional control group was used in which enamel specimens were not treated with toothpaste. Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. Enamel hardness, after the erosive challenge and toothpaste treatment was monitored using surface micro-hardness measurements. As expected, repeated erosive challenge by a soft drink for total of 8 min significantly reduced enamel surface hardness (ANOVA, p < 0.05). No re-hardening of the surface softened enamel was observed in the group treated with fluoride-free toothpaste. Surface hardness of the softened enamel increased when the specimens were treated with the fluoride toothpaste and the two toothpastes with Zn-HAP ( p < 0.05). Toothpaste with Zn-HAP resulted in significant enamel remineralisation of erosively challenged enamel, indicating that these toothpastes could provide enamel health benefits relevant to enamel erosion. Key words: Enamel, erosion, remineralization, surface hardness, toothpastes.
Nosrati, Kazem
2013-04-01
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.
NASA Astrophysics Data System (ADS)
Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.
2014-12-01
Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Bastola, S.; Bras, R. L.; Noto, L. V.; Istanbulluoglu, E.
2016-12-01
Gully erosion was the primary driver of land degradation in Southern Piedmont, site of the Calhoun Critical Zone Observatory (CCZO), during the cotton farming era. Understanding of underlying erosion processes is essential to develop a model useful in assessing the effectiveness of gully stabilization and soil erosion control. Development of process-based gully erosion models is difficult because observations of the formation and progression of gullies are limited. In this study, analytic formulations of the two dominant gullying processes, namely, plunge pool erosion and slab failure, are utilized to simulate the gullying processes in the 4 km2 Holcombe's Branch watershed. Gully features (e.g., depth and area) automatically extracted from high-resolution LiDAR DEM are used to calibrate parameters of the gully model. The statistics of the spatial extent of simulated gullies are in close agreement with the gullies obtained from the LiDAR map. Simulations initialized with contemporary topography suggest that few gully complexes have the potential to progress further. Several simulations are used to evaluate the effectiveness of various gully treatment measures, such as backfilling of gullies and revegetation, by initializing the model with the historical topographical surface. Simulation results show that in the short-term, the reshaping of the topographical surface by backfilling and compacting gullies is effective in slowing down the growth of gullies (e.g., backfilling decreased the spatial extent of gullies by 20-38% and decreased the average depth by 0.005-8%). Revegetation, however, is a more effective approach to stabilizing gullies which would, otherwise, expand if left barren. Moreover simulations suggest that the gully stabilization effect of revegetation can lead to a 23-70% reduction of gully area and 1.3-45% reduction in the depth of gullies, depending on forest type and management practices.
Postfire soil erosion processes are conditioned by aridity
NASA Astrophysics Data System (ADS)
Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi
2017-04-01
In this work we have studied the runoff and rate of erosion in severely burnt Mediterranean shrublands of southern Spain by simulating high intensity rainfall over a period of 5 years. We have also observed temporal changes in soil surface properties (0-10 mm) of two scrub areas in different years. In both cases, surface runoff increased appreciably during the first year after the fire, compared to burning bushes in more rainy areas. Although differences in the rate of infiltration (determined by a mini-disk infiltrometer with ethanol, to avoid the effect of hydrophobicity) were observed, the increase in the rate of runoff was related to the increase of water repellency in the first millimeters of the soil surface, regardless of other physical properties (texture or percentage of rock fragments), chemical (acidity, organic matter content) or fire severity. Sediment loss was also exceptionally high during the first year. Then, runoff and soil loss rates were progressively approaching the values observed in the control zones. However, most of the physical and chemical properties of the soil after the fire did not change during the post-fire period, suggesting erosion of sediment depletion. No large differences were observed between the study points along the precipitation gradient, suggesting that, independently of this and other factors, the impact of high severity fires can be long over time. Although other authors have shown that relatively small changes in aridity have great impacts on erosion processes, this does not seem to be valid in the case of high severity fires in Mediterranean areas.
NASA Astrophysics Data System (ADS)
Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.
2016-01-01
Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.
Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.
2017-01-01
Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.
Global rainfall erosivity assessment based on high-temporal resolution rainfall records.
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano
2017-06-23
The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.
Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.
NASA Astrophysics Data System (ADS)
McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard
2016-04-01
In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a modelled pre-erosion surface (CloudCompare, Golden Software Surfer). We discuss the survey performance achieved in terms of the time required and the precisions delivered, and consider the practical application of SfM-MVS for long-term upland erosion monitoring.
Banasiak, Robert; Verhoeven, Ronny; De Sutter, Renaat; Tait, Simon
2005-12-01
The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.
The Explorer's Guide to Impact Craters
NASA Technical Reports Server (NTRS)
Chuang, F.; Pierazzo, E.; Osinski, G.
2005-01-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.
The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Valiev, R. R.
2018-04-01
In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material's behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples' surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.
NASA Astrophysics Data System (ADS)
McShane, Gareth; Farrow, Luke; Morgan, David; Glendell, Miriam; James, Mike; Quinton, John; Evans, Martin; Anderson, Karen; Rawlins, Barry; Quine, Timothy; Debell, Leon; Benaud, Pia; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rickson, Jane; Brazier, Richard
2015-04-01
Quantifying soil loss through erosion processes at a high resolution can be a time consuming and costly undertaking. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods for collecting suitable topographic measurements via remote sensing. The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, to quantify dynamic processes, such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, both processed using structure-from-motion (SfM) 3D reconstruction software. Compared to other established techniques, such as expensive TLS, SfM offers a potentially low-cost alternative for the reconstruction of 3D high-resolution micro-topographic models from photographs taken with consumer grade cameras. However, whilst an increasing number of research papers examine the relative merits of these novel versus more established survey techniques, no study to date has compared both ground-based and aerial SfM photogrammetry with TLS scanning across a range of scales (from m2 to 16ha). The evaluation of these novel low cost techniques is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. Volumetric estimates of soil loss are quantified using the digital surface models (DSMs) derived from the data from each technique and subtracted from a modelled pre-erosion surface. The results from each technique are compared. The UAV was able to capture information over a wide area, a range of altitudes and angles over the study area. Combined with automated SfM-based processing, this technique was able to produce rapid orthophotos to support ground-based data acquisition, as well as a DSM for volume loss measurement in larger features. However, the DSM of erosion features lacked the detail of those captured using the ground-based methods. Terrestrial laser scanning provided detailed, accurate, high density measurements of the ground surface over long (100s m) distances, but size and weight of the instrument made it difficult to use in mountainous environments. In addition, deriving a reliable bare-earth digital terrain model (DTM) from TLS was at times problematic due to the presence of tall shrubby vegetation. Ground-based photography produced comparable data sets to terrestrial laser scanning and was the most useful for characterising small and difficult to view features. The relative advantages, limitations and cost-effectiveness of each approach at 5 upland sites across the UK are discussed.
NASA Astrophysics Data System (ADS)
Allen, C. D.
2006-12-01
In 1993 long-term research began on the runoff and erosion dynamics of a pinyon-juniper woodland hillslope at Bandelier National Monument in northern New Mexico (USA). In the 1.09 ha Frijolito watershed, erosion has been continuously studied at 3 spatial scales: 1 square meter, about 1000 square meters, and the entire watershed. This site is currently representative of degraded woodlands of pinyon (Pinus edulis) and one-seed juniper (Juniperus monosperma) in this region, exhibiting marked connectivity of exposed bare soil interspaces between tree canopy patches and obvious geomorphic signs of accelerated soil erosion (e.g., pedestalling, actively expanding rill networks). Ecological and land use histories show that this site has undergone a number of dramatic ecohydrological shifts since ca. C.E. 1850, transitioning from: 1) open ponderosa pine (Pinus ponderosa) overstory with limited pinyon-juniper component and substantial herbaceous understory that supported surface fires and constrained soil erosion, to; 2) ponderosa pine with reduced herbaceous cover due to livestock grazing after ca.1870, resulting in collapse of the surface fire regime and increased establishment of young pinyon and juniper trees, to; 3) mortality of all of the ponderosa pine during the extreme drought of the 1950s, leaving eroding pinyon-juniper woodland, to; 4) mortality of all mature pinyon at or above sapling size during the 2002-2003 drought, with juniper now the only dominant woody species. Detailed measurements since 1993 document high rates of soil erosion (> 2.75 Mg/ha/year on average at the watershed scale) that are rapidly stripping the local soils. Long-term observations are needed to distinguish short-term variability from longer term trends, as measurements of runoff and erosion show extreme variability at multiple time scales since 1993. The multi-scale erosion data from the Frijolito watershed reveal little dropoff in erosion rate (g/meter-squared) between the one meter-square scale and the 1.09 ha scale, in sharp contrast to the expected pattern observed at a nearby (7 km) relatively stable woodland watershed (cf. Wilcox et al. 2003). These results have important implications for modeling of soil erosion, highlighting the importance of including long-term field data and ecohydrological factors, particularly spatial patterns of canopy and intercanopy surface cover that are key determinants of scale-dependent erosion rates.
Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds
NASA Astrophysics Data System (ADS)
Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip
2017-06-01
The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.
Rainfall and Erosion Response Following a Southern California Wildfire
NASA Astrophysics Data System (ADS)
Wohlgemuth, P. M.; Robichaud, P. R.; Brown, R. E.
2011-12-01
Wildfire renders landscapes susceptible to flooding and accelerated surface erosion. Consumption of the vegetation canopy and the litter or duff layer removes resistances to the agents of erosion. Moreover, changes in soil properties can restrict infiltration, increasing the effectiveness of the driving forces of rainsplash and surface runoff. However, it is unclear whether surface erosion varies linearly with rainfall amounts and intensities or if thresholds exist beyond which erosion increases in a different trajectory. The Santiago Fire burned over 11000 ha in northeastern Orange County, California in October 2007. The burn area consists of a deeply dissected mountain block underlain by sedimentary and metamorphic rocks that produce erosive soils. Regional erosion and sediment transport is triggered by winter cyclonic storms. Recording raingages were deployed across a vertical gradient within the burned area and silt fences were constructed to monitor hillslope erosion. During the study period initial storms were characterized by moderate rainfall (amounts less than 25 mm with peak 10-minute intensities of less than 10 mm per hr). Surface erosion was concomitantly minor, less than 0.4 Mg per ha. However, an unusual thunderstorm in late May 2008 produced spatially variable rainfall and consequent surface erosion across the study area. The raingage at a lower elevation site measured 41.4 mm of rain for this storm with a peak 10-minute intensity of 81 mm per hr. The silt fences were overtopped, yielding a minimum value of 18.5 Mg per ha. In contrast, the raingage at an upper elevation site recorded 19.6 mm of rain with a peak 10-minute intensity of 50 mm per hr. Surface erosion in the higher elevation sites was negligible (0.1 Mg per ha). Subsequently, individual storms exceeded 100 mm of rainfall but peak 10-minute intensities never approached those of the May thunderstorm. Erosion was moderate (mostly less than 5 Mg per ha), albeit influenced by the presence of regrowing vegetation. We therefore believe that surface erosion in the immediate postfire environment is more related to storm intensity than rainfall amount. Even allowing for site-to-site differences and site changes over the first postfire winter season, it is clear that some threshold in erosion response was crossed at the lower elevation sites during the May 2008 thunderstorm. We suggest that this represents a threshold of peak 10-minute intensity of between 50 and 80 mm per hr.
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Noto, L. V.; Istanbulluoglu, E.
2018-05-01
Gully erosion was evidence of land degradation in the southern Piedmont, site of the Calhoun Critical Zone Observatory (CCZO), during the cotton farming era. Understanding of the underlying gully erosion processes is essential to develop gully erosion models that could be useful in assessing the effectiveness of remedial and soil erosion control measures such as gully backfilling, revegetation, and terracing. Development and validation of process-based gully erosion models is difficult because observations of the formation and progression of gullies are limited. In this study, analytic formulations of the two dominant gullying processes, namely, plunge pool erosion and slab failure, are utilized to simulate the gullying processes in the 4-km2 Holcombe's Branch watershed. In order to calibrate parameters of the gully erosion model, gully features (e.g., depth and area) extracted from a high-resolution LiDAR map are used. After the calibration, the gully model is able to delineate the spatial extent of gullies whose statistics are in close agreement with the gullies extracted from the LiDAR DEM. Several simulations with the calibrated model are explored to evaluate the effectiveness of various gully remedial measures, such as backfilling and revegetation. The results show that in the short-term, the reshaping of the topographical surface by backfilling and compacting gullies is effective in slowing down the growth of gullies (e.g., backfilling decreased the spatial extent of gullies by 21-46% and decreased the average depth of gullies by up to 9%). Revegetation, however, is a more effective approach to stabilizing gullies that would otherwise expand if no gully remedial measures are implemented. Analyses of our simulations show that the gully stabilization effect of revegetation varies over a wide range, i.e., leading to 23-69% reduction of the spatial extent of gullies and up to 45% reduction in the depth of gullies, depending on the selection of plant species and management practices.
Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.
2016-01-01
The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.
Erosion over time on severely disturbed granitic soils: a model
W. F. Megahan
1974-01-01
A negative exponential equation containing three parameters was derived to describe time trends in surface erosion on severely disturbed soils. Data from four different studies of surface erosion on roads constructed from the granitic materials found in the Idaho Batholith were used to develop equation parameters. The evidence suggests that surface "armoring...
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
NASA Astrophysics Data System (ADS)
D'Alpaos, A.; Carniello, L.; Rinaldo, A.
2013-12-01
Wind-wave induced erosion processes play a critical role on the morphodynamic evolution of shallow tidal landscapes. Both in the horizontal and in the vertical planes, patterns of wind-induced bottom shear stresses contribute to control the morphological and biological features of the tidal landscape, through the erosion of tidal-flat surfaces and of salt-marsh margins, the disruption of the polymeric microphytobenthic biofilm, and the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analysis of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon shows that the interarrival times of erosion events have decreased through the last two centuries, whereas the intensities of erosion events have increased. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.
NASA Astrophysics Data System (ADS)
Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn
2015-04-01
Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.
NASA Astrophysics Data System (ADS)
Jakab, Gergely; Hegyi, István; Fullen, Michael; Szalai, Zoltán
2017-04-01
In addition to the serious environmental hazard soil erosion forms and reforms the soil surface. The intensity of these degrading and burial processes is highly variable, it fluctuates in time. One can only get a single view of the current status by the spatial analysis of soil depth and properties. Present study aims to estimate the dynamics of the former driving processes in detail those resulted the recent form of the landscape. Soil samples were taken along two intensively cultivated catenas from the surface to the parent material in vertical and from the ridge to the toe in horizontal direction. A non disturbed soil profile under continuous forest was also sampled as the initial, control status. Soil organic carbon (SOC), total nitrogen (TN), carbon nitrogen ratio (C/N), 13C and 15N stable isotope ratios were measured. Soil redistribution was supposed to be started right after the forest clearance 300 years before. Results indicated that the whole amount of solum (1 m) was taken by erosion in some local spots. Most of the soil loss was deposited at the toe, while vertical SOC and δ13C distributions (peaks) in the deposited profiles indicated the original soil surface at various depth. SOC peak in the profile indicated deeper in situ solum compared to the vertical peaks of the C/N and δ13C values. Presumably the layer of the highest SOC values in the sedimentation profiles is also formed by the deposition of initial soil loss from the upper parts of the catena. At this initial phase the selectivity of erosion was supposed to be quite effective for SOC that resulted the highest value. Therefore C/N and δ13C peaks fingerprint the original, in situ soil surface more adequately. The most effective erosion and deposition period was immediately after forest clearance. This emphasized that continuous tillage erosion had subordinate role compared to that of relief. Moreover, SOC erosion and burial in the present case was a sink in terms of mitigation of the atmospheric carbon content. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledged.
Planetary Surface-Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.
2013-09-01
Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.
Evaluating RGB photogrammetry and multi-temporal digital surface models for detecting soil erosion
NASA Astrophysics Data System (ADS)
Anders, Niels; Keesstra, Saskia; Seeger, Manuel
2013-04-01
Photogrammetry is a widely used tool for generating high-resolution digital surface models. Unmanned Aerial Vehicles (UAVs), equipped with a Red Green Blue (RGB) camera, have great potential in quickly acquiring multi-temporal high-resolution orthophotos and surface models. Such datasets would ease the monitoring of geomorphological processes, such as local soil erosion and rill formation after heavy rainfall events. In this study we test a photogrammetric setup to determine data requirements for soil erosion studies with UAVs. We used a rainfall simulator (5 m2) and above a rig with attached a Panasonic GX1 16 megapixel digital camera and 20mm lens. The soil material in the simulator consisted of loamy sand at an angle of 5 degrees. Stereo pair images were taken before and after rainfall simulation with 75-85% overlap. Acquired images were automatically mosaicked to create high-resolution orthorectified images and digital surface models (DSM). We resampled the DSM to different spatial resolutions to analyze the effect of cell size to the accuracy of measured rill depth and soil loss estimations, and determined an optimal cell size (thus flight altitude). Furthermore, the high spatial accuracy of the acquired surface models allows further analysis of rill formation and channel initiation related to e.g. surface roughness. We suggest implementing near-infrared and temperature sensors to combine soil moisture and soil physical properties with surface morphology for future investigations.
Provision of wear resistance and fatigue strength of surfaces during electroerosive processing
NASA Astrophysics Data System (ADS)
Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.
2018-03-01
This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.
2017-12-01
Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.
NASA Astrophysics Data System (ADS)
Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.
2009-12-01
Regional low-relief surfaces have long been recognized as key features to understanding the response of landscapes to surface uplift. The canonical models of low-relief surface formation involve an extended period of tectonic quiescence during which, the fluvial systems bevel the landscape to a uniform elevation. This quiescent period is punctuated by a period(s) of surface uplift, which causes fluvial incision thereby abandoning the low-relief landscape. Over time, as rivers continue to incise in response to changes in sediment supply, river discharge, and base level fall, pieces of the relict low-relief landscape are left as abandoned remnants stranded above active channels. By determining the age of abandoned surfaces, previous workers have identified the onset of a change in the tectonic or climatic setting. One key assumption of this model is that the low-relief surfaces are truly abandoned with no current processes further acting on the surface. To improve our understanding of the underlying assumptions and problems of low-relief surface formation, we have used detailed mapping and absolute dating with cosmogenic 10Be to investigate surfaces in the hyperarid forearc region of southern Peru between ~14° and 18°S. Within this region, marine terraces and strath terraces reflect Plio-Pleistocene surface uplift, and together with the hyperarid climate, ongoing surface uplift provides a perfect natural laboratory to examine the processes affecting low-relief surface abandonment and preservation. With our new chronology we address: 1) the space and time correlations of surfaces, 2) incision rates of streams in response to base-level fall, and 3) surface erosion rates. Multiple surfaces have yielded 10Be surface abandonment ages that span >2 Ma - ~35 ka. While most of the surfaces we have dated are considerably less than 1 Ma, we have located two surfaces which are likely older than 2 Ma and constrain regional erosion rates to be <0.5mm/yr. Where the surface age and elevation relative to current base level are known, we can estimate incision (uplift) rates of ~0.1-0.3mm/yr. These ages, erosion rates, and uplift rates suggest that the hyperarid forearc landscape has been recently modified (surface uplift, climate events), while paradoxically, very little erosion is occurring on these surfaces. The four surface abandonment age clusters we observe correlate with cold wet periods preceding deglaciation on the Altiplano. Thus, we suggest that the recorded chronology of Pleistocene surface abandonment results from the interaction and linkage of surface uplift in the forearc, to specific climatic periods in the high Andes that produce high discharge through the fluvial system.
NASA Astrophysics Data System (ADS)
Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara
2017-10-01
The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil erosion experiments conducted in the laboratory.
Earth Surface Processes, Landforms and Sediment Deposits
NASA Astrophysics Data System (ADS)
Bridge, John; Demicco, Robert
Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.
Post-fire mulching and soil hydrological response
NASA Astrophysics Data System (ADS)
Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi
2017-04-01
In general, one of the major threats after a forest fire is the increased erosion. This can occur due to the erosive impact of rainfall after a drastic reduction of vegetation cover or to changes in soil surface properties that contribute to enhanced runoff flow. There is a consensus among researchers that one of the best ways to reduce this risk is to apply a mulch cover (straw, shredded wood or other materials) immediately after fire. In this study, we studied the effectiveness of various types of mulch materials for the reduction of runoff and soil loss during the first 3 years after a forest fire, in plots of different sizes, with special attention to water repellency and physical properties of the soil surface. In general, straw mulch reduced both runoff and erosion rate more than other treatments. However, the effect was much more important on larger plots. This may be due to specific processes and impacts on sediment connectivity and surface water flow. Therefore, the effect of the scale seems to be an important factor in the management of burnt soils.
Erosion of phosphor bronze under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1986-01-01
Experimental investigations on erosion of a copper alloy, phosphor bronze, under cavitation attack in a viscous mineral oil are presented. The details of pit formation and erosion were studied using scanning electron microscopy. The mean depth of penetration, the variations in surface roughness, and the changes in erosion pit size were studied. Cavitation pits formed initially over the grain boundaries while the surface grains were plastically deformed. Erosion of surface grains occurred largely by ductile fracture involving microcracking and removal in layers. The ratio h/a of the depth h to half width a of cavitation pits increased with test duration from 0.047 to 0.55.
Safi, E.; Valles, G.; Lasa, A.; ...
2017-03-27
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safi, E.; Valles, G.; Lasa, A.
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less
NASA Astrophysics Data System (ADS)
Safi, E.; Valles, G.; Lasa, A.; Nordlund, K.
2017-05-01
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this work, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First, we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300-800 K) and impact energy (10-200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. These findings correlate well with different experiments performed at JET and PISCES-B devices.
When do glaciated landscapes form?
NASA Astrophysics Data System (ADS)
Koppes, M. N.
2015-12-01
Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.
NASA Astrophysics Data System (ADS)
Sheshukov, A. Y.; Karimov, V. R.
2017-12-01
Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture conditions. Results showed significant differences in performance of management practices for initially dry and wet soils. Application of no-till and conversion to grassland significantly reduced the erosion rates compared to conventional tillage for small runoff events, while the efficiency was reduced for large events.
Slurry erosion induced surface nanocrystallization of bulk metallic glass
NASA Astrophysics Data System (ADS)
Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao
2018-05-01
Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.
NASA Technical Reports Server (NTRS)
Gold, T.
1979-01-01
Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.
Epic Erosion Along Newly Constructed Roads in Yunnan, China
NASA Astrophysics Data System (ADS)
Sidle, R. C.; Kono, Y.; Yamaguchi, T.
2007-05-01
The recent expansion and construction of new mountain roads in northwestern Yunnan Province, China, poses problems related to landslides and surface erosion that are impacting the headwaters of three great river systems: the Salween, Mekong, and Yangtze. Many of these newer roads are simply blasted into unstable hillsides with virtually no attention paid to optimal road location, construction practices, and erosion control measures. During summer 2006, seven people traveling in a minivan along a newly constructed road to Weixi were killed by a landslide. A survey conducted along a this 23.5 km road section (4 yr old) in the headwaters of the Mekong River revealed epic levels of landslides and surface erosion. Based on a preliminary survey, the road erosion was categorized as moderately severe, severe, or very severe, and a representative 0.75 to 0.90 km stretch of road was then surveyed for both landslide (based on dimensional analysis) and surface erosion (based on soil pedestal height). Average mass wasting rates (9608 t ha-1yr-1) along the road were more than 13 times higher than surface erosion (720 t ha-1yr-1), even though surface erosion rates are among the highest reported for disturbed lands. Dry ravel constituted a minor proportion of the mass wasting: 4% in the severe erosion section of the road and 0.5-0.6% in the moderately severe and very severe sections. For the very severe erosion road section (6 km long), estimated landslide erosion alone was > 33,000 t ha- 1yr-1, 620 times the average landslide erosion from forest roads built in unstable terrain in western North America. These levels of landslide erosion along the Weixi road are the highest ever documented and are somewhat representative of erosion along new mountain roads in this region of Yunnan. Sediment produced from roads is highly connected to fluvial systems; we estimate that 80-95% of the direct sediment contributions into the headwaters of these rivers are attributable to road erosion and landslides. These epic sediment loads represent cumulative effects that may persist in these important transnational rivers for decades.
Exposure age and erosional history of an upland planation surface in the US Atlantic Piedmont
Stanford, S.D.; Seidl, M.A.; Ashley, G.M.
2000-01-01
The upland planation surface in the Piedmont of central New Jersey consists of summit flats, as much as 130 km2 in area, that truncate bedding and structure in diabase, basalt, sandstone, mudstone and gneiss. These flats define a low-relief regional surface that corresponds in elevation to residual hills in the adjacent Coastal Plain capped by a fluvial gravel of late Miocene age. A Pliocene fluvial sand is inset 50 m below the upland features. These associations suggest a late Miocene or early Pliocene age for the surface. To assess exposure age and erosional history, a 4??4 m core of clayey diabase saprolite on a 3 km2 remnant of the surface was sampled at six depths for atmospherically produced cosmogenic 10Be. The measured inventory, assuming a deposition rate of 1??3 x 106 atoms cm-2 a-1, yields a minimum exposure age of 227 000 years, or, assuming continuous surface erosion, a constant erosion rate of 10 m Ma-1. Because the sample site lies about 60 m above the aggradation surface of the Pliocene fluvial deposit, and itself supports a pre-Pliocene fluvial gravel lag, this erosion rate is too high. Rather, episodic surface erosion and runoff bypassing probably have produced an inventory deficit. Reasonable estimates of surface erosion (up to 10 m) and bypassing (up to 50 per cent of total precipitation) yield exposure ages of as much as 6??4 Ma. These results indicate that (1) the surface is probably of pre-Pleistocene age and has been modified by Pleistocene erosion, and (2) exposure ages based on 10Be inventories are highly sensitive to surface erosion and runoff bypassing. Copyright (C) 2000 John Wiley and Sons, Ltd.
Simulation of Surface Erosion on a Logging Road in the Jackson Demonstration State Forest
Teresa Ish; David Tomberlin
2007-01-01
In constructing management models for the control of sediment delivery to streams, we have used a simulation model of road surface erosion known as the Watershed Erosion Prediction Project (WEPP) model, developed by the USDA Forest Service. This model predicts discharge, erosion, and sediment delivery at the road segment level, based on a stochastic climate simulator...
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
Mars - A planet with a complex surface evolution
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Coradini, M.
1975-01-01
The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.
The role of fire on soil mounds and surface roughness in the Mojave Desert
Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra
2013-01-01
A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements. Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate. We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Since both absolute gravity and time are known in an absolute sense to 1 part in 10(exp 10) it is possible to estimate gravity with a precision of 0.1 mu gal. Known systematic errors reduce the measurement to an absolute uncertainty of 6 mu gal. The free air gradient at the point of measurement is typically about 3 mu gals/cm. At Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4 mu gals/cm.
NASA Astrophysics Data System (ADS)
Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.
2010-02-01
A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.
NASA Astrophysics Data System (ADS)
Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît
2015-06-01
Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.
Tracking spatial variation in river load from Andean highlands to inter-Andean valleys
NASA Astrophysics Data System (ADS)
Tenorio, Gustavo E.; Vanacker, Veerle; Campforts, Benjamin; Álvarez, Lenín; Zhiminaicela, Santiago; Vercruysse, Kim; Molina, Armando; Govers, Gerard
2018-05-01
Mountains play an important role in the denudation of continents and transfer erosion and weathering products to lowlands and oceans. The rates at which erosion and weathering processes take place in mountain regions have a substantial impact on the morphology and biogeochemistry of downstream reaches and lowlands. The controlling factors of physical erosion and chemical weathering and the coupling between the two processes are not yet fully understood. In this study, we report physical erosion and chemical weathering rates for five Andean catchments located in the southern Ecuadorian Andes and investigate their mutual interaction. During a 4-year monitoring period, we sampled river water at biweekly intervals, and we analyzed water samples for major ions and suspended solids. We derived the total annual dissolved, suspended sediment, and ionic loads from the flow frequency curves and adjusted rating curves and used the dissolved and suspended sediment yields as proxies for chemical weathering and erosion rates. In the 4-year period of monitoring, chemical weathering exceeds physical erosion in the high Andean catchments. Whereas physical erosion rates do not exceed 30 t km-2 y-1 in the relict glaciated morphology, chemical weathering rates range between 22 and 59 t km-2 y-1. The variation in chemical weathering is primarily controlled by intrinsic differences in bedrock lithology. Land use has no discernible impact on the weathering rate but leads to a small increase in base cation concentrations because of fertilizer leaching in surface water. When extending our analysis with published data on dissolved and suspended sediment yields from the northern and central Andes, we observe that the river load composition strongly changes in the downstream direction, indicating large heterogeneity of weathering processes and rates within large Andean basins.
NASA Astrophysics Data System (ADS)
Balu, Prabu; Hamid, Syed; Kovacevic, Radovan
2013-11-01
Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.
NASA Astrophysics Data System (ADS)
Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas
2017-04-01
Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.
NASA Astrophysics Data System (ADS)
Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.
2006-12-01
The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.
Sublimation as a Landform-Shaping Process on Pluto
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; White, O. L.; Umurhan, O. M.; Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Spencer, J. R.; Stern, S. A.;
2016-01-01
Several icy-world surfaces in the solar system exhibit sublimation-driven landform modification erosion, condensation, and mass wasting [1]. In addition to the obvious role of gravity, mass wasting can work in conjunction with internal disaggregation of a landform's relief-supporting material through the loss (or deteriorating alteration) of its cohesive matrix. To give a conspicuous example, Callisto's landscape exhibits widespread erosion from sublimation erosion of slopes, which results in smooth, undulating, low albedo plains composed of lag deposits, with isolated high albedo pinnacles perched on remnants of crater rims due to the re-precipitation of ice on local cold traps [2, 3, 4]. Sublimation-driven mass wasting was anticipated on Pluto prior to the encounter (see refs in [5]). Here we report on several landscapes on Pluto we interpret to be formed, or at least heavily modified, by sublimation erosion.
Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading
NASA Astrophysics Data System (ADS)
Sternai, Pietro; Caricchi, Luca; Castelltort, Sebastien
2016-04-01
Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking solid-Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated without considering the additional continental unloading associated with erosion. Current datasets relating to the evolution of erosion rates are typically limited by temporal resolutions that are too low or span too short time intervals to allow for direct comparisons between the contributions from ice melting and erosion to continental unloading at the timescale of the late Pleistocene glacial cycles. Yet, they provide a fundamental observational basis on which to calibrate numerical predictions. Here, we present and discuss numerical results involving synthetic but realistic topographies, ice caps and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading, sub-continental decompression melting and magma productivity. Thus, the timing and magnitude of deglaciation and erosion must be characterized if the forcing of climate change on the continental magmatic/volcanic activity is to be extracted from the remnants of eroded volcanic centers. Our study represents an additional step towards a more general understanding of the links between a changing climate, glacial processes and the melting of the solid Earth.
Landform Erosion and Volatile Redistribution on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.
2009-01-01
We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].
Cheung, A; Zid, Z; Hunt, D; McIntyre, J
2005-12-01
Tooth erosion is a problem for professional wine tasters (exogenous erosion from frequent exposure to wine acids) and for people with gastro oesophageal reflux disease (GORD) and bulimia who experience frequent reflux of gastric contents into the mouth (endogenous erosion from mainly HCl). The objective in this study was to determine whether plaque/pellicle could provide teeth with any protection from two common erosive acids, using an in vivo-in vitro technique. Tiles of human tooth enamel and root surfaces were prepared from six extracted, unerupted third molar teeth and sterilized. Mandibular stents were prepared for six volunteer subjects and the tiles bonded to the buccal flanges of these stents. They were worn initially for three days to permit a layer of pellicle and plaque to form over the tile surfaces, and for a further 10 days of experimentation. Following cleaning of the plaque/ pellicle layer from the tiles on the right side flange, all the tiles were submerged in either 0.06M HCl or white wine for an accumulated time of 600 and 1500 minutes, respectively. Depths of erosion were determined using light microscopy of sections of the enamel and root tiles. SEM of the lesion surfaces was carried out to investigate the nature of erosive damage and of plaque/pellicle remnants. Retained plaque was found to significantly inhibit dental erosion on enamel, from contact with both HCl and wine, compared with that resulting following its removal. However, it was found to provide no significant protection on root surfaces. SEM analysis of the tile surfaces revealed marked etching of enamel on the cleaned surfaces, and considerable alteration to the appearance of remaining plaque and pellicle on most surfaces. Within the limitations of numbers of specimens, dental plaque/pellicle provided a significant level of protection to tooth enamel against dental erosion from simulated gastric acids and from white wine, using an in vivo-in vitro model. It was unable to provide any significant protection to root surfaces from these erosive agents. Possible reasons for this difference are explored.
NASA Astrophysics Data System (ADS)
Skov, Daniel S.; Egholm, David L.
2016-04-01
Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at the same time the channel bed in the lower parts become shielded from incision by a perpetual sediment cover and incision stalls. These differences cause transients of erosion to migrate through the drainage network. Beer, Alexander R., and J. M. Turowski. "Bedload transport controls bedrock erosion under sediment-starved conditions." Earth Surface Dynamics 3.3 (2015): 291-309. Herman, Frédéric, et al. "Worldwide acceleration of mountain erosion under a cooling climate." Nature 504.7480 (2013): 423-426. Lease, Richard O., and Todd A. Ehlers. "Incision into the Eastern Andean plateau during Pliocene cooling." Science 341.6147 (2013): 774-776. Molnar, Peter. "Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?." Annu. Rev. Earth Planet. Sci. 32 (2004): 67-89. Reusser, Luke J., et al. "Rapid Late Pleistocene incision of Atlantic passive-margin river gorges." Science 305.5683 (2004): 499-502. Sklar, Leonard S., and William E. Dietrich. "Sediment and rock strength controls on river incision into bedrock." Geology 29.12 (2001): 1087-1090. Sklar, Leonard S., and William E. Dietrich. "A mechanistic model for river incision into bedrock by saltating bed load." Water Resources Research 40.6 (2004).
NASA Astrophysics Data System (ADS)
Dauteuil, Olivier; Bessin, Paul; Guillocheau, François
2015-03-01
We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.
Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind
NASA Astrophysics Data System (ADS)
Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.
2015-04-01
Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhav Rao Gonvindaraju
1999-10-18
Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Bras, Rafael L.
2005-06-01
Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.
Wang, Zhixiang; Jones, Gordon R.; Spencer, Joseph W.; Wang, Xiaohua; Rong, Mingzhe
2017-01-01
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA SF6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric SF6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated. PMID:28272295
Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe
2017-03-06
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.
From tectonics to tractors: New insight into Earth's changing surface
NASA Astrophysics Data System (ADS)
Larsen, I. J.
2017-12-01
Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally-induced topsoil loss in the Midwestern U.S., and discuss the economic and carbon cycle implications. These findings - in some cases unanticipated and exciting - highlight opportunities that stem from using a multi-faceted approach to gain new insights into the physical and chemical processes that modify Earth's changing surface.
Biophysical response of dryland soils to rainfall: implications for wind erosion
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Strong, C. L.; Aubault, H.
2016-12-01
Dryland soils can be highly susceptible to wind erosion due to low vegetation cover. The formation of physical and biological soil crusts between vascular plants can exert some control on the soil surface erodibility. The development of these crusts is highly dependent on rainfall which causes sediment compaction and aggregate breakdown, and triggers photosynthetic activity and an increase soil organic matter within biological soil crusts. Using controlled field experiments, this study tests how biological soil crusts in different dryland geomorphic settings respond to various rainfall amounts (0, 5 or 10 mm) and how this in turn affects the resistance of soils to wind erosion. Results show that 10 mm of rainfall triggers more intense photosynthetic activity (high fluorescence) and a greater increase in extracellular polysaccharide content in biological crusts than 5 mm of rainfall but that the duration of photosynthetic activity is comparable for both quantities of rain. These biological responses have little impact on surface resistance, but results show that soils are more susceptible to wind erosion after rainfall events than in their initial dry state. This unexpected result could be explained by the detachment of surface sediments by raindrop impact and overland flow. The study highlights the complexity of soil erodibility at small scale which is driven by rain, wind and crust, and a necessity to understand how the spatial heterogeneity of crust and their ecophysiology alters small scale processes.
Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow
DeLong, Stephen B.; Prentice, Carol S.; Hilley, George E.; Ebert, Yael
2012-01-01
Remote mapping and measurement of surface processes at high spatial resolution is among the frontiers in Earth surface process research. Remote measurements that allow meter-scale mapping of landforms and quantification of landscape change can revolutionize the study of landscape evolution on human timescales. At Mill Gulch in northern California, USA, an active earthflow was surveyed in 2003 and 2007 by airborne laser swath mapping (ALSM), enabling meter-scale quantification of landscape change. We calculate four-year volumetric flux from the earthflow and compare it to long-term catchment average erosion rates from cosmogenic radionuclide inventories from adjacent watersheds. We also present detailed maps of changing features on the earthflow, from which we can derive velocity estimates and infer dominant process. These measurements rely on proper digital elevation model (DEM) generation and a simple surface-matching technique to align the multitemporal data in a manner that eliminates systematic error in either dataset. The mean surface elevation of the earthflow and an opposite slope that was directly influenced by the earthflow decreased 14 ± 1 mm/yr from 2003 to 2007. By making the conservative assumption that these features were the dominant contributor of sediment flux from the entire Mill Gulch drainage basin during this time interval, we calculate a minimum catchment-averaged erosion rate of 0·30 ± 0·02 mm/yr. Analysis of beryllium-10 (10Be) concentrations in fluvial sand from nearby Russian Gulch and the South Fork Gualala River provide catchment averaged erosion rates of 0·21 ± 0·04 and 0·23 ± 0·03 mm/yr respectively. From translated landscape features, we can infer surface velocities ranging from 0·5 m/yr in the wide upper ‘source’ portion of the flow to 5 m/yr in the narrow middle ‘transport’ portion of the flow. This study re-affirms the importance of mass wasting processes in the sediment budgets of uplifting weak lithologies.
Laboratory studies of charged particle erosion of SO2 ice and applications to the frosts of Io
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Brown, W. L.; Augustyniak, W. M.; Johnson, R. E.; Armstrong, T. P.
1982-01-01
The removal and/or redistribution of SO2 frosts on the surface of the first Galilean satellite, Io, can occur through the erosion of these frosts by the magnetosphere particle environment of the satellite. The energy, species, and temperature dependence of the erosion rates of SO2 ice films by charged particles have been studied in laboratory experiments. Rutherford backscattering and thin film techniques are used in the experiments. The ice temperature is varied between about 10 K and the sublimation temperature. The erosion rates are found to have a temperature-independent and a temperature-dependent regime and to be much greater, for 10-2000 keV ions, than those predicted by the usual sputtering process. The laboratory results are used together with measured magnetosphere particle fluxes in the vicinity of Io to estimate the erosion rates of SO2 ice films from the satellite and implications therefrom on an SO2 atmosphere on Io.
Kendrick, Katherine J.; Camille Partin,; Graham, Robert C.
2016-01-01
Rock surface erosion by wildfire is significant and widespread but has not been quantified in southern California or for chaparral ecosystems. Quantifying the surface erosion of bedrock outcrops and boulders is critical for determination of age using cosmogenic radionuclide techniques, as even modest surface erosion removes the accumulation of the cosmogenic radionuclides and causes significant underestimate of age. This study documents the effects on three large granitic boulders following the Esperanza Fire of 2006 in southern California. Spalled rock fragments were quantified by measuring the removed rock volume from each measured boulder. Between 7% and 55% of the total surface area of the boulders spalled in this single fire. The volume of spalled material, when normalized across the entire surface area, represents a mean surface lowering of 0.7–12.3 mm. Spalled material was thicker on the flanks of the boulders, and the height of the fire effects significantly exceeded the height of the vegetation prior to the wildfire. Surface erosion of boulders and bedrock outcrops as a result of wildfire spalling results in fresh surfaces that appear unaffected by chemical weathering. Such surfaces may be preferentially selected by researchers for cosmogenic surface dating because of their fresh appearance, leading to an underestimate of age.
NASA Astrophysics Data System (ADS)
Ristic, R.; Radic, B.; Vasiljevic, N.; Nikic, Z.; Malusevic, I.
2012-04-01
The construction or improvement of Serbian ski resorts provoked intensive erosion processes, sediment transport and hydrological responses due to land use changes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) were followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). These activities put a lot of pressure on the environment, including the removal or compaction of the surface soil layer, the reduction of the infiltration capacity, the destruction or degradation of the vegetation cover, the intensifying of the surface runoff and the development of erosion processes. The most affected ski runs were surveyed (scale 1:1000) and all damages were mapped and classified during the summers of 2007-2010. The development of rills and gullies was measured at experimental plots (100x60 m), and the survey data were entered into a GIS application. The area sediment yield and the intensity of erosion processes were estimated on the basis of the "Erosion Potential Method"(EPM). The changes in hydrological conditions were estimated by comparing the computed values of maximal discharges in the conditions before and after massive activities in the ski resorts, as well as by using the local hydrological records. The determination of maximal discharges was achieved using a combined method: the synthetic unit hydrograph (maximum ordinate of unit runoff, qmax) and the Soil Conservation Service (SCS, 1979) methodology (deriving effective rainfall, Pe, from total precipitation, Pb). The determination was performed for AMC III (Antecedent Moisture Conditions III: high water content in the soil and significantly reduced infiltration capacity). The computations of maximal discharges were based on the regional analysis of lag time (Ristić, 2003), the internal daily distribution of precipitation (Janković,1994) and the classification of soil hydrologic groups for runoff curve numbers (CN) determination (Đorović, 1984). The applied restoration and erosion control measures have stopped the degradation processes and helped to rehabilitate the appearance and functions of the landscape. The findings of this survey highlight the importance of considering geomorphic and hydrological factors under the conditions of significant changes in land usage. The results of this investigation can contribute to the improvement of planning processes and the implementation of development projects in ski areas.
NASA Astrophysics Data System (ADS)
Paisani, Julio Cesar; Pontelli, Marga Eliz; de Barros Corrêa, Antônio Carlos; Rech Rodrigues, Rafaela Ana
2013-12-01
Approximately five years ago, the Working Group on Ancient Surfaces and Long-Term Landscape Evolution was created to raise planed surfaces in Brazil, Argentina, Uruguay and Paraguay with the aim of establishing regional correlations of planed surfaces after the formation of the Gondwanan rocks in South America. In Brazil, planed surfaces were recognized and classified between 1940 and 1960 and were given various designations and different age estimates based on regional morphostratigraphic correlation attempts. In the last twenty years, the assumptions of those attempts began to be questioned on a large scale by studies in which empirical observations, mediated by the use of new methodologies, did not indicate such a direct relationship between the paleosurfaces and their long-term erosive origin. We identified eight staggered surfaces in the Araucárias Plateau, Southern Brazil, between the Iguazu and Uruguay Rivers. Initially, we attempted to understand the planed surfaces as classic pediplains, but we found weathering profiles of different thicknesses with oxisols downstream of the knickpoints, instead of correlative deposits. We understand these surfaces as planed surfaces or paleosurfaces without erosive interrelation between them, resulting from the action of etchplanation processes. This idea contradicts the classical perspective of Brazilian geomorphology that attributes the cyclical alternation of Quaternary paleoclimates to the evolution of the model of the subtropical landscapes. The hypothesis begins from the assumption that the model evolved from the binomial morphogenesis/pedogenesis in phase with the glacial/interglacial cycles. In this study, we attempt to demonstrate that the climactic controls on morphogenesis/pedogenesis are mediated by the responses of the weathered mantle on the scale of its chemical and microstructural organization, which does not always validate previous theoretical assumptions. In this article, we use the chemical composition, weathering indices, iron, mineralogy of the clays and micromorphology of the oxisols of surface 6 to propose a first approximation of the evolution of the planed surfaces regarding etchplanation in southern Brazil. The surfaces' pedogeochemical and micromorphological properties reveal the following: a) hydrolysis is the main process of geochemical loss of geomorphic surfaces; b) geochemical erosion is more intense in the glacial periods, when the decreased temperature favors slower weathering in a more continuous manner; c) the pedobioclimatic imbalance generated by the input in interglacial periods favors mechanical erosion of the ground surface due to the substitution of the structure in blocks by microaggregates, which reduces the cohesiveness of the mantles of alteration; d) morphogenesis is most important in interglacial periods, promoting the truncation of oxisols; e) the oxisols from the remnants of the planed surfaces are actually renewed profiles younger than 500 Ky BP; f) models of long-term chemical denudation must take into consideration short-duration changes (≤25 Ky) in the pedogeochemical and structural processes of the solum.
Cinque, Kathy; Jayasuriya, Niranjali
2010-12-01
To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.
NASA Astrophysics Data System (ADS)
Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan
2014-05-01
In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift, the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. Although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse or the Himalaya depends on the erosion rate which is invisible to geodetic measurements. A way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. Essentially gravity should change precisely in accord with a change in elevation of the point in a free air gradient if erosion equals uplift rate. A measurement of absolute gravity was made simultaneously with measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change in velocity per unit distance of a falling corner cube in a vacuum. Time is measured with an atomic clock and the unit distance corresponds to the wavelength of an iodine stabilized laser. An experiment undertaken in the Himalaya in 1991 provide a site description also with a instrument description.
Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain
NASA Astrophysics Data System (ADS)
Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.
2018-01-01
A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.
Interrill sediment enrichment of P and C from organically and conventionally farmed silty loams
NASA Astrophysics Data System (ADS)
Kuhn, N. J.
2012-04-01
Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomen on involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P)and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows that the net P export from organically farmed soils is not reduced by a similar degree than soil erosion compared to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate fragments control P and C enrichment. Due to complex and dynamic interactions between P, SOC and interrill erosional processes, the nutrient and C status of sediments cannot be predicted based on soil P content, SOC or interrill erodibility alone. Clearly, further research on crust formation and the composition of fragments generated by aggregate breakdown and their transport in raindrop impacted flow under different rainfall conditions is required. Attaining this critical missing knowledge would enable a comprehensive assessment of the benefits of organic farming on nutrient budgets, off-site effects of interrill erosion and its role in the global C cycle.
Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion
NASA Technical Reports Server (NTRS)
Hamed, Awate; Tabakoff, Widen; Swar, Rohan; Shin, Dongyun; Woggon, Nthanial; Miller, Robert
2013-01-01
A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single stage turbine. In the experimental investigation, tests of particle surface interactions were performed in specially designed tunnels to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity and temperature. In the computational simulations, an Euler-Lagrangian two stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDF) were developed to represent experimentally-based correlations for particle surface interaction models which were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics after each surface impact. The experimentally based erosion UDF model was used to predict the TBC erosion rates on the turbine blade surfaces based on the computed statistical data of the particles impact locations, velocities and angles relative to the blade surface. Computational results are presented for the predicted TBC blade erosion in a single stage commercial APU turbine, for a NASA designed automotive turbine, and for the NASA turbine scaled for modern rotorcraft operating conditions. The erosion patterns in the turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5 percent of the stator blade span representing the flow cooling the combustor liner.
Solid spherical glass particle impingement studies of plastic materials
NASA Technical Reports Server (NTRS)
Rao, P. V.; Young, S. G.; Buckley, D. H.
1983-01-01
Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Present-day uplift of the western Alps.
Nocquet, J-M; Sue, C; Walpersdorf, A; Tran, T; Lenôtre, N; Vernant, P; Cushing, M; Jouanne, F; Masson, F; Baize, S; Chéry, J; van der Beek, P A
2016-06-27
Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.
Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England
NASA Astrophysics Data System (ADS)
Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.
2017-12-01
Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.
Compressor cascade performance deterioration caused by sand ingestion
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Balan, C.
1982-01-01
Airfoil cascade erosion and performance deterioration was investigated in a gas particle cascade tunnel. The cascade blades were made of 2024 aluminum alloy and the solid particles used were quartz sand. The results of the experimental measurements are presented to show the change in the blade surface erosion, pressure distribution and the total loss coefficient with erosion. The surface quality of the blades exposed to particulate flows are changing the material surfaces. With time, the surface roughness increases and leads to a decrease in engine performance. It was found that the surface roughness values increase asymptotically to a maximum value with increased erosion. The experimental results indicate that the roughness parameters correlate well against the mass of particles impacting unit area of the surface. Such a correlation is useful in aerodynamics and performance computations in turbomachinery.
Antecedent moisture content and soil texture effects on infiltration and erosion
NASA Astrophysics Data System (ADS)
Mamedov, A. I.; Huang, C.; Levy, G. J.
2006-12-01
Water infiltration, seal formation, runoff and erosion depend on the soil's inherent properties and surface conditions. Most erosion models consider only soil inherent properties (mainly texture) in assessing infiltration and erosion without consideration of spatial and temporary variation in the surface condition, particularly the antecedent moisture content. We studied the interaction of two different surface conditions, i.e. antecedent moisture content (AMC) and aging (timing after wetting) on infiltration (IR), seal formation (runoff generation) and erosion in four soils varying from loam to clay. Soil samples were packed in erosion box and wetted with different amounts of water (0, 1, 2, 3, 4, 6, 8, or 16 mm) to obtain a wide moisture range (i.e., pF 0-6.2, or from air dry to full saturation). The boxes were put in plastic bags and allowed to age for 0.01, 1, 3, or 7 days. Then the soil in the erosion box exposed to 60 mm of rain. At no aging final IR of soils did not change significantly, but runoff volume (a measure for seal development) and soil loss increased with an increase in AMC mainly because of aggregate breakdown. For any given aging, the highest IR and smallest runoff volume and soil loss were obtained at the intermediate AMC levels (pF 2.4-4.2, between wilting point and field capacity). For instance, in the clay soil to which 3 mm of water (pF~2.7) was added, as aging increased from one to seven days, final IR increased from 5.3 to 7.9 mm h-1, while runoff and soil loss decreased from 34 mm to 22 mm, and from 630 to 360 g m2 respectively. At this AMC range, increasing aging time resulted in up to 40% increase in IR and decrease in runoff or soil loss. This tendency significantly more pronounced for clay soils because water-filled pores in the clay fabric were considered active in the stabilization process and the development of cohesive bonds between and within particles during the aging period. The results of this study are important for soil erosion modeling. In order to improve the prediction capabilities of erosion models, temporal and spatial variation of soil moisture content (AMC, wetting and aging) prior to erosive rainstorms should be considered and or incorporated. In addition, management practices could be adapted to diminish the severe soil moisture variation, where ever possible, (minimum till or no-till with known residue) to maintain the soil surface at a desired AMC level prior to expected rainstorms in order to decrease soil susceptibility to seal formation, runoff and soil loss.
Erosion Dynamics during Phoenix Landing on Mars
NASA Astrophysics Data System (ADS)
Mehta, M.; Renno, N. O.; Grover, R. M.; Sengupta, A.
2008-12-01
Unique from past planetary surface missions, the Phoenix spacecraft used pulsed retro-rockets to land on the northern polar region of Mars. Mainly viscous shear erosion caused by descent jets had minimally altered previous landing sites. Here we report novel simulations of surface modification by pulsed thruster plumes, and assess the erosion processes leading to the first exposure of ice below the Martian regolith. At Mars atmospheric pressure, we find that the repetitive injection of high pressure gas into porous soil by the pulsed engines leads to the propagation of cyclic radial shock waves within the soil. We show that these shock waves cause 'explosive erosion' and excavate the regolith down to the ice table in a radius of ~75 cm under the lander. Moreover, coarse and fine particles are ejected outward to a radius of 3 m and ~20 m from the thrusters, respectively. The results of our simulations are confirmed by images of the Phoenix landing site and provide important insights into the geology, glaciology and geomorphology of the landing site. These erosion dynamics may lead to ammonia hydrates and ammonium salts, but may demonstrate limited soil contamination. By comparing results from the landing site and our simulations, we come to the initial conclusions that the Martian arctic regolith has high porosity and permeability, mixture of fines with coarse particles, and exhibit cohesive stresses greater than 0.9 kPa.
Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey
NASA Astrophysics Data System (ADS)
Kashtanov, A. N.; Vernyuk, Yu. I.; Savin, I. Yu.; Shchepot'ev, V. V.; Dokukin, P. A.; Sharychev, D. V.; Li, K. A.
2018-04-01
Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.
Domination of hillslope denudation by tree uprooting in an old-growth forest
NASA Astrophysics Data System (ADS)
Phillips, Jonathan D.; Šamonil, Pavel; Pawlik, Łukasz; Trochta, Jan; Daněk, Pavel
2017-01-01
Razula forest preserve in the Carpathian Mountains of the Czech Republic is an unmanaged forest that has not been logged or otherwise anthropically disturbed for at least 83 years, preceded by only infrequent selective logging. We examined this 25 ha area to determine the dominant geomorphological processes on the hillslope. Tree uprooting displaces about 2.9 m3 of soil and regolith per year, representing about 1.5 uprooted trees ha- 1 yr- 1, based on forest inventory records dating back to 1972, and contemporary measurements of displaced soil and pit-mound topography resulting from uprooting. Pits and mounds occupy > 14% of the ground surface. Despite typical slope gradients of 0.05 mm- 1, and up to 0.41, little evidence of mass wasting (e.g., slump or flow scars or deposits, colluvial deposits) was noted in the field, except in association with pit-mound pairs. Small avalanche and ravel features are common on the upslope side of uproot pits. Surface runoff features were rare and poorly connected, but do include stemwash erosion associated with stemflow. No rills or channels were found above the valley bottom area, and only small, localized areas of erosion and forest litter debris indicating overland flow. Where these features occurred, they either disappeared a short distance downslope (indicating infiltration), or indicate flow into tree throw pits. Surface erosion is also inhibited by surface armoring of coarse rock fragments associated with uprooting, as well as by the nearly complete vegetation and litter cover. These results show that the combination of direct and indirect impacts of tree uprooting can dominate slope processes in old-growth, unmanaged forests. The greater observed expression of different hillslope processes in adjacent managed forests (where tree uprooting dynamics are blocked by management activities) suggests that human interventions can change the slope process regime in forest ecosystems.
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-05-16
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-01-01
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced. PMID:29772661
Gastroesophageal Reflux is Not Associated with Dental Erosion in Children
Wild, Yvette K.; Heyman, Melvin B.; Vittinghoff, Eric; Dalal, Deepal H.; Wojcicki, Janet M.; Clark, Ann L.; Rechmann, Beate; Rechmann, Peter
2011-01-01
Background & Aims Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. Methods We performed a cross-sectional study of 59 children (ages 9–17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, nor was the gastroenterologist aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans and Lactobacilli. Results Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion, by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Conclusions Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. PMID:21820389
Gastroesophageal reflux is not associated with dental erosion in children.
Wild, Yvette K; Heyman, Melvin B; Vittinghoff, Eric; Dalal, Deepal H; Wojcicki, Janet M; Clark, Ann L; Rechmann, Beate; Rechmann, Peter
2011-11-01
Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. We performed a cross-sectional study of 59 children (ages, 9-17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, and the gastroenterologist was not aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans, and Lactobacilli. Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges
NASA Astrophysics Data System (ADS)
Xie, H.; Ding, R.; Kirschner, A.; Chen, J. L.; Ding, F.; Mao, H. M.; Feng, W.; Borodin, D.; Wang, L.
2017-09-01
Tungsten erosion and re-deposition at the upper outer divertor of the Experimental Advanced Superconducting Tokamak has been modelled using the 3D Monte Carlo code ERO. The measured divertor plasma condition in attached L mode discharges with upper single null configuration has been used to build the background plasma in the simulations. The tungsten gross erosion rate is mainly determined by carbon impurity in the background plasma. Increasing carbon concentration can first increase and afterwards suppress the tungsten erosion rate. Taking into account the material mixing surface model, the influence of eroded particles returning to the surface on sputtering has been studied. Sputtering by eroded particles returning to the surface can significantly enhance the gross erosion by reduction of the carbon ratio within the surface interaction layer and by increasing the erosion rate due to sputtering by both eroded tungsten and carbon particles. Modelling indicates that carbon deposition occurs on the dome plate and part of the vertical plate close to the dome plate, whereas tungsten net erosion occurs on most of the vertical plate. The modelling results are in reasonable agreement with the experimental WI spectroscopy.
Seismic signature of turbulence during the 2017 Oroville Dam spillway erosion crisis
NASA Astrophysics Data System (ADS)
Goodling, Phillip J.; Lekic, Vedran; Prestegaard, Karen
2018-05-01
Knowing the location of large-scale turbulent eddies during catastrophic flooding events improves predictions of erosive scour. The erosion damage to the Oroville Dam flood control spillway in early 2017 is an example of the erosive power of turbulent flow. During this event, a defect in the simple concrete channel quickly eroded into a 47 m deep chasm. Erosion by turbulent flow is difficult to evaluate in real time, but near-channel seismic monitoring provides a tool to evaluate flow dynamics from a safe distance. Previous studies have had limited ability to identify source location or the type of surface wave (i.e., Love or Rayleigh wave) excited by different river processes. Here we use a single three-component seismometer method (frequency-dependent polarization analysis) to characterize the dominant seismic source location and seismic surface waves produced by the Oroville Dam flood control spillway, using the abrupt change in spillway geometry as a natural experiment. We find that the scaling exponent between seismic power and release discharge is greater following damage to the spillway, suggesting additional sources of turbulent energy dissipation excite more seismic energy. The mean azimuth in the 5-10 Hz frequency band was used to resolve the location of spillway damage. Observed polarization attributes deviate from those expected for a Rayleigh wave, though numerical modeling indicates these deviations may be explained by propagation up the uneven hillside topography. Our results suggest frequency-dependent polarization analysis is a promising approach for locating areas of increased flow turbulence. This method could be applied to other erosion problems near engineered structures as well as to understanding energy dissipation, erosion, and channel morphology development in natural rivers, particularly at high discharges.
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Jorns, Benjamin A.; Mikellides, Ioannis G.; Hofer, Richard R.
2015-01-01
NASA's Jet Propulsion Laboratory has been investigating the applicability of Aerojet Rocketdyne's XR-5 thruster, a 4.5 kW class Hall thruster, for deep-space missions. Major considerations for qualifying the XR-5 for deep-space missions are demonstration of a wide throttling envelope and a usable life capability in excess of 10,000 h. Numerical simulations with the 2-D axisymmetric code Hall2De are employed to inform the qualification process by assessing erosion rates at the thruster surfaces in a wide range of throttling conditions without the need for conducting costly endurance testing. In previous work at JPL by Jorns et al., the anomalous collision frequency distribution for 11 different throttling conditions of the XR-5 spanning 0.3-4.5 kW were identified based on probe measurements of the electron temperature in the near plume region. In this paper, we provide estimates for the erosion rates at the channel walls and pole covers for the same 11 conditions. Uncertainties in the plasma measurements and in the anomalous collision frequency distribution are addressed by determining upper and lower bounds of the erosion rates. Results suggest that erosion of the walls only occurs in the last 5% of the acceleration channel and the rate of such erosion decreases as the geometry of the thruster changes in time due to magnetic shielding. A quasi-zero-erosion state is eventually achieved in all the examined throttling conditions. Examination of the results for pole surface erosion and estimated cathode life indicates that the XR-5 propellant throughput capability will exceed 700 kg, which provides 50% margin over the usable throughput capability of 466 kg as already demonstrated in wear testing.
The effect of enamel proteins on erosion
NASA Astrophysics Data System (ADS)
Baumann, T.; Carvalho, T. S.; Lussi, A.
2015-10-01
Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur.
The effect of enamel proteins on erosion
Baumann, T.; Carvalho, T. S.; Lussi, A.
2015-01-01
Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur. PMID:26468660
NASA Astrophysics Data System (ADS)
Melo, Mário Sérgio de; Guimarães, Gilson Burigo; Chinelatto, Adilson Luiz; Giannini, Paulo César Fonseca; Pontes, Henrique Simão; Chinelatto, Adriana Scoton Antonio; Atencio, Daniel
2015-11-01
Karstification processes in sandstones of the Furnas Formation, Silurian to Devonian of the Paraná Basin, have been described since the mid-twentieth century. However, some geologists still doubt the idea of true karst in sandstones. Studies carried out in the Campos Gerais region, Paraná State, Southern Brazil, aimed at investigating the nature of erosion processes in Furnas Formation and the role of the dissolution in the development of their notorious erosive features and underground cavities. These studies have led to the recognition of dissolution macro to micro features ('furnas', caves, ponds, sinks, ruiniform relief on cliffs and rocky surfaces, grain corrosion, speleothems, mineral reprecipitation and incrustation). The analysis (scanning electron microscopy, energy dispersive spectrometry and x-ray diffractometry) of sandstones and their alterites has indicated significant dissolution of clay cement along with discrete quartz grain dissolution. This mesodiagenetic cement (kaolinite and illite) is dissolved and reprecipitated as clay minerals with poorly developed crystallinity along with other minerals, such as variscite and minerals of the alunite supergroup, suggesting organic participation in the processes of dissolution and incrustation. The mineral reprecipitation usually forms centimetric speleothems, found in cavities and sheltered rocky surfaces. The cement dissolution associated with other factors (fractures, wet weather, strong hydraulic gradient, antiquity of the landforms) leads to the rock arenisation, the underground erosion and the appearance of the karst features. Carbonate rocks in the basement may locally be increasing the karst forms in the overlying Furnas Formation. The recognition of the karst character of the Furnas Formation sandstones has important implications in the management of underground water resources (increasingly exploited in the region), in the use of the unique geological heritage and in the prevention of geo-environmental accidents resulting from underground erosion phenomena.
NASA Astrophysics Data System (ADS)
Ohya, K.; Tanabe, T.; Rubel, M.; Wada, M.; Ohgo, T.; Hirai, T.; Philipps, V.; Kirschner, A.; Pospieszczyk, A.; Huber, A.; Sergienko, G.; Brezinsek, S.; Noda, N.
2004-08-01
The erosion and deposition patterns on tungsten and tantalum test limiters exposed to the TEXTOR deuterium plasma containing a small amount of C impurity are simulated with the modified EDDY code. At the very top of the W and Ta limiters, there occurs neither erosion nor deposition, but the erosion proceeds slowly along the surface. When approaching the edge, the surface is covered by a thick C layer, which shows a very sharp boundary similar to the observation in surface measurements. In the erosion zone, the re-deposited carbon forms a W (Ta)-C mixed layer with small C concentration. Assumptions for chemical erosion yields of ˜0.01 for W and <0.005 for Ta fit the calculated widths of the deposition zone to the experimentally determined values. Possible reasons for the difference between W and Ta are discussed.
Ion beam methods applied to interior ballistic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niler, A.
1981-04-01
High temperature, pressure and velocity gases produced during the interior ballistic cycle of a gun firing are responsible for considerable damage to the steel surfaces of a gun bore. This damage is studied by exposing steel samples to the erosive flows of burning propellant gases in a modified 37mm gun chamber where pressures of 200 MPa and flame temperatures of 3000/sup 0/K are typical. Ion beam methods are used to characterize the composition of the steel surfaces by combined nuclear reaction (NR) and elastic backscattering (EBS) analysis and thin layer activation (TLA) is used to measure surface wear rates. Combinedmore » fits to the EBS and NR distributions yield concentrations and depth profiles of carbon, nitrogen and oxygen as well as iron and other heavier elements. Hydrogen concentrations have also been measured on some of the samples. The results of these experiments show the presence of two different erosion mechanisms. In one, the surface is softened by thermo-chemical processes prior to removal by the shear forces of the gas flow while in the other surface layer melting occurs prior to removal. TLA using the /sup 56/Fe(p,n)/sup 56/Co reaction has been used to measure wear from a 20 mm barrel and is being instrumented for larger barrels. EBS is being used to characterize the interfaces between steel substrates and coatings designed to reduce erosion.« less
Field wind tunnel testing of two silt loam soils on the North American Central High Plains
NASA Astrophysics Data System (ADS)
Scott Van Pelt, R.; Baddock, Matthew C.; Zobeck, Ted M.; Schlegel, Alan J.; Vigil, Merle F.; Acosta-Martinez, Veronica
2013-09-01
Wind erosion is a soil degrading process that threatens agricultural sustainability and environmental quality globally. Protecting the soil surface with cover crops and plant residues, practices common in no-till and reduced tillage cropping systems, are highly effective methods for shielding the soil surface from the erosive forces of wind and have been credited with beneficial increases of chemical and physical soil properties including soil organic matter, water holding capacity, and wet aggregate stability. Recently, advances in biofuel technology have made crop residues valuable feed stocks for ethanol production. Relatively little is known about cropping systems effects on intrinsic soil erodibility, the ability of the soil without a protective cover to resist the erosive force of wind. We tested the bare, uniformly disturbed, surface of long-term tillage and crop rotation research plots containing silt loam soils in western Kansas and eastern Colorado with a portable field wind tunnel. Total Suspended Particulate (TSP) were measured using glass fiber filters and respirable dust, PM10 and PM2.5, were measured using optical particle counters sampling the flow to the filters. The results were highly variable and TSP emission rates varied from less than 0.5 mg m-2 s-1 to greater than 16.1 mg m-2 s-1 but all the results indicated that cropping system history had no effect on intrinsic erodibility or dust emissions from the soil surfaces. We conclude that prior best management practices will not protect the soil from the erosive forces of wind if the protective mantle of crop residues is removed.
Erosion of iron-chromium alloys by glass particles
NASA Technical Reports Server (NTRS)
Salik, J.; Buckley, D. H.
1984-01-01
The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.
Restorative Rehabilitation of a Patient with Dental Erosion
AlShahrani, Mohammed Thamer; Alqarni, Mohammed
2017-01-01
Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition. PMID:28828189
Restorative Rehabilitation of a Patient with Dental Erosion.
AlShahrani, Mohammed Thamer; Haralur, Satheesh B; Alqarni, Mohammed
2017-01-01
Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.
RESTORATION EFFECTS ON N CYCLING POOLS AND PROCESSES
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that...
USDA-ARS?s Scientific Manuscript database
Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. Yet, because of difficulties in acquiring the data, most studies pay little attention to soil surface roughness. This is particularly true for soil erosion models which commonly don't...
Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP
NASA Astrophysics Data System (ADS)
Dun, Shuhui
Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.
NASA Astrophysics Data System (ADS)
Szabó, Judit Alexandra; Szabó, Boglárka; Centeri, Csaba; Józsa, Sándor; Szalai, Zoltán; Jakab, Gergely
2017-04-01
Soil surface conditions changes dynamically during a precipitation event. The changes involve compaction, aggregate detachment and of course transportation by runoff or drop erosion. Those processes together have an effect on the transport process of the soil particles and aggregates, and influences the roughness of the soil surface as well. How does surface roughness have an effect on the aggregate and particle size distribution of the sediment? How does the sediment connectivity change from precipitation event to precipitation event? Beside the previous questions on of the main aim of the present research is to apply rainfall simulators for the built-up of a complex approach, rather than to concentrate only on one of two factors. Hence four types of sample were collected during the simulation experiment sequences: 1) photos were taken about the surface before and after the rain, in order to build digital surface models; 2) all the runoff and eroded sediment was collected; 3) soil loss due to drop erosion was also sampled separately; and 4) undisturbed crust samples were collected for thin section analyses. Though the runoff ratio was smaller than what, the preliminary results suggest that the sediment connectivity covered bigger area on crusty surface, than on a rough one. These ambiguous data may be connected to the soil crust development. J. A. Szabó wish to acknowledge the support of NTP-NFTÖ-16-0203. G. Jakab wish to acknowledge the support of János Bolyai Fellowship.
Chosing erosion control nets. Can't you decide? Ask the lab.
NASA Astrophysics Data System (ADS)
Simkova, Jana; Jacka, Lukas
2015-04-01
Geotextiles (GTXs) have been used to protect steep slopes against soil erosion for about 60 years and many products have become available. The choice of individual product is always based on its ratio of cost versus effectiveness. Generally applicable recommendations for specific site conditions are missing and testing the effectiveness of GTXs in the field is time consuming and costly. Due to various site conditions, results of numerous case-studies cannot be generalized. One of the major and site-specific factors affecting the erosion process, and hence the effectiveness of GTXs, is the soil. This study aimed to determine the rate of influence of three natural erosion control nets on the volume and velocity of surface runoff caused by rainfall. The nets were installed on slope under laboratory conditions and then exposed to simulated rainfall. An impermeable plastic film was used as a substrate instead of soil to simulate non-infiltrating conditions. A comparison of the influence of tested GTX samples on surface runoff may indicate to their erosion control effect. Thus, the results could help with choosing a particular product. Under real conditions, the effect of erosion control nets would be increased by the infiltration capacity of the soil, equally for all samples. Therefore, the order of effectiveness of the samples should stay unchanged. To validate this theory, a field experiment was carried out where soil loss was recorded along with runoff characteristics. The data trends of discharge culmination under natural conditions were similar to trends under laboratory conditions and corresponded to soil loss records.
Fiore, J.; Pugin, A.; Beres, N.
2002-01-01
During the Wu??rmian glaciation, the Jura ice sheet covered the Joux Valley (Vaud, Switzerland). A geomorphological study reveals many drumlins in this valley. Some are composed of gravels and sand, others of till. Outcrops show that the surface of the sandy-gravel drumlins is a major and sharp erosion surface. Given the lack of shearing structures in sediments below this erosion level, its origin cannot be linked to ice action of the glacier. Very high-energy subglacial meltwater floods (jo??kulhlaups), probably due to the drainage of subglacial or supraglacial lakes, are the more likely cause of the erosion. Results of a ground penetrating radar (GPR) survey show the internal structure of one of these sandy-gravel drumlins to depth of 15 m. These GPR data, together with sedimentological observations, indicate that prior to erosion, subglacial sedimentation occurred in closed conduits (eskers) with strong and rapid flow variations. The sediments contain large chute-and-pool structures (high flow energy backset accretion) with dimensions comparable to the conduit width. Therefore, we interpret these sandy-gravel drumlins as portions of eskers, their present drumlin shape being the result of erosion by one or many jo??kulhlaups. The good preservation of the subglacial meltwater deposits is the result of the closed-basin geometry of the Joux Valley, which limited movement at the base of the glacier. This new contribution to the interpretation of the Joux Valley glacial features underlines the importance of meltwater in sedimentological processes under the Jura ice sheet.
Wang, Ping; Lin, Huan Cai; Chen, Jian Hong; Liang, Huan You
2010-08-12
Dental erosion has been investigated in developed and developing countries and the prevalence varies considerably in different countries, geographic locations, and age groups. With the lifestyle of the Chinese people changing significantly over the decades, dental erosion has begun to receive more attention. However, the information about dental erosion in China is scarce. The purpose of this study was to explore the prevalence of dental erosion and associated risk factors in 12-13-year-old school children in Guangzhou, Southern China. This cross-sectional survey was performed by two trained, calibrated examiners. A stratified random sample of 12-13-year-old children (774 boys and 725 girls) from 10 schools was examined for dental erosion using the diagnostic criteria of Eccles and the index of O'Sullivan was applied to record the distribution, severity, and amount of the lesions. Data on the socio-economic status, health behaviours, and general health involved in the etiology of dental erosion were obtained from a self-completed questionnaire. The analyses were performed using SPSS software. At least one tooth surface with signs of erosion was found in 416 children (27.3%). The most frequently affected teeth were the central incisors (upper central incisors, 16.3% and 15.9%; lower central incisors, 17.4% and 14.8%). The most frequently affected surface was the incisal or occlusal edge (43.2%). The loss of enamel contour was present in 54.6% of the tooth surfaces with erosion. Of the affected tooth surfaces, 69.3% had greater than one-half of the tooth surface was affected. The results from logistic regression analysis demonstrated that the children who were female, consumed carbonated drinks once a week or more, and those whose mothers were educated to the primary level tended to have more dental erosion. Dental erosion in 12-13-year-old Chinese school children is becoming a significant problem. A strategy of offering preventive care, including more campaigns promoting a healthier lifestyle for those at risk of dental erosion should be conducted in Chinese children and their parents.
2010-01-01
Background Dental erosion has been investigated in developed and developing countries and the prevalence varies considerably in different countries, geographic locations, and age groups. With the lifestyle of the Chinese people changing significantly over the decades, dental erosion has begun to receive more attention. However, the information about dental erosion in China is scarce. The purpose of this study was to explore the prevalence of dental erosion and associated risk factors in 12-13-year-old school children in Guangzhou, Southern China. Methods This cross-sectional survey was performed by two trained, calibrated examiners. A stratified random sample of 12-13-year-old children (774 boys and 725 girls) from 10 schools was examined for dental erosion using the diagnostic criteria of Eccles and the index of O'Sullivan was applied to record the distribution, severity, and amount of the lesions. Data on the socio-economic status, health behaviours, and general health involved in the etiology of dental erosion were obtained from a self-completed questionnaire. The analyses were performed using SPSS software. Results At least one tooth surface with signs of erosion was found in 416 children (27.3%). The most frequently affected teeth were the central incisors (upper central incisors, 16.3% and 15.9%; lower central incisors, 17.4% and 14.8%). The most frequently affected surface was the incisal or occlusal edge (43.2%). The loss of enamel contour was present in 54.6% of the tooth surfaces with erosion. Of the affected tooth surfaces, 69.3% had greater than one-half of the tooth surface was affected. The results from logistic regression analysis demonstrated that the children who were female, consumed carbonated drinks once a week or more, and those whose mothers were educated to the primary level tended to have more dental erosion. Conclusions Dental erosion in 12-13-year-old Chinese school children is becoming a significant problem. A strategy of offering preventive care, including more campaigns promoting a healthier lifestyle for those at risk of dental erosion should be conducted in Chinese children and their parents. PMID:20704718
Nozzle erosion characterization and minimization for high-pressure rocket motor applications
NASA Astrophysics Data System (ADS)
Evans, Brian
Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant correlation also incorporates the RMS data, accounting for swirling flow of the products in the RMS combustor. These correlations are useful for rocket nozzle designs. The correlation for non-metallized propellant and RMS firings was developed in terms of the effective oxidizer mass fraction and effective Reynolds number. The results calculated from this correlation were compared with measured erosion rate data within +/-15% or 0.05 mm/s (2 mils/s). For metallized propellant, the nozzle erosion rate was found to be relatively independent of the concentration of oxidizing species due to the diffusion-controlled process and the partial surface coverage by the liquid Al/Al2O3 layer. The nozzle erosion rate was also found to be lower than those of non-metallized propellant cases. Agreement between predicted and measured erosion rates was found to be within +/-20% or 0.04 mm/s (2 mils/s).
Forest soil erosion prediction as influenced by wildfire and roads
NASA Astrophysics Data System (ADS)
Cao, L.; Brooks, E. S.; Elliot, W.
2017-12-01
Following a wildfire, the risk of erosion is greatly increased. Forest road networks may change the underlying topography and alter natural flow paths. Flow accumulation and energy can be redistributed by roads and alter soil erosion processes. A LiDAR (Light Detection and Ranging) DEM makes it possible to quantify road topography, and estimate how roads influence surface runoff and sediment transport in a fire-disturbed watershed. With GIS technology and a soil erosion model, this study was carried out to evaluate the effect of roads on erosion and sediment yield following the Emerald Fire southwest of Lake Tahoe. The GeoWEPP model was used to estimate onsite erosion and offsite sediment delivery from each hillslope polygon and channel segment before and after fire disturbance in part of the burned area. The GeoWEPP flow path method was used to estimate the post-fire erosion rate of each GIS pixel. A 2-m resolution LiDAR DEM was used as the terrain layer. The Emerald Fire greatly increased onsite soil loss and sediment yields within the fire boundary. Following the fire, 78.71% of the burned area had predicted sediment yields greater than 4 Mg/ha/yr, compared to the preburn condition when 65.3% of the study area was estimated to generate a sediment yield less than 0.25 Mg/ha/yr. Roads had a remarkable influence on the flow path simulation and sub-catchments delineation, affecting sediment transport process spatially. Road segments acted as barriers that intercepted overland runoff and reduced downslope flow energy accumulation, therefore reducing onsite soil loss downslope of the road. Roads also changed the boundary of sub-catchment and defined new hydrological units. Road segments can transport sediment from one sub-catchment to another. This in turn leads to the redistribution of sediment and alters sediment yield for some sub-catchments. Culverts and road drain systems are of vital importance in rerouting runoff and sediment. Conservation structures can be installed to avoid sediment deposition or debris accumulation on the road surface. On the other hand, the outlets of culverts might be at a high risk of increasing downstream channel erosion due to the large amount of runoff. This implies that conservation measurements should be considered to control the runoff and sediment output from culverts.
On femtosecond laser shock peening of stainless steel AISI 316
NASA Astrophysics Data System (ADS)
Hoppius, Jan S.; Kukreja, Lalit M.; Knyazeva, Marina; Pöhl, Fabian; Walther, Frank; Ostendorf, Andreas; Gurevich, Evgeny L.
2018-03-01
In this paper we report on the competition in metal surface hardening between the femtosecond shock peening on the one hand, and formation of laser-induced periodic surface structures (LIPSS) and surface oxidation on the other hand. Peening of the stainless steel AISI 316 due to shock loading induced by femtosecond laser ablation was successfully demonstrated. However, for some range of processing parameters, surface erosion due to LIPSS and oxidation seems to dominate over the peening effect. Strategies to increase the peening efficiency are discussed.
The origin and significance of sinuosity along incising bedrock rivers
NASA Astrophysics Data System (ADS)
Barbour, Jonathan Ross
Landscapes evolve through processes acting at the earth's surface in response to tectonics and climate. Rivers that cut into bedrock are particularly important since they set the local baselevel and communicate changes in boundary conditions across the landscape through erosion and deposition; the pace of topographic evolution depends on both the rate of change of the boundary conditions and the speed of the bedrock channel network response. Much of the work so far has considered the effects of tectonically-controlled changes in slope and climatically-controlled changes in discharges to the rate of channel bed erosion while considering bank erosion, if active at all, to be of at best secondary importance to landscape evolution. Sprinkled throughout the literature of the past century are studies that have recognized lateral activity along incising rivers, but conflicting interpretations have left many unanswered questions about how to identify and measure horizontal erosion, what drives it, what effect it has on the landscape, and how it responds to climate and tectonics. In this thesis, I begin to answer some of these questions by focusing on bedrock river sinuosity and its evolution through horizontal erosion of the channel banks. An analysis of synoptic scale topography and climatology of the islands of eastern Asia reveals a quantitative signature of storm frequency in a regional measure of mountain river sinuosity. This is partly explained through a study of the hydro- and morphodynamics of a rapidly evolving bedrock river in Taiwan which shows how the erosive forces vary along a river to influence the spatiotemporal distribution of downcutting, sidecutting, and sediment transport. Through these analyses, I also present evidence that suggests that the relative frequency of erosive events is far more important than the absolute magnitude of extreme events in setting the erosion rate, and I show that the horizontal erosion of bedrock rivers is an important contributor to landscape evolution. This thesis comprises a new look at the processes at work in bedrock rivers which suggests new ideas about the ways that landscape and climate interact, new tools for interpreting landscape morphology, and new insights into the processes that contribute to the evolution of active orogens.
Soil Erosion in agro-industrially used Landscapes between High and Anti-Atlas
NASA Astrophysics Data System (ADS)
Peter, K. D.; Ries, J. B.; Marzolff, I.; d'Oleire-Oltmanns, S.
2012-04-01
The Souss basin is characterised by high population dynamics and changing land use. Extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market, replace the traditional mixed agriculture with small-area olive orchards and cereal fields. A precipitation of around 200 mm enforces the irrigation of cultivation by deep wells. The spatial vicinity of highly engineered irrigation areas, which are often created by land-levelling measures, and housing estates with highly active gully systems and rapid badland development presents a risk to both the agro-industrial land use and the population settlements. It is investigated whether the levelling measures influence surface runoff and soil erosion and thereby affect the further gully development. The influences of surface characteristics on runoff and soil erosion are analysed. Therefore 91 rainfall simulation experiments using a small portable rainfall simulator and 33 infiltrations by means of a single ring infiltrometer are carried out on seven test sites nearby the city of Taroudant. The rainfall simulations (30 minutes, 40 mm h-1) show an average runoff coefficient of between 54 and 59 % on test sites with land-levelling measures and average runoff coefficients ranging between 36 and 48 % on mostly non-levelled test sites. The average of soil erosion lies on levelled test sites between 52.1 and 81.8 g m-2, on non-levelled test-sites between 13.2 und 23.2 g m-2 per 30 minutes. Accordingly, all the test sites have a rather low infiltration capacity. This can also be confirmed by the low average infiltration depth of only 15.5 cm on levelled test sites. There is often a clear borderline at horizons with a high bulk density caused by compaction. In contrast, on non-levelled test sites, the average infiltration depth reaches 22.2 cm. Reinforcing factors for runoff and soil erosion are slope and soil crusts. Vegetation cover has a reducing influence on surface process activity. Medium rock fragment cover shows high rates of runoff and soil erosion. Hitherto collected data show an explicit difference between levelled and non-levelled test sites. Land-levelling measures clearly influence the generation of surface runoff and soil erosion and consequently, advance the further gully development.
Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2014-02-01
The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.
Crater gradation in Gusev crater and Meridiani Planum, Mars
NASA Astrophysics Data System (ADS)
Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.
2006-01-01
The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.
NASA Astrophysics Data System (ADS)
Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. P.; Sander, G. C.; Parlange, J.
2011-12-01
Soil erosion is a major environmental problem that can lead to loss of fertility and degradation of agricultural fields. In order to develop efficient strategies to mitigate the impact of precipitation and reduce the erosion rate, a process-based understanding of the mechanisms that govern sediment transport and delivery is necessary. Soil state and physical properties prior to a precipitation event can affect significantly the erosion rate. Among the most important soil variables are moisture content, compaction and infiltration capacity. Additionally, the presence of stones on the topsoil surface retards the overland flow discharge, reduces runoff generation as well as the sediment delivery and prevents the development of a surface seal, which in turn maintains the infiltration rate. The aim of this study was to examine in detail the effect of surface stones, soil compaction and sealing for a sequence of rainfall events on soil erosion. Experiments were conducted using the EPFL erosion flume, which was divided into two identical flumes (one with stone and one without). The experiment involved four rainfall events with the precipitation rates: 28, 74, 74 and 28 mm h-1. After each 2-h event, the soil was allowed to air dry for 22 h. The total sediment concentration, the concentration of seven sediment size classes and the flow discharge were measured during each event at the outlet of each flume. Experimental results were analyzed using the Hairsine and Rose (H-R) soil erosion model. Results showed that (i) within each precipitation event, the proportion of each size class for the bare/stone-covered flume pairs at steady state were similar, whereas the initial response differed significantly; (ii) in all cases the effluent was enriched in finer particles relative to the original soil; and (iii) the effluent sediment composition was different from that of the original soil, and there was no clear trend towards the parent soil sediment size composition with time. The H-R model was able to reproduce well the events with high precipitation rate (events 2 and 3) with the same parameter set, while the match was less satisfactory for the low precipitation events. A possible explanation for this is that the initial soil compaction/sealing/development of the deposited layer combined to yield a surface that eroded similarly for identical rainfall conditions. Changes in the precipitation rate modifies the soil surface (the deposited layer in particular) and thus the erosion rates. Model application further suggested that over the course of the rainfall events, the contribution of the original soil to the eroded sediment decreased gradually, while that of the deposited layer increased.
Origin and dynamics of depositionary subduction margins
Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.
2016-01-01
Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.
Food acid content and erosive potential of sugar-free confections.
Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C
2017-06-01
Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.
The healing of disturbed hillslopes by gully gravure
Osterkamp, W.R.; Toy, T.J.
1994-01-01
Results of accelerated erosion on certain constructed surfaces in southeastern Arizona appear similar to those described by Bryan as gully gravure. Twenty cross-section excavations in eight rills inclised into silt-rich lacustrine and fluvial deposits reveal partial filling of the rills by debris derived from overyling fluvial sand, gravel, and cobbles. Interstices of the coarse material gradually fill with fine-grained erosion products, decreasing permeability of the fill and deflecting subsequent runoff to the margins of the fill. Rills and rill fillings thus increase in width with time, and complete veneering of the surface by coarse debris ultimately may occur. Through incision, filling, lateral planation, and armoring, channels of the dissected surface heal and the new hillslope approaches an equilibrium condition. Natural hillslopes in the area with similar geologic conditions have inclinations of 16??-22??, have generally unbroken veneers of coarse debris, and appear subject to the same erosional processes identified at constructed hillslopes. -from Authors
Using the raindrop size distribution to quantify the soil detachment rate at the laboratory scale
NASA Astrophysics Data System (ADS)
Jomaa, S.; Jaffrain, J.; Barry, D. A.; Berne, A.; Sander, G. C.
2010-05-01
Rainfall simulators are beneficial tools for studying soil erosion processes and sediment transport for different circumstances and scales. They are useful to better understand soil erosion mechanisms and, therefore, to develop and validate process-based erosion models. Simulators permit experimental replicates for both simple and complex configurations. The 2 m × 6 m EPFL erosion flume is equipped with a hydraulic slope control and a sprinkling system located on oscillating bars 3 m above the surface. It provides a near-uniform spatial rainfall distribution. The intensity of the precipitation can be adjusted by changing the oscillation interval. The flume is filled to a depth of 0.32 m with an agricultural loamy soil. Raindrop detachment is an important process in interrill erosion, the latter varying with the soil properties as well as the raindrop size distribution and drop velocity. Since the soil detachment varies with the kinetic energy of raindrops, an accurate characterization of drop size distribution (DSD, measured, e.g., using a laser disdrometer) can potentially support erosion calculations. Here, a laser disdrometer was used at different rainfall intensities in the EPFL flume to quantify the rainfall event in terms of number of drops, diameter and velocity. At the same time, soil particle motion was measured locally using splash cups. These cups measured the detached material rates into upslope and downslope compartments. In contrast to previously reported splash cup experiments, the cups used in this study were equipped at the top with upside-down funnels, the upper part having the same diameter as the soil sampled at the bottom. This ensured that the soil detached and captured by the device was not re-exposed to rainfall. The experimental data were used to quantify the relationship between the raindrop distribution and the splash-driven sediment transport.
Current research issues related to post-wildfire runoff and erosion processes
Moody, John A.; Shakesby, Richard A.; Robichaud, Peter R.; Cannon, Susan H.; Martin, Deborah A.
2013-01-01
Research into post-wildfire effects began in the United States more than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but the large empirical knowledge base amassed in different regions of the world suggests that it should now be possible to synthesize the data and make a substantial improvement in the understanding of post-wildfire runoff and erosion response. Thus, it is important to identify and prioritize the research issues related to post-wildfire runoff and erosion. Priority research issues are the need to: (1) organize and synthesize similarities and differences in post-wildfire responses between different fire-prone regions of the world in order to determine common patterns and generalities that can explain cause and effect relations; (2) identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire; (3) determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion responses; (4) determine functional relations between precipitation, basin morphology, runoff connectivity, contributing area, surface roughness, depression storage, and soil characteristics required to predict the timing, magnitudes, and duration of floods and debris flows from ungaged burned basins; and (5) develop standard measurement methods that will ensure the collection of uniform and comparable runoff and erosion data. Resolution of these issues will help to improve conceptual and computer models of post-wildfire runoff and erosion processes.
Dental erosion: Prevalence and severity among 16-year-old adolescents in Troms, Norway.
Mulic, A; Fredriksen, Ø; Jacobsen, I D; Tveit, A B; Espelid, I; Crossner, C G
2016-09-01
To study the prevalence, distribution and severity of dental erosion among 16-year-old adolescents in the Troms region of Norway. Study design: The participants were recruited through the Tromsø-study ("Fit Futures"), and 392 16-year-olds were examined for dental erosion using clinical intraoral photographs. Three calibrated clinicians used the Visual Erosion Dental Examination (VEDE) system to register and grade the dental erosive wear. More than one third (38%) of the participants showed dental erosion on at least one tooth surface, 18% were limited to the enamel, while 20% of the adolescents showed erosive wear extending into the dentine. The occlusal surfaces of the lower first molars, and the palatal surfaces of the maxillary incisors were the most often and most severely affected. Of the participants showing dental erosion, 93% exhibited "cuppings" on the molars, with 48% limited to the enamel and 52% extending into the dentine. The highest prevalence of "cuppings" (73%) was found on the first lower molars, especially the mesiobuccal cusp of the teeth. The prevalence and severity of dental erosion was found to be higher in male than in female participants (p < 0.0001). The results from this study indicate a high prevalence and severity of dental erosion among adolescents in Troms and stress the importance of information, early and effective diagnostics and implementation of prevention strategies.
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Dramis, Francesco; Faccenna, Claudio; Abebe, Bekele
2017-05-01
An outlier consists of an area of younger rocks surrounded by older ones. Its formation is mainly related to the erosion of surrounding rocks which causes the interruption of the original continuity of the rocks. Because of its origin, an outlier is an important witness of the paleogeography of a region and, therefore, essential to understand its topographic and geological evolution. The Mekele Outlier (N Ethiopia) is characterized by poorly incised Mesozoic marine sediments and dolerites (∼2000 m in elevation), surrounded by strongly eroded Precambrian and Paleozoic rocks and Tertiary volcanic deposits in a context of a mantle supported topography. In the past, studies about the Mekele outlier focused mainly in the mere description of the stratigraphic and tectonic settings without taking into account the feedback between surface and deep processes in shaping such peculiar feature. In this study we present the geological and geomorphometric analyses of the Mekele Outlier taking into account the general topographic features (slope map, swath profiles, local relief), the river network and the principal tectonic lineaments of the outlier. The results trace the evolution of the study area as related not only to the mere erosion of the surrounding rocks but to a complex interaction between surface and deep processes where the lithology played a crucial role.
Ground-water sapping processes, Western Desert, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, W.; Arvidson, R.E.; Sultan, M.
1997-01-01
Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parametersmore » demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li
2018-01-01
The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.
Hasselkvist, Agneta; Johansson, Anders; Johansson, Ann-Katrin
2016-04-01
To evaluate the progression of dental erosion in 13-14 year-olds after 4 years, and its association with lifestyle and oral health. 227 randomly selected 13-14 year-olds from a Public Dental Clinic, Örebro, Sweden, were investigated. A clinical examination was performed which included dental caries/gingival/plaque status, as well as grading of dental erosion at the tooth surface and participant levels in "marker teeth", including buccal/palatal surfaces of 6 maxillary anterior teeth (13-23), and occlusal surfaces of first molars. An interview and a questionnaire regarding drinking habits and other lifestyle factors were completed. All investigations were repeated at follow-up. The participants were divided into high and low progression erosion groups and logistic regression statistics were applied. 175 individuals participated at follow-up. Progression occurred in 35% of the 2566 tooth surfaces. 32% of the surfaces had deteriorated by one severity grade (n=51 individuals) and 3% by two grades (n=2 individuals). Boys showed more severe erosion than girls at the follow-up. Among the variables predicting greater progression, a lower severity of erosive wear at baseline had the highest OR (13.3), followed in descending order by a "retaining" drinking technique, more frequent intake of drinks between meals, low GBI and lesser sour milk intake, with reference to the baseline recording. Using these five variables, sensitivity and specificity were 87% and 67% respectively, for predicting progression of erosion. Progression of erosive lesions in Swedish adolescents aged 13-14 years followed up to age 17-18 years was common and related to certain lifestyle factors. In permanent teeth, dental erosion may develop early in life and its progression is common. Dental health workers should be made aware of this fact and regular screenings for erosion and recording of associated lifestyle factors should be performed. Copyright © 2016 Z. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Schoellhamer, D. H.; Manning, A. J.; Work, P. A.
2015-12-01
Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.
Electrode erosion properties of gas spark switches for fast linear transformer drivers
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2017-12-01
Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.
Hybrid-PIC simulation of sputtering product distribution in a Hall thruster
NASA Astrophysics Data System (ADS)
Cao, Xifeng; Hang, Guanrong; Liu, Hui; Meng, Yingchao; Luo, Xiaoming; Yu, Daren
2017-10-01
Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse, long life, and high reliability. During the operating life of a Hall thruster, high-energy ions will bombard the discharge channel and cause serious erosion. As time passes, this sputtering process will change the macroscopic surface morphology of the discharge channel, especially near the exit, thus affecting the performance of the thruster. Therefore, it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall. To better understand the moving characteristics of sputtering products, based on the hybrid particle-in-cell (PIC) numerical method, this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles, such as B atoms and B+ ions. In this paper, the main conclusion is that B atoms are mainly produced on both sides of the channel exit, and B+ ions are mainly produced in the middle of the channel exit. The ionization rate of B atoms is approximately 1%.
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo
2013-11-01
This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.
Self-induced vomiting and dental erosion--a clinical study.
Uhlen, Marte-Mari; Tveit, Anne Bjørg; Stenhagen, Kjersti Refsholt; Mulic, Aida
2014-07-29
In individuals suffering from eating disorders (ED) characterized by vomiting (e.g. bulimia nervosa), the gastric juice regularly reaches the oral cavity, causing a possible risk of dental erosion. This study aimed to assess the occurrence, distribution and severity of dental erosions in a group of Norwegian patients experiencing self-induced vomiting (SIV). The individuals included in the study were all undergoing treatment at clinics for eating disorders and were referred to a university dental clinic for examinations. One calibrated clinician registered erosions using the Visual Erosion Dental Examination (VEDE) system. Of 72 referred patients, 66 (63 females and three males, mean age 27.7 years) were or had been experiencing SIV (mean duration 10.6 years; range: 3 - 32 years), and were therefore included in the study. Dental erosions were found in 46 individuals (69.7%), 19 had enamel lesions only, while 27 had both enamel and dentine lesions. Ten or more teeth were affected in 26.1% of those with erosions, and 9% had ≥10 teeth with dentine lesions. Of the erosions, 41.6% were found on palatal/lingual surfaces, 36.6% on occlusal surfaces and 21.8% on buccal surfaces. Dentine lesions were most often found on lower first molars, while upper central incisors showed enamel lesions most frequently. The majority of the erosive lesions (48.6%) were found in those with the longest illness period, and 71.7% of the lesions extending into dentine were also found in this group. However, despite suffering from SIV for up to 32 years, 30.3% of the individuals showed no lesions. Dental erosion commonly affects individuals with ED experiencing SIV, and is more often found on the palatal/lingual surfaces than on the buccal in these individuals, confirming a common clinical assumption.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee
1995-01-01
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.
Risk assessment of pesticide transport with water erosion: A conceptual model
NASA Astrophysics Data System (ADS)
Yang, Xiaomei; Van Der Zee, Sjoerd E. A. T. M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette
2017-04-01
Pesticides are widely used in agriculture, horticulture, and forestry, and pesticide pollution has become an important issue worldwide. Entraining in runoff and being attached to eroded soil particles, posing a risk to water and soil quality and human health. In order to assess the risk of pesticide during water erosion processes, a simple integrative model of pesticide transport by runoff and erosion was developed. Taking soil hydrological and pesticide behaviour into account, such as water infiltration, erosion, runoff, and pesticide transport and degradation in soil, the conceptual framework was based on the known assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. A sensitivity analysis was conducted and the results indicated that the total amount of pesticide related to soil eroded by water washing increased with slope gradient, rainfall intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became obviously and the time from pesticide sprayed to erosion occurring associated with pesticide degradation negatively influenced the total amount of transported pesticide. The mechanisms involved in pesticide transport, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, thus can be well accounted for pesticide risk assessment especially in the region with intensive pesticide use and soil water erosion events.
Prevalence and risk factors of dental erosion in American children.
Habib, Mariam; Hottel, Timothy L; Hong, Liang
2013-01-01
The purpose of this study was to assess the prevalence and characteristics of dental erosion in children aged 2-4 years old and 12 years old. 243 subjects were recruited from daycare centers, preschools, and grade schools; they received dental examinations assessing their condition of dental erosion, including both depth and area of tooth surface loss on four maxillary incisors. Questionnaires were given to the subjects to obtain socio-demographic, oral health behaviors at home, and access to dental care. Dental erosion was analyzed and risk factors were assessed using Chi-Square and logistic regression analysis. The subjects were 60% Caucasians, 31% Black, 7% Hispanic and others were 2%. 34% of children could not get the dental care they needed within the past 12 months and 61% of all children brushed their teeth twice or more daily. Overall, 12% of study children had dental erosion with 13% for 2-4 years old and 10% for 12 years old, with the majority of erosive lesions within enamel. Family income (OR 3.98, p = 0.021) and acidic fruit juice consumption (OR 2.38, p = 0.038) were significant risk factors for dental erosion, even after controlling for other factors, such as source of drinking water and oral hygiene using logistic regression analysis. Dental erosion is a relatively common problem among the children in this study and it is seen as a multi-factorial process.
NASA Astrophysics Data System (ADS)
Dühnforth, M.; Anderson, R. S.; Colgan, W.
2012-04-01
The long-term pattern of glacial erosion in alpine valleys leads to characteristic longitudinal valley profiles. While landscape evolution models commonly take glacier sliding velocity to be the dominant control on erosion, the influence of spatial and temporal variations in glacier ice temperature on the efficiency of erosion over long timescales (>1 Ma) remains largely unexplored. Yet, the thermal field of a glacier can strongly influence the pattern of sliding. Temperate glaciers, with basal temperatures at the pressure melting point (PMP), slide whenever and wherever the glacial hydrology produces high water pressures. In contrast, in polythermal glaciers, erosion efficiency is strongly linked to basal ice temperature; when and where basal ice temperatures are below the PMP sliding, and hence erosion, are limited. We present results from numerical models in which we explore the influence of variations in glacier ice temperature on long-term glacial erosion processes in alpine valleys. These simulations are motivated by the persistent appeal of geomorphologists to polar glacial conditions to explain sites of unusually low glacial erosion rates. We employ a transient 1D (flowline) ice flow model that numerically solves the continuity equation for ice, and includes a depth-averaged approximation for longitudinal coupling stress. We prescribe separate winter and summer surface mass balance profiles: a capped elevation-dependent snowfall pattern in winter, and we capture both daily and seasonal oscillations in ablation using a positive degree day algorithm in summer. The steady-state ice temperature within the glacier is calculated using the conventional 2D (cross-sectional) heat equation (i.e. diffusion, advection and production terms) at a prescribed interval. The ice temperature model uses the surface temperature at the end of each melt season as the surface boundary condition, and a prescribed geothermal gradient as the basal boundary condition. Basal sliding is limited to sites where the basal ice is at the PMP. Glacial erosion rate is parameterized as a function of sliding velocity, which in turn depends upon a flotation fraction that is parameterized to account for annual variations in the glacial hydrologic system. We explore the long-term glacial erosion pattern when the landscape is subjected to different rock uplift rates, and to climates ranging from continental to maritime. Of specific interest to us are conditions that favor polythermal glaciers in which the basal ice at high elevations becomes cold. In such cases, rock uplift can outpace limited glacial erosion, allowing high peaks to escape from the "glacial buzzsaw" while basal ice at lower elevations remains at the PMP, allowing sliding and erosion. These simulations also allow a more formal assessment of the conditions under which cold basal ice can be invoked to explain low glacial erosion rates, and the conditions under which variations in rock erodibility may instead be invoked as the major control on erosion.
Kwoni, Eri; Choi, Samjin; Cheong, Youjin; Park, Ki-Ho; Park, Hun-Kuk
2012-07-01
Scanning electron microscopy (SEM) was used to examine the abrasive and erosive potential of the brushing time on the dentin surface eroded by acidic soft drinks to suggest an optimized toothbrushing start time after the consumption of cola (pH 2.52) in children. Thirty-six non-carious primary central incisors were assigned to 12 experimental groups (n = 3) based on the erosive and abrasive treatment protocols. Cola exposure was used as the erosive treatment. Three brushing durations (5, 15, and 30 sec) and four brushing start times (immediately, 30 min, 60 min, and 120 min) after an erosive pre-treatment were used for the abrasive treatment. Toothbrushing after exposure to acidic soft drinks led to an increase in the open-tubule fraction and microstructural changes. Toothbrushing immediately after the erosive pre-treatment showed the largest abrasive and erosive potential on the dentin whereas that 60 and 120 min after the pre-treatment showed the least abrasive and erosive potential on the dentin. Toothbrushing for both 60 and 120 min after the pre-treatment showed similar erosive and abrasive potentials on the dentin. The brushing duration showed no effect on the erosive and abrasive potential on the dentin. Therefore, to achieve the desired tooth surface cleaning and less surface lesion on the dentin surface, toothbrushing should be performed at least 1 hour after cola consumption. Three-minute brushing after cola consumption is sufficient to prevent dental lesions, and prolonged brushing can irritate the gingival tissues.
Assessment of mercury erosion by surface water in Wanshan mercury mining area.
Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle
2013-08-01
Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kandel, D. D.; Western, A. W.; Grayson, R. B.
2004-12-01
Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and erosion models. The statistical description of sub-daily variability is thus propagated through the model, allowing the effects of variability to be captured in the simulations. This results in cdfs of various fluxes, the integration of which over a day gives respective daily totals. Using 42-plot-years of surface runoff and soil erosion data from field studies in different environments from Australia and Nepal, simulation results from this cdf approach are compared with the sub-hourly (2-minute for Nepal and 6-minute for Australia) and daily models having similar process descriptions. Significant improvements in the simulation of surface runoff and erosion are achieved, compared with a daily model that uses average daily rainfall intensities. The cdf model compares well with a sub-hourly time-step model. This suggests that the approach captures the important effects of sub-daily variability while utilizing commonly available daily information. It is also found that the model parameters are more robustly defined using the cdf approach compared with the effective values obtained at the daily scale. This suggests that the cdf approach may offer improved model transferability spatially (to other areas) and temporally (to other periods).
Deposition and re-erosion studies by means of local impurity injection in TEXTOR
NASA Astrophysics Data System (ADS)
Textor Team Kirschner, A.; Kreter, A.; Wienhold, P.; Brezinsek, S.; Coenen, J. W.; Esser, H. G.; Pospieszczyk, A.; Schulz, Ch.; Breuer, U.; Borodin, D.; Clever, M.; Ding, R.; Galonska, A.; Huber, A.; Litnovsky, A.; Matveev, D.; Ohya, K.; Philipps, V.; Samm, U.; Schmitz, O.; Schweer, B.; Stoschus, H.
2011-08-01
Pioneering experiments to study local erosion and deposition processes have been carried out in TEXTOR by injecting 13C marked hydrocarbons (CH4 and C2H4) as well as silane (SiD4) and tungsten-hexafluoride (WF6) through test limiters exposed to the edge plasma. The influence of various limiter materials (C, W, Mo) and surface roughness, different geometries (spherical or roof-like) and local plasma parameters has been studied. Depending on these conditions the local deposition efficiency of injected species varies between 0.1% and 9% - the largest deposition has been found for 13CH4 injection through unpolished, spherical C test limiter and ohmic plasma conditions. The most striking result is that ERO modelling cannot reproduce these low deposition efficiencies using the common assumptions on sticking probabilities and physical and chemical re-erosion yields. As an explanation large re-erosion due to background plasma and possibly low "effective sticking" of returning species is applied. This has been interpreted as enhanced re-erosion of re-deposits under simultaneous impact of high ion fluxes from plasma background.
Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran
2015-09-01
The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.
Dust emission and soil loss due to anthropogenic activities by wind erosion simulations
NASA Astrophysics Data System (ADS)
Katra, Itzhak; Swet, Nitzan; Tanner, Smadar
2017-04-01
Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.
NASA Astrophysics Data System (ADS)
Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.
2013-05-01
We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.
Anthropogenic features and hillslope processes interaction
NASA Astrophysics Data System (ADS)
Tarolli, Paolo; Sofia, Giulia
2016-04-01
Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of HR datasets might allow the transfer the knowledge of geomorphic processes from the scientific to the practical world. Thus, it may allow an improved understanding and targeted mitigation of geomorphic changes during anthropogenic development and help guide future research directions for development-based watershed studies. References Tarolli, P., Sofia, G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161, 10.1016/j.geomorph.2015.12.007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.H.; Hsu, K.Y.; Kai, J.J.
1992-12-31
The surface layers of copper alloy specimens were made radioactive by bombarding with 5 MeV protons from a van de Graaff accelerator which converted Cu-65 into Zn-65 through (p,n) reaction. The amount of surface material loss could then be monitored by measuring the total remaining {gamma}-ray activity generated from Zn-65 decay. This technique, termed thin layer activation (TLA), has the advantage of in situ monitoring the rate of surface removal due to corrosion, erosion-corrosion, wearing, etc. In this work, the erosion-corrosion tests on aluminum brass and 90Cu-10Ni were conducted in circulating sea water and the erosion-corrosion rates measured using TLAmore » and conventional methods such as linear polarization resistance (LPR) method and weight loss coupons were compared. A vibrational cavitation-erosion test was also performed on aluminum bronze, in which the measurements by TLA were compared with those of weight loss measurements.« less
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.
1995-04-18
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.
Understanding erosion process using rare earth element tracers in a preformed interrill-rill system
USDA-ARS?s Scientific Manuscript database
Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...
NASA Astrophysics Data System (ADS)
Wang, Dailin
During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the organic coatings were exposed to a corrosive environment with presence of H2S, thicker coatings provided better protection regardless of the amount and types of filler particles present in the coatings. For zinc-rich coatings, coatings with CNTs provided better barrier protection for the steel substrate than traditional zinc-rich coatings in a corrosive environment alone. However, the CNTs-filled zinc-rich epoxy coatings did not provide adequate protection when the coated specimens were exposed to erosion and corrosion.
Post-fire hillslope debris flows: Evidence of a distinct erosion process
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Philip J.; Van der Sant, Rene E.; Lane, Patrick N. J.; Sheridan, Gary J.
2017-10-01
After wildfire a hitherto unexplained erosion process that some authors have called 'miniature debris flows on hillslopes' and that leave behind levee-lined rills has been observed in some regions of the world. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objectives of this study were to (1) accumulate observational evidence of Hillslope Debris Flows (HDF) as we have defined the process, to (2) understand their initiation process by conducting runoff experiments on hillslopes, to (3) propose a conceptual model of HDF, and to (4) contrast and classify HDF relative to other erosion and transport processes in the post-wildfire hillslope domain. HDF have been observed at relatively steep slope gradients (0.4-0.8), on a variety of geologies, and after fire of at least moderate severity and consist of a lobe of gravel- to cobble-sized material 0.2-1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. HDF are a threshold process, and runoff rates of 0.5 L s- 1 2 L s- 1 were required for their initiation during the experiments. The conceptual model highlights HDF as a geomorphic process distinct from channel debris flows, because they occur on planar, unconfined hillslopes rather than confined channels. HDF can erode very coarse non-cohesive surface soil, which distinguishes them from rill erosion that have suspended and bedload transport. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff driven bedload transport in rills.
Using UAV data for soil surface change detection at a loess field plot
NASA Astrophysics Data System (ADS)
Eltner, Anette; Baumgart, Philipp
2014-05-01
Application of unmanned aerial vehicles (UAV) denotes an increasing interest in geosciences due to major developments within the last years. Today, UAV are economical, reliable and flexible in usage. They provide a non-invasive method to measure the soil surface and its changes - e.g. due to erosion - with high resolution. Advances in digital photogrammetry and computer vision allow for fast and dense digital surface reconstruction from overlapping images. The study site is located in the Saxonian loess (Germany). The area is fragile due to erodible soils and intense agricultural utilisation. Hence, detectable soil surface changes are expected. The size of the field plot is 20 x 30 meters and the period of investigation lasts from October 2012 till July 2013 at which four surveys were performed. The UAV deployed in this study is equipped with a compact camera which is attached to an active stabilising camera mount. In addition, the micro drone integrates GPS and IMU that enables autonomous surveys with programmed flight patterns. About 100 photos are needed to cover the study site at a minimal flying height of eight metres and 65%/80% image overlap. For multi-temporal comparison a stable local reference system is established. Total station control of the signalised ground control points confirms two mm accuracy for the study period. To estimate the accuracy of the digital surface models (DSM) derived from the UAV images a comparison to DSM from terrestrial laser scanning (TLS) is conducted. The standard deviation of differences amounts five millimetres. To analyse surface changes methods from image processing are applied to the DSM. Erosion rills could be extracted for quantitative and qualitative consideration. Furthermore, volumetric changes are measured. First results indicate levelling processes during the winter season and reveal rill and inter-rill erosion during spring and summer season.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
NASA Astrophysics Data System (ADS)
Larimer, J. E.; Yanites, B.
2016-12-01
River morphology is a consequence of the erosive forces acting on the channel boundary and the resisting forces that limit erosion. For bedrock rivers, the erosive forces are generated by the stresses exerted by impacting sediment and flowing water, while the resisting forces are controlled by the internal strength regime of the local rock. We investigate the susceptibility of different rock types to different erosional processes (i.e. abrasion and plucking) and how changes in channel morphology reflect rock strength properties across lithologic boundaries. The bedrock rivers in the Prescott National Forest, AZ flow over a number of rock types with variable strength including sedimentary, igneous, and metamorphic lithologies providing a natural experiment to quantify the influence of rock strength on channel morphology. We collected bedrock samples and channel surveys from 12 different rock types. Rock-strength and rock-mass properties include compressive strength, tensile strength, fatigue strength, decimeter scale P-wave velocity (varies by 8-fold), Schmidt rebound value, fracture spacing, fracture aperture, and slake durability (as a proxy for weathering susceptibility. Morphological measurements include channel width, channel steepness (varies by 10-fold), and grain size distribution. To distinguish between the major mechanisms of erosion we measure bedrock surface roughness factor at the centimeter scale. Preliminary results show that channel steepness (ksn) increases with P-wave velocity while normalized channel width (kwn) decreases with P-wave velocity. We use these data to quantify scaling relationships of channel geometry with rock strength properties. We consider the results in the context of the driving mechanistic process to develop new quantitative understandings of how rock strength properties influence the efficiency of erosion processes and how rock strength is reflected in river morphology. By comparing the results among different rock types in a landscape subject to spatially consistent tectonic and climatic influence, our work seeks to advance process-based river erosion models through field and laboratory measurements.
The cathode material for a plasma-arc heater
NASA Astrophysics Data System (ADS)
Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.
1983-11-01
The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.
NASA Astrophysics Data System (ADS)
Li, J.; Washington-Allen, R. A.; Okin, G. S.
2010-12-01
Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.
Rill erosion of mudstone slope-a case study of southern Taiwan
NASA Astrophysics Data System (ADS)
Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang
2014-05-01
Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University. E-mail:maxpossibilism0929@gmail.com
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Keesstra, Saskia; Jordan, Antonio; Brevik, Erik; Nova, Agata; Prosdocimi, Massimo; Azorín-Molina, César; Yazdanpanah, Najme; Mahmoodabadi, Majid; Pereira, Paulo; Burguet, María
2016-04-01
In order to design sustainable land management there is a need to have accurate information on the impact this land management strategies have on water and sediment dynamics. This is especially important when a proper management is designed to reduce the soil losses due to the complex interaction of mechanisms that interact within the soil erosion process. Soil erosion is an non-linear process, both spatially and temporally, and as a consequence of that only well-monitored and accurate measurements can give insights in the processes and how these processes can be influenced by management to reduce soil losses (Cerdà, 2007; Ligonja and Shrestha, 2015; Nanko et al., 2015; Seutloali and Beckedahl, 2015). This is necessary at different scales: pedon, slope, and watershed because the governing processes differ at different scale (Keesstra, 2007; Jordán and Martínez Zavala, 2008; Borrelli et al., 2015). Soil erosion plots can give information about the temporal and spatial variability of soil losses. We present here a strategy developed by the Soil Erosion and Degradation Research Group from the University of Valencia to assess the soil erosion rates in Eastern Spain. In 2002 the Soil Erosion Experimental Station in El Teularet-Sierra de Enguera was installed, to assess soil losses in rainfed agriculture orchards, and 73 plots of 1, 2, 4, 16 and 48 m2 were installed. In 2005 6 plots of 300 m2 were installed in the nearby Montesa soil erosion station to assess soil losses in citrus orchards. In 2011 16 plots of 2 m2 where installed in Les Alcusses to determine soil losses in olive orchards, and in 2015 8 plots in Celler del Roure vineyard to assess the impact of land management in vineyards and 8 plots in the El Teularet to study the impact of straw mulch on soil erosion rates. All erosion stations are located in several kilometres distance from each other. This research which we developed since 2002 is complementary to previous research where we used rainfall simulation experiments to assess soil properties under different management (Cerdà, 1997; Cerdà, 1998a; Cerdà 1998b; Cerdà, 2001). The results from the soil erosion plots monitoring demonstrate the positive impact of vegetation to reduce soil loss. In addition, we proved that the use of straw, chipped pruned branches and rock fragments as surface cover reduces soil losses (Cerdà et al., 2015, Pereira et al., 2015; Prosdocimi et al., 2016). Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and by the Spanish Government with the research Project CGL2013- 47862-C2-1-R. References Borrelli, P., Märker, M., Schütt, B. 2015. Modelling Post-Tree-Harvesting soil erosion and sediment deposition potential in the turano river basin (Italian central apennine. Land Degradation and Development, 26, 356-366. DOI: 10.1002/ldr.2214 Cerdà, A. 1997.The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36 (1), pp. 37-51.DOI: 10.1006/jare.1995.0198 Cerdà, A. 1998a. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12 (7), pp. 1031-1042. Cerdà, A. 1998b Soil aggregate stability under different Mediterranean vegetation types. Catena, 32 (2), pp. 73-86. DOI: 10.1016/S0341-8162(98)00041-1 Cerdà, A. 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52 (1), pp. 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x Cerdà, A. 2007. Soil water erosion on road embankments in eastern Spain. Science of the Total Environment, 378 (1-2), 151-155. DOI: 10.1016/j.scitotenv.2007.01.041 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Jordán, A., & Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3), 913-919. Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Ligonja, P.J., Shrestha, R.P. 2015. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach (2015) Land Degradation and Development, 26 (4), pp. 367-379. DOI: 10.1002/ldr.2215 Nanko, K., Giambelluca, T.W., Sutherland, R.A., Mudd, R.G., Nullet, M.A., Ziegler, A.D. 2015.Erosion potential under miconia calvescens stands on the island of hawai'i. Land Degradation and Development, 26 (3), pp. 218-226. DOI: 10.1002/ldr.2200 Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R. E., Brevik, E., Azorin-Molina, C. Cerdà, A. 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrology and Earth System Sciences Discussions, 12, 12947-12985. Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Seutloali, K.E., Beckedahl, H.R. 2015. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth, 6 (2) 633-641. DOI: 10.5194/se-6-633-2015
NASA Astrophysics Data System (ADS)
Pupim, Fabiano do Nascimento; Bierman, Paul R.; Assine, Mario Luis; Rood, Dylan H.; Silva, Aguinaldo; Merino, Eder Renato
2015-04-01
The importance of Earth's low sloping areas in regard to global erosion and sediment fluxes has been widely and vigorously debated. It is a crucial area of research to elucidate geologically meaningful rates of land-surface change and thus the speed of element cycling on Earth. However, there are large portions of Earth where erosion rates have not been well or extensively measured, for example, the tropical lowlands. The Cuiabana lowlands are an extensive low-altitude and low-relief dissected metamorphic terrain situated in the Upper Paraguay river basin, central-west Brazil. Besides exposures of highly variable dissected metamorphic rocks, flat residual lateritic caps related to a Late Cenozoic planation surface dominate interfluves of the Cuiabana lowlands. The timescale over which the lowlands evolved and the planation surface developed, and the rate at which they have been modified by erosion, are poorly known. Here, we present measurements of in situ produced cosmogenic 10Be in outcropping metamorphic bedrock and clastic-lateritic caps to quantify rates of erosion of the surface and associated landforms in order to better understand the Quaternary landscape evolution of these lowlands. Overall, slow erosion rates (mean 10 m/Ma) suggest a stable tectonic environment in these lowlands. Erosion rates vary widely between different lithologies (range 0.57 to 28.3 m/Ma) consistent with differential erosion driving regional landform evolution. The lowest erosion rates are associated with the low-relief area (irregular plains), where clastic-laterite (mean 0.67 m/Ma) and quartzite (mean 2.6 m/Ma) crop out, whereas the highest erosion rates are associated with dissection of residual hills, dominated by metasandstone (mean 11.6 m/Ma) and phyllite (mean 27.6 m/Ma). These data imply that the Cuiabana lowland is comprised of two dominant landform sets with distinct and different dynamics. Because the planation surface (mostly lowlands) is lowering and losing mass more slowly than associated residual hills, regional relief is decreasing over time and the landscape is not in steady state. The extremely slow erosion rates of the clastic-laterite are similar to the slowest outcrop erosion rates reported worldwide. These slow rates are due to the material's properties and resistance, being comprised of quartzite fragments cemented by an iron-rich crust, and reflecting long-term weathering with iron chemical precipitation and ferricrete formation, at least since the Middle Pleistocene. The lateritic caprock appears to be a key factor maintaining hilltop summits of the planation surface over long timescales.
NASA Astrophysics Data System (ADS)
Ritchie, A.; Bountry, J.; Randle, T. J.; Warrick, J. A.
2016-12-01
The stepwise removal of two dams on the Elwha River beginning in September 2011 exposed 21 million cubic meters of sediment to fluvial erosion and created an unprecedented opportunity to monitor reservoir sediment erosion and river evolution during base level adjustment and a pulsed sediment release. We conduct repeat aerial surveys with a Cessna 172 using a simple custom wing-mount for consumer grade cameras and SfM photogrammetry to produce orthoimagery and digital elevation models in near-real-time at sub-weekly to monthly time intervals, depending on hydrology. Multiple lidar flights and ground survey campaigns provide estimates of both systematic and random error for this uniquely dense dataset. Co-registration of multiple SfM surveys during processing reduces systematic error and allows boot-strapping of ephemeral ground control points to earlier or later flights. Measurements of reservoir erosion volumes, delta growth, channel braiding, and bank erosion illustrate the reservoir and river channel responses to dam removal at resolutions comparable to hydrologic forcing events, allowing us to quantify reservoir sediment budgets on a per-storm basis. This allows for the analysis of sediment transported relative to rates of reservoir drawdown and river stream power for dozens of time intervals. Temporal decoupling of peak sediment flux and bank erosion rates is noted from these analyses. This dataset illustrates both challenges and opportunities emerging with the advent of big data in remote sensing of earth surface processes. Digital AbstractErosion and deposition by year in former Lake Mills reservoir measured using SfM-derived photogrammetry and LiDAR for WY2011 through 2016 (partial). Approximately 70% of available sediment has been eroded.
NASA Astrophysics Data System (ADS)
Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher
2012-05-01
The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.
2014-12-01
Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and short-term post-fire recovery years for steeply-sloped sagebrush sites with fine-textured soils. The study results also serve to inform development and enhancement of the Rangeland Hydrology and Erosion Model for predicting runoff and erosion responses from disturbed and undisturbed sagebrush rangelands.
Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-03-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies
NASA Astrophysics Data System (ADS)
Lassu, T.; Seeger, M.
2012-04-01
Rainfall simulation is one of the most prevalent methods used in soil erosion studies on agricultural land. In-situ simulators have been used to relate soil surface characteristics and management to runoff generation, infiltration and erosion, eg. the influence of different cultivation systems, and to parameterise erosion models. Laboratory rainfall simulators have been used to determine the impact of the soil surface characteristics such as micro-topography, surface roughness, and soil chemistry on infiltration and erosion rates, and to elucidate the processes involved. The purpose of the following study is to demonstrate the set-up and the calibration of a large indoor, nozzle-type rainfall simulator (RS) for soil erosion, surface runoff and rill development studies. This RS is part of the Kraijenhoff van de Leur Laboratory for Water and Sediment Dynamics in Wageningen University. The rainfall simulator consists from a 6 m long and 2,5 m wide plot, with metal lateral frame and one open side. Infiltration can be collected in different segments. The plot can be inclined up to 15.5° slope. From 3,85 m height above the plot 2 Lechler nozzles 460.788 are sprinkling the water onto the surface with constant intensity. A Zehnder HMP 450 pump provides the constant water supply. An automatic pressure switch on the pump keeps the pressure constant during the experiments. The flow rate is controlled for each nozzle by independent valves. Additionally, solenoid valves are mounted at each nozzle to interrupt water flow. The flow is monitored for each nozzle with flow meters and can be recorded within the computer network. For calibration of the RS we measured the rainfall distribution with 60 gauges equally distributed over the plot during 15 minutes for each nozzle independently and for a combination of 2 identical nozzles. The rainfall energy was recorded on the same grid by measuring drop size distribution and fall velocity with a laser disdrometer. We applied 2 different flow rates (4,5 l/min and 5,5 l/min), resulting in different rainfall intensities and made 2 repetitions each. The average rainfall intensity was 36,8 mm/h at the first and 37,6 mm/h at the second repetition with the lower flow rate (4,5 l/min). With the higher flow rate (5,5 l/min) at the first repetition it was 44,4 mm/h and 46 mm/h at the second one. The maximum and minimum values were 22 mm and 2 mm at the lower (4,5 l/min) flow rate, respectively 26 mm and 4 mm at the higher one (5,5 l/min). In this latter case, the resulting average kinetic energy reached 7 J m-2 mm-1, with a maximum 31,3 J m-2 mm-1 of and a minimum of 2,9 J m-2 mm-1. The Christiansen Uniformity coefficient (CU) for the lower intensities was 66% and 69%, respectively, with the higher intensities slightly better (70% and 72%). The data of the rainfall simulator in Wageningen make it a promising tool for research in soil erosion processes.
Toothbrushing after an erosive attack: will waiting avoid tooth wear?
Lussi, Adrian; Lussi, Jonas; Carvalho, Thiago S; Cvikl, Barbara
2014-10-01
The purpose of this study was to determine if storage for up to 4 h in human saliva results in a decrease of erosive tooth wear (ETW) and in an increase of surface microhardness (SMH) of enamel samples after an erosive attack with subsequent abrasion. Furthermore, we determined the impact of individual salivary parameters on ETW and SMH. Enamel samples were distributed into five groups: group 1 had neither erosion nor saliva treatment; groups 2-5 were treated with erosion, then group 2 was placed in a humid chamber and groups 3-5 were incubated in saliva for 30 min, 2 h, and 4 h, respectively. After erosion and saliva treatments, all groups were treated with abrasion. Surface microhardness and ETW were measured before and after erosion, incubation in saliva, and abrasion. Surface microhardness and ETW showed significant changes throughout the experiment: SMH decreased and ETW increased in groups 2-5, regardless of the length of incubation in saliva. The results of groups 3-5 (exposed to saliva) were not significantly different from those of group 2 (not exposed to saliva). Exposure of eroded enamel to saliva for up to 4 h was not able to increase SMH or reduce ETW. However, additional experiments with artificial saliva without proteins showed protection from erosive tooth wear. The recommendation to postpone toothbrushing of enamel after an erosive attack should be reconsidered. © 2014 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Owen, Lewis A.; Davis, Teresa; Caffee, Marc W.; Budinger, Fred; Nash, David
2011-01-01
Erosion rates and surface exposure ages were determined at the Calico Archaeological Site in the Calico Hills of the Mojave Desert, California, using 10Be terrestrial cosmogenic nuclides (TCN) methods. The Calico Hills are composed of Miocene lacustrine deposits of the Barstow Formation and fanglomerates/debris flows of the Pleistocene Yermo Deposits. These deposits are highly denuded and dissected by arroyos that have surfaces armored with chert. Surface erosion rates based on cosmogenic 10Be concentrations in stream sediments range from 19 to 39 m/Ma, with an average of 30.5 ± 6.2 m/Ma. Surface boulders have 10Be TCN ages that range from 27 ka to 198 ka, reflecting significant erosion of the Calico Hills. The oldest boulder age (197 ± 20 ka) places a minimum limit on the age of Yermo deposits. Depth profile ages at four locations within the study area have minimum ages that range from 31 to 84 ka and erosion rate-corrected surface exposure ages ranging from 43 to 139 ka. These surface exposure ages support the view that the surfaces in Yermo deposits formed during the Late Pleistocene to latest Middle Pleistocene. This chronology has important implications for interpreting the context of possible artifacts/geofacts at the site that might provide evidence for early human occupation of North America, and for reconstructing paleoenvironment change and landscape evolution in the region.
Tao, Wanghai; Wu, Junhu; Wang, Quanjiu
2017-01-01
Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431
NASA Astrophysics Data System (ADS)
Walder, J. S.
2010-12-01
A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.
Carbon and nitrogen loss during initial erosion processes under litter cover
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas
2013-04-01
Soil erosion translocates carbon (C) and nitrogen (N) from the soil pool. In natural or near-natural ecosystems like forests the soil is usually covered by litter. It can be assumed that litter decomposition and dust particles adhered on the surface of the leaves contribute to C and N fluxes during erosion processes as well. To our knowledge, the contribution of these compartments to the C and N balance of soil erosion is not yet known. As part of the "New Integrated Litter Experiment" within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" we conducted a rainfall simulation experiment to quantify the role of litter cover for C and N fluxes during soil erosion in subtropical China. 96 mini runoff plots (40cm x 40cm) were established and divided into four blocks, two of them replicates. Seven different domestic litter species were used in this study combined to 1-species, 2-species and 4-species mixtures and complemented by none species plots (bare ground). Erosion processes were initiated by artificial rainfall using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Sediment discharge and runoff volume were measured every 5 minutes for 20 minutes of rainfall duration and filtrated in the laboratory. Two time steps of rainfall simulation were carried out (summer 2012 and autumn 2012). Total C and N content were quantified from the solid sediment and the liquid runoff volume. Leaf decomposition rates were calculated based on the mass, leaf litter coverage was measured and loss of C and N contents from the decomposing leaves were provided by other project members. Additionally, C and N content of corresponding soils were designated. Lab work and statistical analysis are still ongoing. First results show that C and N concentrations of runoff and sediment are slightly higher for plots covered by litter than bare plots during the first run in summer 2012. It seems that 4-species plots have the highest C and N flux during rainfall simulation. Further analysis will focus on the role of litter diversity on C and N concentration and fluxes during initial erosion processes.
The new conversion model MODERN to derive erosion rates from inventories of fallout radionuclides
NASA Astrophysics Data System (ADS)
Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine
2016-04-01
The measurement of fallout radionuclides (FRNs) has become one of the most commonly used methods to quantify soil erosion and depositional processes. FRNs include anthropogenic radionuclides (e.g. 137Cs, 239+240Pu) released into the atmosphere during nuclear bomb tests and power plant accidents (e.g Chernobyl, Fukushima-Daiichi), as well as natural radiotracers such as 210Pbex and 7Be. FRNs reach the land surface by dry and wet fallouts from the atmosphere. Once deposited, FRNs are tightly adsorbed by fine soil particles and their subsequent redistribution is mostly associated with soil erosion processes. FRNs methods are based on a qualitative comparison: the inventory (total radionuclide activity per unit area) at a given sampling site is compared to that of a so called reference site. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRNs, land uses and soil redistribution processes. This new model i.e. MODERN (MOdelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of a given FRN at a reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance has been tested on two published case studies: (i) a 137Cs study in an alpine and unploughed area in the Aosta valley (Italy) and (ii) a 210Pbex study on a ploughed area located in Romania. The results show a good agreement and a significant correlation (r= 0.91, p<0.0001) between the results of MODERN and the published models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The open access code and the cost free accessibility of MODERN will ensure the promotion of a wider application of FRNs for investigating soil erosion and sedimentation processes.
Geomorphic Implications of Fire and Slope Aspect in the Jemez Mountains, New Mexico, USA
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Meyer, G. A.
2011-12-01
Following a fire, extensive erosion may occur on hillslopes due to reduced infiltration and increased runoff as well as a decrease in vegetative anchoring and surface roughness. This increased erosion and subsequent sedimentation on alluvial fans at the base of the hillslope may be the primary process of geomorphic change in fire-prone mountains in the Western US. Insolation differences on north and south facing slopes may also be another potential influence on geomorphic change due to soil moisture and vegetation differences, which may affect the spatial distribution of erosion as well as sediment transport processes. Due to the long recovery period of forest stands in fire-prone areas, it is important to understand the natural variability of erosion for the purposes of forest and river ecology and management as well as mass movement-flooding hazard. The 2002 Lakes Fire area in the Jemez Mountains, NM, provides a natural study area with incision of alluvial fans after the Lakes Fire exposing the internal structure of these fans. The study area displays steeper, drier ponderosa pine dominated south-facing slopes and less steep, moister Douglas-fir dominated north-facing slopes, which suggests that slope aspect may influence fire regime and post-fire erosion in the Jemez Mountains. In order to determine the importance of fire and aspect on erosion and sedimentation, over 15 sections within alluvial fans with both north and south aspect were studied. Debris flow, hyperconcentrated flow and stream flow make up the majority of sediment transport processes in this area. Therefore, deposits formed by these processes were described, and evidence for fire-related sedimentation was assessed. Additionally, the relative importance of sediment transport types in relation to north versus south slope aspects was examined. Finally, charcoal fragments within deposits from north and south aspects were analyzed in terms of their abundance and angularity in order to aid in estimating the severity of the fire event associated with the deposit. In this way, the importance of fire and aspect in influencing erosion and sediment transport was assessed for the study area.
NASA Astrophysics Data System (ADS)
Lasa, A.; Borodin, D.; Canik, J. M.; Klepper, C. C.; Groth, M.; Kirschner, A.; Airila, M. I.; Borodkina, I.; Ding, R.; Contributors, JET
2018-01-01
Experiments at JET showed locally enhanced, asymmetric beryllium (Be) erosion at outer wall limiters when magnetically connected ICRH antennas were in operation. A first modeling effort using the 3D erosion and scrape-off layer impurity transport modeling code ERO reproduced qualitatively the experimental outcome. However, local plasma parameters—in particular when 3D distributions are of interest—can be difficult to determine from available diagnostics and so erosion / impurity transport modeling input relies on output from other codes and simplified models, increasing uncertainties in the outcome. In the present contribution, we introduce and evaluate the impact of improved models and parameters with largest uncertainties of processes that impact impurity production and transport across the scrape-off layer, when simulated in ERO: (i) the magnetic geometry has been revised, for affecting the separatrix position (located 50-60 mm away from limiter surface) and thus the background plasma profiles; (ii) connection lengths between components, which lead to shadowing of ion fluxes, are also affected by the magnetic configuration; (iii) anomalous transport of ionized impurities, defined by the perpendicular diffusion coefficient, has been revisited; (iv) erosion yields that account for energy and angular distributions of background plasma ions under the present enhanced sheath potential and oblique magnetic field, have been introduced; (v) the effect of additional erosion sources, such as charge-exchange neutral fluxes, which are dominant in recessed areas like antennas, has been evaluated; (vi) chemically assisted release of Be in molecular form has been included. Sensitivity analysis highlights a qualitative effect (i.e. change in emission patterns) of magnetic shadowing, anomalous diffusion, and inclusion of neutral fluxes and molecular release of Be. The separatrix location, and energy and angular distribution of background plasma fluxes impact erosion quantitatively. ERO simulations that include all features described above match experimentally measured Be I (457.3 nm) and Be II (467.4 nm) signals, and erosion increases with varying ICRH antenna’s RF power. However, this increase in erosion is only partially captured by ERO’s emission measurements, as most contributions from plasma wetted surfaces fall outside the volume observed by sightlines. ).
NASA Astrophysics Data System (ADS)
Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka
2015-04-01
Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.
Soil Erosion as a stochastic process
NASA Astrophysics Data System (ADS)
Casper, Markus C.
2015-04-01
The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.
Plot-scale effects on runoff and erosion along a slope degradation gradient
NASA Astrophysics Data System (ADS)
Moreno-de Las Heras, Mariano; Nicolau, José M.; Merino-MartíN, Luis; Wilcox, Bradford P.
2010-04-01
In Earth and ecological sciences, an important, crosscutting issue is the relationship between scale and the processes of runoff and erosion. In drylands, understanding this relationship is critical for understanding ecosystem functionality and degradation processes. Recent work has suggested that the effects of scale may differ depending on the extent of degradation. To test this hypothesis, runoff and sediment yield were monitored during a hydrological year on 20 plots of various lengths (1-15 m). These plots were located on a series of five reclaimed mining slopes in a Mediterranean-dry environment. The five slopes exhibited various degrees of vegetative cover and surface erosion. A general decrease of unit area runoff was observed with increasing plot scale for all slopes. Nevertheless, the amount of reinfiltrated runoff along each slope varied with the extent of degradation, being highest at the least degraded slope and vice versa. In other words, unit area runoff decreased the least on the most disturbed site as plot length increased. Unit area sediment yield declined with increasing plot length for the undisturbed and moderately disturbed sites, but it actually increased for the highly disturbed sites. The different scaling behavior of the most degraded slopes was especially clear under high-intensity rainfall conditions, when flow concentration favored rill erosion. Our results confirm that in drylands, the effects of scale on runoff and erosion change with the extent of degradation, resulting in a substantial loss of soil and water from disturbed systems, which could reinforce the degradation process through feedback mechanisms with vegetation.
Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland
2008-06-01
Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments. John Wiley & Sons, Ltd
Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials
NASA Astrophysics Data System (ADS)
de Rooij, E. D.
2010-02-01
In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel where the plasma is neutralized in order to exhaust the helium. The surface plates of the divertor are subjected to high heat loads and high fluxes of energetic hydrogen and helium. In the next generation fusion device - the tokamak ITER - the expected conditions at the plates are particle fluxes exceeding 1e24 per second and square metre, particle energies ranging from 1 to 100 eV and an average heat load of 10 MW per square metre. Two materials have been identified as candidates for the ITER divertor plates: carbon and tungsten. Since there are currently no fusion devices that can create these harsh conditions, it is unknown how the materials will behave in terms of erosion and hydrogen retention. To gain more insight in the physical processes under these conditions molecular dynamics simulations have been conducted. Since diamond has been proposed as possible plasma facing material, we have studied erosion and hydrogen retention in diamond and amorphous hydrogenated carbon (a-C:H). As in experiments, diamond shows a lower erosion yield than a-C:H, however the hydrogen retention in diamond is much larger than in a-C:H and also hardly depending on the substrate temperature. This implies that simple heating of the surface is not sufficient to retrieve the hydrogen from diamond material, whereas a-C:H readily releases the retained hydrogen. So, in spite of the higher erosion yield carbon material other than diamond seems more suitable. Experiments suggest that the erosion yield of carbon material decreases with increasing flux. This was studied in our simulations. The results show no flux dependency, suggesting that the observed reduction is not a material property but is caused by external factors as, for example, redeposition of the erosion products. Our study of the redeposition showed that the sticking probability of small hydrocarbons is highest on material previously subjected to the highest hydrogen flux. This result suggests that redeposition is more effective under high than under low hydrogen fluxes, partly explaining the experimentally observed reduction in the carbon erosion yield. Lastly, we studied amorphous tungsten carbide. Amorphous material with three different carbon percentages (15, 50 and 95%) was subjected to deuterium bombardment and the resulting erosion and deuterium retention was analysed. The 95% carbon sample behaves like doped carbon, the carbon erosion yield is reduced and no tungsten is eroded. Segregation of the materials was observed, resulting in an accumulation of tungsten at the surface. The hydrogen retention was similar to a-C:H. The 15% carbon sample showed no significant erosion or retention. The most interesting was the 50% sample. Here deuterium bubbles formed that burst open after sufficiently long bombardment, thereby removing both carbon and tungsten from the surface. In the context of ITER our MD simulations suggest that tungsten is the better suited material since both the erosion and the hydrogen retention are significantly lower than for carbon.
Surface Erosion Control Techniques on Newly Constructed Forest Roads
Johnny M. Grace; John Wilhoit; Robert Rummer; Bryce Stokes
1999-01-01
A newly constructed forest road was treated with three erosion control treatments: wood excelsior erosion mat, native grass species, and exotic grass species. The study evaluates treatment methods on the basis of sediment reduction and runoff volume reduction compared to no treatment. The erosion mat treatment was most effective in mitigating erosion losses with a 98...
Strategies for the prevention of erosive tooth surface loss.
Chander, Satinder; Rees, Jeremy
2010-01-01
This article explores the available strategies for protection against erosive toothwear. As part of a preventive regime, the importance of dietary counselling is discussed. Risk factors that render patients susceptible to erosive toothwear need to be identified in early life, if possible, as it may improve their treatment outcome through the instigation of preventive measures. Practical advice and the importance of education regarding timing of toothbrushing following an acid challenge should be given to patients. Availability of fewer erosive beverages may prove acceptable alternatives for some patients, especially where poor compliance is an issue. Some patients may benefit from intra-oral appliances to improve and maintain delivery of fluoride. The importance of fluoride use and of products such as Pronamel/Tooth Mousse aimed at preventing erosive tooth surface loss are discussed. Erosive toothwear is becoming an increasing problem for patients. Practical preventive measures that can be employed to reduce the amount of erosive toothwear are desirable.
Rain erosion considerations for launch vehicle insulation systems
NASA Technical Reports Server (NTRS)
Daniels, D. J.; Sieker, W. D.
1977-01-01
In recent years the Delta launch vehicle has incorporated the capability to be launched through rain. This capability was developed to eliminate a design constraint which could result in a costly launch delay. This paper presents the methodology developed to implement rain erosion protection for the insulated exterior vehicle surfaces. The effect of the interaction between insulation material rain erosion resistance, rainstorm models, surface geometry and trajectory variations is examined. It is concluded that rain erosion can significantly impact the performance of launch vehicle insulation systems and should be considered in their design.
Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus
NASA Astrophysics Data System (ADS)
Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric
2015-04-01
The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.
Space Environmental Erosion of Polar Icy Regolith
NASA Technical Reports Server (NTRS)
Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.
2011-01-01
While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].
NASA Astrophysics Data System (ADS)
Wang, L.; Shi, Z. H.; Wang, J.; Fang, N. F.; Wu, G. L.; Zhang, H. Y.
2014-05-01
Rainfall kinetic energy (KE) can break down aggregates in the soil surface. A better understanding of sediment sorting associated with various KEs is essential for the development and verification of soil erosion models. A clay loam soil was used in the experiments. Six KEs were obtained (76, 90, 105, 160, 270, and 518 J m-2 h-1) by covering wire screens located above the soil surface with different apertures to change the size of raindrops falling on the soil surface, while maintaining the same rainfall intensity (90 ± 3.5 mm h-1). For each rainfall simulation, runoff and sediment were collected at 3-min intervals to investigate the temporal variation of the sediment particle size distribution (PSD). Comparison of the sediment effective PSD (undispersed) and ultimate PSD (dispersed) was used to investigate the detachment and transport mechanisms involved in sediment mobilization. The effective-ultimate ratios of clay-sized particles were less than 1, whereas that of sand-sized particles were greater than 1, suggesting that these particles were transported as aggregates. Under higher KE, the effective-ultimate ratios were much closer to 1, indicating that sediments were more likely transported as primary particles at higher KE owing to an increased severity of aggregate disaggregation for the clay loam soil. The percentage of clay-sized particles and the relative importance of suspension-saltation increased with increasing KE when KE was greater than 105 J m-2 h-1, while decreased with increasing KE when KE was less than 105 J m-2 h-1. A KE of 105 J m-2 h-1 appeared to be a threshold level beyond which the disintegration of aggregates was severe and the influence of KE on erosion processes and sediment sorting may change. Results of this study demonstrate the need for considering KE-influenced sediment transport when predicting erosion.
NASA Astrophysics Data System (ADS)
Kumar, R. K.; Kamaraj, M.; Seetharamu, S.; Pramod, T.; Sampathkumaran, P.
2016-08-01
The hydro plants utilizing silt-laden water for power generation suffer from severe metal wastage due to particle-induced erosion and cavitation. High-velocity oxy-fuel process (HVOF)-based coatings is widely applied to improve the erosion life. The process parameters such as particle velocity, size, powder feed rate, temperature, affect their mechanical properties. The high-velocity air fuel (HVAF) technology, with higher particle velocities and lower spray temperatures, gives dense and substantially nonoxidized coating. In the present study, the cavitation resistance of 86WC-10Co4Cr-type HVOF coating processed at 680 m/s spray particle velocity was compared with HVAF coatings made at 895, 960, and 1010 m/s. The properties such as porosity, hardness, indentation toughness, and cavitation resistance were investigated. The surface damage morphology has been analyzed in SEM. The cohesion between different layers has been examined qualitatively through scratch depth measurements across the cross section. The HVAF coatings have shown a lower porosity, higher hardness, and superior cavitation resistance. Delamination, extensive cracking of the matrix interface, and detachment of the WC grains were observed in HVOF coating. The rate of metal loss is low in HVAF coatings implying that process parameters play a vital role in achieving improved cavitation resistance.
Denudation of the continental shelf between Britain and France at the glacial–interglacial timescale
Mellett, Claire L.; Hodgson, David M.; Plater, Andrew J.; Mauz, Barbara; Selby, Ian; Lang, Andreas
2013-01-01
The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial–interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian–Eemian–early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial–interglacial period. PMID:24748702
A laboratory experiment simulating the dynamics of topographic relief: methodology and results
NASA Astrophysics Data System (ADS)
Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.
2002-12-01
Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope and flow width. The analogy with real geomorphic systems is limited by the imperfect downscaling in both time and space of the experiments. However, these simple experiments have allowed us to probe (1) the importance of a threshold for particle mobilization to the relationship between steady-state elevation and uplift rate, (2) the role of initial drainage network organization in the transient dynamics of tectonically perturbed systems and (3) the sediment flux dynamics of climatically perturbed systems.
Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas
2013-12-01
The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period.
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Bradna, Pavel; Vrbova, Radka; Fialova, Vlasta; Housova, Devana; Gojisova, Eva
2016-09-01
This study investigated formation of protective deposits on the enamel surface after application of several anti-erosive toothpastes with different active ingredients. NaF-containing Sensodyne Pronamel, SnCl 2 /F-based Elmex Erosion Protection and calcium phosphate-based BioRepair Plus Sensitivity Control, SensiShield and Enamel Care toothpastes with claimed anti-erosive properties were tested. Artificial saliva and Elmex Erosion Protection mouth rinse served as control groups. The toothpastes were applied 30 times by a toothbrush for 2 min per day, mouth rinse for 30 s on polished enamel of thirty five human molars (n = 5) with series of five rhomboid-shaped indents of various length prepared by a Knoop indentor. After 15 and 30 applications, the shape of the indents and surface morphology was characterised using light and scanning electron microscopy. At the end of treatment, the samples were exposed to 0.2 wt. % citric acid (pH 3.30) to test resistance of the treated enamel to erosion. Pronounced differences were observed between protective properties of the toothpastes. While Sensodyne Pronamel and BioRepair Plus Sensitivity Control did not produce any protective deposits, Enamel Care formed a compact layer of deposits which protected the enamel surface against erosion. With Elmex Erosion Protection and SensiShield fractured indent edges and scratches on the treated enamel suggested that their abrasive properties prevailed over ability of active ingredients to form deposits. These results revealed that toothpastes with strong potential to form acid-resistant deposits on the enamel surface and of low abrasivity should be used for effective prevention of enamel erosion. SCANNING 38:380-388, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wondzell, S. M.; Clifton, C. F.; Harris, R. M.; Ritchie, J. C.
2007-12-01
We examined present day rates of erosion in the Blue Mountains of eastern Oregon to quantify background erosion rates to provide standards for assessing possible accelerated rates of erosion resulting from wild fire or from land-management activities such as prescribed fire. The Skookum Creek watersheds, where stream discharge and sediment yield have been recorded continuously since the watersheds were gauged in 1992, provided a watershed-scale estimate of erosion rates. We installed hillslope erosion plots on north- and south- facing slopes within the watersheds in 2002 and collected data for three years to estimate short-term, hillslope- scale erosion rates. We also collected soil samples and analyzed them for 137Cs to get a 40-yr time- integrated estimate of hillslope erosion rates. Our results showed large differences between whole-watershed sediment yields and hillslope erosion rates measured from plots, suggesting that episodic processes dominated sediment production and transport and therefore controlled watershed-scale sediment budgets. At the hillslope-scale, short-term erosion resulted primarily from digging by small mammals and trampling by elk. Visual observations at the plots suggested that annual down-slope sediment movement was usually less than one meter. There were no significant difference among slope positions, but erosion rates were significantly higher on south-facing aspects and positively correlated to the amount of bare ground. In contrast, the 137Cs data suggested that erosion rates differed with slope position. Higher erosion rates were measured in toe- and mid-slope positions, with little erosion occurring on upper slopes and ridge tops. We examine these results in light of the present-day pattern of surface soils resulting from redistribution of volcanic ash from upper- slope to lower-slope positions and the effects of disturbance, including wildfire and the preferential grazing of riparian and lower-slope positions by domestic livestock.
NASA Technical Reports Server (NTRS)
1994-01-01
The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.
Studies of erosion of solar max samples of Kapton and Teflon
NASA Technical Reports Server (NTRS)
Fristrom, R. M.; Benson, R. C.; Bargeron, C. B.; Phillips, T. E.; Vest, C. E.; Hoshall, C. H.; Satkiewicz, F. G.; Uy, O. M.
1985-01-01
Several samples of Kapton and Teflon which was exposed to solar radiation were examined. The samples represent material behavior in near Earth space. Clues to the identity of erosive processes and the responsible species were searched for. Interest centered around oxygen atoms which are ubiquitous at these altitudes and are known to erode some metal surfaces. Three diagnostic methods were employed: optical microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy. Two types of simulation were used: a flow containing low energy oxygen atoms and bombardment with 3000 volt Ar ions. Results and conclusions are presented.
Effect of erodent particles on the erosion of metal specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com
2016-07-12
This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens aremore » examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.« less
Effect of erodent particles on the erosion of metal specimens
NASA Astrophysics Data System (ADS)
Razzaque, M. Mahbubur; Alam, M. Khorshed; Khan, M. Ishak
2016-07-01
This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.
Material migration studies with an ITER first wall panel proxy on EAST
NASA Astrophysics Data System (ADS)
Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G.-N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.
2015-02-01
The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. Excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.
Enhancing soil begins with soil biology and a stable soil microclimate
USDA-ARS?s Scientific Manuscript database
Protection of the soil resource from erosion requires reducing the surface impact from raindrop energy and maintaining soil structure and stability to allow more efficient infiltration of water into the soil column. These two processes are linked with practices associated with enhancing and maintain...
Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux
NASA Astrophysics Data System (ADS)
Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda
2003-08-01
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.
Cosmogenic nuclides application on French Mediterranean shore platform development
NASA Astrophysics Data System (ADS)
Giuliano, Jérémy; Lebourg, Thomas; Godard, Vincent; Dewez, Thomas; Braucher, Régis; Bourlès, Didier; Marçot, Nathalie
2014-05-01
Rocky shorelines are among the most common elements of the world's littoral zone, and the potential effects of rising sea level on the ever increasing populations require a better understanding of their dynamics. The sinuosity and heterogeneity of the shoreline morphology at large and intermediate wavelengths (1-100 km) results from their constant evolution under the combined influence of marine and continental forcings. This macro-scale organization is the expression of the action of elementary erosion processes acting at shorter wavelengths (<1 km) which lead to the development of shore platforms by landward retreat of cliff edges. Modern analytical techniques (laser-scaning, micro-erosion meters, aerial surveys) constitute appropriate methods to identify and quantify processes of cliff retreat to 1-100 yrs time-scales. But over this time frame, shore platform development appears imperceptible. Precise knowledge of long-term erosion rates are needed to understand rocky shore evolution, and develop quantitative modeling of platform development. Rocky coasts constitute a Quaternary sea level evolution archive that is partly preserved and progressively destroyed. One major challenges is to determine the degree to which coast morphologies are (i) contemporary, (ii) or ancient features inherited, (iii) or partly inherited from Quaternary interglacial stages. In order to fill the lack of long term coast morphodynamic data, we use cosmogenic nuclides (36Cl) to study abrasion surfaces carved in carbonates lithologies along the French Mediterranean coast, in a microtidal environment (Côte Bleue, West of Marseille). 36Cl concentration heritage influences strongly our interpretations in terms of age and denudation of the surfaces. We propose to constrain heritage in sampling oldest relic marine surfaces at 10m of altitude, and along recent cliff scarp. 36Cl concentrations show that the lowest platforms near sea level are contemporary and the highest ones (8-14 m above sea level) marine surfaces are associated to MIS 5.5. A total of 50 samples allows to investigate the variations through time in relative sea level, climate and tectonic activity. Key words: cosmogenic, shore platform, rocky coast, Mediterranean, erosion rate.
NASA Astrophysics Data System (ADS)
Yan, Q.; Kumar, P.
2017-12-01
Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and biogeochemical processes. This study not only helps us understand the coupled carbon-nitrogen cycle, but also serve as an instrument to develop practical approaches for reducing soil erosion and carbon loss when the landscape is affected by human activities.
History of Martian Surface Changes Observed by Mars Global Surveyor
NASA Astrophysics Data System (ADS)
Geissler, P. E.; Enga, M.; Mukherjee, P.
2009-12-01
The changing appearance of Mars has fascinated observers for centuries, yet much is still unknown about the winds and sediments that alter the albedo of vast areas of the planet’s surface. A variety of aeolian processes contribute to the deposition and erosion of dust on Mars, with distinct causes and timescales that vary with season and location. Over decadal timescales, these processes act to alter the planetary albedo distribution enough to significantly impact the climate and global circulation of winds on Mars (Geissler, JGR 110, E02001, 2005; Fenton et al., Nature 446, 646, 2007). We are documenting the extent and frequency of Martian surface changes by analyzing the rich record of observations made by the Mars Global Surveyor mission. We are currently completing a time-series of global mosaics produced from wide angle MOC images showing in detail how the planet’s surface changed in appearance between early 1999 and late 2006, a period of 4 Martian years. The MOC mosaics reveal a surprising range of temporal behavior among variable features in different regions of Mars. Episodic dust deposition followed by episodic clearing can be seen in Syrtis Major. Gradual erosion by persistent seasonal winds can be seen in many equatorial areas such as southern Alcyonius. Gradual erosion by dust-devils is prevalent at higher latitudes and notably in Nilosyrtis, where the albedo boundary dividing the high albedo tropics from the dark terrain to the north is slowly advancing southwards onto brighter terrain. Solis Planum, a high plateau south of the Valles Marineris, changes on a nearly continuous basis. Many of the moving albedo boundaries (such as those at Oxia Palus and the Southern tropical dark band) display high albedo margins that may be aprons of dust swept away by the advancing erosion. The data also show clear evidence for dust deposition onto already dust-covered regions, a phenomenon that was suspected but not demonstrated by Geissler (2005). The final MOC images show significant brightening in Vastitas Borealis, continuing a trend that may have begun in the 1980s.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen
2014-05-01
The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.
Monte Carlo simulation of ion-material interactions in nuclear fusion devices
NASA Astrophysics Data System (ADS)
Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.
2017-06-01
One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.
NASA Astrophysics Data System (ADS)
Ritchie, A.; Randle, T. J.; Bountry, J.; Warrick, J. A.
2015-12-01
The stepwise removal of two dams on the Elwha River beginning in September 2011 exposed ~21 million cubic meters of sediment to fluvial erosion and created an unprecedented opportunity to monitor reservoir sediment erosion and river evolution during base level adjustment and a pulsed sediment release. We have conducted more than 60 aerial surveys with a Cessna 172 using a simple custom wing-mount for consumer grade cameras and SfM photogrammetry to produce orthoimagery and digital elevation models in near-real-time at weekly to monthly time intervals. Multiple lidar flights and ground survey campaigns have provided estimates of both systematic and random error for this uniquely dense dataset. Co-registration of multiple surveys during processing reduces systematic error and allows boot-strapping of subsequently established ground control to earlier flights. Measurements chronicle the erosion of 12 million cubic meters of reservoir sediment and record corresponding changes in channel braiding, wood loading and bank erosion. These data capture reservoir and river channel responses to dam removal at resolutions comparable to hydrologic forcing events, allowing us to quantify reservoir sediment budgets on a per-storm basis. This allows for the analysis of sediment transported relative to rates of reservoir drawdown and river stream power for dozens of intervals of time. Temporal decoupling of peak sediment flux and bank erosion rates is noted from these analyses. This dataset illustrates some of the challenges and opportunities emerging with the advent of big data in remote sensing of earth surface processes.
Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Atroshenko, S. A.; Kazarinov, N. A.; Evstifeev, A. D.; Solov'ev, V. Yu.
2017-04-01
The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.
NASA Astrophysics Data System (ADS)
Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.
2007-12-01
Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from Himalaya. Based on the average composition of the suspended load and of floodplain soils, we estimate that 250x106 t/yr i.e. 5 t/ha/yr is eroded from soil surfaces of the Ganga floodplain. This enhanced soil erosion is likely triggered by intense deforestation and change in land use due to increasing human activity in the basin.
Crater gradation in Gusev crater and Meridiani Planum, Mars
Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.
2006-01-01
The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.
Measurements of Erosion Wear Volume Loss on Bare and Coated Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard J.; Bowman, Cheryl; Ma, Kong; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.
2003-01-01
An investigation was conducted to examine the erosion behavior of uncoated and coated polymer matrix composite (PMC) specimens subjected to solid particle impingement using air jets. The PMCs were carbon-Kevlar (DuPont, Wilmington, DE) fiber-epoxy resin composites with a temperature capability up to 393 K (248 F). Tungsten carbide-cobalt (WC-Co) was the primary topcoat constituent. Bondcoats were applied to the PMC substrates to improve coating adhesion; then, erosion testing was performed at the University of Cincinnati. All erosion tests were conducted with Arizona road-dust (ARD), impinging at angles of 20 and 90 on both uncoated and two-layer coated PMCs at a velocity of 229 m/s and at a temperature of 366 K (200 F). ARD contains primarily 10-m aluminum oxide powders. Vertically scanning interference microscopy (noncontact, optical profilometry) was used to evaluate surface characteristics, such as erosion wear volume loss and depth, surface topography, and surface roughness. The results indicate that noncontact, optical interferometry can be used to make an accurate determination of the erosion wear volume loss of PMCs with multilayered structures while preserving the specimens. The two-layered (WC-Co topcoat and metal bondcoat) coatings on PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. The tenfold increase in erosion resistance will contribute to longer PMC component lives, lower air friction, reduced related breakdowns, decreased maintenance costs, and increased PMC reliability. The decrease in the surface roughness of the coated vanes will lead to lower air friction and will subsequently reduce energy consumption. Eventually, the coatings could lead to overall economic savings.
Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W
2016-02-01
This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
The Nucleus of Comet 9P-Tempel 1: Shape and Geology from Two Flybys
NASA Technical Reports Server (NTRS)
Thomas, P.; A'Hearn, M.; Belton, M. J. S.; Brownlee, D.; Carcich, B.; Hermalyn, B.; Klaasen, K.; Sackett, S.; Schultz, P. H.; Veverka, J.;
2012-01-01
The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5 1/2 years. The combined imaging covers 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (10 m/pixel) up to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically- controlled processes, or a continuing interaction of erosion and deposition.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.
2017-12-01
There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.
Self-induced vomiting and dental erosion – a clinical study
2014-01-01
Background In individuals suffering from eating disorders (ED) characterized by vomiting (e.g. bulimia nervosa), the gastric juice regularly reaches the oral cavity, causing a possible risk of dental erosion. This study aimed to assess the occurrence, distribution and severity of dental erosions in a group of Norwegian patients experiencing self-induced vomiting (SIV). Methods The individuals included in the study were all undergoing treatment at clinics for eating disorders and were referred to a university dental clinic for examinations. One calibrated clinician registered erosions using the Visual Erosion Dental Examination (VEDE) system. Results Of 72 referred patients, 66 (63 females and three males, mean age 27.7 years) were or had been experiencing SIV (mean duration 10.6 years; range: 3 – 32 years), and were therefore included in the study. Dental erosions were found in 46 individuals (69.7%), 19 had enamel lesions only, while 27 had both enamel and dentine lesions. Ten or more teeth were affected in 26.1% of those with erosions, and 9% had ≥10 teeth with dentine lesions. Of the erosions, 41.6% were found on palatal/lingual surfaces, 36.6% on occlusal surfaces and 21.8% on buccal surfaces. Dentine lesions were most often found on lower first molars, while upper central incisors showed enamel lesions most frequently. The majority of the erosive lesions (48.6%) were found in those with the longest illness period, and 71.7% of the lesions extending into dentine were also found in this group. However, despite suffering from SIV for up to 32 years, 30.3% of the individuals showed no lesions. Conclusions Dental erosion commonly affects individuals with ED experiencing SIV, and is more often found on the palatal/lingual surfaces than on the buccal in these individuals, confirming a common clinical assumption. PMID:25069878
Homogeneous near surface activity distribution by double energy activation for TLA
NASA Astrophysics Data System (ADS)
Takács, S.; Ditrói, F.; Tárkányi, F.
2007-10-01
Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm2) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory.
Sediment Transport and Landscape Evolution on Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Birch, S.; Umurhan, O. M.; Hayes, A.; Tang, Y.; Moore, J. M.; White, O. L.
2017-12-01
New observations from ESA's Rosetta orbiter of comet 67P/Churyumov-Gerasimenko (67P) have revolutionized our understanding of these primitive bodies and the processes that act to modify their surfaces. Centimeter to meter scale images of the surface of 67P have revealed a diverse sedimentary world, where the dominant landforms consist of vertical, consolidated cliffs and pits interspersed, and in the northern hemisphere buried, by smooth, decameter thick sedimentary deposits. Sublimation erosion, in the form of jets, from exposed cliff faces acts to break off parts of the weakened bedrock material, which then accumulate as mass wasting deposits at the cliff bases. The large boulders within these deposits may also contribute to the jets, as volatiles in exposed faces of the boulders, previously hidden from the Sun, can sublimate away. During a jet event, the less volatile material that does not escape the comet falls back and drapes the rocky surface as smooth deposits. This is particularly evident in the northern hemisphere of 67P and within gravitational lows, where the underlying consolidated material appears to outcrop from underneath a vast cover of sedimentary deposits. These sedimentary materials, having a low thermal inertia, counteracts the erosive process, and allows for the surface of 67P to retain a relatively primitive form to the current day. To understand this process quantitatively, and constrain over what timescale(s) the surface of 67P evolves, we utilized high-resolution photoclinometry digital terrain models ( 14 cm/pixel), and the MARSSIM landscape evolution model, adapted for a low, and variable gravity environment. Perfectly suited to model sublimation erosion and mass-wasting, MARSSIM also allows us to track the re-condensation of non-volatile materials to accurately account for the important feedback played by the sedimentary deposits. These simulations will allow for us to constrain the rates of landscape evolution on 67P, to compare directly to observations of dynamic changes on the nucleus. Through this work, we will also be able to assess the question of whether 67P is primitive or not, using reasonable assumptions as to the volatility and strength of the bedrock materials.
A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan
2018-05-01
Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.
Cavitation erosion resistance of diamond-like carbon coating on stainless steel
NASA Astrophysics Data System (ADS)
Cheng, Feng; Jiang, Shuyun
2014-02-01
Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.
Numerical simulation of mud erosion rate in sand-mud alternate layer and comparison with experiment
NASA Astrophysics Data System (ADS)
Yoshida, T.; Yamaguchi, T.; Oyama, H.; Sato, T.
2015-12-01
For gas production from methane hydrates in sand-mud alternate layers, depressurization method is expected as feasible. After methane hydrate is dissociated, gas and water flow in pore space. There is a concern about the erosion of mud surface and it may result in flow blockage that disturbs the gas production. As a part of a Japanese National hydrate research program (MH21, funded by METI), we developed a numerical simulation of water-induced mud erosion in pore-scale sand-mud domains to model such mud erosion. The size of which is of the order of 100 micro meter. Water flow is simulated using a lattice Boltzmann method (LBM) and mud surface is treated as solid boundary with arbitrary shape, which changes with time. Periodic boundary condition is adopted at the domain boundaries, except for the surface of mud layers and the upper side. Shear stress acting on the mud surface is calculated using a momentum-exchange method. Mud layer is eroded when the shear stress exceeds a threshold coined a critical shear stress. In this study, we compared the simulated mud erosion rate with experimental data acquired from an experiment using artificial sand-mud core. As a result, the simulated erosion rate agrees well with that of the experiment.
Lussi, A; Kohler, N; Zero, D; Schaffner, M; Megert, B
2000-04-01
The aim of this study was to compare the erosive potential of different beverages and foodstuffs in primary and permanent teeth. Sixty primary and 60 permanent human teeth were immersed for 3 min in the solution under study (5 teeth per treatment group). Surface microhardness was measured before and after exposure. Initial (baseline) surface microhardness was lower for primary teeth than for permanent teeth. In both primary and permanent teeth, Sprite showed the highest decrease in surface microhardness, whereas yogurt showed an increase in surface microhardness in the primary teeth. Overall decrease was 27.2 +/- 17.5 KHN (mean +/- SD) for primary and 25.9 +/- 15.6 KHN for permanent teeth. The comparison of the erosive susceptibility in this in vitro model showed that primary teeth were not more susceptible to erosion compared to permanent teeth.
Erosion and flow of hydrophobic granular materials
NASA Astrophysics Data System (ADS)
Utter, Brian; Benns, Thomas; Mahler, Joseph
2013-11-01
We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.
Erosion and flow of hydrophobic granular materials
NASA Astrophysics Data System (ADS)
Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph
2015-03-01
We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.
NASA Astrophysics Data System (ADS)
Cavalli, Marco; Goldin, Beatrice; Comiti, Francesco; Brardinoni, Francesco; Marchi, Lorenzo
2017-08-01
Digital elevation models (DEMs) built from repeated topographic surveys permit producing DEM of Difference (DoD) that enables assessment of elevation variations and estimation of volumetric changes through time. In the framework of sediment transport studies, DEM differencing enables quantitative and spatially-distributed representation of erosion and deposition within the analyzed time window, at both the channel reach and the catchment scale. In this study, two high-resolution Digital Terrain Models (DTMs) derived from airborne LiDAR data (2 m resolution) acquired in 2005 and 2011 were used to characterize the topographic variations caused by sediment erosion, transport and deposition in two adjacent mountain basins (Gadria and Strimm, Vinschgau - Venosta valley, Eastern Alps, Italy). These catchments were chosen for their contrasting morphology and because they feature different types and intensity of sediment transfer processes. A method based on fuzzy logic, which takes into account spatially variable DTMs uncertainty, was used to derive the DoD of the study area. Volumes of erosion and deposition calculated from the DoD were then compared with post-event field surveys to test the consistency of two independent estimates. Results show an overall agreement between the estimates, with differences due to the intrinsic approximations of the two approaches. The consistency of DoD with post-event estimates encourages the integration of these two methods, whose combined application may permit to overcome the intrinsic limitations of the two estimations. The comparison between 2005 and 2011 DTMs allowed to investigate the relationships between topographic changes and geomorphometric parameters expressing the role of topography on sediment erosion and deposition (i.e., slope and contributing area) and describing the morphology influenced by debris flows and fluvial processes (i.e., curvature). Erosion and deposition relations in the slope-area space display substantial differences between the Gadria and the Strimm basins. While in the former erosion and deposition clusters are reasonably well discriminated, in the latter, characterized by a complex stepped structure, we observe substantial overlapping. Erosion mostly occurred in areas that show persistency of concavity or transformation from convex and flat to concave surfaces, whereas deposition prevailingly took place on convex morphologies. Less expected correspondences between curvature and topographic changes can be explained by the variable sediment transport processes, which are often characterized by alternation of erosion and deposition between different events and even during the same event.
Restoration effects on N cycling pools and processes
James M. Vose; Chris Geron; John Walker; Karsten Raulund-Rasmussen
2005-01-01
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that regulate biogeochemical cycling and associated aquatic components. Biogeochemical...
NASA Astrophysics Data System (ADS)
Bechet, Jacques; Duc, Julien; Loye, Alexandre; Jaboyedoff, Michel; Mathys, Nicolle; Malet, Jean-Philippe; Klotz, Sébastien; Le Bouteiller, Caroline; Rudaz, Benjamin; Travelletti, Julien
2016-10-01
The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion-deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to trigger significant erosion; they are above 9 mm rainfall or of an intensity of more than 1 mm min-1, values which can vary if antecedent precipitation is significant within the last 5 days.
This study improves knowledge of the spatial distribution of erosion seasonality in badlands and demonstrates the potential of careful 3-D high-resolution topography using TLS to improve the understanding of erosive processes.
M. Francesca Cotrufo; Claudia M. Boot; Stephanie Kampf; Peter A. Nelson; Daniel J. Brogan; Tim Covino; Michelle L. Haddix; Lee H. MacDonald; Sarah Rathburn; Sandra Ryan-Burkett; Sarah Schmeer; Ed Hall
2016-01-01
Pyrogenic carbon (PyC) constitutes a significant fraction of organic carbon in most soils. However, PyC soil stocks are generally smaller than what is expected from estimates of PyC produced from fire and decomposition losses, implying that other processes cause PyC loss from soils. Surface erosion has been previously suggested as one such process. To address this,...
Measuring splash erosion potential under vegetation using sand-filled splash cups
NASA Astrophysics Data System (ADS)
Geißler, C.; Scholten, T.; Kühn, P.
2009-04-01
In soil erosion research it is widely accepted that vegetation is not only protecting the soil from the erosive power of rainfall. Under specific circumstances (like they occur e.g. in forests) vegetation can enhance the erosive power of rainfall by modifying its properties (esp. drop size distribution, kinetic energy). The adjacent processes are very complex and variable in time and space and depend on numerous variables (e.g. rainfall intensity, drop size distribution, drop fall velocity, height of the canopy, density of the canopy, crown and leaf traits, LAI). In the last decades a large number of studies focused this process-system using different methods and came to often different results (Brandt 1989; Calder 2001; Foot & Morgan 2005; Hall & Calder 1993; Mosley 1982; Nanko et al. 2006; Park & Cameron 2008; Vis 1986). The main objective of our field experiments in subtropical China is to quantify the modification of precipitation by its pass through the canopy layer for six different tree species, three different successional stages and three different biodiversity classes. For this, new splash cups were developed based on the archetype of Ellison (1947). In contrast to previous studies with splash cups (Vis 1986) or other forms of splash cups (Kinnell 1974; Morgan 1981) we measured the unit sand remaining inside the cup after single natural rainfall events. The new splash cups contain of a PE-flask to which a carrier system has been attached. In this carrier system a cup filled with unit sand of 125-200 µm particle size is inserted. At the bottom of the cup a silk cover is attached to avoid the loss of sand and to guarantee free drainage of water from the cup to the carrier and vice versa. Cup and PE-flask are hydraulically connected by a cotton wick to assure constant moisture content throughout the time of measuring. Additionally, vents in the carrier system ensure that the pressure arising from the insertion of the cup doesn't lead to a loss of sand. The vent in the PE-flask guarantees the free drainage of excess-water which could arise during high intensity rainfall events. The splash cups were exposed to different tree species and in the open field. A total number of 520 partly simultaneous (max. 135 at once) measurements covering five different rainfall events have been carried out during the initial phase of the project. The first results show that sand loss under forest vegetation is up to 2.5 times higher than under open field conditions. Old forests (>80 years) produce a significantly higher amount of sand loss than younger forests (<25 years) which is mainly a function of stand height. The results also give implications for a relation of sand loss to different tree species. To calibrate the splash cup technique and calculate the kinetic energy of rain a laser disdrometer will be used during the next field campaign in 2009. This will allow us to use the splash cup measurements as input values for soil erosion models and to get a better understanding of the behaviour of forest ecosystems in erosion control. References: Brandt, C. J. (1989): The size distribution of throughfall drops under vegetation canopies. Catena 16, p. 507-524. Calder, I. R. (2001): Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecology 153, p. 203-214. Ellison, W. D. (1947): Soil Erosion Studies - Part II. Soil Detachment Hazard by Raindrop Splash. Agricultural Engineering 28, p. 197-201. Foot, K.; Morgan, R. P. C. (2005): The role of leaf inclination, leaf orientation and plant canopy architecture in soil particle detachment by raindrops. Earth Surface Processes and Landforms 30, p. 1509-1520. Hall, R. L. & Calder, I. R. (1993): Drop size modification by forest canopies: measurements using a disdrometer. Journal of Geophysical Research 98 (D10), p. 18465-18470. Mosley, M. F. (1982): The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion. Earth Surface Processes and Landforms 7, p. 103-107. Nanko, K.; Hotta, N. & Suzuki, M. (2006): Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology 329, p. 422-431. Park, A. & Cameron, J. L. (2008): The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology and Management 255, p. 1915-1925. Vis, M. (1986): Interception, drop size distributions and rainfall kinetic energy in four colombian forest ecosystems. Earth Surface Processes and Landforms 11, p. 591-603.
The management submodel of the Wind Erosion Prediction System
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
The stratigraphic filter and bias in measurement of geologic rates
Schumer, Rina; Jerolmack, Douglas; McElroy, Brandon
2011-01-01
Erosion and deposition rates estimated from the stratigraphic record frequently exhibit a power-law dependence on measurement interval. This dependence can result from a power-law distribution of stratigraphic hiatuses. By representing the stratigraphic filter as a stochastic process called a reverse ascending ladder, we describe a likely origin of power-law hiatuses, and thus, rate scaling. While power-law hiatuses in certain environments can be a direct result of power-law periods of stasis (no deposition or erosion), they are more generally the result of randomness in surface fluctuations irrespective of mean subsidence or uplift. Autocorrelation in fluctuations can make hiatuses more or less heavy-tailed, but still exhibit power-law characteristics. In addition we show that by passing stratigraphic data backward through the filter, certain statistics of surface kinematics from their formative environments can be inferred.
Gan, Fengling; He, Binghui; Wang, Tao
2018-01-01
A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China.
Gan, Fengling; Wang, Tao
2018-01-01
A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China. PMID:29723279
NASA Astrophysics Data System (ADS)
Lasa, Ane; Safi, Elnaz; Nordlund, Kai
2015-11-01
Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.
2016-10-01
FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.
Advances in soil erosion research: processes, measurement, and modeling
USDA-ARS?s Scientific Manuscript database
Soil erosion by the environmental agents of water and wind is a continuing global menace that threatens the agricultural base that sustains our civilization. Members of ASABE have been at the forefront of research to understand erosion processes, measure erosion and related processes, and model very...
Reduction in soil aggregation in response to dust emission processes
NASA Astrophysics Data System (ADS)
Swet, Nitzan; Katra, Itzhak
2016-09-01
Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.
Trends and causes of historical wetland loss, Sabine National Wildlife Refuge, southwest Louisiana
Bernier, Julie C.; Morton, Robert A.; Kelso, Kyle W.
2011-01-01
The thickness of the uppermost Holocene sediments (peat and organic-rich mud) and the elevation of stratigraphic contacts were compared at marsh and open-water sites across areas of formerly continuous marsh to estimate magnitudes of recent elevation loss caused by vertical erosion and subsidence. Results of these analyses indicate that erosion greatly exceeded subsidence at most of the core sites, although both processes have contributed to historical wetland loss. Comparison of these results with results of our prior studies indicates that magnitudes of subsidence and total accommodation space that formed in the western chenier plain were less than those in the delta plain. Compared with the delta plain, where subsidence generally exceeded erosion and peat thicknesses were so great that peat was preserved even where erosion was greater than subsidence, the SNWR peats are thin and were absent (eroded) at most open-water sites. Although historical subsidence rates in the chenier plain are substantially lower than most of the same rates in the delta plain, the temporal and spatial trends of rapid wetland loss, highest rates of land-surface subsidence, and high rates of oil-and-gas production are similar, indicating that historical wetland loss was likely initiated by similar processes (deep-subsurface subsidence) in both regions.
2015-09-30
This image from NASA Mars Reconnaissance Orbiter spacecraft provides information about erosion and movement of surface material, about wind and weather patterns, even about the soil grains and grain sizes. However, looking past the dunes, these images also reveal the nature of the substrate beneath. Within the spaces between the dunes, a resistant and highly fractured surface is revealed. The fractured ground is resistant to erosion by the wind, and suggests the material is bedrock that is now shattered by a history of bending stresses or temperature changes, such as cooling, for example. Alternately, the surface may be a sedimentary layer that was once wet and shrunk and fractured as it dried, like gigantic mud cracks. In either case, the relative small and indistinct fractures have trapped the dark dune sand marching overhead. Now the fractures have become quite distinct, allowing us to examine the orientation and spacing of the fractures to learn more about the processes that formed them. http://photojournal.jpl.nasa.gov/catalog/PIA19958
Anomalous topography on the continental shelf around Hudson Canyon
Knebel, H.J.
1979-01-01
Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.
Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level
NASA Technical Reports Server (NTRS)
Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas
1998-01-01
Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.
NASA Astrophysics Data System (ADS)
Crozier, J. A.; Karlstrom, L.; Yang, K.
2017-12-01
Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.
Material migration studies with an ITER first wall panel proxy on EAST
Ding, R.; Pitts, R. A.; Borodin, D.; ...
2015-01-23
The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less
Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-09-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; Rock, Gilles; Neugirg, Fabian; Müller, Christoph; Ries, Johannes
2014-05-01
From a geoscientific view arid or semiarid landscapes are often associated with soil degrading erosion processes and thus active geomorphology. In this regard gully incision represents one of the most important influences on surface dynamics. Established approaches to monitor and quantify soil loss require costly and labor-intensive measuring methods: terrestrial or airborne LiDAR scans to create digital elevation models and unmanned airborne vehicles for image acquisition provide adequate tools for geomorphological surveying. Despite their ever advancing abilities, they are finite with their applicability in detailed recordings of complex surfaces. Especially undercuttings and plunge pools in the headcut area of gully systems are invisible or cause shadowing effects. The presented work aims to apply and advance an adequate tool to avoid the above mentioned obstacles and weaknesses of the established methods. The emerging structure from motion-based high resolution 3D-visualisation not only proved to be useful in gully erosion. Moreover, it provides a solid ground for additional applications in geosciences such as surface roughness measurements, quantification of gravitational mass movements or capturing stream connectivity. During field campaigns in semiarid southern Morocco a commercial DSLR camera was used, to produce images that served as input data for software based point cloud and mesh generation. Thus, complex land surfaces could be reconstructed entirely in high resolution by photographing the object from different perspectives. In different scales the resulting 3D-mesh represents a holistic reconstruction of the actual shape complexity with its limits set only by computing capacity. Analysis and visualization of time series of different erosion-related events illustrate the additional benefit of the method. It opens new perspectives on process understanding that can be exploited by open source and commercial software. Results depicted a soil loss of 5,28 t for a 3,5 m² area at a headcut retreat of 1,95 m after two heavy rain events. At a different site in the Souss region the depression line of a gully was lowered after channel flow and a hollow appeared while the headcut remained stable. The latter is usually interpreted as a hint for an inactive system. While formerly precise differences in volumes could only be estimated based on aerial imagery or LiDAR scans, the presented methodology allows assumptions of high quality and precision. Not only in erosion research the structure from motion-method serves as a useful, flexible and cheap means to increase detail and work efficiency.
Characterization of erosion of metallic materials under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period.
Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce A.
2002-01-01
A method is presented to model atomic oxygen erosion of protected polymers in low Earth orbit (LEO). Undercutting of protected polymers by atomic oxygen occurs in LEO due to the presence of scratch, crack or pin-window defects in the protective coatings. As a means of providing a better understanding of undercutting processes, a fast method of modeling atomic-oxygen undercutting of protected polymers has been developed. Current simulation methods often rely on computationally expensive ray-tracing procedures to track the surface-to-surface movement of individual "atoms." The method introduced in this paper replaces slow individual particle approaches by substituting a model that utilizes both a geometric configuration-factor technique, which governs the diffuse transport of atoms between surfaces, and an efficient telescoping series algorithm, which rapidly integrates the cumulative effects stemming from the numerous atomic oxygen events occurring at the surfaces of an undercut cavity. This new method facilitates the systematic study of three-dimensional undercutting by allowing rapid simulations to be made over a wide range of erosion parameters.
An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash
Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria
2013-01-01
Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s−1 in each storm with gusts up to 38.7 m s−1. Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m−1 during the most intense storm event with a rate of 1,440 kg m−1 hr−1 for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248
An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.
Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria
2013-01-01
Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.
Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica
2015-01-01
Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
NASA Astrophysics Data System (ADS)
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
NASA Astrophysics Data System (ADS)
Pramod Krishna, Akhouri
A watershed in Chhotanagpur plateau region was investigated utilizing space data from Indian Remote Sensing (IRS) Satellite towards spatial and temporal soil erosion process study. Geomorphologically, this plateau region is an undulating pediplain. The watershed namely Potpoto river watershed covering an area of 8160 hectares is situated in the vicinity of Ranchi, capital city of newly created Jharkahnd state. As per the national watershed atlas, Potpoto river is a tributary of Subarnarekha river system within the Upper Subarnarekha river basin under watershed no. 4H3C8. This rural to semi-urban watershed is important towards various services to Ranchi city as well as experiencing direct or indirect pressures of development. Drivers of land use changes at ground level are responsible for change in soil erosion rates in any watershed in coupled human-environment systems. This may adversely affect the soil cover of such watersheds depicted through changed rates of erosion. In a rural to semi-urban watershed like this, there are general tendencies of land use and thereby land cover changes from forests to agricultural lands, within agricultural land in terms of cropping pattern changes to cash-crops, orchards, commercial plantations and conversions to other land use categories as well towards infrastructure expansions. Universal Soil Loss Equation (USLE) was used as a basis to observe the intensity of erosion using remote sensing, rainfall data, soil data and land use/land cover map. IRS1C LISSIII and IRSP6 LISSIII data were used to identify land use status for the years 1996 and 2004 respectively. LISSIII sensor provides data in the visible to near infrared (Bands 2, 3, 4) as well as short wave infrared (Band 5) range of electromagnetic spectrum. In this study, bands 2 (0.52-0.59 microns), 3 (0.62-0.68 microns) and 4 (0.77-0.86 microns) were used with spatial resolution of 23.5 meters at nadir. Digital image processing was carried out using ERDAS Imagine software. Based on maximum likelihood classifier, the study area was classified into suitable land use/land cover classes. Digital elevation model (DEM) was created through contour heights from topographic maps. Watershed based erosion estimation was carried out including assessment of soil erosion due to land use land cover changes. This provides predictive assessment capability in soil erosion studies particularly with methods such as USLE. Soil erosion problem varies largely depending upon climate, topography, soil and land use etc. Multi-factor computations on rainfall erosivity, soil erodibility, topographic, cover and management, and conservation practice were carried out. Quantified details on soil erosion rates were generated in terms of land use land cover classes of the watershed for the years 1996 and 2004. Annual average soil loss for the watershed was calculated and erosion intensity maps were generated. Thus, space data utilized from the satellites IRS1C LISSIII and IRSP6 LISSIII greatly helped in important research assessment of an important land surface process like soil erosion spatially as well as temporally for a watershed under pressures of development, land use changes and land cover fragmentations.
Measurement of surface roughness changes of unpolished and polished enamel following erosion
Austin, Rupert S.; Parkinson, Charles R.; Hasan, Adam; Bartlett, David W.
2017-01-01
Objectives To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion. Methods Twenty human enamel sections (4x4 mm) were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles). Median (IQR) surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2) provided the Sa roughness data. Results For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR) Sa roughness of 1.45 (2.58) μm and the four peripheral clusters had a median (IQR) of 1.32 (4.86) μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35) μm and 0.34 (0.49) μm respectively (p<0.0001). Polished enamel had a median (IQR) Sa roughness 0.04 (0.17) μm for the single central cluster and 0.05 (0.15) μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08) μm for both (p<0.0001). Conclusion Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion. PMID:28771562
NASA Astrophysics Data System (ADS)
Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.
2015-09-01
This paper presents an approach to model runoff and erosion risk in a context of data scarcity, whereas the majority of available models require large quantities of physical data that are frequently not accessible. To overcome this problem, our approach uses different sources of data, particularly on agricultural practices (tillage and land cover) and farmers' perceptions of runoff and erosion. The model was developed on a small (5 ha) cultivated watershed characterized by extreme conditions (slopes of up to 55 %, extreme rainfall events) on the Merapi volcano in Indonesia. Runoff was modelled using two versions of STREAM. First, a lumped version was used to determine the global parameters of the watershed. Second, a distributed version used three parameters for the production of runoff (slope, land cover and roughness), a precise DEM, and the position of waterways for runoff distribution. This information was derived from field observations and interviews with farmers. Both surface runoff models accurately reproduced runoff at the outlet. However, the distributed model (Nash-Sutcliffe = 0.94) was more accurate than the adjusted lumped model (N-S = 0.85), especially for the smallest and biggest runoff events, and produced accurate spatial distribution of runoff production and concentration. Different types of erosion processes (landslides, linear inter-ridge erosion, linear erosion in main waterways) were modelled as a combination of a hazard map (the spatial distribution of runoff/infiltration volume provided by the distributed model), and a susceptibility map combining slope, land cover and tillage, derived from in situ observations and interviews with farmers. Each erosion risk map gives a spatial representation of the different erosion processes including risk intensities and frequencies that were validated by the farmers and by in situ observations. Maps of erosion risk confirmed the impact of the concentration of runoff, the high susceptibility of long steep slopes, and revealed the critical role of tillage direction. Calibrating and validating models using in situ measurements, observations and farmers' perceptions made it possible to represent runoff and erosion risk despite the initial scarcity of hydrological data. Even if the models mainly provided orders of magnitude and qualitative information, they significantly improved our understanding of the watershed dynamics. In addition, the information produced by such models is easy for farmers to use to manage runoff and erosion by using appropriate agricultural practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Robert Cameron; Steiner, Don
2004-06-15
The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate themore » interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully.« less
NASA Astrophysics Data System (ADS)
Vest, K. R.; Elmore, A. J.; Okin, G. S.
2009-12-01
Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils with high organic matter are being eroded following the loss of vegetation cover due to groundwater decline leaving behind bare soil surfaces with less fertility hampering vegetation reestablishment. Desertification in this system is apparently easily initiated through groundwater decline due to the high friability of these meadow soils.
Rivera, Samuel; Kershner, Jeffrey L.; Keller, Gordon R.
2009-01-01
Testing road surface treatments to reduce erosion in forest roads in Honduras. Cien. Inv. Agr. 36(3):425-432. Using forest roads produces more erosion and sedimentation than any other forest or agricultural activity. This study evaluated soil losses from a forest road in central Honduras over two consecutive years. We divided a 400-m segment of road into 8 experimental units, each 50 m in length. Four units were treated with Best Management Practices (BMPs) and four were left untreated. The BMP treatments included reshaping the road prism, installing culverts and reshaping of road ditches, compacting 20-cm layers of the road tread, crowning the road surface (3% slope, double drainage), longitudinal sloping (less than 12%), and adding a 10-cm layer of gravel (crush size = 0.63 cm). Soil movement was measured daily during the rainy seasons. The highest soil loss occurred in the control road, around 500 m3 km-1 per year, while the road treated with BMP lost approximately 225 m3km-1 per year. These results show that road surface erosion can be reduced up to 50% with the implementation of surface treatments.
Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle
NASA Technical Reports Server (NTRS)
Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.
2017-01-01
A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match the experiment very well, and the predictions were able to bound the data within acceptable limits.
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Monthly Rainfall Erosivity Assessment for Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Meusburger, Katrin; Alewell, Christine
2016-04-01
Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.
High-Resolution Monitoring of Coastal Dune Erosion and Growth Using an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Ruessink, G.; Markies, H.; Van Maarseveen, M.
2014-12-01
Coastal foredunes lose and gain sand through marine and aeolian processes, but coastal-evolution models that can accurately predict both wave-driven dune erosion and wind-blown dune growth are non-existing. This is, together with a limited understanding of coastal aeolian process dynamics, due to the lack of adequate field data sets from which erosion and supply volumes can be studied simultaneously. Here, we quantify coastal foredune dynamics using nine topographic surveys performed near Egmond aan Zee, The Netherlands, between September 2011 and March 2014 using an unmanned aerial vehicle (UAV). The approximately 0.75-km long study site comprises a 30-100 m wide sandy beach and a 20-25 m high foredune, of which the higher parts are densely vegetated with European marram grass. Using a structure-from-motion workflow, the 200-500 photographs taken during each UAV flight were processed into a point cloud, from which a geo-referenced digital surface model with a 0.25 x 0.25 m resolution was subsequently computed. Our data set contains two dune-erosion events, including that due to storm Xaver (December 2013), which caused one of the highest surge levels in the southern North Sea region for the last decades. Dune erosion during both events varied alongshore from the destruction of embryonic dunes on the upper beach to the slumping of the entire dune face. During the first storm (January 2012), erosion volumes ranged from 5 m3/m in the (former) embryonic dune field to over 40 m3/m elsewhere. During the subsequent 11 (spring - autumn) months, the foredune accreted by (on average) 8 m3/m, again with substantial alongshore variability (0 - 20 m3/m). Intriguingly, volume changes during the 2012-2013 winter were minimal. We will compare the observed aeolian supply rates with model predictions and discuss reasons for their temporal variability. Funded by the Dutch Organisation for Scientific Research NWO.
LIDAR data to support coastal erosion analysis: the Conero study case
NASA Astrophysics Data System (ADS)
Calligaro, Simone; Sofia, Giulia; Guarnieri, Alberto; Tarolli, Paolo
2013-04-01
In the last decades, the topic of coastal erosion and the derived risk have been subject of a growing interest for public authorities and researchers. Recent major natural events, such as hurricanes, tsunamis, and sea level rising, called the attention of media and society, underlining serious concerns about such problems. In a high-density populated country such as Italy, where tourism is one of the major economic activities, the coastal erosion is really a critical issue. In April 2010, along a reach of the coast of Ventotene Island, two young students tragically died, killed by a rock fall. This event dramatically stressed public authorities about the effectiveness of structural and non-structural measures for the mitigation of such phenomena. It is clear that an improving of the actual knowledge about coastal erosion is needed, especially to monitor such events and to set alert systems. In the last few years, airborne LIDAR technology led to a dramatic increase in terrain information. Airborne LiDAR and Terrestrial Laser Scanner (TLS) derived high-resolution Digital Terrain Models (DTMs) have opened avenues for hydrologic and geomorphologic studies (Tarolli et al., 2009). In general, all the main surface processes signatures are correctly recognized using a DTM with cell sizes of 1 m. Having said that, some sub-meter grid sizes may be more suitable in those situations where the analysis of micro topography related to micro changes due to slope failures is critical for risk assessment, and the Terrestrial Laser Scanner (TLS) has been proven to be a useful tool for such detailed field survey. The acquired elevation data with TLS allow to derive a centimeters high quality DTMs. The possibility to detect in detail the slope failures signatures results in a better understanding and mapping of the erosion susceptibility, and of those areas where slope failures are more likely to happen. In addition, these information can be also considered as the basis to develop risk maps. At this regard, a clear example is the case of coastal erosion. In this work a detailed TLS survey was carried out in summer 2012, in the Conero Regional Park (Marche, province of Ancona), along the "spiaggia Urbani" and "spiaggia San Michele". These two study areas present several sections affected by erosion, rock falls and slope failures. They are also a part of a very prestigious place for tourism during the summer season; therefore deriving risk maps is critical. Thanks to the TLS survey, it was possible to obtain a 10 cm resolution DTM covering a reach of about 1.5 km of the coast. This high resolution DTM was used to derive topographic attributes such as curvature from which it has been possible to automatically recognize (Tarolli et al, 2012) and map the surface features related to any surface instabilities. These topographic information and results will also serve as the reference point for future yearly TLS surveys, that absolutely will help in recognizing any micro changes and slope failures, improving the delineation of risk maps. References Tarolli, P., Arrowsmith, J.R., Vivoni, E.R. (2009). Understanding earth surface processes from remotely sensed digital terrain models, Geomorphology, 113, 1-3, doi:10.1016/j.geomorph. 2009.07.005. Tarolli, P., Sofia, G., Dalla Fontana, G. (2012). Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion, Natural Hazards, 61, 65-83, doi:10.1007/s11069-010-9695-2.
NASA Astrophysics Data System (ADS)
Yoo, K.; Wang, X.; Mudd, S. M.; Weinman, B.; Gutknecht, J.; Gabet, E. J.
2017-12-01
Eroding uplands not only provide physically mixed soil zones where OC and minerals actively interact but also are the significant sources of suspended sediments and organic carbon (OC) to rivers. Here our goal is to quantify the extents that erosion affects soils' capacities to store OC in different degrees of mineral-association and to facilitate the exports of minerals that might capture OC on their reactive surfaces. We examined a tributary basin to the Middle Folk Feather River in California, where knickpoint migration has created a series of hillslopes with erosion rates varying from 35 to 250 mm kyr-1. Other than erosion rates, the studied hillslopes within the tributary basin shared similar environmental factors. Soil samples were collected from select hillslopes that differ in their relative positions to knikpoints and were subject to size and density fractionation. Despite the substantial difference in erosion rates, concentrations of particulate OC (POC) and mineral-associated OC (MOC) and soil thickness varied little. Instead, considerable increase in coarse rock contents positively associated with erosion rate was responsible for the reduction of soil OC inventories by 37% with increasing erosion rate. In contrast to consistent MOC concentrations across the erosion gradient, clay contents in soils are negatively correlated with erosion rates. This seemingly contradictory result, however, is consistent with BET mineral specific surface area that remains insensitive to erosion rates. OC coverage on mineral surface was found to be less than < 50%, indicating that eroded minerals would have a significant, and currently unknown, capacity to adsorb additional OC during their transport to sediment sinks. This study thus reveals that mineral weathering acts as an important filter through which erosion affects the soil carbon cycle.
Gully measurement strategies in a pixel using python
NASA Astrophysics Data System (ADS)
Wells, Robert; Momm, Henrique; Bennett, Sean; Dabney, Seth
2015-04-01
Gullies are often the single largest sediment sources within the landscape; however, measurement and process description of these channels presents challenges that have limited complete understanding. A strategy currently being employed in the field and laboratory to measure topography of gullies utilizes inexpensive, off-the-shelf cameras and software. Photogrammetry may be entering an enlightened period, as users have numerous choices (cameras, lenses, and software) and many are utilizing the technology to define their surroundings; however, the key for those seeking answers will be what happens once topography is represented as a three-dimensional digital surface model. Perhaps the model can be compared with another model to visualize change, either in topography or in vegetation cover, or both. With these models of our landscape, prediction technology should be rejuvenated and/or reinvented. Over the past several decades, researchers have endeavored to capture the erosion process and transfer these observations through oral and written word. Several have hypothesized a fundamental system for gully expression in the landscape; however, this understanding has not transferred well into our prediction technology. Unlike many materials, soils often times do not behave in a predictable fashion. Which soil physical properties lend themselves to erosion process description? In most cases, several disciplines are required to visualize the erosion process and its impact on our landscape. With a small camera, the landscape becomes more accessible and this accessibility will lead to a deeper understanding and development of uncompromised erosion theory. Why? Conservation of our soil resources is inherently linked to a complete understanding of soil wasting.
Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives
NASA Astrophysics Data System (ADS)
Carretier, S.; Tolorza, V.; Regard, V.; Aguilar, G.; Bermúdez, M. A.; Martinod, J.; Guyot, J.-L.; Hérail, G.; Riquelme, R.
2018-01-01
Chile is an elongated country, running in a north-south direction for more than 30° along a subduction zone. Its climate is progressively wetter and colder from north to south. This particular geography has been used positively by a growing number of studies to better understand the relationships between erosion processes and climate, land use, slope, tectonics, volcanism, etc. Here we review the erosion rates, factors, and dynamics over millennial to daily periods reported in the literature. In addition, 21 new catchment mean erosion rates (suspended sediment and 10Be) are provided, and previous suspended sediment-derived erosion rates are updated. A total of 485 local and catchment mean erosion rates are reported. Erosion rates vary between some of the smallest values on earth (10-5 mm/a) to moderate values ≤0.5 mm/a compared to other active ranges. This review highlights strong limitations concerning the quantification of local erosion factors because of uncertainties in sampling point location, slope and rainfall data. For the mean erosion rates E for the millennial and decennial catchments, a model of the form E ∝ S/ [1 - (S/0.6)2] Rα with α = [0.3,0.8] accounts for 40 to 70% of the erosion variance, confirming a primary role of slope S compared to precipitation rate R over this time scale. Over the long-term, this review points to the long (5 to >10 Ma) response time of rivers to surface uplift in north-central arid Chile. Over millennia, data provide evidence for the progressive contribution of extreme erosion events to millennial averages for drier climates, as well as the link between glacier erosion and glacier sliding velocity. In this period of time, a discrepancy exists between the long-term offshore sedimentological record and continental decennial or millennial erosion data, for which no single explanation appears. Still, little information is available concerning the magnitude of variation of millennial erosion rates. Over centuries, data show the variable role of groundwater in the dynamics of suspended load and document a decrease in erosion over hundreds of years, probably associated with historical harvesting.
The Impact of Sea Ice Loss on Wave Dynamics and Coastal Erosion Along the Arctic Coast
NASA Astrophysics Data System (ADS)
Overeem, I.; Anderson, R. S.; Wobus, C. W.; Matell, N.; Urban, F. E.; Clow, G. D.; Stanton, T. P.
2010-12-01
The extent of Arctic sea ice has been shrinking rapidly over the past few decades, and attendant acceleration of erosion is now occurring along the Arctic coast. This both brings coastal infrastructure into harm’s way and promotes a complex response of the adjacent landscape to global change. We quantify the effects of declining sea ice extent on coastal erosion rates along a 75-km stretch of coastal permafrost bluffs adjacent to the Beaufort Sea, Alaska, where present-day erosion rates are among the highest in the world at ~14 m yr-1. Our own observations reinforce those of others, and suggest that the rate-limiting process is thermal erosion at the base of the several-meter tall bluffs. Here we focus on the interaction between the nearshore sea ice concentration, the location of the sea ice margin, and the fetch-limited, shallow water wave field, since these parameters ultimately control both sea surface temperatures and the height to which these waters can bathe the frozen bluffs. Thirty years of daily or bi-daily passive microwave data from Nimbus-7 SMMR and DMSP SSM/I satellites reveal that the nearshore open water season lengthened ~54 days over 1979-2009. The open water season, centered in August, expands more rapidly into the fall (September and October~0.92 day yr-1) than into the early summer (July~0.71 days yr-1). Average fetch, defined for our purposes as the distance from the sea ice margin to the coast over which the wind is blowing, increased by a factor 1.7 over the same time-span. Given these time series, we modeled daily nearshore wave heights during the open water season for each year, which we integrated to provide a quantitative metric for the annual exposure of the coastal bluffs to thermal erosion. This “annual wave exposure” increased by 250% during 1979-2009. In the same interval, coastal erosion rates reconstructed from satellite and aerial photo records show less acceleration. We attribute this to a disproportionate extension of the open-water season toward the fall than toward the early summer. This asymmetry fails to tap into the high insolation portion of the summer; expansion into the fall exerts less leverage on coastal change, as sea surface temperatures have significantly declined by late fall. Should the extension of ice-free conditions more strongly advance into the middle of summer, when insolation peaks, we suspect that sea surface temperatures will warm even faster and hence erosion may accelerate yet more strongly.
NASA Astrophysics Data System (ADS)
Hahm, W.; Riebe, C. S.; Ferrier, K.; Kirchner, J. W.
2011-12-01
Traditional frameworks for conceptualizing hillslope denudation distinguish between the movement of mass in solution (chemical erosion) and mass moved via mechanical processes (physical erosion). At the hillslope scale, physical and chemical erosion rates can be quantified by combining measurements of regolith chemistry with cosmogenic nuclide concentrations in bedrock and sediment, while basin-scale rates are often inferred from riverine solute and sediment loads. These techniques integrate the effects of numerous weathering and erosion mechanisms and do not provide prima facie information about the precise nature and scale of those mechanisms. For insight into erosional process, physical erosion has been considered in terms of two limiting regimes. When physical erosion outpaces weathering front advance, regolith is mobilized downslope as soon as it is sufficiently loosened by weathering, and physical erosion rates are limited by rates of mobile regolith production. This is commonly termed weathering-limited erosion. Conversely, when weathering front advance outpaces erosion, the mobile regolith layer grows thicker over time, and physical erosion rates are limited by the efficiency of downslope transport processes. This is termed transport-limited erosion. This terminology brings the description of hillslope evolution closer to the realm of essential realism, to the extent that measurable quantities from the field can be cast in a process-based framework. An analogous process-limitation framework describes chemical erosion. In supply-limited chemical erosion, chemical weathering depletes regolith of its reactive phases during residence on a hillslope, and chemical erosion rates are limited by the supply of fresh minerals to the weathering zone. Alternatively, hillslopes may exhibit kinetic-limited chemical erosion, where physical erosion transports regolith downslope before weatherable phases are completely removed by chemical erosion. We show how supply- and kinetic-limited chemical erosion can be distinguished from one another using data from a global compilation of physical and chemical erosion rates. As a step towards understanding these rates at the level of essential realism, we explore how the hillslope-scale regimes of supply- and kinetic-limited chemical erosion relate to existing conceptual frameworks that interpret weathering rates in terms of transport- and kinetic-limitation at the mineral scale.
Refining enamel thickness measurements from B-mode ultrasound images.
Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin
2009-01-01
Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).
Feedbacks Between Surface Processes and Tectonics at Rifted Margins: a Numerical Approach
NASA Astrophysics Data System (ADS)
Andres-Martinez, M.; Perez-Gussinye, M.; Morgan, J. P.; Armitage, J. J.
2014-12-01
Mantle dynamics drives the rifting of the continents and consequent crustal processes shape the topography of the rifted margins. Surface processes modify the topography by eroding positive reliefs and sedimenting on the basins. This lateral displacement of masses implies a change in the loads during rifting, affecting the architecture of the resulting margins. Furthermore, thermal insulation due to sediments could potentially have an impact on the rheologies, which are proved to be one of the most influential parameters that control the deformation style at the continental margins. In order to understand the feedback between these processes we have developed a numerical geodynamic model based on MILAMIN. Our model consists of a 2D Lagrangian triangular mesh for which velocities, displacements, pressures and temperatures are calculated each time step. The model is visco-elastic and includes a free-surface stabilization algorithm, strain weakening and an erosion/sedimentation algorithm. Sediment loads and temperatures on the sediments are taken into account when solving velocities and temperatures for the whole model. Although surface processes are strongly three-dimensional, we have chosen to study a 2D section parallel to the extension as a first approach. Results show that where sedimentation occurs strain further localizes. This is due to the extra load of the sediments exerting a gravitational force over the topography. We also observed angular unconformities on the sediments due to the rotation of crustal blocks associated with normal faults. In order to illustrate the feedbacks between surface and inner processes we will show a series of models calculated with different rheologies and extension velocities, with and without erosion/sedimentation. We will then discuss to which extent thermal insulation due to sedimentation and increased stresses due to sediment loading affect the geometry and distribution of faulting, the rheology of the lower crust and consequently margin architecture.
NASA Astrophysics Data System (ADS)
Calvet, Marc; Gunnell, Yanni; Farines, Bernard
2015-07-01
Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.
NASA Astrophysics Data System (ADS)
Elliott, A. J.; Oskin, M. E.; Banesh, D.; Gold, P. O.; Hinojosa-Corona, A.; Styron, R. H.; Taylor, M. H.
2012-12-01
Differencing repeat terrestrial lidar scans of the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture reveals the rapid onset of surface processes that simultaneously degrade and preserve evidence of coseismic fault rupture in the landscape and paleoseismic record. We surveyed fresh fault rupture two weeks after the 4 April 2010 earthquake, then repeated these surveys one year later. We imaged fault rupture through four substrates varying in degree of consolidation and scarp facing-direction, recording modification due to a range of aeolian, fluvial, and hillslope processes. Using lidar-derived DEM rasters to calculate the topographic differences between years results in aliasing errors because GPS uncertainty between years (~1.5cm) exceeds lidar point-spacing (<1.0cm) shifting the raster sampling of the point cloud. Instead, we coregister each year's scans by iteratively minimizing the horizontal and vertical misfit between neighborhoods of points in each raw point cloud. With the misfit between datasets minimized, we compute the vertical difference between points in each scan within a specified neighborhood. Differencing results reveal two variables controlling the type and extent of erosion: cohesion of the substrate controls the degree to which hillslope processes affect the scarp, while scarp facing direction controls whether more effective fluvial erosion can act on the scarp. In poorly consolidated materials, large portions (>50% along strike distance) of the scarp crest are eroded up to 5cm by a combination of aeolian abrasion and diffusive hillslope processes, such as rainsplash and mass-wasting, while in firmer substrate (i.e., bedrock mantled by fault gouge) there is no detectable hillslope erosion. On the other hand, where small gullies cross downhill-facing scarps (<5% along strike distance), fluvial erosion has caused 5-50cm of headward scarp retreat in bedrock. Thus, although aeolian and hillslope processes operate over a greater along-strike distance, fluvial processes concentrated in pre-existing bedrock gullies transport a far greater volume of material across the scarp. Substrate cohesiveness dictates the degree to which erosive processes act to relax the scarp (e.g., gravels erode more easily than bedrock). However, scarp locations that favor fluvial processes suffer rapid, localized erosion of vertical scarp faces, regardless of substrate. Differential lidar also reveals debris cones formed at the base of the scarp below locations of scarp crest erosion. These indicate the rapid growth of a colluvial wedge. Where a fissure occupies the base of the scarp we observe nearly complete in-filling by silt and sand moved by both mass wasting and fluvial deposition, indicating that fissure fills observed in paleoseismic trenches likely bracket the age of an earthquake to within one year. We find no evidence of differential postseismic tectonic deformation across the fault within the ~100m aperture of our surveys.
Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Yu, Ting; Kovacevic, Radovan
2017-07-01
Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel
Paleohydraulics and hydrodynamics of Scabland floods
NASA Technical Reports Server (NTRS)
Baker, V. R.
1978-01-01
The last major episode of scabland flooding (approx. 18,000-13,000 years B.P.) left considerable high-water mark evidence in the form of: (1) eroded channel margins; (2) depositional features; (3) ice-rafter erratics; and (4) divide crossings. These were used to reconstruct maximum flood stages and water-surface gradients. Engineering hydraulic calculation procedures allowed the analyses of flood discharges and mean velocities from these data. Secondary flow phenomena, including various forms of vortices and flow separations, are considered to have been the principal erosive processes. The intense pressure and velocity gradients of vortices along the irregular channel boundaries produced the plucking-type erosion.
Bio and nanomaterials in tribocorrosion systems
NASA Astrophysics Data System (ADS)
Benea, Lidia
2017-02-01
The growing attention that the scientific community has paid in the last decades to the corrosion phenomena, including tribocorrosion is related to the huge economic, social and environmental losses (3,5 % GDP in industrialized countries as USA, UK, Japan and Germany), that result from the spread of damage of several metal constructions and devices. Tribocorrosion is defined as the chemical-electrochemical-mechanical process leading to a degradation of materials in sliding, rolling or erosion contacts immersed in a corrosive environment or even in water. That degradation results from the combined action of corrosion and wear are higher compared with addition of corrosion and wear degradation separately. This synergism between chemical, electrochemical, and mechanical processes on materials in sliding, abrasive or erosive contacts immersed in a liquid requires a multi-disciplinary approach (material science, electrochemistry, tribology, mechanics, and surface engineering). This paper presents few summary results obtained by studying the materials degradation by complex tribocorrosion processes in terms of two broad categories of applications: tribocorrosion in industrial systems with improved behaviour of nanomaterials as hybrid and nanocomposite layers and tribocorrosion in living systems with improved behaviour by surface modifications of biomaterials applying electrochemical techniques. The purpose of this paper is to provide information on the surface conditions of materials in sliding contacts and also on the kinetics of reactions that control the corrosion component in the material loss during tribocorrosion tests.
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Yu. V.; Lashkov, V. A.
2016-05-01
The influence of severe plastic deformation on the material surface is investigated under highspeed erosion conditions. The AD1 aluminum alloy was tested with the structure changed by severe plastic torsional deformation.
M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud
2015-01-01
Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...
Rinsing with antacid suspension reduces hydrochloric acid-induced erosion.
Alves, Maria do Socorro Coelho; Mantilla, Taís Fonseca; Bridi, Enrico Coser; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Amaral, Flávia Lucisano Botelho; Turssi, Cecilia Pedroso
2016-01-01
Mouthrinsing with antacids, following erosive episodes, have been suggested as a preventative strategy to minimize tooth surface loss due to their neutralizing effect. The purpose of this in situ study was to evaluate the effect of an antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate in controlling simulated erosion of enamel of intrinsic origin. The experimental units were 48 slabs (3×3×2mm) of bovine enamel, randomly divided among 12 volunteers who wore palatal appliances with two enamel slabs. One of them was exposed extra-orally twice a day to 25mL of a hydrochloric acid (HCl) solution (0.01M, pH 2) for 2min. There were two independent phases, lasting 5 days each. In the first phase, according to a random scheme, half of the participants rinsed with 10mL of antacid suspension (Gaviscon(®), Reckitt Benckiser Healthcare Ltd.), while the remainder was rinsed with deionized water, for 1min. For the second phase, new slabs were inserted and participants switched to the treatment not received in the first stage. Therefore, the groups were as follows: (a) erosive challenge with HCl+antacid suspension; (b) erosive challenge with HCl+deionized water (DIW); (c) no erosive challenge+antacid suspension; (d) no erosive challenge+DIW. Specimens were assessed in terms of surface loss using optical profilometry and Knoop microhardness. The data were analyzed using repeated measures two-way analysis of variance and Tukey's tests. Compared to DIW rinses, surface loss of enamel was significantly lower when using an antacid rinse following erosive challenges (p=0.015). The Knoop microhardness of the enamel was significantly higher when the antacid rinse was used (p=0.026). The antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate, rinsed after erosive challenges of intrinsic origin, reduced enamel surface loss. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.
Habte, M; Fox, R L; Aziz, T; El-Swaify, S A
1988-04-01
The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.