Sample records for surface evolver simulations

  1. Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces

    NASA Astrophysics Data System (ADS)

    Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Gadea, R.; Sato, K.

    2011-03-01

    Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially decreasing the overall computational time and memory usage.

  2. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  3. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    PubMed

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  4. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

    PubMed Central

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614

  5. Thermodynamic forces in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  6. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  7. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  8. Foam morphology, frustration and topological defects in a Negatively curved Hele-Shaw geometry

    NASA Astrophysics Data System (ADS)

    Mughal, Adil; Schroeder-Turk, Gerd; Evans, Myfanwy

    2014-03-01

    We present preliminary simulations of foams and single bubbles confined in a narrow gap between parallel surfaces. Unlike previous work, in which the bounding surfaces are flat (the so called Hele-Shaw geometry), we consider surfaces with non-vanishing Gaussian curvature. We demonstrate that the curvature of the bounding surfaces induce a geometric frustration in the preferred order of the foam. This frustration can be relieved by the introduction of topological defects (disclinations, dislocations and complex scar arrangements). We give a detailed analysis of these defects for foams confined in curved Hele-Shaw cells and compare our results with exotic honeycombs, built by bees on surfaces of varying Gaussian curvature. Our simulations, while encompassing surfaces of constant Gaussian curvature (such as the sphere and the cylinder), focus on surfaces with negative Gaussian curvature and in particular triply periodic minimal surfaces (such as the Schwarz P-surface and the Schoen's Gyroid surface). We use the results from a sphere-packing algorithm to generate a Voronoi partition that forms the basis of a Surface Evolver simulation, which yields a realistic foam morphology.

  9. Simulations and Experiments of Hot Forging Design and Evaluation of the Aircraft Landing Gear Barrel Al Alloy Structure

    NASA Astrophysics Data System (ADS)

    Ram Prabhu, T.

    2016-04-01

    In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.

  10. Understanding the barriers to crystal growth: dynamical simulation of the dissolution and growth of urea from aqueous solution.

    PubMed

    Piana, Stefano; Gale, Julian D

    2005-02-16

    Both the dissolution and growth of a molecular crystalline material, urea, has been studied using dynamical atomistic simulation. The kinetic steps of dissolution and growth are clearly identified, and the activation energies for each possible step are calculated. Our molecular dynamics simulations indicate that crystal growth on the [001] face is characterized by a nucleation and growth mechanism. Nucleation on the [001] urea crystal face is predicted to occur at a very high rate, followed by rapid propagation of the steps. The rate-limiting step for crystallization is actually found to be the removal of surface defects, rather than the initial formation of the next surface layer. Through kinetic Monte Carlo modeling of the surface growth, it is found that this crystal face evolves via a rough surface topography, rather than a clean layer-by-layer mechanism.

  11. Evolving faceted surfaces: From continuum modeling, to geometric simulation, to mean-field theory

    NASA Astrophysics Data System (ADS)

    Norris, Scott A.

    We first consider the directional solidification, in two dimensions, of a dilute binary alloy having a large anisotropy of surface energy, where the sample is pulled in a high-energy direction such that the planar state is thermodynamically prohibited. Analyses including reduction of dynamics, matched asymptotic analysis, and energy minimization are used to show that the interface assumes a faceted profile with small wavelength. Questions on stability and other dynamic behavior lead to the derivation of a facet-velocity law. This shows the that faceted steady solutions are stable in the absence of constitutional supercooling, while in its presence, coarsening replaces cell formation as the mechanism of instability. We next proceed to introduce a computational-geometry tool which, given a facet-velocity law, performs large-scale simulations of fully-faceted coarsening surfaces, first in the special case with only three allowed facet orientations (threefold symmetry), and then for arbitrary surfaces. Topological events including coarsening are comprehensively considered, and are treated explicitly by our method using both a priori knowledge of event outcomes and a novel graph-rewriting algorithm. While careful attention must be paid to both non-unique topological events and the imposition of a discrete time-stepping scheme, the resulting method allows rapid simulation of large surfaces and easy extraction of statistical data. Example statistics are provided for the threefold case based on simulations totaling one million facets. Finally, a mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the LSW theory of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the derivation of additional terms to model the coalescence of facets. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a generic framework for the investigation of faceted surfaces evolving under arbitrary dynamics.

  12. Self-organization of intertidal snails facilitates evolution of aggregation behavior.

    PubMed

    Stafford, Richard; Davies, Mark S; Williams, Gray A

    2008-01-01

    Many intertidal snails form aggregations during emersion to minimize desiccation stress. Here we investigate possible mechanisms for the evolution of such behavior. Two behavioral traits (following of mucus trails, and crevice occupation), which both provide selective advantages to individuals that possess the traits over individuals that do not, result in self-organization of aggregations in crevices in the rock surface. We suggest that the existence of self-organizing aggregations provides a mechanism by which aggregation behavior can evolve. The inclusion of an explicitly coded third behavior, aggregation, in a simulated population produces patterns statistically similar to those found on real rocky shores. Allowing these three behaviors to evolve using an evolutionary algorithm, however, results in aggregation behavior being selected against on shores with high crevice density. The inclusion of broadcast spawning dispersal mechanisms in the simulation, however, results in aggregation behavior evolving as predicted on shores with both high crevice density and low crevice density (evolving in crevices first, and then both in crevices and on flat rock), indicating the importance of environmental interactions in understanding evolutionary processes. We propose that self-organization can be an important factor in the evolution of group behaviors.

  13. Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems

    NASA Astrophysics Data System (ADS)

    Messié, Monique; Chavez, Francisco P.

    2017-09-01

    A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.

  14. An evolving effective stress approach to anisotropic distortional hardening

    DOE PAGES

    Lester, B. T.; Scherzinger, W. M.

    2018-03-11

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  15. An evolving effective stress approach to anisotropic distortional hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, B. T.; Scherzinger, W. M.

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  16. Simulation of the evolution of fused silica's surface defect during wet chemical etching

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei

    2017-08-01

    Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.

  17. From Particles and Point Clouds to Voxel Models: High Resolution Modeling of Dynamic Landscapes in Open Source GIS

    NASA Astrophysics Data System (ADS)

    Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.

    2012-12-01

    Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.

  18. Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    NASA Technical Reports Server (NTRS)

    Ming, Doug

    2016-01-01

    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.

  19. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  20. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern hemisphere summer.

  1. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.

  2. Large granulation cells on the surface of the giant star π1 Gruis

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Baron, F.; Jorissen, A.; Le Bouquin, J.-B.; Freytag, B.; van Eck, S.; Wittkowski, M.; Hron, J.; Chiavassa, A.; Berger, J.-P.; Siopis, C.; Mayer, A.; Sadowski, G.; Kravchenko, K.; Shetye, S.; Kerschbaum, F.; Kluska, J.; Ramstedt, S.

    2018-01-01

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  3. Large granulation cells on the surface of the giant star π1 Gruis.

    PubMed

    Paladini, C; Baron, F; Jorissen, A; Le Bouquin, J-B; Freytag, B; Van Eck, S; Wittkowski, M; Hron, J; Chiavassa, A; Berger, J-P; Siopis, C; Mayer, A; Sadowski, G; Kravchenko, K; Shetye, S; Kerschbaum, F; Kluska, J; Ramstedt, S

    2018-01-18

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π 1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 10 11 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  4. Simulation of Mirror Electron Microscopy Caustic Images in Three-Dimensions

    NASA Astrophysics Data System (ADS)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    A full, three-dimensional (3D) ray tracing approach is developed to simulate the caustics visible in mirror electron microscopy (MEM). The method reproduces MEM image contrast resulting from 3D surface relief. To illustrate the potential of the simulation methods, we study the evolution of crater contrast associated with a movie of GaAs structures generated by the droplet epitaxy technique. Specifically, we simulate the image contrast resulting from both a precursor stage and the final crater morphology which is consistent with an inverted pyramid consisting of (111) facet walls. The method therefore facilities the study of how self-assembled quantum structures evolve with time and, in particular, the development of anisotropic features including faceting.

  5. Air Abrasive Disinfection of Implant Surfaces in a Simulated Model of Peri-Implantitis

    DTIC Science & Technology

    2016-06-01

    A thesis submitted to the Faculty of the Periodontics Graduate Program Naval Postgraduate Dental School Uniformed Services University of the...Department, 2016 Thesis directed by: Glen M. Imamura, DDS, MS Chairman, Dental Research Department Naval Postgraduate Dental School...Introduction: Dental implant technology has evolved into a predictable treatment option for the restoration of edentulous sites. However, peri

  6. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  7. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    PubMed

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  8. Behaviors of cavefish offer insight into developmental evolution

    PubMed Central

    2015-01-01

    SUMMARY Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures—relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. Mol. Reprod. Dev. 82: 268–280, 2015. © 2015 Wiley Periodicals, Inc. PMID:25728684

  9. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  10. Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations

    NASA Technical Reports Server (NTRS)

    Riedel, Joseph E.; Mastrodemos, Nickolaos; Gaskell, Robert W.

    2011-01-01

    In order to simulate physically plausible surfaces that represent geologically evolved surfaces, demonstrating demanding surface-relative guidance navigation and control (GN&C) actions, such surfaces must be made to mimic the geological processes themselves. A report describes how, using software and algorithms to model body surfaces as a series of digital terrain maps, a series of processes was put in place that evolve the surface from some assumed nominal starting condition. The physical processes modeled in this algorithmic technique include fractal regolith substrate texturing, fractally textured rocks (of empirically derived size and distribution power laws), cratering, and regolith migration under potential energy gradient. Starting with a global model that may be determined observationally or created ad hoc, the surface evolution is begun. First, material of some assumed strength is layered on the global model in a fractally random pattern. Then, rocks are distributed according to power laws measured on the Moon. Cratering then takes place in a temporal fashion, including modeling of ejecta blankets and taking into account the gravity of the object (which determines how much of the ejecta blanket falls back to the surface), and causing the observed phenomena of older craters being progressively buried by the ejecta of earlier impacts. Finally, regolith migration occurs which stratifies finer materials from coarser, as the fine material progressively migrates to regions of lower potential energy.

  11. SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive

    NASA Astrophysics Data System (ADS)

    Marvel, K.; Pincus, R.; Schmidt, G. A.

    2017-12-01

    An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.

  12. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  13. Investigation of the capillary flow through open surface microfluidic structures

    NASA Astrophysics Data System (ADS)

    Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet

    2017-02-01

    The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.

  14. Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew

    2018-06-01

    We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.

  15. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  16. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  17. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziberi, B.; Frost, F.; Rauschenbach, B.

    The topography evolution of Si surfaces during low-energy noble-gas ion-beam erosion (ion energy {<=}2000 eV) at room temperature has been studied. Depending on the ion-beam parameters, self-organized ripple patterns evolve on the surface with a wavelength {lambda}<100 nm. Ripple patterns were found to occur at near-normal ion incidence angles (5 deg. -30 deg.) with the wave vector oriented parallel to the ion-beam direction. The ordering and homogeneity of these patterns increase with ion fluence, leading to very-well-ordered ripples. The ripple wavelength remains constant with ion fluence. Also, the influence of ion energy on the ripple wavelength is investigated. Additionally itmore » is shown that the mass of the bombarding ion plays a decisive role in the ripple formation process. Ripple patterns evolve for Ar{sup +},Kr{sup +}, and Xe{sup +} ions, while no ripples are observed using Ne{sup +} ions. These results are discussed in the context of continuum theories and by using Monte Carlo simulations.« less

  18. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  19. 3D Simulations of Convection: From the Sun Toward Evolved Stars

    NASA Astrophysics Data System (ADS)

    Höfner, Susanne

    2018-04-01

    Basic physical considerations and detailed numerical simulations predict a dramatic increase in the sizes of convection cells during late phases of stellar evolution. The recent progress in high-angular-resolution techniques has made it possible to observe surface structures on several nearby giants and supergiants for a wide range of wavelengths. Such observations provide much-needed checkpoints for convection theory, in addition to the detailed comparisons of models and observations for the sun. In this talk I will give an overview of current 3D convection models for different types of stars and discuss related observable phenomena.

  20. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  1. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  2. On spontaneous formation of current sheets: Untwisted magnetic fields

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.

    2010-11-01

    This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through an effecting numerical resistivity. The principal results are related to the Parker theory of current-sheet formation and dissipation in the solar corona.

  3. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric, E-mail: summeren@hawaii.edu

    Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate thatmore » if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.« less

  4. Mixing in Sessile Drops Merging on a Surface

    NASA Astrophysics Data System (ADS)

    Anna, Shelley; Zhang, Ying; Oberdick, Samuel; Garoff, Stephen

    2011-11-01

    We investigate the mixing of two sessile drops that merge on a surface. The drops consist of low viscosity glycerol-water mixtures deposited on a silicone elastomer surface with contact angle near 90°. We observe the shape of the drops and the location of their intersection by placing a fluorescent dye in one drop and using a laser light sheet to image a plane perpendicular to the surface. The initial healing of the meniscus bridge between the merging drops, and the damping of capillary waves appearing on their surfaces occur on timescales comparable to the inertio-capillary relaxation time. However, the interface between the two fluids remains sharp, broadening diffusively over several minutes. The shape of the merged drops and the boundary between them also continues to evolve on a timescale of minutes. This later motion is controlled by gravity, capillary pressure, and viscous stresses. Images of the 3D drop shape indicate that small contact line motions are correlated to the slow relaxation. Although the two drops contain identical liquids except for the presence of the dye, the shape of the interface consistently evolves asymmetrically, assuming a characteristic crescent shape. We note that very tiny surface tension gradients can produce an asymmetric flow like the one observed here. We characterize the long timescale flow as a function of the drop sizes, and we use numerical simulations to aid in elucidating the essential physics.

  5. The importance of wind-flux feedbacks during the November CINDY-DYNAMO MJO event

    NASA Astrophysics Data System (ADS)

    Riley Dellaripa, Emily; Maloney, Eric; van den Heever, Susan

    2015-04-01

    High-resolution, large-domain cloud resolving model (CRM) simulations probing the importance of wind-flux feedbacks to Madden-Julian Oscillation (MJO) convection are performed for the November 2011 CINDY-DYNAMO MJO event. The work is motivated by observational analysis from RAMA buoys in the Indian Ocean and TRMM precipitation retrievals that show a positive correlation between MJO precipitation and wind-induced surface fluxes, especially latent heat fluxes, during and beyond the CINDY-DYNAMO time period. Simulations are done using Colorado State University's Regional Atmospheric Modeling System (RAMS). The domain setup is oceanic and spans 1000 km x 1000 km with 1.5 km horizontal resolution and 65 stretched vertical levels centered on the location of Gan Island - one of the major CINDY-DYNAMO observation points. The model is initialized with ECMWF reanalysis and Aqua MODIS sea surface temperatures. Nudging from ECMWF reanalysis is applied at the domain periphery to encourage realistic evolution of MJO convection. The control experiment is run for the entire month of November so both suppressed and active, as well as, transitional phases of the MJO are modeled. In the control experiment, wind-induced surface fluxes are activated through the surface bulk aerodynamic formula and allowed to evolve organically. Sensitivity experiments are done by restarting the control run one week into the simulation and controlling the wind-induced flux feedbacks. In one sensitivity experiment, wind-induced surface flux feedbacks are completely denied, while in another experiment the winds are kept constant at the control simulations mean surface wind speed. The evolution of convection, especially on the mesoscale, is compared between the control and sensitivity simulations.

  6. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  7. Using Contaminant Transport Simulations to Optimize Electrical Resistivity Tomography Survey Design for Improved Contaminant Detection at Lined Ponds

    NASA Astrophysics Data System (ADS)

    Herring, T.; Pidlisecky, A.

    2015-12-01

    The saline flowback water produced during hydraulic fracturing is often stored in lined surface ponds. Leakage from these ponds poses a significant environmental threat and there is a need for a reliable and economical long term monitoring strategy. Electrical resistivity tomography (ERT), being sensitive to changes in groundwater salinity, is therefore well suited to such a problem. The goal of this work is to compare the leak detection capabilities of a surface ERT array and a downhole ERT array. In this study several plausible 3D electrical conductivity models were created that simulated a contaminant plume evolving over time, using realistic contaminant concentrations, plume geometries, water saturation profiles, and seasonal temperature profiles. The forward modeled data were used to identify the advantages and drawbacks of using each ERT array orientation.

  8. A mathematical framework for modelling cambial surface evolution using a level set method

    PubMed Central

    Sellier, Damien; Plank, Michael J.; Harrington, Jonathan J.

    2011-01-01

    Background and Aims During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale. Methods The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes. Key Results The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself. Conclusions Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure. PMID:21470972

  9. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  10. A model to assess the Mars Telecommunications Network relay robustness

    NASA Technical Reports Server (NTRS)

    Girerd, Andre R.; Meshkat, Leila; Edwards, Charles D., Jr.; Lee, Charles H.

    2005-01-01

    The relatively long mission durations and compatible radio protocols of current and projected Mars orbiters have enabled the gradual development of a heterogeneous constellation providing proximity communication services for surface assets. The current and forecasted capability of this evolving network has reached the point that designers of future surface missions consider complete dependence on it. Such designers, along with those architecting network requirements, have a need to understand the robustness of projected communication service. A model has been created to identify the robustness of the Mars Network as a function of surface location and time. Due to the decade-plus time horizon considered, the network will evolve, with emerging productive nodes and nodes that cease or fail to contribute. The model is a flexible framework to holistically process node information into measures of capability robustness that can be visualized for maximum understanding. Outputs from JPL's Telecom Orbit Analysis Simulation Tool (TOAST) provide global telecom performance parameters for current and projected orbiters. Probabilistic estimates of orbiter fuel life are derived from orbit keeping burn rates, forecasted maneuver tasking, and anomaly resolution budgets. Orbiter reliability is estimated probabilistically. A flexible scheduling framework accommodates the projected mission queue as well as potential alterations.

  11. Emergence of cracks by mass transport in elastic crystals stressed at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B.; Suo, Z.; Evans, A.G.

    1995-12-31

    Single crystals are used under high temperature and high stresses in hostile environments (usually gases). A void produced in the fabrication process can change shape and volume, as atoms migrate under various thermodynamic forces. A small void under low stress remains rounded in shape, but a large void under high stress evolves to a crack. The material fractures catastrophically when the crack becomes sufficiently large. In this article three kinetic processes are analyzed: diffusion along the void surface, diffusion in a low melting point second phase inside the void, and surface reaction with the gases. An approximate evolution path ismore » simulated, with the void evolving as a sequence of spheroids, from a sphere to a penny-shaped crack. The free energy is calculated as a functional of void shape, from which the instability conditions are determined. The evolution rate is calculated by using variational principles derived from the valance of the reduction in the free energy and the dissipation is the kinetic processes. Crystalline anisotropy and surface heterogeneity can be readily incorporated in this energetic framework. Comparisons are made with experimental strength date for sapphire fibers measured at various strain rates.« less

  12. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  13. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method.

    PubMed

    Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari

    2014-10-27

    Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward

    1999-01-01

    Miniature rovers with articulated mobility mechanisms are being developed for planetary surface exploration on Mars and small solar system bodies. These vehicles are designed to be capable of autonomous recovery from overturning during surface operations. This paper describes a computational means of developing motion behaviors that achieve the autonomous recovery function. It proposes a control software design approach aimed at reducing the effort involved in developing self-righting behaviors. The approach is based on the integration of evolutionary computing with a dynamics simulation environment for evolving and evaluating motion behaviors. The automated behavior design approach is outlined and its underlying genetic programming infrastructure is described.

  15. University Researchers Approach to Providing Computer Simulations to Industry.

    NASA Astrophysics Data System (ADS)

    Birdsall, Charles

    1996-05-01

    University researchers perform in an exploratory mode in developing and applying computer simulations to their research problems. Post-docs and students make codes suited to their problems, and to thesis and article writing, with little code use planned beyond such. Industry product developers want well tested, cleanly applicable simulation codes, with freedom to go to the code developers for bug fixing and improvements (and not to have to hunt for a student who has graduated). Hence, these different modes clash; some cushion of understanding and new elements are needed to effect broader, continuing use of university developed codes. We and others have evolved approaches that appear to work, including providing free software, but with follow-ups done by small companies. (See Ref. 1 for more.) We will present our development of plasma device codes over 15 years, evolving into free distribution on the Internet (Ref. 2) with short courses and workshops; follow-ups are done by a small company (of former students, the code writers). In addition, an example of university code development will be given, that of application of the series (or dipole) resonance to providing plasma surface wave generated plasmas, drawing on decades old research; potential applications will be given. We will present what other university groups are doing and reflections on these modes by modelers and designers in the plasma processing industry (semiconductor manufacturing equipment companies), which is highly empirical at present. All of this interaction is still evolving. 9 Brown J. Browning, Sci.Am. Jan 1996, p.35 www See Internet address http://ptsg.eecs.berkeley.edu thebibliography

  16. Atomic structures of B20 FeGe thin films grown on the Si(111) surface

    NASA Astrophysics Data System (ADS)

    Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong

    We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.

  17. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  18. A Marine Aerosol Reference Tank system as a breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2012-12-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  19. Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces

    NASA Astrophysics Data System (ADS)

    Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2018-01-01

    We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.

  20. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  1. In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.

    2017-03-01

    We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.

  2. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  3. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  4. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Huifeng; Yuan Hong; Tang Zhiping

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less

  5. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  6. Liquid metal actuator driven by electrochemical manipulation of surface tension

    NASA Astrophysics Data System (ADS)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  7. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  8. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  9. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less

  10. Physical Scaffolding Accelerates the Evolution of Robot Behavior.

    PubMed

    Buckingham, David; Bongard, Josh

    2017-01-01

    In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi) simulator. The agents are thus physically scaffolded. We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.

  11. Star-Forming Clouds Feed, Churn, and Fall

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe

  12. Gold-implanted shallow conducting layers in polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-01

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  13. Life Sciences Implications of Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  14. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  15. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  16. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  17. Final report on "Carbon Data Assimilation with a Coupled Ensemble Kalman Filter"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnay, Eugenia; Kang, Ji-Sun; Fung, Inez

    2014-07-23

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-2, and upper troposphere AIRS retrievals). After a spin-up of about one month, the LETKF-C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less

  18. Final Technical Report [Carbon Data Assimilation with a Coupled Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnay, Eugenia

    2013-08-30

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-­Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-­C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilationmore » of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-­C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-­2, and upper troposphere AIRS retrievals). After a spin-­up of about one month, the LETKF-­C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When applied to the CAM3.5 model, the LETKF gave very promising results as well, although only one month is available.« less

  19. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  20. Nanoscale oxidation and complex oxide growth on single crystal iron surfaces and external electric field effects.

    PubMed

    Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram

    2013-02-14

    Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.

  1. Investigation of Surface Treatments to Improve the Friction and Wear of Titanium Alloys for Diesel Engine Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter J.; Cooley, Kevin M.; Kirkham, Melanie J.

    This final report summarizes experimental and analytical work performed under an agreement between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Transportation Technologies, and UT-Battelle LLC. The project was directed by Jerry Gibbs, of the U.S. Department of Energy’s Propulsion Materials Program, with management by D. P. Stinton and J. A. Haynes of ORNL. Participants included Peter J. Blau (Principal Investigator), Kevin M. Cooley (senior technician), Melanie J. Kirkham (materials scientist) of the Materials Science and Technology Division or ORNL, and Dinesh G. Bansal, a post doctoral fellow employed by Oak Ridge Associated Universitiesmore » (ORAU) and who, at the time of this writing, is an engineer with Cummins, Inc. This report covers a three-year effort that involved two stages. In the first stage, and after a review of the literature and discussions with surface treatment experts, a series of candidate alloys and surface treatments for titanium alloy (Ti-6Al-4V) was selected for initial screening. After pre-screening using an ASTM standard test method, the more promising surface treatments were tested in Phase 2 using a variable loading apparatus that was designed and built to simulate the changing load patterns in a typical connecting rod bearing. Information on load profiles from the literature was supplemented with the help of T.C. Chen and Howard Savage of Cummins, Inc. Considering the dynamic and evolving nature of materials technology, this report presents a snapshot of commercial and experimental bearing surface technologies for titanium alloys that were available during the period of this work. Undoubtedly, further improvements in surface engineering methods for titanium will evolve.« less

  2. Upper Limits of Predictability in Long-Range Climate/Hydrologic Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Suarez, M. J.; Heiser, M.

    1998-01-01

    The accurate forecasting of el nino or la nina conditions in the tropical Pacific can potentially lead to valuable predictions of hydrological anomalies over land at seasonal to interannual timescales. Even with highly accurate earth system models, though, our ability to generate these continental forecasts will always be limited by the chaotic nature of the atmospheric circulation. The nature of this fundamental limitation is explored through the use of 16-member ensembles of multi-decade GCM simulations. In each simulation of the first ensemble, sea surface temperatures (SSTs) are given the same realistic interannual variations over a 45-year period, and land surface state is allowed to evolve with that of the atmosphere. Analysis of the results shows that the SSTs control the temporal organization of continental precipitation anomalies to a significant extent in the tropics and to a much smaller extent in midlatitudes. In each simulation of the second ensemble, we prescribe SSTs as before, but we also prescribe interannual variations in the low frequency component of evaporation efficiency over land. Thus, in the second ensemble, we effectively make the extreme assumption that surface boundary conditions across the globe are perfectly predictable, and we quantify the consistency with which the atmosphere (particularly precipitation) responds to these boundary conditions. The resulting "absolute upper limit" on the predictability of precipitation is found to be quite high in the tropics yet only moderate in many midlatitude regions.

  3. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  4. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates

    NASA Astrophysics Data System (ADS)

    Sharac, N.; Sharma, H.; Veysi, M.; Sanderson, R. N.; Khine, M.; Capolino, F.; Ragan, R.

    2016-03-01

    Thermally responsive polymers present an interesting avenue for tuning the optical properties of nanomaterials on their surfaces by varying their periodicity and shape using facile processing methods. Gold bowtie nanoantenna arrays are fabricated using nanosphere lithography on prestressed polyolefin (PO), a thermoplastic polymer, and optical properties are investigated via a combination of spectroscopy and electromagnetic simulations to correlate shape evolution with optical response. Geometric features of bowtie nanoantennas evolve by annealing at temperatures between 105 °C and 135 °C by releasing the degree of prestress in PO. Due to the higher modulus of Au versus PO, compressive stress occurs on Au bowtie regions on PO, which leads to surface buckling at the two highest annealing temperatures; regions with a 5 nm gap between bowtie nanoantennas are observed and the average reduction is 75%. Reflectance spectroscopy and full-wave electromagnetic simulations both demonstrate the ability to tune the plasmon resonance wavelength with a window of approximately 90 nm in the range of annealing temperatures investigated. Surface-enhanced Raman scattering measurements demonstrate that maximum enhancement is observed as the excitation wavelength approaches the plasmon resonance of Au bowtie nanoantennas. Both the size and morphology tunability offered by PO allows for customizing optical response.

  5. COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.

    2015-04-10

    We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less

  6. Quantized Advantages to a Proposed Satellite at L5 from Simulated Synoptic Magnetograms

    NASA Astrophysics Data System (ADS)

    Schwarz, A. M.; Petrie, G. J. D.

    2017-12-01

    The dependency the Earth and its inhabitants have on the Sun is delicate and complex and sometimes dangerous. At the NSO, we provide 24/7 coverage of the full-disk solar magnetic field used in solar forecasting, however this only includes data from the Sun's Earth facing side. Ideally we would like to have constant coverage of the entire solar surface, however we are limited in our solar viewing angle. Our project attempts to quantify the advantages of full-disk magnetograms from a proposed satellite at L5. With instrumentation at L5 we would have an additional 60 degrees of solar surface coverage not seen from Earth. These 60 degrees crucially contain the solar longitudes that are about to rotate towards Earth. Using a full-surface flux-transport model of the evolving solar photospheric field, I created a simulation of full-disk observations from Earth and L5. Using standard solar forecasting tools we quantify the relative accuracy of the Earth-Only and Earth plus L5 forecasts relative to the "ground truth" of the full surface field model, the ideal case. My results gauge exactly how much polar coverage is improved, contrast the spherical multipoles of each model, and use a Potential-Field Source-Surface (PFSS) magnetic field analysis model to find comparisons in the neutral lines and open field coverage.

  7. The Strata-l Experiment on Microgravity Regolith Segregation

    NASA Technical Reports Server (NTRS)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.

  8. Depth dependence of defect evolution and TED during annealing

    NASA Astrophysics Data System (ADS)

    Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.

    2004-02-01

    A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.

  9. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  10. An Examination of Problem-Based Teaching and Learning in Population Genetics and Evolution Using EVOLVE, a Computer Simulation.

    ERIC Educational Resources Information Center

    Soderberg, Patti; Price, Frank

    2003-01-01

    Examines a lesson in which students are engaged in inquiry in evolutionary biology to develop better understanding of concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations known as microevolution. Explains how a software simulation, EVOLVE, can be used to foster discussions about…

  11. Patchy particles made by colloidal fusion

    NASA Astrophysics Data System (ADS)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  12. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  13. Nonaxisymmetric evolution in protostellar disks

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1994-01-01

    We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.

  14. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  15. Mapping Site Remediation with Electrical Resistivity Tomography Explored via Coupled-Model Simulations

    NASA Astrophysics Data System (ADS)

    Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.

    2011-12-01

    Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.

  16. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  17. Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks

    NASA Astrophysics Data System (ADS)

    Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.

    2018-05-01

    Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.

  18. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  19. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogl, Christopher J.

    Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less

  1. Simulation in International Relations Education.

    ERIC Educational Resources Information Center

    Starkey, Brigid A.; Blake, Elizabeth L.

    2001-01-01

    Discusses the educational implications of simulations in international relations. Highlights include the development of international relations simulations; the role of technology; the International Communication and Negotiation Simulations (ICONS) project at the University of Maryland; evolving information technology; and simulating real-world…

  2. Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Erlebacher, G.

    2002-01-01

    The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.

  3. Ultrashort laser-matter interaction at moderate intensities: two-temperature relaxation, foaming of stretched melt, and freezing of evolving nanostructures

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Petrov, Yurii V.; Khokhlov, Viktor A.; Ashitkov, Sergey I.; Migdal, Kirill P.; Ilnitsky, Denis K.; Emirov, Yusuf N.; Khishchenko, Konstantin V.; Komarov, Pavel S.; Shepelev, Vadim V.; Agranat, Mikhail B.; Anisimov, Sergey I.; Oleynik, Ivan I.; Fortov, Vladimir E.

    2013-11-01

    Interaction of ultrashort laser pulse with metals is considered. Ultrafast heating in our range of absorbed fluences Fabs > 10 mJjcm2 transfers matter into two-temperature (2T) state and induces expressed thermomechani­ cal response. To analyze our case, where 2T, thermomechanical, and multidimensional (formation of surface structures) effects are significant, we use density functional theory (DFT), solutions of kinetic equations in τ- approximation, 2T-hydrodynamics, and molecular dynamics simulations. We have studied transition from light absorption in a skin layer to 2T state, and from 2T stage to hydrodynamical motions. We describe (i) formation of very peculiar (superelasticity) acoustic wave irradiated from the laser heated surface layer and (ii) rich com­ plex of surface phenomena including fast melting, nucleation of seed bubbles in hydrodynamically stretched fluid, evolution of vapor-liquid mixture into very spatially extended foam, mechanical breaking of liquid membranes in foam (foam disintegration), strong surface tension oscillations driven by breaking of membranes, non-equilibrium freezing of overcooled molten metals, transition to nano-domain solid, and formation of surface nanostructures.

  4. Using MELTS to understand the evolution of silicic magmas: Challenges and successes in modeling the Highland Range Volcanic Sequence (NV)

    NASA Astrophysics Data System (ADS)

    Vaum, R. C.; Gualda, G. A.; Ghiorso, M. S.; Miller, C. F.; Colombini, L. L.

    2009-12-01

    The Highland Range near Searchlight, Nevada is comprised of mid-Miocene, intermediate to silicic volcanic rocks. This study focuses on the most silicic portion of the eruptive sequence (16.0-16.5 Ma). The first eruptions during this interval were effusive and produced trachydacite (66-70 wt% SiO2), but later the eruptive style shifted to explosive and compositions were more evolved (70-78 wt% SiO2). Glass compositions in rocks saturated in both quartz and sanidine align along the 150 MPa quartz+sanidine saturation surface, suggesting that the Highland Range magmas equilibrated in a single reservoir at that pressure. We are interested in better understanding this transition in eruptive style from effusive to eruptive, and our approach is based on modeling melt evolution using MELTS thermodynamic modeling software. We selected representative samples from key stratigraphic units, and focused on samples for which whole-rock and glass compositions, as well as mineral abundances, are available. This allows for direct comparison of simulation results with existing data. Initial simulations showed that MELTS predicts unrealistic paths of evolution when compared to the glass compositions and to the phase relations in the Qz-Ab-Or ternary. In particular, the stability field of quartz predicted by MELTS is much too small, causing melts to become exceedingly silicic (>80 wt% SiO2). Sanidine, on the other hand, has fairly sodic compositions and crystallizes too early in the sequence; therefore, simulated melt compositions are never as potassic as the analyzed glasses. Similar results are obtained when modeling the evolution of the Bishop and Campanian magmas, showing that these are systematic problems in MELTS calibration. Accordingly, we have adjusted the enthalpy of quartz and potassium end-member of the feldspar solid solution in MELTS so that the quartz-sanidine saturation surface is correctly predicted. We find that this modified version of MELTS much better models the evolution of silicic magmas. Sanidine begins to crystallize at lower temperatures, causing evolved melts to become significantly more potassic. Also, MELTS prediction of quartz saturation is in agreement with the position of the experimentally determined 150 MPa quartz+sanidine saturation surface. Importantly, the melt evolution that this modified version of MELTS predicts is very consistent with whole-rock data, glass chemistry, and mineral abundances in samples from the Highland Range. Simulations using the modified version of MELTS show that it works remarkably well, at least for relatively low degrees of crystallization. But a more reliable model to simulate the evolution of silicic magmas is necessary to more properly simulate the evolution of silicic systems, in particular at high degrees of crystallinity. We are currently working to create gMELTS, an associated solution model of the haplogranitic system, which, once completed, will be optimized to simulate the evolution of silicic systems.

  5. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  6. Direct numerical simulation of transitional and turbulent flow over a heated flat plate using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    1995-01-01

    This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.

  7. Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Montessori, Andrea; Falcucci, Giacomo

    2018-01-01

    Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LB, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. In this book, the authors present the most recent advances of the application of the LB to complex flow phenomena of scientific and technical interest with focus on the multiscale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

  8. Adaptively biased molecular dynamics: An umbrella sampling method with a time-dependent potential

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Karpusenka, Vadzim; Moradi, Mahmoud; Roland, Christopher; Sagui, Celeste

    We discuss an adaptively biased molecular dynamics (ABMD) method for the computation of a free energy surface for a set of reaction coordinates. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential. It is characterized by a small number of control parameters and an O(t) numerical cost with simulation time t. The method naturally allows for extensions based on multiple walkers and replica exchange mechanism. The workings of the method are illustrated with a number of examples, including sugar puckering, and free energy landscapes for polymethionine and polyproline peptides, and for a short β-turn peptide. ABMD has been implemented into the latest version (Case et al., AMBER 10; University of California: San Francisco, 2008) of the AMBER software package and is freely available to the simulation community.

  9. Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bosviel, Nicolas; Samulyak, Roman; Parks, Paul

    2017-10-01

    Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.

  10. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2011-06-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  11. Singular perturbation of smoothly evolving Hele-Shaw solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, M.; Tanveer, S.

    1996-01-01

    We present analytical scaling results, confirmed by accurate numerics, to show that there exists a class of smoothly evolving zero surface tension solutions to the Hele-Shaw problem that are significantly perturbed by an arbitrarily small amount of surface tension in order one time. {copyright} {ital 1996 The American Physical Society.}

  12. Numerical simulation of the paleohydrology of glacial Lake Oshkosh, eastern Wisconsin, USA

    USGS Publications Warehouse

    Clark, J.A.; Befus, K.M.; Hooyer, T.S.; Stewart, P.W.; Shipman, T.D.; Gregory, C.T.; Zylstra, D.J.

    2008-01-01

    Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900??cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400??m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100??m and then subside approximately 30??m. At its maximum extent, Lake Oshkosh covered 6600??km2 with a volume of 111??km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9??m/s and peak discharge of 140,000??m3/s are predicted, which could drain 33.5??km3 of lake water in 10??days and transport boulders up to 3??m in diameter. ?? 2007 University of Washington.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  15. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun

    2017-11-01

    Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.

  16. Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

    PubMed Central

    2008-01-01

    Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production. PMID:18826645

  17. Snow Physics and Meltwater Hydrology of the SSiB Model Employed for Climate Simulation Studies with GEOS 2 GCM

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.

  18. Bridge Frost Prediction by Heat and Mass Transfer Methods

    NASA Astrophysics Data System (ADS)

    Greenfield, Tina M.; Takle, Eugene S.

    2006-03-01

    Frost on roadways and bridges can present hazardous conditions to motorists, particularly when it occurs in patches or on bridges when adjacent roadways are clear of frost. To minimize materials costs, vehicle corrosion, and negative environmental impacts, frost-suppression chemicals should be applied only when, where, and in the appropriate amounts needed to maintain roadways in a safe condition for motorists. Accurate forecasts of frost onset times, frost intensity, and frost disappearance (e.g., melting or sublimation) are needed to help roadway maintenance personnel decide when, where, and how much frost-suppression chemical to use. A finite-difference algorithm (BridgeT) has been developed that simulates vertical heat transfer in a bridge based on evolving meteorological conditions at its top and bottom as supplied by a weather forecast model. BridgeT simulates bridge temperatures at numerous points within the bridge (including its upper and lower surface) at each time step of the weather forecast model and calculates volume per unit area (i.e., depth) of deposited, melted, or sublimed frost. This model produces forecasts of bridge surface temperature, frost depth, and bridge condition (i.e., dry, wet, icy/snowy). Bridge frost predictions and bridge surface temperature are compared with observed and measured values to assess BridgeT's skill in forecasting bridge frost and associated conditions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, Pedro; Fortin, Elizabeth; Opie, Saul

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong andmore » repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10 5 s -1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity (or decreasing the initial wavelength) delays the perturbation decay. Conversely our experimental data, analysis and simulations show that for materials with elastic yield strength Y the normalized shock perturbation amplitude evolves with Yλ/A 0, which shows wavelength increases have the opposite effect as in viscous materials and perturbation decay is also dependent on initial amplitude A 0 (viscous materials are independent of this parameter). Materials where strength had clear strain rate dependence, e.g., such as a PTW material law, behaved similarly to materials with only an effective yield stress (elastic-perfectly plastic) in the shock front perturbation studies obeying a Y effλA 0 relationship where Y eff was a constant (near ~400 MPa for Cu for strain rates around 10 6 s -1). Magnitude changes in strain rate would increase Y eff as would be expected from the PTW behavior, but small perturbations (typical of regions behind the shock front) near a mean had little effect. Additional work based on simulations showed that phase transformation kinetics can affect the behavior of the perturbed shock front as well as the evolution of the RM-like instability that develops due to the imprint of the perturbed shock front on the initially flat surface as the shock breaks out.« less

  20. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  1. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile. Lateral no-flow boundaries were located on the basis of outcrop extent (northwestern), major streams (southwestern, northeastern), and downdip limit of freshwater (southeastern). The MODFLOW general-head boundary package was used to simulate recharge and discharge in the outcrops of the hydrogeologic units. Simulation of land-surface subsidence (actually, compaction of clays) and release of water from storage in the clays of the Chicot and Evangeline aquifers was accomplished using the Interbed-Storage Package designed for use with the MODFLOW model. The model was calibrated by trial-anderror adjustment of selected model input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) reasonably reproduced field measured (or estimated) aquifer responses.Model calibration comprised four elements: The first was qualitative comparison of simulated and measured heads in the aquifers for 1977 and 2000; and quantitative comparison by computation and areal distribution of the root-mean-square error between simulated and measured heads. The second calibration element was comparison of simulated and measured hydrographs from wells in the aquifers in a number of counties throughout the modeled area. The third calibration element was comparison of simulated water-budget componentsprimarily recharge and dischargeto estimates of physically reasonable ranges of actual water-budget components. The fourth calibration element was comparison of simulated land-surface subsidence from predevelopment to 2000 to measured land surface subsidence from 1906 through 1995.

  2. First results of coupled IPS/NIMROD/GENRAY simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.

    2010-11-01

    The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.

  3. COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan

    2015-09-20

    Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  4. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    NASA Astrophysics Data System (ADS)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.

  5. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.

    PubMed

    van Gestel, Jordi; Nowak, Martin A

    2016-02-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.

  6. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE PAGES

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...

    2017-04-27

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  7. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  8. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, Stephen

    1987-01-01

    The evolution of individual cyclone waves is studied in order to see how well quasi-geostrophic (QG) dynamics can simulate the behavior of primitive equations (PE) dynamics. This work is an extension of a similar study (Mudrick, 1982); emphasis is placed here on adding a frontal zone and other more diverse features to the basic states used. In addition, sets of PE integrations, with and without friction, are used to study the formation of surface occluded fronts within the evolving cyclones. Results of the study are summarized at the beginning of the report.

  9. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    NASA Astrophysics Data System (ADS)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  10. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    NASA Astrophysics Data System (ADS)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. These simulations were done by coupling the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at the flux tower position. The approach accounts for the temporarily and spatially changing contributions of the patchwork of environmental land surface conditions (land use, management, soil properties) which influence the energy flux tower measurements due to the footprint dynamics. The statistical evaluation between simulation and measurements showed that the mixed approach improved the comparability in most cases. Furthermore, the management impact on single patches can be clearly detected, both in the measurements and the simulation. We conclude that reasonable simulations of energy and matter fluxes can be obtained if the heterogeneity of the land surfaces is taken into account.

  11. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  12. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-07-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  13. Process contributions to the intermodel spread in amplified Arctic warming

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature projections.

  14. The Impact of Sea Surface Temperature on Organized Convective Storms Crossing over Coastlines

    NASA Astrophysics Data System (ADS)

    Lombardo, K.

    2016-02-01

    As organized coastal convective storms develop over land and move over the coastal ocean, their storm-scale structures, intensity, and associated weather threats evolve. This study aims to quantify the impact of sea surface temperature on the fundamental mechanisms controlling the evolution of coastal quasi-linear convective systems (QLCSs) as they move offshore. Results from this work will contribute to the improved predictability of these coastal, potentially severe warm season storms. The current work systematically studies the interaction between QLCSs and marine atmospheric boundary layers (MABLs) associated with the coastal ocean in an idealized numerical framework. The initial simulations are run in 2-dimensions, with a 250 m horizontal resolution and a vertical resolution ranging from 100 m in the lowest 3000 m stretched to 250 m at the top of the 20 km domain. To create a numerical environment representative of a coastal region, the western half of the 800 km domain is configured to represent a land surface, while the eastern half represents a water surface. A series of sensitivity experiments are conducted to explore the influence of sea surface temperature and the overlying MABL on coastal QLCSs. Sea surface temperature values are selected to represent values observed within the Mid-Atlantic Bight coastal waters, including 5oC (min SST - January), 14oC (early summer), and 23oC (late summer). The numerical MABL is allowed to develop through surface heat fluxes. Preliminary simulations indicate that SST influences storm structure, with the stratiform precipitation shield becoming progressively wider as SST increases. SST also impacts propagation speed; once the storms are over the water, the early and late summer QLCSs move more quickly than the min SST storm. The physical mechanisms contributing to these and other differences will be discussed.

  15. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  16. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  17. The Curvature-Augmented Closest Point method with vesicle inextensibility application

    DOE PAGES

    Vogl, Christopher J.

    2017-06-06

    Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less

  18. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  19. Spin-orbit coupling for tidally evolving super-Earths

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.

    2012-12-01

    We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.

  20. Modeling the liquid filling in capillary well microplates for analyte preconcentration.

    PubMed

    Yu, Yang; Wang, Xuewei; Ng, Tuck Wah

    2012-06-15

    An attractive advantage of the capillary well microplate approach is the ability to conduct evaporative analyte preconcentration. We advance the use of hydrophobic materials for the wells which apart from reducing material loss through wetting also affords self entry into the well when the droplet size reduces below a critical value. Using Surface Evolver simulation without gravity, we find the critical diameters D(c) fitting very well with theoretical results. When simulating the critical diameters D(c)(G) with gravity included, the gravitational effect could only be ignored when the liquid volumes were small (difference of 5.7% with 5 μL of liquid), but not when the liquid volumes were large (differences of more than 22% with 50 μL of liquid). From this, we developed a modifying equation from a series of simulation results made to describe the gravitational effect. This modifying equation fitted the simulation results well in our simulation range (100°≤θ≤135° and 1 μL≤V≤200 μL). In simulating the condition of multiple wells underneath each droplet, we found that having more holes did not alter the critical diameters significantly. Consequently, the modifying relation should also generally express the critical diameter for multiple wells under a droplet. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  1. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    DTIC Science & Technology

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...using incomplete feedback and allowing two-sided adaptive play. Combining these aspects in an evolving game , we use optimization, simulation, and

  2. Reproducing the Photospheric Magnetic Field Evolution during the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  3. Reproducing the Photospheric Magnetic Field Evolution During the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  4. EVOLUTION OF GALAXY GROUPS IN THE ILLUSTRIS SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raouf, Mojtaba; Khosroshahi, Habib G.; Dariush, A., E-mail: m.raouf@ipm.ir

    We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model inmore » recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.« less

  5. Evolving a Method to Capture Science Stakeholder Inputs to Optimize Instrument, Payload, and Program Design

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.

    2012-03-01

    We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.

  6. The frictional properties of a simulated gouge having a fractal particle distribution

    USGS Publications Warehouse

    Biegel, R.L.; Sammis, C.G.; Dieterich, J.H.

    1989-01-01

    The frictional properties of a layer of simulated Westerly granite fault gouge sandwiched between sliding blocks of Westerly granite have been measured in a high-speed servo-controlled double-direct shear apparatus. Most gouge layers were prepared to have a self-similar particle distribution with a fractal dimension of 2.6. The upper fractal limit was varied between 45 and 710 ??m. Some gouges were prepared with all particles in the range between 360 and 710 ??m. In each experiment the sliding velocity was cyclically alternated between 1 and 10 ??ms-1 and the coefficient of friction ??m and its transient parameters a, b and Dc were measured as functions of displacement. In addition to the particle size distribution, the following experimental variables were also investigated: the layer thickness (1 and 3 mm), the roughness of the sliding surfaces (Nos 60 and 600 grit) and the normal stress (10 and 25 MPa). Some of the sample assemblies were epoxy impregnated following a run so the gouge structure could be microscopically examined in thin section. We observed that gouges which were initially non-fractal evolved to a fractal distribution with dimension 2.6. Gouges which had an initial fractal distribution remained fractal. When the sliding blocks had smooth surfaces, the coefficient of friction was relatively low and was independent of the particle distribution. In these cases, strong velocity weakening was observed throughout the experiment and the transient parameters a, b and Dc, remained almost constant. When the sliding blocks had rough surfaces, the coefficient of friction was larger and more dependent on the particle distribution. Velocity strengthening was observed initially but evolved to velocity weakening with increased sliding displacement. All three transient parameters changed with increasing displacement. The a and b values were about three times as large for rough surfaces as for smooth. The characteristic displacement Dc was not sensitive to surface roughness but was the only transient parameter which was sensitive to the normal stress. For the case of rough surfaces, the coefficient of friction of the 1 mm thick gouge was significantly larger than that for the 3 mm thick layers. Many of these observations can be explained by a micromechanical model in which the stress in the gouge layer is heterogeneous. The applied normal and shear stresses are supported by 'grain bridges' which span the layer and which are continually forming and failing. In this model, the frictional properties of the gouge are largely determined by the dominant failure mode of the bridging structures. ?? 1989.

  7. Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.; hide

    2017-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.

  8. The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale.

    PubMed

    Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K

    2013-01-01

    This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5).

  9. Random deposition of particles of different sizes.

    PubMed

    Forgerini, F L; Figueiredo, W

    2009-04-01

    We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.

  10. The NASA EV-2 CYGNSS Small Satellite Constellation Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.

    2012-12-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.

  11. An Interactive, Physics-Based Unmanned Ground Vehicle Simulator Leveraging Open Source Gaming Technology: Progress in the Development and Application of the Virtual Autonomous Navigation Environment (VANE) Desktop

    DTIC Science & Technology

    2009-01-01

    interface, mechatronics, video games 1. INTRODUCTION Engineering methods have substantially and continuously evolved over the past 40 years. In the past...1970s, video games have pioneered interactive simulation and laid the groundwork for inexpensive computing that individuals, corporations, and...purposes. This has not gone unnoticed, and software technology and techniques evolved for video games are beginning to have extraordinary impact in

  12. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homel, Michael A.; Herbold, Eric B.

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  13. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    NASA Astrophysics Data System (ADS)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  14. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  15. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE PAGES

    Homel, Michael A.; Herbold, Eric B.

    2016-08-15

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  16. Reconsidering Simulations in Science Education at a Distance: Features of Effective Use

    ERIC Educational Resources Information Center

    Blake, C.; Scanlon, E.

    2007-01-01

    This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…

  17. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, M. J.; Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP; Autreto, P. A. S.

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfacesmore » that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.« less

  18. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  19. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    NASA Astrophysics Data System (ADS)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  20. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE PAGES

    Crane, Cameron C.; Wang, Feng; Li, Jun; ...

    2017-02-21

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  1. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Cameron C.; Wang, Feng; Li, Jun

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  2. The influence of subsurface hydrodynamics on convective precipitation

    NASA Astrophysics Data System (ADS)

    Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.

    2014-12-01

    The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.

  3. Extended Survival of Several Microorganisms and Relevant Amino Acid Biomarkers under Simulated Martian Surface Conditions as a Function of Burial Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A

    2011-01-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less

  4. A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier

    2017-11-01

    Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.

  5. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  6. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    NASA Astrophysics Data System (ADS)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  7. AnimatLab: a 3D graphics environment for neuromechanical simulations.

    PubMed

    Cofer, David; Cymbalyuk, Gennady; Reid, James; Zhu, Ying; Heitler, William J; Edwards, Donald H

    2010-03-30

    The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control requires a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. AnimatLab is a software tool that provides an approach to this problem through computer simulation. AnimatLab enables a computational model of an animal's body to be constructed from simple building blocks, situated in a virtual 3D world subject to the laws of physics, and controlled by the activity of a multicellular, multicompartment neural circuit. Sensor receptors on the body surface and inside the body respond to external and internal signals and then excite central neurons, while motor neurons activate Hill muscle models that span the joints and generate movement. AnimatLab provides a common neuromechanical simulation environment in which to construct and test models of any skeletal animal, vertebrate or invertebrate. The use of AnimatLab is demonstrated in a neuromechanical simulation of human arm flexion and the myotactic and contact-withdrawal reflexes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  9. Time-dependent simulations of disk-embedded planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  10. Hydrological variability in the Fraser River Basin during the 20th century: A sensitivity study with the VIC model

    NASA Astrophysics Data System (ADS)

    Kang, D.; Gao, H.; Dery, S. J.

    2012-12-01

    The Variable Infiltration Capacity (VIC) model, a macroscale surface hydrology model, was applied to the Fraser River Basin (FRB) of British Columbia, Canada. Previous modeling studies have demonstrated that the FRB is a snow-dominated system but with climate change may evolve to a pluvial regime. The ultimate goal of this model application is to evaluate the changing contribution of snowmelt to streamflow in the FRB both spatially and temporally. To this end, the National Centers for Environmental Prediction (NCEP) reanalysis data combined with meteorological observations over 1953 to 2006 are used to drive the model at a resolution of 0.25°. Model simulations are first validated with daily discharge observations from the Water Survey of Canada (WSC). In addition, the snow water equivalent (SWE) results from VIC are compared with snow pillow observations from the B.C. Ministry of Environment. Then peak SWE values simulated each winter are compared with the annual runoff data to quantify the changing contribution of snowmelt to the hydrology of the FRB. With perturbed model forcings such as precipitation and air temperature, how streamflow and surface energy-mass balance are changed is evaluated. Finally, interactions between the land surface and ambient atmosphere are evaluated by analyzing VIC results such as evaporation, soil moisture, snowmelt and sensible-latent heat flux with corresponding meteorological forcings, i.e. precipitation and air temperature.

  11. Genetic addiction: selfish gene's strategy for symbiosis in the genome.

    PubMed

    Mochizuki, Atsushi; Yahara, Koji; Kobayashi, Ichizo; Iwasa, Yoh

    2006-02-01

    The evolution and maintenance of the phenomenon of postsegregational host killing or genetic addiction are paradoxical. In this phenomenon, a gene complex, once established in a genome, programs death of a host cell that has eliminated it. The intact form of the gene complex would survive in other members of the host population. It is controversial as to why these genetic elements are maintained, due to the lethal effects of host killing, or perhaps some other properties are beneficial to the host. We analyzed their population dynamics by analytical methods and computer simulations. Genetic addiction turned out to be advantageous to the gene complex in the presence of a competitor genetic element. The advantage is, however, limited in a population without spatial structure, such as that in a well-mixed liquid culture. In contrast, in a structured habitat, such as the surface of a solid medium, the addiction gene complex can increase in frequency, irrespective of its initial density. Our demonstration that genomes can evolve through acquisition of addiction genes has implications for the general question of how a genome can evolve as a community of potentially selfish genes.

  12. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE PAGES

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.; ...

    2018-04-26

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  13. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  14. Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments.

    PubMed

    Jerez, S; López-Romero, J M; Turco, M; Jiménez-Guerrero, P; Vautard, R; Montávez, J P

    2018-04-03

    Variations in the atmospheric concentrations of greenhouse gases (GHG) may not be included as external forcing when running regional climate models (RCMs); at least, this is a non-regulated, non-documented practice. Here we investigate the so far unexplored impact of considering the rising evolution of the CO 2 , CH 4 , and N 2 O atmospheric concentrations on near-surface air temperature (TAS) trends, for both the recent past and the near future, as simulated by a state-of-the-art RCM over Europe. The results show that the TAS trends are significantly affected by 1-2 K century -1 , which under 1.5 °C global warming translates into a non-negligible impact of up to 1 K in the regional projections of TAS, similarly affecting projections for maximum and minimum temperatures. In some cases, these differences involve a doubling signal, laying further claim to careful reconsideration of the RCM setups with regard to the inclusion of GHG concentrations as an evolving external forcing which, for the sake of research reproducibility and reliability, should be clearly documented in the literature.

  15. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.

  16. Design and simulation of a lighting system for a shadowless space

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Fang, Li

    2017-10-01

    This paper described implementing the shadowless space by two kinds of methods. The first method will implement the shadowless space utilizing the semblable principles used in the integrating sphere. The rays from a built in light source will eventually evolve into a uniform lighting through diffuse reflections for numerous times, consider that the spherical cavity structure and the inner surface with high reflectivity. There is possibility to create a shadowless space through diffuse reflections. At a 27.4m2 area, illuminance uniformity achieved 88.2% in this model. The other method is analogous with the method used in medical shadowless lamps. Lights will fall on the object in different angles and each light will generate a shadow. By changing the position distribution of multiple lights, increasing the number of light sources, the possibility of obtaining shadowless area will gradually increase. Based on these two approaches, two simple models are proposed showing the optical system designed for the shadowless space. By taking simulation software TracePro as design platform, this paper simulated the two systems.

  17. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.

  18. Numerical studies of the KP line-solitons

    NASA Astrophysics Data System (ADS)

    Chakravarty, S.; McDowell, T.; Osborne, M.

    2017-03-01

    The Kadomtsev-Petviashvili (KP) equation admits a class of solitary wave solutions localized along distinct rays in the xy-plane, called the line-solitons, which describe the interaction of shallow water waves on a flat surface. These wave interactions have been observed on long, flat beaches, as well as have been recreated in laboratory experiments. In this paper, the line-solitons are investigated via direct numerical simulations of the KP equation, and the interactions of the evolved solitary wave patterns are studied. The objective is to obtain greater insight into solitary wave interactions in shallow water and to determine the extent the KP equation is a good model in describing these nonlinear interactions.

  19. Simulating CC and MLO compressions with the Surface Evolver

    NASA Astrophysics Data System (ADS)

    Zanchetta do Nascimento, Marcelo; Ramos Batista, Valério

    2015-01-01

    Mammographies are X-ray images of the breast under external compressions called Craniocaudal (CC) and Mediolateral Oblique (MLO). Together they increase the chances of detecting cancer but the breast is shown in strongly deformed shapes. Cancer location is highly uncertain for the surgery and so the breast is commonly taken out entirely, a serious trauma for the patient. In this paper we present a fully virtual mammography procedure that faithfully reproduces all shapes of the breast and in its inside tracks the cancer at any step. The cancer is then precisely located for the surgery and can be removed through a small incision. So the whole structure is preserved and cured as an integral benefit to the patient.

  20. Order and Jamming on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.

    Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays an important role in determining their mechanical properties.

  1. Evolution of the Division of Labor between Genes and Enzymes in the RNA World

    PubMed Central

    Boza, Gergely; Szilágyi, András; Kun, Ádám; Santos, Mauro; Szathmáry, Eörs

    2014-01-01

    The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA. PMID:25474573

  2. Evolution of the division of labor between genes and enzymes in the RNA world.

    PubMed

    Boza, Gergely; Szilágyi, András; Kun, Ádám; Santos, Mauro; Szathmáry, Eörs

    2014-12-01

    The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA.

  3. Evolutionary robotics simulations help explain why reciprocity is rare in nature

    PubMed Central

    André, Jean-Baptiste; Nolfi, Stefano

    2016-01-01

    The relative rarity of reciprocity in nature, contrary to theoretical predictions that it should be widespread, is currently one of the major puzzles in social evolution theory. Here we use evolutionary robotics to solve this puzzle. We show that models based on game theory are misleading because they neglect the mechanics of behavior. In a series of experiments with simulated robots controlled by artificial neural networks, we find that reciprocity does not evolve, and show that this results from a general constraint that likely also prevents it from evolving in the wild. Reciprocity can evolve if it requires very few mutations, as is usually assumed in evolutionary game theoretic models, but not if, more realistically, it requires the accumulation of many adaptive mutations. PMID:27616139

  4. Stochasticity and predictability in terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim

    2017-02-01

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.

  5. In silico ribozyme evolution in a metabolically coupled RNA population.

    PubMed

    Könnyű, Balázs; Szilágyi, András; Czárán, Tamás

    2015-05-27

    The RNA World hypothesis offers a plausible bridge from no-life to life on prebiotic Earth, by assuming that RNA, the only known molecule type capable of playing genetic and catalytic roles at the same time, could have been the first evolvable entity on the evolutionary path to the first living cell. We have developed the Metabolically Coupled Replicator System (MCRS), a spatially explicit simulation modelling approach to prebiotic RNA-World evolution on mineral surfaces, in which we incorporate the most important experimental facts and theoretical considerations to comply with recent knowledge on RNA and prebiotic evolution. In this paper the MCRS model framework has been extended in order to investigate the dynamical and evolutionary consequences of adding an important physico-chemical detail, namely explicit replicator structure - nucleotide sequence and 2D folding calculated from thermodynamical criteria - and their possible mutational changes, to the assumptions of a previously less detailed toy model. For each mutable nucleotide sequence the corresponding 2D folded structure with minimum free energy is calculated, which in turn is used to determine the fitness components (degradation rate, replicability and metabolic enzyme activity) of the replicator. We show that the community of such replicators providing the monomer supply for their own replication by evolving metabolic enzyme activities features an improved propensity for stable coexistence and structural adaptation. These evolutionary advantages are due to the emergent uniformity of metabolic replicator fitnesses imposed on the community by local group selection and attained through replicator trait convergence, i.e., the tendency of replicator lengths, ribozyme activities and population sizes to become similar between the coevolving replicator species that are otherwise both structurally and functionally different. In the most general terms it is the surprisingly high extra viability of the metabolic replicator system that the present model adds to the MCRS concept of the origin of life. Surface-bound, metabolically coupled RNA replicators tend to evolve different, enzymatically active sites within thermodynamically stable secondary structures, and the system as a whole evolves towards the robust coexistence of a complete set of such ribozymes driving the metabolism producing monomers for their own replication.

  6. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles

    PubMed Central

    van Gestel, Jordi; Nowak, Martin A.

    2016-01-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881

  7. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  9. Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates

    NASA Astrophysics Data System (ADS)

    Patrick Jansen, H.; Sotthewes, K.; Zandvliet, Harold J. W.; Kooij, E. Stefan

    2016-01-01

    Lattice Boltzmann modelling (LBM) has recently been applied to a range of different wetting situations. Here we demonstrate its potential in representing complex kinetic effects encountered in droplets on chemically stripe-patterned surfaces. An ultimate example of the power of LBM is provided by comparing simulations and experiments of impacting droplets with varying Weber numbers. Also, the shape evolution of droplets is discussed in relation to their final shape. The latter can then be compared to Surface Evolver (SE) results, since under the proper boundary conditions both approaches should yield the same configuration in a static state. During droplet growth in LBM simulations, achieved by increasing the density within the droplet, the contact line initially advances in the direction parallel to the stripes, therewith increasing its aspect ratio. Once the volume becomes too large the droplet starts wetting additional stripes, leading to a lower aspect ratio. The maximum aspect ratio is shown to be a function of the width ratio of the hydrophobic and hydrophilic stripes and also their absolute widths. In the limit of sufficiently large stripe widths the aspect ratio is solely dependent on the relative stripe widths. The maximum droplet aspect ratio in the LBM simulations is compared to SE simulations and results are shown to be in good agreement. Additionally, we also show the ability of LBM to investigate single stripe wetting, enabling determination of the maximum aspect ratio that can be achieved in the limit of negligible hydrophobic stripe width, under the constraint that the stripe widths are large enough such that they are not easily crossed.

  10. Cubic spline anchored grid pattern algorithm for high-resolution detection of subsurface cavities by the IR-CAT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassab, A.J.; Pollard, J.E.

    An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less

  11. Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions

    NASA Astrophysics Data System (ADS)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2017-10-01

    This work is intended to be the second publication in a series of papers reporting on the spectro-photometric properties of cometary analogues measured in the laboratory. Herein, we provide in-situ hyperspectral imaging data in the 0.40-2.35 μm range from three sublimation experiments under simulated space conditions in thermal vacuum from samples made of water ice, carbonaceous compounds and complex organic molecules. The dataset is complemented by measurements of the bidirectional reflectance in the visible (750 nm) spectral range before and after sublimation. A qualitative characterization of surface evolution processes is provided as well as a description of morphological changes during the simulation experiment. The aim of these experiments is to mimic the spectrum of comet 67P/Churyumov-Gerasimenko (67P) as acquired by the Rosetta mission by applying sublimation experiments on the mixtures of water ice with a complex organic material (tholins) and carbonaceous compounds (carbon black; activated charcoal) studied in our companion publication (Jost et al., submitted). Sublimation experiments are needed to develop the particular texture (high porosity), expected on the nucleus' surface, which might have a strong influence on spectro-photometric properties. The spectrally best matching mixtures of non volatile organic molecules from Jost et al. (submitted) are mixed with fine grained water ice particles and evolved in a thermal vacuum chamber, in order to monitor the influence of the sublimation process on their spectro-photometric properties. We demonstrate that the way the water ice and the non-volatile constituents are mixed, plays a major role in the formation and evolution of a surface residue mantle as well as having influence on the consolidation processes of the underlying ice. Additionally it results in different activity patterns under simulated insolation cycles. Further we show that the phase curves of samples having a porous surface mantle layer display higher coincidence with data of 67P than the phase curves of the samples having a more compact surface layer with smooth texture. The analysis of spectral absorption bands of water ice in the near-infrared (NIR) range, similar to those acquired by the VIRTIS instrument onboard Rosetta, allows to link compositional considerations with surface activity and texture.

  12. Cellular automaton simulation examining progenitor hierarchy structure effects on mammary ductal carcinoma in situ.

    PubMed

    Bankhead, Armand; Magnuson, Nancy S; Heckendorn, Robert B

    2007-06-07

    A computer simulation is used to model ductal carcinoma in situ, a form of non-invasive breast cancer. The simulation uses known histological morphology, cell types, and stochastic cell proliferation to evolve tumorous growth within a duct. The ductal simulation is based on a hybrid cellular automaton design using genetic rules to determine each cell's behavior. The genetic rules are a mutable abstraction that demonstrate genetic heterogeneity in a population. Our goal was to examine the role (if any) that recently discovered mammary stem cell hierarchies play in genetic heterogeneity, DCIS initiation and aggressiveness. Results show that simpler progenitor hierarchies result in greater genetic heterogeneity and evolve DCIS significantly faster. However, the more complex progenitor hierarchy structure was able to sustain the rapid reproduction of a cancer cell population for longer periods of time.

  13. Computer Simulation in Social Science.

    ERIC Educational Resources Information Center

    Garson, G. David

    From a base in military models, computer simulation has evolved to provide a wide variety of applications in social science. General purpose simulation packages and languages such as FIRM, DYNAMO, and others have made significant contributions toward policy discussion in the social sciences and have well-documented efficacy in instructional…

  14. Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine.

    PubMed

    Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik

    2015-09-01

    Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA-spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA-spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients.

  15. Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine

    PubMed Central

    Farsad, Mehdi; Zeinali-Davarani, Shahrokh; Choi, Jongeun; Baek, Seungik

    2015-01-01

    Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA–spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA–spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients. PMID:26158885

  16. Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    We report results from global ideal MHD simulations that study thin accretion disks (with thermal scale height H/R = 0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than 1000 innermost orbits. We find that (1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk at z ∼ R, similar to predictions from some previous analytical work and the “coronal accretion” flows found in GRMHD simulations. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The resulting field is strongly pinched inwards at the surface. A steady-state advection–diffusion model, with a turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched beyond the disk corona with the Alfvén radius R A /R 0 ∼ 3. Although the surface inflow is filamentary and the wind is episodic, we show that the time-averaged properties are well-described by steady-wind theory. Even with strong fields, β 0 = 103 at the midplane initially, only 5% of the angular momentum transport is driven by the wind, and the wind mass flux from the inner decade of the radius is only ∼0.4% of the mass accretion rate. (4) Within the disk, most of the accretion is driven by the Rϕ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion systems.

  17. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  18. Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species

    DOE PAGES

    Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...

    2014-12-04

    Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.

  19. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  20. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  1. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry deposition vs. isoprene emissions to quantify the impact of each process on surface ozone seasonal cycles and compare to the changes induced by declining anthropogenic NOx emissions (RCP8.5).

  2. Impact of Low Level Clouds on radiative and turbulent surface flux in southern West Africa

    NASA Astrophysics Data System (ADS)

    Lohou, Fabienne; Kalthoff, Norbert; Dione, Cheikh; Lothon, Marie; Adler, Bianca; Babic, Karmen; Pedruzo-Bagazgoitia, Xabier; Vila-Guerau De Arellano, Jordi

    2017-04-01

    During the monsoon season in West Africa, low-level clouds form almost every night and break up between 0900 and the middle of the afternoon depending on the day. The break-up of these clouds leads to the formation of boundary-layer cumuli clouds, which can sometimes evolve into deep convection. The low-level clouds have a strong impact on the radiation and energy budget at the surface and consequently on the humidity in the boundary layer and the afternoon convection. During the DACCIWA ground campaign, which took place in June and July 2016, three supersites in Benin, Ghana, and Nigeria were instrumented to document the conditions within the lower troposphere including the cloud layers. Radiative and turbulent fluxes were measured at different places by several surface stations jointly with low-level cloud occurrence during 50 days. These datasets enable the analysis of modifications in the diurnal cycle of the radiative and turbulent surface flux induced by the formation and presence of the low-level clouds. The final objective of this study is to estimate the error made in some NWP simulations when the diurnal cycle of low-level clouds is poorly represented or not represented at all.

  3. Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Lorenz, K.; Palomares, F. J.; Muñoz, A.; Castro, M.; Muñoz-García, J.; Cuerno, R.; Vázquez, L.

    2018-07-01

    We have bombarded crystalline silicon targets with a 40 keV Fe+ ion beam at different incidence angles. The resulting surfaces have been characterized by atomic force, current-sensing and magnetic force microscopies, scanning electron microscopy, and x-ray photoelectron spectroscopy. We have found that there is a threshold angle smaller than 40° for the formation of ripple patterns, which is definitely lower than those frequently reported for noble gas ion beams. We compare our observations with estimates of the value of the critical angle and of additional basic properties of the patterning process, which are based on a continuum model whose parameters are obtained from binary collision simulations. We have further studied experimentally the ripple structures and measured how the surface slopes change with the ion incidence angle. We explore in particular detail the fluence dependence of the pattern for an incidence angle value (40°) close to the threshold. Initially, rimmed holes appear randomly scattered on the surface, which evolve into large, bug-like structures. Further increasing the ion fluence induces a smooth, rippled background morphology. By means of microscopy techniques, a correlation between the morphology of these structures and their metal content can be unambiguously established.

  4. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    PubMed

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  5. Conductivity and local structure in LaNiO3

    NASA Astrophysics Data System (ADS)

    Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc

    In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.

  6. Simulation: an evolving methodology for health administration education.

    PubMed

    Taylor, J K; Moore, J A; Holland, M G

    1985-01-01

    Simulation provides a valuable addition to a university's teaching methods. Computer-assisted gaming is especially effective in teaching advanced business strategy and corporate policy when the nature and complexity of the simulation permit. The potential for using simulation techniques in postgraduate professional education and in managerial self-assessment appears to be significant over the next several years.

  7. Virtual reality simulation for the optimization of endovascular procedures: current perspectives.

    PubMed

    Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W

    2015-01-01

    Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

  8. The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.

  9. eVolv2k: A new ice core-based volcanic forcing reconstruction for the past 2000 years

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Sigl, Michael

    2016-04-01

    Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. The ability of climate model simulations to accurately recreate past climate is tied directly to the accuracy of the volcanic forcing timeseries used in the simulations. We present here a new volcanic forcing reconstruction, based on newly updated ice core composites from Antarctica and Greenland. Ice core records are translated into stratospheric aerosol properties for use in climate models through the Easy Volcanic Aerosol (EVA) module, which provides an analytic representation of volcanic stratospheric aerosol forcing based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. The evolv2k volcanic forcing dataset covers the past 2000 years, and has been provided for use in the Paleo-Modeling Intercomparison Project (PMIP), and VolMIP experiments within CMIP6. Here, we describe the construction of the eVolv2k data set, compare with prior forcing sets, and show initial simulation results.

  10. The evolution of supermassive Population III stars

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J.

    2018-02-01

    Supermassive primordial stars forming in atomically cooled haloes at z ˜ 15-20 are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of 0.1-1 M⊙ yr-1 until the general relativistic instability triggers its collapse to a black hole at masses of ˜105 M⊙. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionizing radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates 0.001-10 M⊙ yr-1, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We compute for the first time evolutionary tracks in the mass range M > 105 M⊙. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than 0.01 M⊙ yr-1, the stars evolve as red, cool supergiants with surface temperatures below 104 K towards masses >105 M⊙. Moreover, even with the lower rates 0.001 M_{⊙} yr{^{-1}}<\\dot{M}< 0.01 M⊙ yr-1, the surface temperature is substantially reduced from 105 to 104 K for M ≳ 600 M⊙. Compared to previous studies, our results extend the range of masses and accretion rates at which the ionizing feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars. We provide numerical tables for the surface properties of our models.

  11. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  12. Dynamical Coupling Between the Stratosphere and the Troposphere: The Influence of External Forcings

    NASA Astrophysics Data System (ADS)

    Hansen, Felicitas; Matthes, Katja

    2013-04-01

    The dynamical coupling between the stratosphere and the troposphere is dominated by planetary waves that are generated in the troposphere by orography and land-sea contrasts. These waves travel upward into the stratosphere where they either dissipate or are reflected downward to impact the troposphere again. Through the interaction with the zonal mean flow planetary waves can induce stratospheric sudden warmings (SSWs), i.e., conditions during NH winter where the stratospheric polar vortex is disturbed so that the zonal mean zonal wind in the NH stratospheric jet becomes easterly and the polar cap meridional temperature gradient reverses. Since strong major SSWs can propagate down into the troposphere and even affect surface weather, SSWs present a strong and clear manifestation of the dynamical coupling in the stratosphere-troposphere system. We will investigate the influence of some external forcings, namely sea surface temperatures (SSTs), anthropogenic greenhouse gases and the quasi-biennial oscillation (QBO), on these coupling processes. Thereby we are interested in how the distribution of SSWs in the winter months changes due to the different forcings, whether the events evolve differently, and whether they show differences in their preconditioning, e.g. a different wave geometry. We will also investigate whether and how vertical reflective surfaces in the stratosphere, which can reflect upward propagating planetary waves, influence the evolution of SSWs. To address these questions, we performed a set of model simulations with NCAR's Community Earth System Model (CESM), a coupled model system including an interactive ocean (POP2), land (CLM4), sea ice (CICE) and atmosphere (NCAR's Whole Atmosphere Community Climate Model (WACCM)) component. Our control experiment is a 140-year simulation with the fully coupled atmosphere-ocean version of CESM. A second experiment is a 55-year simulation with only CESM's atmospheric component WACCM, a fully interactive chemistry-climate model extending from the Earth's surface through the thermosphere (about 140 km), with underlying climatological SSTs obtained from the coupled CESM control run. A third 55-year simulation is performed without the nudging of the equatorial QBO. All three simulations develop under conditions where greenhouse gases are held constant at the 1960 level. In a fourth simulations, the greenhouse gases follow the RCP8.5 scenario. From the differences of the individual simulations to the control experiment we can estimate the respective roles of SSTs, the QBO and anthropogenic greenhouse gases for the stratosphere-troposphere coupling. The model results will be compared to the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset.

  13. Parallel Performance of Linear Solvers and Preconditioners

    DTIC Science & Technology

    2014-01-01

    are produced by a discrete dislocation dynamics ( DDD ) simulation and change with each timestep of the DDD simulation as the dislocation structure...evolves. However, the coefficient—or stiffness matrix— remains constant during the DDD simulation and some expensive matrix factorizations only occur once...discrete dislocation dynamics ( DDD ) simulations. This can be achieved by coupling a DDD simulator for bulk material (Arsenlis et al., 2007) to a

  14. Arleigh Burke Destroyers: Delaying Procurement of DDG 51 Flight III Ships Would Allow Time to Increase Design Knowledge

    DTIC Science & Technology

    2015-08-01

    activities for DDG 51, AMDR, Aegis, and other related programs, such as the Evolved Sea Sparrow Missile. We also reviewed DOD studies and past GAO...systems—from initial SPY-6 radar detection of a target, such as an anti- ship cruise missile, through target interception by an Evolved Sea Sparrow ...required to accredit the Aegis modeling and simulation capability, (2) the Evolved Sea Sparrow Missile Block 2—a key element of Flight III’s self

  15. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE PAGES

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  16. Simulations and Characteristics of Large Solar Events Propagating Throughout the Heliosphere and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Sun, W.; Detman, T. R.; Dryer, Ph D., M.; Intriligator, J.; Deehr, C. S.; Webber, W. R.; Gloeckler, G.; Miller, W. D.

    2015-12-01

    Large solar events can have severe adverse global impacts at Earth. These solar events also can propagate throughout the heliopshere and into the interstellar medium. We focus on the July 2012 and Halloween 2003 solar events. We simulate these events starting from the vicinity of the Sun at 2.5 Rs. We compare our three dimensional (3D) time-dependent simulations to available spacecraft (s/c) observations at 1 AU and beyond. Based on the comparisons of the predictions from our simulations with in-situ measurements we find that the effects of these large solar events can be observed in the outer heliosphere, the heliosheath, and even into the interstellar medium. We use two simulation models. The HAFSS (HAF Source Surface) model is a kinematic model. HHMS-PI (Hybrid Heliospheric Modeling System with Pickup protons) is a numerical magnetohydrodynamic solar wind (SW) simulation model. Both HHMS-PI and HAFSS are ideally suited for these analyses since starting at 2.5 Rs from the Sun they model the slowly evolving background SW and the impulsive, time-dependent events associated with solar activity. Our models naturally reproduce dynamic 3D spatially asymmetric effects observed throughout the heliosphere. Pre-existing SW background conditions have a strong influence on the propagation of shock waves from solar events. Time-dependence is a crucial aspect of interpreting s/c data. We show comparisons of our simulation results with STEREO A, ACE, Ulysses, and Voyager s/c observations.

  17. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  18. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  19. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    PubMed

    Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D

    2014-09-12

    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.

  20. The Pilot Phase of the Global Soil Wetness Project Phase 3

    NASA Astrophysics Data System (ADS)

    Kim, H.; Oki, T.

    2015-12-01

    After the second phase of the Global Soil Wetness Project (GSWP2) as an early global continuous gridded multi-model analysis, a comprehensive set of land surface fluxes and state variables became available. It has been broadly utilized in the hydrology community, and its success has evolved to take advantages of recent scientific progress and to extend the relatively short time span (1986-1995) of the previous project. In the third phase proposed here (GSWP3), an extensive set of quantities for hydro-energy-eco systems will be produced to investigate their long-term (1901-2010) changes. The energy-water-carbon cycles and their interactions are also examined subcomponent-wise with appropriate model verifications in ensemble land simulations. In this study, the preliminary results and problems found from the first round analysis of the GSWP3 pilot study are shown. Also, it is discussed how the global offline simulation activity contributes to wider communities and a bigger scope such as Climate Model Intercomparison Project Phase 6 (CMIP6).

  1. Evolutionary online behaviour learning and adaptation in real robots.

    PubMed

    Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne

    2017-07-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

  2. From tectonics to tractors: New insight into Earth's changing surface

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.

    2017-12-01

    Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally-induced topsoil loss in the Midwestern U.S., and discuss the economic and carbon cycle implications. These findings - in some cases unanticipated and exciting - highlight opportunities that stem from using a multi-faceted approach to gain new insights into the physical and chemical processes that modify Earth's changing surface.

  3. Design of 2D time-varying vector fields.

    PubMed

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  4. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE PAGES

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...

    2018-01-10

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less

  5. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less

  6. Lightning Nitrogen Oxides (LNOx) Vertical Profile Quantification and 10 Year Trend Analysis using Ozone Monitoring Instrument (OMI) Satellite Measurements, Air Quality Station (AQS) Surface Measurements, The National Lightning Detection Network (NLDN), and Simulated by Cloud Resolving Chemical Transport Model (REAM Cloud)

    NASA Astrophysics Data System (ADS)

    Smeltzer, C. D.; Wang, Y.; Koshak, W. J.

    2014-12-01

    Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.

  7. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  8. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.

  9. Wall-pressure fluctuations beneath a spatially evolving turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Mahesh, Krishnan; Kumar, Praveen

    2016-11-01

    Wall-pressure fluctuations beneath a turbulent boundary layer are important in applications dealing with structural deformation and acoustics. Simulations are performed for flat plate and axisymmetric, spatially evolving zero-pressure-gradient turbulent boundary layers at inflow Reynolds number of 1400 and 2200 based on momentum thickness. The simulations generate their own inflow using the recycle-rescale method. The results for mean velocity and second-order statistics show excellent agreement with the data available in literature. The spectral characteristics of wall-pressure fluctuations and their relation to flow structure will be discussed. This work is supported by ONR.

  10. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less

  11. Storm-driven sediment transport in Massachusetts Bay

    USGS Publications Warehouse

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.

  12. EC power management and NTM control in ITER

    NASA Astrophysics Data System (ADS)

    Poli, Francesca; Fredrickson, E.; Henderson, M.; Bertelli, N.; Farina, D.; Figini, L.; Nowak, S.; Poli, E.; Sauter, O.

    2016-10-01

    The suppression of Neoclassical Tearing Modes (NTMs) is an essential requirement for the achievement of the demonstration baseline in ITER. The Electron Cyclotron upper launcher is specifically designed to provide highly localized heating and current drive for NTM stabilization. In order to assess the power management for shared applications, we have performed time-dependent simulations for ITER scenarios covering operation from half to full field. The free-boundary TRANSP simulations evolve the magnetic equilibrium and the pressure profiles in response to the heating and current drive sources and are interfaced with a GRE for the evolution of size and frequency of the magnetic islands. Combined with a feedback control of the EC power and the steering angle, these simulations are used to model the plasma response to NTM control, accounting for the misalignment of the EC deposition with the resonant surfaces, uncertainties in the magnetic equilibrium reconstruction and in the magnetic island detection threshold. Simulations indicate that the threshold for detection of the island should not exceed 2-3cm, that pre-emptive control is a preferable option, and that for safe operation the power needed for NTM control should be reserved, rather than shared with other applications. Work supported by ITER under IO/RFQ/13/9550/JTR and by DOE under DE-AC02-09CH11466.

  13. Multi-scale simulation of quantum dot formation in Al/Al (110) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Tiwary, Yogesh; Fichthorn, Kristen

    2007-03-01

    In experimental studies of Al(110) homoepitaxy, it is observed that over a certain temperature window (330-500K), 3D huts, up to 50 nm high with well defined and smooth (111) and (100) facets, form and self-organize over the micron scale [1]. The factors leading to this kinetic self-organization are currently unclear. To understand how these structures form and evolve, we simulated multi-layer, homoepitaxial growth on Al(110) using ab initio kinetic Monte Carlo (KMC). At the high temperatures, where nano-huts form, the KMC simulations are slow. To tackle this problem, we use a technique developed by Devita & Sander [2], in which isolated adatoms make multiple moves in one step. We achieve high efficiency with this algorithm and we explore very high temperatures on large simulation lattices. We uncover a variety of interesting morphologies (Ripples, mounds, smooth surface, huts) that depend on the growth temperature. By varying the barriers for various rate processes, we discern the factors that determine hut sizes, aspect ratios, and self-organization. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] J.P. Devita & L.M. Sander, Phys. Rev. B 72, 205421 (2005).

  14. Simulation of Flow Through Breach in Leading Edge at Mach 24

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Alter, Stephen J.

    2004-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of holes through the leading edge into a vented cavity. The simulations were generated relatively quickly and early in the investigation by making simplifications to the leading edge cavity geometry. These simplifications in the breach simulations enabled: 1) A very quick grid generation procedure; 2) High fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a 2 inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the 6 inch diameter breach the boundary layer is fully ingested.

  15. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  16. Data Serving Climate Simulation Science at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2011-01-01

    The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.

  17. The Utilization of Flight Simulation for Research and Development

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.; Snyder, C. Thomas (Technical Monitor)

    1994-01-01

    The objective of this paper is to review the conventional uses of flight simulation at NASA Ames Research Center for research and development, and to also consider the many new areas that have embraced flight simulation as an effective and economic research tool. Flight simulators have always been a very useful and economic research tool. Component technologies have evolved considerably to meet demands imposed by the aerospace community. In fact, the utilization of flight simulators for research and development has become so widely accepted that non-traditional uses have evolved. Whereas flight dynamics and control, guidance and navigation, vehicle design, mission assessment, and training have been, and perhaps always will be, the most popular research areas associated with simulation, many new areas under the broad categories of human factors and information science have realized significant benefits from the use of flight simulators for research and development. This paper will survey the simulation facilities at NASA Ames Research Center, and discuss selected topics associated with research programs, simulation experiments, and related technology development activities for the purpose of highlighting the expanding role of simulation in aerospace research and development. The information in this paper will in no way provide foreign companies with a competitive advantage over U. S. industry.

  18. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.

  19. The Evolution of Oscillatory Behavior during Learning on a Ski Simulator

    ERIC Educational Resources Information Center

    Teulier, Caroline; Nourrit, Deborah; Delignieres, Didier

    2006-01-01

    Recent experiments on the ski simulator produced ambiguous results and raised unanswered questions concerning the true nature of "novice" behavior and the occurrence of behavioral changes during learning. The aim of the present experiment was to analyze the evolving behavior of three beginners during six practice sessions on a ski simulator. The…

  20. 2D and 3D Simulations of Exploding Pusher Capsules

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Smith, Andrew; Miles, Aaron

    2011-10-01

    A research campaign is underway at the National Ignition Facility (NIF) at LLNL to study rapidly evolving, non-LTE, inertial fusion plasmas. The goal is to field thin-shelled, gas filled ``Exploding Pusher'' capsules in a Polar Direct Drive (PDD) configuration. Ion temperatures of > 15 keV and electron temperatures of > 5 keV are reached. A small convergence ratio and rapidly ablated shell reduce susceptibility to hydrodynamic instabilities. Using 1D simulations, most favorable configurations were found to be thin SiO2 or Be shells containing 10 atm of D2-He3 in a 2:1 ratio. This poster describes the 2D and 3D ARES Radiation Hydrodynamics simulations of these capsules. 2D simulations are essential because the PDD configuration requires that each of the beams be ``repointed'' away from their nominal angles. Each beam can also have a separate power profile and focal length. Large ensembles of simulations were run to probe the parameter space and find the optimal pointing resulting in the most spherical implosions. Response surfaces were constructed to ascertain the susceptibility to shot-time fluctuations. We also discuss resolution convergence and present preliminary results of 3D modeling. This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Dynamic Hydrological Discharge Modelling for Fully Coupled Paleoclimate Runs of the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Riddick, Thomas; Brovkin, Victor; Hagemann, Stefan; Mikolajewicz, Uwe

    2017-04-01

    The continually evolving large ice sheets present in the Northern Hemisphere during the last glacial cycle caused significant changes to river pathways both through directly blocking rivers and through glacial isostatic adjustment. These river pathway changes are believed to of had a significant impact on the evolution of ocean circulation through changing the pattern of fresh water discharge into the oceans. A fully coupled ESM simulation of the last glacial cycle thus requires a hydrological discharge model that uses a set of river pathways that evolve with the earth's changing orography while being able to reproduce the known present-day river network given the present-day orography. Here we present a method for dynamically modelling hydrological discharge that meets such requirements by applying relative manual corrections to an evolving fine scale orography (accounting for the changing ice sheets and isostatic rebound) each time the river directions are recalculated. The corrected orography thus produced is then used to create a set of fine scale river pathways and these are then upscaled to a course scale. An existing present-day hydrological discharge model within the JSBACH3 land surface model is run using the course scale river pathways generated. This method will be used in fully coupled paleoclimate runs made using MPI-ESM1 as part of the PalMod project. Tests show this procedure reproduces the known present-day river network to a sufficient degree of accuracy.

  2. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    NASA Astrophysics Data System (ADS)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  3. EHWPACK: An evolvable hardware environment using the SPICE simulator and the Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Keymeulen, D.; Klimeck, G.; Zebulum, R.; Stoica, A.; Jin, Y.; Lazaro, C.

    2000-01-01

    This paper describes the EHW development system, a tool that performs the evolutionary synthesis of electronic circuits, using the SPICE simulator and the Field Programmable Transistor Array hardware (FPTA) developed at JPL.

  4. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  5. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections. PMID:24244173

  6. Reynolds Stress Balance in Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Miichael M.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 25 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, R(sub e), of about 2,000. All the terms in the equations governing the evolution of the Reynolds stresses have been calculated. The relative importance of the various terms is examined for the different strain geometries and the behavior of the individual terms is used to better assess whether the strained wakes are evolving self-similarly.

  7. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  8. Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends

    NASA Astrophysics Data System (ADS)

    Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.

    2017-12-01

    The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.

  9. Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.

    PubMed

    Gancedo, Francisco; Strain, Robert M

    2014-01-14

    In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler equation in the form of the water waves contour evolution problem. Our result confirms the numerical simulations in earlier work, in which it was shown that the curvature blows up because the contours collapse at a point. Here, we prove that maintaining control of the curvature will remove the possibility of pointwise interphase collapse. Another conclusion that we provide is a better understanding of earlier work in which squirt singularities are ruled out; in this case, a positive volume of fluid between the contours cannot be ejected in finite time.

  10. Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem

    PubMed Central

    Gancedo, Francisco; Strain, Robert M.

    2014-01-01

    In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the “splash singularity” blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler equation in the form of the water waves contour evolution problem. Our result confirms the numerical simulations in earlier work, in which it was shown that the curvature blows up because the contours collapse at a point. Here, we prove that maintaining control of the curvature will remove the possibility of pointwise interphase collapse. Another conclusion that we provide is a better understanding of earlier work in which squirt singularities are ruled out; in this case, a positive volume of fluid between the contours cannot be ejected in finite time. PMID:24347645

  11. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    PubMed

    Bauer, Ulrike; Di Giusto, Bruno; Skepper, Jeremy; Grafe, T Ulmar; Federle, Walter

    2012-01-01

    Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  12. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    PubMed

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  13. Explicit demonstration of the role of Marangoni effect in the breakup of nanoscale liquid filaments

    NASA Astrophysics Data System (ADS)

    Seric, Ivana; Mahady, Kyle; Afkhami, Shahriar; Hartnett, Chris; Fowlkes, Jason; Rack, Philip; Kondic, Lou

    2016-11-01

    We consider a breakup of bi-metal filaments deposited on a solid substrate. These filaments are exposed to laser irradiation and, while in the liquid phase, evolve by a process resembling breakup of a liquid jet governed by the Rayleigh-Plateau instability. The novel element is that the Marangoni effect, resulting from a different surface tension of the two metals from which the filament is built, is crucial in understanding the instability development. In particular, Marangoni effect may lead to the inversion of the breakup process, producing droplets at the locations where according to the Rayleigh-Plateau theory dry spots would be expected. We present experimental results carried out with Cu-Ni filaments, as well as direct numerical simulations based on a novel algorithm that includes variable surface tension in a Volume-of-Fluid based Navier-Stokes solver. These results suggest the possibility of using Marangoni effect for the purpose of self- and directed-assembly on the nanoscale. Supported by the NSF Grant No. CBET-1604351.

  14. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Astrophysics Data System (ADS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-08-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  15. Modelling the effect of urbanization on the transmission of an infectious disease.

    PubMed

    Zhang, Ping; Atkinson, Peter M

    2008-01-01

    This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.

  16. Mind the gap: a flow instability controlled by particle-surface distance

    NASA Astrophysics Data System (ADS)

    Driscoll, Michelle; Delmotte, Blaise; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul

    2016-11-01

    Does a rotating particle always spin in place? Not if that particle is near a surface: rolling leads to translational motion, as well as very strong flows around the particle, even quite far away. These large advective flows strongly couple the motion of neighboring particles, giving rise to strong collective effects in groups of rolling particles. Using a model experimental system, weakly magnetic colloids driven by a rotating magnetic field, we observe that driving a compact group of microrollers leads to a new kind of flow instability. First, an initially uniformly-distributed strip of particles evolves into a shock structure, and then it becomes unstable, emitting fingers with a well-defined wavelength. Using 3D large-scale simulations in tandem with our experiments, we find that the instability wavelength is controlled not by the driving torque or the fluid viscosity, but a geometric parameter: the microroller's distance above the container floor. Furthermore, we find that the instability dynamics can be reproduced using only one ingredient: hydrodynamic interactions near a no-slip boundary.

  17. With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants

    PubMed Central

    Bauer, Ulrike; Di Giusto, Bruno; Skepper, Jeremy; Grafe, T. Ulmar; Federle, Walter

    2012-01-01

    Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as ‘insect aquaplaning’ on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to ‘flick’ insects into the trap. Depending on the experimental conditions (simulated ‘rain’, wet after ‘rain’, or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid. PMID:22719998

  18. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  19. Small Body Hopper Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Gernhardt, Michael L.; Lee, Dave E.; Crues, E. Zack; Dexter, Dan E.; Abercromby, Andrew F. J.; Chappell, Steve P.; Nguyen, Hung T.

    2015-01-01

    A propellant-saving hopper mobility system was studied that could help facilitate the exploration of small bodies such as Phobos for long-duration human missions. The NASA Evolvable Mars Campaign (EMC) has proposed a mission to the moons of Mars as a transitional step for eventual Mars surface exploration. While a Mars transit habitat would be parked in High-Mars Orbit (HMO), crew members would visit the surface of Phobos multiple times for up to 14 days duration (up to 50 days at a time with logistics support). This paper describes a small body surface mobility concept that is capable of transporting a small, two-person Pressurized Exploration Vehicle (PEV) cabin to various sites of interest in the low-gravity environment. Using stored kinetic energy between bounces, a propellant-saving hopper mobility system can release the energy to vector the vehicle away from the surface in a specified direction. Alternatively, the stored energy can be retained for later use while the vehicle is stationary in respect to the surface. The hopper actuation was modeled using a variety of launch velocities, and the hopper mobility was evaluated using NASA Exploration Systems Simulations (NExSyS) for transit between surface sites of interest. A hopper system with linear electromagnetic motors and mechanical spring actuators coupled with Control Moment Gyroscope (CMG) for attitude control will use renewable electrical power, resulting in a significant propellant savings.

  20. CT scanning and flow measurements of shale fractures after multiple shearing events

    DOE PAGES

    Crandall, Dustin; Moore, Johnathan; Gill, Magdalena; ...

    2017-11-05

    A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less

  1. CT scanning and flow measurements of shale fractures after multiple shearing events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin; Moore, Johnathan; Gill, Magdalena

    A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less

  2. Coincidental loss of bacterial virulence in multi-enemy microbial communities.

    PubMed

    Zhang, Ji; Ketola, Tarmo; Örmälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

    2014-01-01

    The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surface-feeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combinations in a simulated pond water environment. After 8 weeks the virulence of the 384 evolved clones were quantified with fruit fly Drosophila melanogaster oral infection model, and several other life-history traits were measured. We found that in comparison to ancestor bacteria, evolutionary treatments reduced the virulence in most of the treatments, but this reduction was not clearly related to any changes in other life-history traits. This suggests that virulence traits do not evolve in close relation with these life-history traits, or that different traits might link to virulence in different selective environments, for example via resource allocation trade-offs.

  3. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  4. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  5. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  6. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  7. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  8. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  9. Idealized Quasi-Linear Convective Storms Crossing Over Coastlines

    NASA Astrophysics Data System (ADS)

    Lombardo, K.

    2015-12-01

    As organized coastal convective storms develop over land and move over a coastal ocean, their storm-scale structures, intensity, and associated weather threats evolve. This study aims to identify and quantify the fundamental mechanisms controlling the evolution of coastal quasi-linear convective systems (QLCSs) as they move offshore, as well as characterize the environmental conditions that support a phase space of life cycles. Results from this work will contribute to the improved predictability of these potentially severe warm season storms. The current work uses the Cloud Model 1 (CM1; Bryan and Fritsch 2002) to systematically study the interaction between QLCSs and marine atmospheric boundary layers (MABLs) associated with the coastal ocean in an idealized numerical framework. The initial simulations are run in 2-dimensions, with a 250 m horizontal resolution and a vertical resolution ranging from 100 m in the lowest 3000 m stretched to 250 m at the top of the 20 km domain. All simulations use the Weisman-Klemp analytic sounding as the base-state sounding profile in conjunction with an RKW-type wind profile. To create a numerical environment representative of a coastal region, the western half of the 800 km domain is configured to represent a land surface, while the eastern half represents a water surface. A series of sensitivity experiments are conducted to explore the influence of sea surface temperature and the associated marine atmospheric boundary layer on coastal QLCSs. Sea surface temperature values are selected to represent values observed within the Mid-Atlantic Bight coastal waters during the warm season, ranging from 14oC ('early summer') to 23oC ('late summer'). The numerical MABL is allowed to develop in time through surface heat fluxes. This presentation will discuss preliminary results from the 'early summer' and 'late summer' SST sensitivity experiments. Preliminary simulations indicate that the 'early summer' QLCS moves more quickly than the 'late summer' storm once the systems are over the MABL. Differences in propagation speed will be discussed in the context of lifting mechanisms along the leading edge of the QLCSs. Differences in the intensity of the convection will be discussed as well.

  10. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  11. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  12. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  13. An examination of problem-based teaching and learning in population genetics and evolution using EVOLVE, a computer simulation

    NASA Astrophysics Data System (ADS)

    Soderberg, Patti; Price, Frank

    2003-01-01

    This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.

  14. Cooperative behavior and phase transitions in co-evolving stag hunt game

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2016-02-01

    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  15. Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse

    NASA Astrophysics Data System (ADS)

    Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier

    2017-03-01

    This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.

  16. Evolutionary online behaviour learning and adaptation in real robots

    PubMed Central

    Correia, Luís; Christensen, Anders Lyhne

    2017-01-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm. PMID:28791130

  17. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  18. Reconstruction of instantaneous surface normal velocity of a vibrating structure using interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng

    2018-07-01

    Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.

  19. Physics-based simulation models for EBSD: advances and challenges

    NASA Astrophysics Data System (ADS)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  20. Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations

    NASA Astrophysics Data System (ADS)

    Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.

    2014-01-01

    The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.

  1. Surface effects on the red giant branch

    NASA Astrophysics Data System (ADS)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  2. Boundary integral method for interfacial potential flows in unbounded axi-symmetric domains

    NASA Astrophysics Data System (ADS)

    Tjan, Kuan-Khoon

    The numerical simulation of the deformation of a liquid free surface subjected to an impulse (acoustically generated or otherwise) in an axisymmetric semi-infinite domain is considered. Using an inviscid boundary integral formulation, the free surface is evolved under the influence of inertial, interfacial and gravitational forces. Within a range of Atwood ratio, Weber number and Froude number, the evolution eventually led to the ejection of droplets. This research is part of a study of the lung damage caused by ultrasonic imaging. It has been observed in animal experiments that a focused ultrasonic beam can cause lung hemorrhage. A possible explanation is that the hemorrhage is caused by the ejected droplets penetrating gas filled cavities which occurs in the pleural surface of the lungs. It was found that the relationship between Weber number and the size and the velocity of the emitted drop is such that there exists a critical Weber number which maximizes the energy and momentum of the drop. While the objective is to explore alternative damage mechanisms due to ultrasound, the work is not restricted as such. Indeed, the work is concerned with surface tension driven singularities at fluid interface in general. Within this study, different regimes are found and the conditions which define them are summarized with a phase diagram.

  3. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.

    PubMed

    Hong, Siang-Jie; Chang, Feng-Ming; Chou, Tung-He; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2011-06-07

    Contact angle hysteresis of a sessile drop on a substrate consists of continuous invasion of liquid phase with the advancing angle (θ(a)) and contact line pinning of liquid phase retreat until the receding angle (θ(r)) is reached. Receding pinning is generally attributed to localized defects that are more wettable than the rest of the surface. However, the defect model cannot explain advancing pinning of liquid phase invasion driven by a deflating bubble and continuous retreat of liquid phase driven by the inflating bubble. A simple thermodynamic model based on adhesion hysteresis is proposed to explain anomalous contact angle hysteresis of a captive bubble quantitatively. The adhesion model involves two solid–liquid interfacial tensions (γ(sl) > γ(sl)′). Young’s equation with γ(sl) gives the advancing angle θ(a) while that with γ(sl)′ due to surface rearrangement yields the receding angle θ(r). Our analytical analysis indicates that contact line pinning represents frustration in surface free energy, and the equilibrium shape corresponds to a nondifferential minimum instead of a local minimum. On the basis of our thermodynamic model, Surface Evolver simulations are performed to reproduce both advancing and receding behavior associated with a captive bubble on the acrylic glass.

  4. North Pacific Decadal Variability in the GEOS-5 Atmosphere-Ocean Model

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2013-01-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the GEOS-5 general circulation model. The model simulates a realistic PDO pattern that is resolved as the first empirical orthogonal function (EOF) of winter sea surface temperature (SST). The simulated PDO is primarily forced by Aleutian low through Ekman transport and surface fluxes, and shows a red spectrum without any preferred periodicity. This differs from the observations, which indicate a greater role of El Nino-Southern Oscillation (ENSO) forcing, and likely reflects the too short time scale of the simulated ENSO. The geostrophic transport in response to the Aleutian low is limited to the Kuroshio-Oyashio Extension, and is unlikely the main controlling factor in this model, although it reinforces the Ekman-induced SST anomalies. The delay between the Aleutian low and the PDO is relatively short (1 year) suggesting that the fast Ekman response (rather than Rossby wave propagation) sets the SST pattern immediately following an Aleutian low fluctuation. The atmospheric feedback (response to the SST) is only about 25 of the forcing and never evolves into an Aleutian low completely, instead projecting onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure (SLP). The lack of preferred periodicity and weak atmospheric response bothindicate a coupled oscillation is an unlikely mechanism for the PDO in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation (NPGO), which is another leading EOF of the North Pacific SST. A possible connection between the PDO and the NPGO is discussed.

  5. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry

    PubMed Central

    Popa, AC; Stan, GE; Husanu, MA; Mercioniu, I; Santos, LF; Fernandes, HR; Ferreira, JMF

    2017-01-01

    Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid–implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials’ structure-dissolution behavior. This will contribute to “upgrade” our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic–organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials. PMID:28176941

  6. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry.

    PubMed

    Popa, A C; Stan, G E; Husanu, M A; Mercioniu, I; Santos, L F; Fernandes, H R; Ferreira, Jmf

    2017-01-01

    Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid-implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials' structure-dissolution behavior. This will contribute to "upgrade" our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic-organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials.

  7. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  8. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  9. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  10. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    NASA Technical Reports Server (NTRS)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  11. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.

    2013-04-15

    Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allowsmore » to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.« less

  12. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  13. Plasma Science and Innovation Center (PSI-Center) at Washington, Wisconsin, and Utah State, ARRA Supplement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves.more » It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.« less

  14. The diversity of evolutionary pathways of compact elliptical galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah

    2017-01-01

    Observations of the high-redshift universe have revealed a population of galaxies which are already very massive (~1e11 solar masses at z=2) and have typical sizes of < 2 kpc, much smaller than their counterparts in the local universe. How such dense, massive galaxies form, and why they appear to be less common at low redshift, have been questions of interest for both theorists and observers. I will discuss these questions in the context of the Illustris simulation, a hydrodynamical cosmological simulation in which tens of thousands of galaxies form, evolve, and interact with each other, situated within a cosmological context. I select a group of massive compact galaxies at z=2 in the simulation and trace them back and forth in time to discover both how they formed at high redshift, and what they evolve into at the present day. I find a variety of both progenitors (compact galaxies form in the simulation either via central starbursts generally brought on by mergers, or by racing out to the tip of the SF main sequence and forming very early) and descendants (many formerly-compact galaxies lurk at the core of a more massive galaxy today, others were consumed in mergers, and some evolve passively and undisturbed). I will also discuss the implications of these results for observational methods of connecting galaxy populations across redshifts - in particular, the assumption of a constant cumulative comoving number density - and suggest an improvement to this method which takes the complexity and variety of galaxies' evolutionary paths into account.

  15. Evolving mobile robots able to display collective behaviors.

    PubMed

    Baldassarre, Gianluca; Nolfi, Stefano; Parisi, Domenico

    2003-01-01

    We present a set of experiments in which simulated robots are evolved for the ability to aggregate and move together toward a light target. By developing and using quantitative indexes that capture the structural properties of the emerged formations, we show that evolved individuals display interesting behavioral patterns in which groups of robots act as a single unit. Moreover, evolved groups of robots with identical controllers display primitive forms of situated specialization and play different behavioral functions within the group according to the circumstances. Overall, the results presented in the article demonstrate that evolutionary techniques, by exploiting the self-organizing behavioral properties that emerge from the interactions between the robots and between the robots and the environment, are a powerful method for synthesizing collective behavior.

  16. Evolution of ribozymes in the presence of a mineral surface

    PubMed Central

    Stephenson, James D.; Popović, Milena; Bristow, Thomas F.

    2016-01-01

    Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980

  17. Computational Evolutionary Methodology for Knowledge Discovery and Forecasting in Epidemiology and Medicine

    NASA Astrophysics Data System (ADS)

    Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria

    2008-05-01

    Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.

  18. Computational Evolutionary Methodology for Knowledge Discovery and Forecasting in Epidemiology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria

    2008-05-08

    Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. Thismore » work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.« less

  19. Integrating Existing Simulation Components into a Cohesive Simulation System

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    A tradition of leveraging the re-use of components to help manage costs has evolved in the development of complex system. This tradition continues on in the Joint Polar Satellite System (JPSS) Program with the cloning of the Suomi National Polar-orbiting Partnership (NPP) satellite for the JPSS-1 mission, including the instrument complement. One benefit of re-use on a mission is the availability of existing simulation assets from the systems that were previously built. An issue arises in the continual shift of technology over a long mission, or multi-mission, lifecycle. As the missions mature, the requirements for the observatory simulations evolve. The challenge in this environment becomes re-using the existing components in that ever-changing landscape. To meet this challenge, the system must: establish an operational architecture that minimizes impacts on the implementation of individual components, consolidate the satisfaction of new high-impact requirements into system-level infrastructure, and build in a long-term view of system adaptation that spans the full lifecycle of the simulation system. The Flight Vehicle Test Suite (FVTS) within the JPSS Program is defining and executing this approach to ensure a robust simulation capability for the JPSS multi-mission environment

  20. The Continuing Evolution of Land Surface Parameterizations

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Houser, Paul (Technical Monitor)

    2001-01-01

    Land surface models (LSMs) play a critical role in the simulation of climate, for they determine the character of a large fraction of the atmosphere's lower boundary. The LSM partitions the net radiative energy at the land surface into sensible heat, latent heat, and energy storage, and it partitions incident precipitation water into evaporation, runoff, and water storage. Numerous modeling experiments and the existing (though very scant) observational evidence suggest that variations in these partitionings can feed back on the atmospheric processes that induce them. This land-atmosphere feedback can in turn have a significant impact on the generation of continental precipitation. For this and other reasons (including the role of the land surface in converting various atmospheric quantities, such as precipitation, into quantities of perhaps higher societal relevance, such as runoff), many modeling groups are placing a high emphasis on improving the treatment of land surface processes in their models. LSMs have evolved substantially from the original bucket model of Manabe et al. This evolution, which is still ongoing, has been documented considerably. The present paper also takes a look at the evolution of LSMs. The perspective here, though, is different - the evolution is considered strictly in terms of the 'balance' between the formulations of evaporation and runoff processes. The paper will argue that a proper balance is currently missing, largely due to difficulties in treating subgrid variability in soil moisture and its impact on the generation of runoff.

  1. Analyzing Evolving Social Network 2 (EVOLVE2)

    DTIC Science & Technology

    2015-04-01

    Facebook friendship graph. We simulated two different interaction models: one-to-one and one-to-many interactions . Both types of models revealed...to an unbiased random walk on the reweighed “ interaction graph” W with entries wij = αiAijαj . The generalized Laplacian framework is flexible enough...Information Intelligence Systems & Analysis Division Information Directorate This report is published in the interest of scientific and technical

  2. Encouraging Reactivity to Create Robust Machines

    DTIC Science & Technology

    2013-07-01

    Performance Evaluation and Benchmarking of Intelligent Systems, 113 137. Baldwin, J. (1896). A new factor in evolution. The American Naturalist, 30(355...Once more unto the breach: Co evolving a robot and its simulator. In Proceed ings of the international conference on artifical life (alife9) (pp.57...Pfeifer, R. (2003). Evolving complete agents using artificial ontogeny. In (pp. 237 258). Springer Verlag. Brooks, R. (1994). Artifical life and

  3. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  4. Linear analysis of the evolution of nearly polar low-mass circumbinary discs

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Martin, Rebecca G.

    2018-01-01

    In a recent paper Martin & Lubow showed through simulations that an initially tilted disc around an eccentric binary can evolve to polar alignment in which the disc lies perpendicular to the binary orbital plane. We apply linear theory to show both analytically and numerically that a nearly polar aligned low-mass circumbinary disc evolves to polar alignment and determine the alignment time-scale. Significant disc evolution towards the polar state around moderately eccentric binaries can occur for typical protostellar disc parameters in less than a typical disc lifetime for binaries with orbital periods of order 100 yr or less. Resonant torques are much less effective at truncating the inner parts of circumbinary polar discs than the inner parts of coplanar discs. For polar discs, they vanish for a binary eccentricity of unity. The results agree with the simulations in showing that discs can evolve to a polar state. Circumbinary planets may then form in such discs and reside on polar orbits.

  5. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  6. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  7. Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments

    PubMed Central

    Rhodes, Paul A.; Anderson, Todd O.

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772

  8. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  9. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  10. Landing on Mars

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Adler, Mark

    2005-01-01

    here have been five fully successful robotic landings on Mars. The systems used to deliver these robots to the surface have shown large design diversity and continue to evolve. How will future Mars landing systems evolve to eventually deliver precious human cargo? We do not yet know the answers, but current trends tell us an interesting and daunting tale.

  11. A study of QM/Langevin-MD simulation for oxygen-evolving center of photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Waka; Kimura, Yoshiro; Wakabayashi, Masamitsu

    2013-12-10

    We have performed three QM/Langevin-MD simulations for oxygen-evolving complex (OEC) and surrounding residues, which are different configurations of the oxidation numbers on Mn atoms in the Mn{sub 4}O{sub 5}Ca cluster. By analyzing these trajectories, we have observed sensitivity of the change to the configuration of Mn oxidation state on O atoms of carboxyl on three amino acids, Glu354, Ala344, and Glu333. The distances from Mn to O atoms in residues contacting with the Mn{sub 4}O{sub 5}Ca cluster were analyzed for the three trajectories. We found the good correlation of the distances among the simulations. However, the distances with Glu354, Ala344,more » and Glu333 have not shown the correlation. These residues can be sensitive index of the changes of Mn oxidation numbers.« less

  12. Flux-driven simulations of turbulence collapse

    DOE PAGES

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...

    2015-03-12

    In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less

  13. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  14. Simulation of Glacial Cycles Before and After the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Ganopolski, A.; Willeit, M.; Calov, R.

    2017-12-01

    In spite of significant progress achieved in understanding of glacial cycles, the cause of Mid-Pleistocene transition (MPT) is still not fully understood. To study possible mechanisms of the MPT we used the Earth system model of intermediate complexity CLIMBER-2 which incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry. We run the model through the entire Quaternary. The only prescribed forcing in these simulations is variations in Earth orbital parameters. In addition we prescribed gradually evolving in time terrestrial sediment cover and global volcanic outgassing. We found that gradual removal of terrestrial sediment from the Northern Hemisphere continent by glacial processes is sufficient to explain transition from 40-ka to 100-ka worlds around 1 million years ago. By starting the model at different times and using the same initial conditions we found that modeling results converge to the same solution which depends only on the orbital forcing and lower boundary conditions. Our results thus strongly suggest that Quaternary glacial cycles are externally forced and nearly deterministic.

  15. Evolving the capacity to understand actions, intentions, and goals.

    PubMed

    Hauser, Marc; Wood, Justin

    2010-01-01

    We synthesize the contrasting predictions of motor simulation and teleological theories of action comprehension and present evidence from a series of studies showing that monkeys and apes-like humans-extract the meaning of an event by (a) going beyond the surface appearance of actions, attributing goals and intentions to the agent; (b) using details about the environment to infer when an action is rational or irrational; (c) making predictions about an agent's goal and the most probable action to obtain the goal, within the constraints of the situation; (d) predicting the most probable outcome of actions even when they are physiologically incapable of producing the actions; and (e) combining information about means and outcomes to make decisions about social interactions, some with moral relevance. These studies reveal the limitations of motor simulation theories, especially those that rely on the notion of direct matching and mirror neuron activation. They provide support, however, for a teleological theory, rooted in an inferential process that extracts information about action means, potential goals, and the environmental constraints that limit rational action.

  16. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  17. Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish.

    PubMed

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H

    2013-07-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.

  18. Investigation of shear damage considering the evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Kweon, S.

    2013-12-01

    The damage that occurs in shear deformations in view of anisotropy evolution is investigated. It is widely believed in the mechanics research community that damage (or porosity) does not evolve (increase) in shear deformations since the hydrostatic stress in shear is zero. This paper proves that the above statement can be false in large deformations of simple shear. The simulation using the proposed anisotropic ductile fracture model (macro-scale) in this study indicates that hydrostatic stress becomes nonzero and (thus) porosity evolves (increases or decreases) in the simple shear deformation of anisotropic (orthotropic) materials. The simple shear simulation using a crystal plasticity based damage model (meso-scale) shows the same physics as manifested in the above macro-scale model that porosity evolves due to the grain-to-grain interaction, i.e., due to the evolution of anisotropy. Through a series of simple shear simulations, this study investigates the effect of the evolution of anisotropy, i.e., the rotation of the orthotropic axes onto the damage (porosity) evolution. The effect of the evolutions of void orientation and void shape onto the damage (porosity) evolution is investigated as well. It is found out that the interaction among porosity, the matrix anisotropy and void orientation/shape plays a crucial role in the ductile damage of porous materials.

  19. COMMUNICATION: Stochastic resonance and the evolution of Daphnia foraging strategy

    NASA Astrophysics Data System (ADS)

    Dees, Nathan D.; Bahar, Sonya; Moss, Frank

    2008-12-01

    Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, σ. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) σ is an evolved quantity and that (2) SR plays a role in evolution.

  20. A Mixed-dimensional Model for Determining the Impact of Permafrost Polygonal Ground Degradation on Arctic Hydrology.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Jan, A.; Painter, S. L.; Moulton, J. D.; Wilson, C. J.

    2017-12-01

    Many permafrost-affected regions in the Arctic manifest a polygonal patterned ground, which contains large carbon stores and is vulnerability to climate change as warming temperatures drive melting ice wedges, polygon degradation, and thawing of the underlying carbon-rich soils. Understanding the fate of this carbon is difficult. The system is controlled by complex, nonlinear physics coupling biogeochemistry, thermal-hydrology, and geomorphology, and there is a strong spatial scale separation between microtopograpy (at the scale of an individual polygon) and the scale of landscape change (at the scale of many thousands of polygons). Physics-based models have come a long way, and are now capable of representing the diverse set of processes, but only on individual polygons or a few polygons. Empirical models have been used to upscale across land types, including ecotypes evolving from low-centered (pristine) polygons to high-centered (degraded) polygon, and do so over large spatial extent, but are limited in their ability to discern causal process mechanisms. Here we present a novel strategy that looks to use physics-based models across scales, bringing together multiple capabilities to capture polygon degradation under a warming climate and its impacts on thermal-hydrology. We use fine-scale simulations on individual polygons to motivate a mixed-dimensional strategy that couples one-dimensional columns representing each individual polygon through two-dimensional surface flow. A subgrid model is used to incorporate the effects of surface microtopography on surface flow; this model is described and calibrated to fine-scale simulations. And critically, a subsidence model that tracks volume loss in bulk ice wedges is used to alter the subsurface structure and subgrid parameters, enabling the inclusion of the feedbacks associated with polygon degradation. This combined strategy results in a model that is able to capture the key features of polygon permafrost degradation, but in a simulation across a large spatial extent of polygonal tundra.

  1. Modeling Coniferous Canopy Structure over Extensive Areas for Ray Tracing Simulations: Scaling from the Leaf to the Stand Level

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; van Leeuwen, M.; Kelbe, D.; Kampe, T.; Krause, K.

    2015-12-01

    Remote sensing is widely accepted as a useful technology for characterizing the Earth surface in an objective, reproducible, and economically feasible manner. To date, the calibration and validation of remote sensing data sets and biophysical parameter estimates remain challenging due to the requirements to sample large areas for ground-truth data collection, and restrictions to sample these data within narrow temporal windows centered around flight campaigns or satellite overpasses. The computer graphics community have taken significant steps to ameliorate some of these challenges by providing an ability to generate synthetic images based on geometrically and optically realistic representations of complex targets and imaging instruments. These synthetic data can be used for conceptual and diagnostic tests of instrumentation prior to sensor deployment or to examine linkages between biophysical characteristics of the Earth surface and at-sensor radiance. In the last two decades, the use of image generation techniques for remote sensing of the vegetated environment has evolved from the simulation of simple homogeneous, hypothetical vegetation canopies, to advanced scenes and renderings with a high degree of photo-realism. Reported virtual scenes comprise up to 100M surface facets; however, due to the tighter coupling between hardware and software development, the full potential of image generation techniques for forestry applications yet remains to be fully explored. In this presentation, we examine the potential computer graphics techniques have for the analysis of forest structure-function relationships and demonstrate techniques that provide for the modeling of extremely high-faceted virtual forest canopies, comprising billions of scene elements. We demonstrate the use of ray tracing simulations for the analysis of gap size distributions and characterization of foliage clumping within spatial footprints that allow for a tight matching between characteristics derived from these virtual scenes and typical pixel resolutions of remote sensing imagery.

  2. Maintenance Training Simulators Design and Acquisition: Summary of Current Procedures.

    DTIC Science & Technology

    1979-11-01

    of maintenance training and training equipment for new systems . This organization has a core of highly experienced ISD team personnel and has evolved...S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BAbE,TEXAS 78235 ." .~ 8. . NOTI(’F When U.S. Government drawings. specifications. ot otlher...Force personirel in performning 4 Instrutinal Systems Devlopmrent (ISO) analyses to define maintenance training equipment requirements. and byv

  3. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.

  4. Exploring diurnal and seasonal characteristics of global carbon cycle with GISS Model E2 GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.

    2017-12-01

    The ability to properly model surface carbon fluxes on the diurnal and seasonal time scale is a necessary requirement for understanding of the global carbon cycle. It is also one of the most challenging tasks faced by modern General Circulation Models (GCMs) due to complexity of the algorithms and variety of relevant spatial and temporal scales. The observational data, though abundant, is difficult to interpret at the global scale, because flux tower observations are very sparse for large impact areas (such as Amazon and African rainforest and most of Siberia) and satellite missions often struggle to produce sufficiently high confidence data over the land and may be missing CO2 amounts near the surface due to the nature of the method. In this work we use the GISS Model E2 GCM to perform a subset of experiments proposed by the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) and relate the results to available observations.The GISS Model E2 GCM is currently equipped with a complete global carbon cycle algorithm. Its surface carbon fluxes are computed by the Ent Terrestrial Biosphere Model (Ent TBM) over the land with observed leaf area index of the Moderate Resolution Imaging Spectrometer (MODIS) and by the NASA Ocean Biogeochemistry Model (NOBM) over the ocean. The propagation of atmospheric CO2 is performed by a generic Model E2 tracer algorithm, which is based on a quadratic upstream method (Prather 1986). We perform a series spin-up experiments for preindustrial climate conditions and fixed preindustrial atmospheric CO2 concentration. First, we perform separate spin-up simulations each for terrestrial and ocean carbon. We then combine the spun-up states and perform a coupled spin-up simulation until the model reaches a sufficient equilibrium. We then release restrictions on CO2 concentration and allow it evolve freely, driven only by simulated surface fluxes. We then study the results of the unforced run, comparing the amplitude and the phase of diurnal and seasonal variation of atmospheric CO2 concentration to selected flux tower observations and OCO-2 satellite datasets.

  5. Ocean Mixed Layer responses to intense meteorological events during HyMeX-SOP1 from a high-resolution ocean simulation

    NASA Astrophysics Data System (ADS)

    Lebeaupin Brossier, Cindy; Arsouze, Thomas; Béranger, Karine; Bouin, Marie-Noëlle; Bresson, Emilie; Ducrocq, Véronique; Giordani, Hervé; Nuret, Mathieu; Rainaud, Romain; Taupier-Letage, Isabelle

    2014-12-01

    The western Mediterranean Sea is a source of heat and humidity for the atmospheric low-levels in autumn. Large exchanges take place at the air-sea interface, especially during intense meteorological events, such as heavy precipitation and/or strong winds. The Ocean Mixed Layer (OML), which is quite thin at this time of year (∼ 20 m-depth), evolves rapidly under such intense fluxes. This study investigates the ocean responses under intense meteorological events that occurred during HyMeX SOP1 (5 September-6 November 2012). The OML conditions and tendencies are derived from a high-resolution ocean simulation using the sub-regional eddy-resolving NEMO-WMED36 model (1/36°-resolution), driven at the surface by hourly air-sea fluxes from the AROME-WMED forecasts (2.5 km-resolution). The high space-time resolution of the atmospheric forcing allows the highly variable surface fluxes, which induce rapid changes in the OML, to be well represented and linked to small-scale atmospheric processes. First, the simulation results are compared to ocean profiles from several platforms obtained during the campaign. Then, this study focuses on the short-term OML evolution during three events. In particular, we examine the OML cooling and mixing under strong wind events, potentially associated with upwelling, as well as the surface freshening under heavy precipitation events, producing low-salinity lenses. Tendencies demonstrate the major role of the surface forcing in the temperature and/or salinity anomaly formation. At the same time, mixing [restratification] rapidly occurs. As expected, the sign of this tendency term is very dependent on the local vertical stratification which varies at fine scale in the Mediterranean. It also controls [disables] the vertical propagation. In the Alboran Sea, the strong dynamics redistribute the OML anomalies, sometimes up to 7 days after their formation. Elsewhere, despite local amplitude modulations due to internal wave excitation by strong winds, the integrated effect of the horizontal advection is almost null on the anomalies' spread and decay. Finally, diffusion has a small contribution.

  6. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric deformation (such as arachnoids), and end with coronae (with mostly concentric deformation). The model predicts that the highlands evolve on a timescale of order 10 Ma, and the smaller-scale features evolve in a 100 Ma timescale.

  7. Predicting the Arctic Ocean Environment in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Popova, Ekaterina; Yool, Andrew; Nurser, George

    2015-04-01

    Recent environmental changes in the Arctic have clearly demonstrated that climate change is faster and more vigorously in the Polar Regions than anywhere else. Significantly, change in the Arctic Ocean (AO) environment presents a variety of impacts, from ecological to social-economic and political. Mitigation of this change and adaptation to it requires detailed and robust environmental predictions. Here we present a detailed projection of ocean circulation and sea ice from the present until 2099, based on an eddy-permitting high-resolution global simulation of the NEMO ¼ degree ocean model. The model is forced at the surface with HadGEM2-ES atmosphere model output from the UK Met. Office IPCC Assessment Report 5 (AR5) Representative Concentration Pathways 8.5 (RCP8.5) scenario. The HadGEM2-ES simulations span 1860-2099 and are one of an ensemble of runs performed for the Coupled Model Intercomparison Project 5 (CMIP5) and IPCC AR5. Between 2000-2009 and 2090-2099 the AO experiences a significant warming, with sea surface temperature increasing on average by about 4° C, particularly in the Barents and Kara Seas, and in the Greenland Sea and Hudson Bay. By the end of the simulation, Arctic sea ice has an average annual thickness of less than 10 cm in the central AO, and less than 0.5 m in the East-Siberian Sea and Canadian Archipelago, and disappears entirely during the Arctic summer. In summer, opening of large areas of the Arctic Ocean to the wind and surface waves leads to the Arctic pack ice cover evolving into the Marginal Ice Zone (MIZ). In winter, sea ice persists until the 2030s; then it sharply declines and disappears from the Central Arctic Ocean by the end of the 21st century, with MIZ provinces remaining in winter along the Siberian, Alaskan coasts and in the Canadian Arctic Archipelago. Analysis of the AO circulation reveals evidence of (i) the reversal of the Arctic boundary currents in the Canadian Basin, from a weak cyclonic current in 2040-2049 to a strong anti-cyclonic current in 2090-2099, and (ii) increased anti-cyclonic surface ocean circulation in the eastern part of the AO, while the surface circulation in the western Arctic becomes more cyclonic. We relate the shift in the circulation to changes in the winds and reduction of sea ice cover, which modify momentum transfer from atmosphere to the ocean. Our simulation suggests a potentially complex picture of future AO change, and highlights the importance of high resolution modelling in forecasting it.

  8. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less

  9. Gravitational Wave Signatures in Black Hole Forming Core Collapse

    NASA Astrophysics Data System (ADS)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin

    2013-12-01

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates <~ 0.1 yr-1.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimatelymore » collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.« less

  11. Mars Surface Habitability Options

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Simon, Matthew; Smitherman, David; Howard, Robert; Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    This paper reports on current habitability concepts for an Evolvable Mars Campaign (EMC) prepared by the NASA Human Spaceflight Architecture Team (HAT). For many years NASA has investigated alternative human Mars missions, examining different mission objectives, trajectories, vehicles, and technologies; the combinations of which have been referred to as reference missions or architectures. At the highest levels, decisions regarding the timing and objectives for a human mission to Mars continue to evolve while at the lowest levels, applicable technologies continue to advance. This results in an on-going need for assessments of alternative system designs such as the habitat, a significant element in any human Mars mission scenario, to provide meaningful design sensitivity characterizations to assist decision-makers regarding timing, objectives, and technologies. As a subset of the Evolvable Mars Campaign activities, the habitability team builds upon results from past studies and recommends options for Mars surface habitability compatible with updated technologies.

  12. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The currentmore » layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.« less

  13. Investigating flow sensitivity of Greenland outlet glaciers using a time-evolving calving model in Elmer FEM.

    NASA Astrophysics Data System (ADS)

    Todd, Joe; Christoffersen, Poul

    2013-04-01

    It is becoming increasingly evident that the marine margins of the Greenland Ice Sheet (GIS) are highly sensitive to local and regional scale climate change, with significant changes in mass balance occurring on sub-decadal timescales. The majority of this mass loss is hypothesised to have been triggered at the termini of calving glaciers. Recent studies suggest that increased calving rate is being driven through some combination of increased submarine undercutting, increased surface hydrofracturing, and changes in the strength and seasonal duration of sikussak. This project aims to improve understanding of these physical processes, in order to better predict how the GIS will respond to future climate change. Two glaciers in the Uummannaq region, Store Gletscher and Rink Isbræ, have been modelled in 2D using the Finite Element modelling package "Elmer FEM". The model produces a time-evolving solution to the coupled Navier-Stokes/heat equations; this allows the dynamic response of these glaciers to external forcing at their termini to be investigated. Furthermore, the model includes a water-depth calving criterion, and is able to simulate realistic calving events, and the subsequent stress/dynamic response of the glacier. Preliminary results suggest that both sikussak backstress and submarine undercutting may represent significant factors in calving terminus stability.

  14. Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Smith, Randall K.; Foster, Adam

    The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White and Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density, and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White and Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We findmore » that, while certain general results of the White and Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak, which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White and Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.« less

  15. Simulation of physical and chemical processes in support of space missions

    NASA Astrophysics Data System (ADS)

    Kochan, H.; Sears, D.; Colangeli, L.; Ehrenfreund, P.

    For many years, phenomena on planetary surfaces have been simulated under space conditions on Earth-bound laboratories. In a six-year program at the German Aerospace Center, Cologne, phenomena on cometary surfaces were studied and provided new insights that enhanced the data from space missions. Similar simulation techniques are being applied in a new research program at DLR in preparation for the rendezvous of the Rosetta space craft with comet Wirtanen at 3 A.U and for the Mars Express mission with the British Beagle 2 lander which will search for traces of life. The Arkansas-Oklahoma Center for Space and Planetary Sciences is preparing to conduct experiments that will aid in the interpretation of images from Mars orbiters in terms of fluid and dust storm processes and help design instrumentation for deployment on Mars. Of particular interest is the question of the present location of the water that was apparently once abundant on Mars. Additional experiments at the new U.S. facility will help interpret images of Eros obtained by the NEAR spacecraft and to prepare for future sample return missions to near-Earth asteroids while providing fundamental insights into regolith mechanics and regolith- atmosphere interactions. The activities in the Cosmic Physics Laboratory of Naples are focused on the simulation of materials and processes active in space in the perspective of studying how physical and chemical properties of cosmic relevant species evolve depending on environmental conditions. This approach is complemented by investigation on actual extraterrestrial samples, such as meteorites and interplanetary dust particles. The approach is useful to characterize the performances of space instruments for remote and/or in -situ exploration of Solar System bodies, also in the view of searching features of exobiological relevance. One of the key objectives of the Soft matter/Astrobiology laboratory at Leiden University is to study the formation, evolution and survival of organic molecules in space and their delivery to the early planets via comets and meteorites in support of current and future space missions. For this purpose a simulation chamber has been recently equipped at the European Space Agency which is testing the behaviour or organics on the Martian surface and their implications for extinct and extant life on Mars.

  16. The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved Escherichia coli.

    PubMed

    Aziz, Ramy K; Monk, Jonathan M; Andrews, Kathleen A; Nhan, Jenny; Khaw, Valerie L; Wong, Hesper; Palsson, Bernhard O; Charusanti, Pep

    2017-01-01

    Most Escherichia coli strains are naturally unable to grow on 1,2-propanediol (PDO) as a sole carbon source. Recently, however, a K-12 descendent E. coli strain was evolved to grow on 1,2-PDO, and it was hypothesized that this evolved ability was dependent on the aldehyde dehydrogenase, AldA, which is highly conserved among members of the family Enterobacteriacea. To test this hypothesis, we first performed computational model simulation, which confirmed the essentiality of the aldA gene for 1,2-PDO utilization by the evolved PDO-degrading E. coli. Next, we deleted the aldA gene from the evolved strain, and this deletion was sufficient to abolish the evolved phenotype. On re-introducing the gene on a plasmid, the evolved phenotype was restored. These findings provide experimental evidence for the computationally predicted role of AldA in 1,2-PDO utilization, and represent a good example of E. coli robustness, demonstrated by the bacterial deployment of a generalist enzyme (here AldA) in multiple pathways to survive carbon starvation and to grow on a non-native substrate when no native carbon source is available. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. One-dimensional cold cap model for melters with bubblers

    DOE PAGES

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  18. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.

  19. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    PubMed

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  20. Evolved atmospheric entry corridor with safety factor

    NASA Astrophysics Data System (ADS)

    Liang, Zixuan; Ren, Zhang; Li, Qingdong

    2018-02-01

    Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.

  1. OneSAF as an In-Stride Mission Command Asset

    DTIC Science & Technology

    2014-06-01

    implementation approach. While DARPA began with a funded project to complete the capability as a “ big bang ” approach the approach here is based on reuse and...Command (MC), Modeling and Simulation (M&S), Distributed Interactive Simulation (DIS) ABSTRACT: To provide greater interoperability and integration...within Mission Command (MC) Systems the One Semi-Automated Forces (OneSAF) entity level simulation is evolving from a tightly coupled client server

  2. Actionable Capability for Social and Economic Systems (ACSES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Steven J; Brecke, Peter K; Carmichael, Theodore D

    The foundation of the Actionable Capability for Social and Economic Systems (ACSES) project is a useful regional-scale social-simulation system. This report is organized into five chapters that describe insights that were gained concerning the five key feasibility questions pertaining to such a system: (1) Should such a simulation system exist, would the current state of data sets or collectible data sets be adequate to support such a system? (2) By comparing different agent-based simulation systems, is it feasible to compare simulation systems and select one appropriate for a given application with agents behaving according to modern social theory rather thanmore » ad hoc rule sets? (3) Provided that a selected simulation system for a region of interest could be constructed, can the simulation system be updated with new and changing conditions so that the universe of potential outcomes are constrained by events on the ground as they evolve? (4) As these results are constrained by evolving events on the ground, is it feasible to still generate surprise and emerging behavior to suggest outcomes from novel courses of action? (5) As these systems may for the first time require large numbers (hundreds of millions) of agents operating with complexities demanded of modern social theories, can results still be generated within actionable decision cycles?« less

  3. VHDL simulation with access to transistor models

    NASA Technical Reports Server (NTRS)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  4. Two-actor conflict with time delay: A dynamical model

    NASA Astrophysics Data System (ADS)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  5. Instability and dynamics of volatile thin films

    NASA Astrophysics Data System (ADS)

    Ji, Hangjie; Witelski, Thomas P.

    2018-02-01

    Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.

  6. Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion

    NASA Astrophysics Data System (ADS)

    Congy, T.; Ivanov, S. K.; Kamchatnov, A. M.; Pavloff, N.

    2017-08-01

    We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.

  7. Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion.

    PubMed

    Congy, T; Ivanov, S K; Kamchatnov, A M; Pavloff, N

    2017-08-01

    We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.

  8. Regolith evolution in the laboratory - Scaling dissimilar comminution experiments

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Horz, Friedrich

    1990-01-01

    Repeated impacts into fragmental targets simulating unconsolidated debris on planetary surfaces have provided empirical insight into the evolution of planetary regoliths. The techniques of dimensional analysis have been employed to quantify and examine the relationships between the more important variables in the evolution of these experimental regoliths. Application of this method to the results of 10 experimental series shows that the quantity of comminuted target mass is directly proportional to (1) the number of impacts, (2) the diameter of the projectile, (3) the mean size of the crystals, (4) the mean grain size of the evolving regolith, (5) the total target mass, (6) the impactor density, and (7) the ratio of the impact velocity to the velocity of sound in the target rock. The comminuted mass is inversely proportional to the density of the target rock and the sorting of the regolith.

  9. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  10. Hill slope and erosional controls on soil organic geochemistry in intensely managed landscapes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Hou, T.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Abban, B. K.; Boys, J.; Wilson, C. G.

    2015-12-01

    Like many regions of North America, the last 100 years of agriculture in the glaciated upper Midwest has lead to a major redistribution of soil carbon and nitrogen on the landscape. Through the natural coevolution of geomorphic, pedogenic, and ecological processes in the critical zone or by punctual changes in these processes as a result of intensive management, landscapes established characteristic hierarchies of physicochemical controls on organic matter stability. In the Intensively-Managed Landscapes - Critical Zone Observatory (IML-CZO) in Iowa and Illinois these processes are being studied with a combination of surface soil geochemical surveys and simulated rainfall/erosion experiments to document how the organic geochemistry of hill slopes, under land management ranging from row crop to restored prairie, are currently evolving, and how they evolved during early management and pre settlement. Using a combination of soil analyses including elemental, stable isotope, textural, and soil biopolymers (lignin and cutin/suberin fatty acids (SFA)) we investigated the spatial patterns of static surface soil properties and time course rainfall-erosional experiments along the same slopes to gain insight into soil carbon and biopolymer enrichment patterns in east-central Iowa within the Clear Creek Watershed. Both lignin and substituted fatty acid concentration and their molecular ratios highlighted differences in C3/C4 (soy/corn) management activities in surface soils while over 40 years of prairie restoration dramatically altered surface soil profiles. For example, a general pattern in static baseline samples was an enrichment of 15N in soils down slope and an opposite pattern of accumulation/loss of lignin and SFA in topographic highs and lows. Transport of soil particles, associated biopolymers, and elemental and isotope signatures, exhibited distinct patterns based upon both position of the hill slope and directionality of flow with respect to rill/gully direction created by tillage activity. This indicates that particle/chemistry transport and enrichment of organic chemical signatures down slope and into associated flood plains and streams in modern intensively managed systems should be distinct from pre-settlement patterns and help interpret pre- and post settlement alluvium sediment.

  11. Dynamics of the baryonic component in hierarchical clustering universes

    NASA Technical Reports Server (NTRS)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortoleva, Peter J.

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  13. Passive turbulent flamelet propagation

    NASA Technical Reports Server (NTRS)

    Ashurst, William T.; Ruetsch, G. R.; Lund, T. S.

    1994-01-01

    We analyze results of a premixed constant density flame propagating in three-dimensional turbulence, where a flame model developed by Kerstein, et al. (1988) has been used. Simulations with constant and evolving velocity fields are used, where peculiar results were obtained from the constant velocity field runs. Data from the evolving flow runs with various flame speeds are used to determine two-point correlations of the fluctuating scalar field and implications for flamelet modeling are discussed.

  14. HPC simulations of shock front evolution for a study of the shock precursor decay in a submicron thick nanocrystalline aluminum

    NASA Astrophysics Data System (ADS)

    Valisetty, R.; Rajendran, A.; Agarwal, G.; Dongare, A.; Ianni, J.; Namburu, R.

    2018-07-01

    The Hugoniot elastic limit (HEL, or the shock precursor) decay phenomenon was investigated under an uniaxial strain condition, in a plate-on-plate impact configuration, using large-scale molecular dynamics (MD) high performance computing (HPC) simulations on a multi-billion 5000 Å thick nanocrystalline aluminum (nc-Al) system with an average grain size of 1000 Å and at five impact velocities ranging from 0.7 to 1.5 km s‑1. The averaged stress and strain distributions were obtained in the shock fronts’ travel direction using a material conserving atom slicing method. The loading paths in terms of the Rayleigh lines experienced by the atom system in the evolving shock fronts exhibited a strong dependency on the shock stress levels. This dependency decreased as the impact velocity increased from 0.7 to 1.5 km s‑1. By combining the HELs from MD results with plate impact experimental data, the precursor decay for the nc-Al was predicted from nano-to-macro scale thickness range. The evolving shock fronts were characterized in terms of parameters such as the shock front thickness, shock rise time and strain rate. The MD results were further analyzed using a crystal analysis algorithm and a twin dislocation identification method to obtain the densities of the atomistic defects evolving behind the evolving shock fronts. High-fidelity large-scale HPC simulation results showed that certain dislocation partials strongly influenced the elastic–plastic transition response across the HELs. The twinning dislocations increased by more than a factor of 10 during the transition and remained constant under further shock compression.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx}more » 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.« less

  16. Computational discovery of metal-organic frameworks with high gas deliverable capacity

    NASA Astrophysics Data System (ADS)

    Bao, Yi

    Metal-organic frameworks (MOFs) are a rapidly emerging class of nanoporous materials with largely tunable chemistry and diverse applications in gas storage, gas purification, catalysis, sensing and drug delivery. Efforts have been made to develop new MOFs with desirable properties both experimentally and computationally for decades. To guide experimental synthesis, we here develop a computational methodology to explore MOFs with high gas deliverable capacity. This de novo design procedure applies known chemical reactions, considers synthesizability and geometric requirements of organic linkers, and efficiently evolves a population of MOFs to optimize a desirable property. We identify 48 MOFs with higher methane deliverable capacity at 65-5.8 bar condition than the MOF-5 reference in nine networks. In a more comprehensive work, we predict two sets of MOFs with high methane deliverable capacity at a 65-5.8 bar loading-delivery condition or a 35-5.8 bar loading-delivery condition. We also optimize a set of MOFs with high methane accessible internal surface area to investigate the relationship between deliverable capacities and internal surface area. This methodology can be extended to MOFs with multiple types of linkers and multiple SBUs. Flexibile MOFs may allow for sophisticated heat management strategies and also provide higher gas deliverable capacity than rigid frameworks. We investigate flexible MOFs, such as MIL-53 families, and Fe(bdp) and Co(bdp) analogs, to understand the structural phase transition of frameworks and the resulting influence on heat of adsorption. Challenges of simulating a system with a flexible host structure and incoming guest molecules are discussed. Preliminary results from isotherm simulation using the hybrid MC/MD simulation scheme on MIL-53(Cr) are presented. Suggestions for proceeding to understand the free energy profile of flexible MOFs are provided.

  17. Modeling bistatic spectral measurements of temporally evolving reflected and emitted energy from a distant and receding target

    NASA Astrophysics Data System (ADS)

    Cusumano, Salvatore J.; Fiorino, Steven T.; Bartell, Richard J.; Krizo, Matthew J.; Bailey, William F.; Beauchamp, Rebecca L.; Marciniak, Michael A.

    2011-01-01

    The Air Force Institute of Technology's Center for Directed Energy developed the High Energy Laser End-to-End Operational Simulation (HELEEOS) model in part to quantify the performance variability in laser propagation created by the natural environment during dynamic engagements. As such, HELEEOS includes a fast-calculating, first principles, worldwide surface-to-100 km, atmospheric propagation, and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates, and hydrometeors as they relate to line-by-line layer transmission, path, and background radiance at wavelengths from the ultraviolet to radio frequencies. In the current paper an example of a unique high fidelity simulation of a bistatic, time-varying five band multispectral remote observation of energy delivered on a distant and receding test object is presented for noncloudy conditions with aerosols. The multispectral example emphasizes atmospheric effects using HELEEOS, the interaction of the energy and the test object, the observed reflectance, and subsequent hot spot generated. A model of a sensor suite located on the surface is included to collect the diffuse reflected in-band laser radiation and the emitted radiance of the hot spot in four separate and spatially offset midwave infrared and longwave infrared bands. Particular care is taken in modeling the bidirectional reflectance distribution function of the delivered energy/target interaction to account for both the coupling of energy into the test object and the changes in reflectance as a function of temperature. The architecture supports any platform-target-observer geometry, geographic location, season, and time of day, and it provides for correct contributions of the sky-earth background. The simulation accurately models the thermal response, kinetics, turbulence, base disturbance, diffraction, and signal-to-noise ratios.

  18. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    NASA Technical Reports Server (NTRS)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  19. Large-eddy simulation of a spatially-evolving turbulent mixing layer

    NASA Astrophysics Data System (ADS)

    Capuano, Francesco; Catalano, Pietro; Mastellone, Andrea

    2015-11-01

    Large-eddy simulations of a spatially-evolving turbulent mixing layer have been performed. The flow conditions correspond to those of a documented experimental campaign (Delville, Appl. Sci. Res. 1994). The flow evolves downstream of a splitter plate separating two fully turbulent boundary layers, with Reθ = 2900 on the high-speed side and Reθ = 1200 on the low-speed side. The computational domain starts at the trailing edge of the splitter plate, where experimental mean velocity profiles are prescribed; white-noise perturbations are superimposed to mimic turbulent fluctuations. The fully compressible Navier-Stokes equations are solved by means of a finite-volume method implemented into the in-house code SPARK-LES. The results are mainly checked in terms of the streamwise evolution of the vorticity thickness and averaged velocity profiles. The combined effects of inflow perturbations, numerical accuracy and subgrid-scale model are discussed. It is found that excessive levels of dissipation may damp inlet fluctuations and delay the virtual origin of the turbulent mixing layer. On the other hand, non-dissipative, high-resolution computations provide results that are in much better agreement with experimental data.

  20. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.

  1. Development of an Integrated Nozzle for a Symmetric, RBCC Launch Vehicle Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Canabal, Francisco, III; Rice, Tharen; Blaha, Bernard

    2000-01-01

    The development of rocket based combined cycle (RBCC) engines is highly dependent upon integrating several different modes of operation into a single system. One of the key components to develop acceptable performance levels through each mode of operation is the nozzle. It must be highly integrated to serve the expansion processes of both rocket and air-breathing modes without undue weight, drag, or complexity. The NASA GTX configuration requires a fixed geometry, altitude-compensating nozzle configuration. The initial configuration, used mainly to estimate weight and cooling requirements was a 1 So half-angle cone, which cuts a concave surface from a point within the flowpath to the vehicle trailing edge. Results of 3-D CFD calculations on this geometry are presented. To address the critical issues associated with integrated, fixed geometry, multimode nozzle development, the GTX team has initiated a series of tasks to evolve the nozzle design, and validate performance levels. An overview of these tasks is given. The first element is a design activity to develop tools for integration of efficient expansion surfaces With the existing flowpath and vehicle aft-body, and to develop a second-generation nozzle design. A preliminary result using a "streamline-tracing" technique is presented. As the nozzle design evolves, a combination of 3-D CFD analysis and experimental evaluation will be used to validate the design procedure and determine the installed performance for propulsion cycle modeling. The initial experimental effort will consist of cold-flow experiments designed to validate the general trends of the streamline-tracing methodology and anchor the CFD analysis. Experiments will also be conducted to simulate nozzle performance during each mode of operation. As the design matures, hot-fire tests will be conducted to refine performance estimates and anchor more sophisticated reacting-flow analysis.

  2. Evolution of the Eye Transcriptome under Constant Darkness in Sinocyclocheilus Cavefish

    PubMed Central

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B.; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H.

    2013-01-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms. PMID:23612715

  3. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    NASA Astrophysics Data System (ADS)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  4. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  6. Anisotropic diffusion and capture on surfaces: Time dependent modeling and visualization in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Yang, Pu

    Since the application of nanowires may lead to a new generation of electronic, optoelectronic and magnetic devices, there is much research on understanding the growth mechanism of various "self assembled" nanowires on semiconductor surfaces. The motivation of the present work is to use theoretical modeling to study the conditions required to form and grow elongated islands and nanowires. In this work, a modeling method is developed to study the time-dependent anisotropic diffusion and growth in two dimensions for an array of rectangular islands. This method uses discrete Fast Fourier Transformation (FFT) to solve the time-dependent diffusion equation on the surface. The ad-particles are captured and incorporated to the island edge to simulate island growth. Implemented in MATLABRTM programs, this model produces expected faceted shapes; the calculation runs very fast on a common personal computer. Time-dependent island growth and the evolving diffusion field have been visualized using simple MATLABRTM functions and can be made into MATLABRTM movies. This modeling method is applied to simulate elongated island and nanowire growth by incorporating anisotropic bonding at the island edge. When there is a full sink in one direction and partial sink in the other direction at the island edge, the model results in the growth of an elongated island with an aspect ratio that stabilizes after it reaches a certain value. This result agrees with experimental data on "endotaxial" nanowire growth. For the island edge with a full sink in one direction and no sink in the other direction, the island grows in length with constant width, which is comparable to experimental data on Bi nanoline and rare-earth metal nanowire growth.

  7. Dynamics of nonreactive solute transport in the permafrost environment

    NASA Astrophysics Data System (ADS)

    Svyatskiy, D.; Coon, E. T.; Moulton, J. D.

    2017-12-01

    As part of the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, researchers are developing process-rich models to understand and predict the evolution of water sources and hydrologic flow pathways resulting from degrading permafrost. The sources and interaction of surface and subsurface water and flow paths are complex in space and time due to strong interplay between heterogeneous subsurface parameters, the seasonal to decadal evolution of the flow domain, climate driven melting and release of permafrost ice as a liquid water source, evolving surface topography and highly variable meteorological data. In this study, we seek to characterize the magnitude of vertical and lateral subsurface flows in a cold, wet tundra, polygonal landscape characteristic of the Barrow Peninsula, AK. To better understand the factors controlling water flux partitioning in these low gradient landscapes, NGEE researchers developed and are applying the Advanced Terrestrial Simulator (ATS), which fully couples surface and subsurface flow and energy processes, snow distribution and atmospheric forcing. Here we demonstrate the integration of a new solute transport model within the ATS, which enables the interpretation of applied and natural tracer experiments and observations aimed at quantifying water sources and flux partitioning. We examine the role of ice wedge polygon structure, freeze-thaw processes and soil properties on the seasonal transport of water within and through polygons features, and compare results to tracer experiments on 2D low-centered and high-centered transects corresponding to artificial as well as realistic topographical data from sites in polygonal tundra. These simulations demonstrate significant difference between flow patterns between permafrost and non-permafrost environments due to active layer freeze-thaw processes.

  8. Water quality impact assessment of agricultural Beneficial Management Practices (BMPs) simulated for a regional catchment in Quebec, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rousseau, Alain N.; Hallema, Dennis W.; Gumiere, Silvio J.; Savary, Stéphane; Hould Gosselin, Gabriel

    2014-05-01

    Water quality has become a matter of increasing concern over the past four decades as a result of the intensification of agriculture, and more particularly so in Canada where agriculture has evolved into the largest non-point source of surface water pollution. The Canadian WEBs project (Watershed Evaluation of Beneficial Management Practices, BMPs) was initiated in order to determine the efficiency of BMPs in improving the surface water quality of rural catchments, and the economic aspects related to their implementation on the same scale. In this contribution we use the integrated watershed modelling platform GIBSI (Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé) to evaluate the effects of various BMPs on sediment and nutrient yields and, in close relation to this, the surface water quality for the Beaurivage River catchment (718 km2) in Quebec, eastern Canada. A base scenario of the catchment is developed by calibrating the different models of the GIBSI platform, namely HYDROTEL for hydrology, the Revised Universal Soil Loss Equation (RUSLE) for soil erosion, the Erosion-Productivity Impact Calculator (EPIC) of the Soil and Water Assessment Tool (SWAT) for contaminant transport and fate, and QUAL2E for stream water quality. Four BMPs were analysed: (1) vegetated riparian buffer strips, (2) precision slurry application, (3) transition of all cereal and corn fields to grassland (grassland conversion), and (4) no-tillage on corn fields. Simulations suggest that riparian buffer strips and grassland conversion are more effective in terms of phosphorus, nitrogen and sediment load reduction than precision slurry application and no-tillage on corn fields. The results furthermore indicate the need for a more profound understanding of sediment dynamics in streams and on riparian buffer strips.

  9. The effects of computer-simulated experiments on high school biology students' problem-solving skills and achievement

    NASA Astrophysics Data System (ADS)

    Carmack, Gay Lynn Dickinson

    2000-10-01

    This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.

  10. A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI

    PubMed Central

    Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.

    2016-01-01

    Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244

  11. An extinction/reignition dynamic method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Knaus, Robert; Pantano, Carlos

    2011-11-01

    Quasi-randomly distributed locations of high strain in turbulent combustion can cause a nonpremixed or partially premixed flame to develop local regions of extinction called ``flame holes''. The presence and extent of these holes can increase certain pollutants and reduce the amount of fuel burned. Accurately modeling the dynamics of these interacting regions can improve the accuracy of combustion simulations by effectively incorporating finite-rate chemistry effects. In the proposed method, the flame hole state is characterized by a progress variable that nominally exists on the stoichiometric surface. The evolution of this field is governed by a partial-differential equation embedded in the time-dependent two-manifold of the flame surface. This equation includes advection, propagation, and flame hole formation (flame hole healing or collapse is accounted by propagation naturally). We present a computational algorithm that solves this equation by embedding it in the usual three-dimensional space. A piece-wise parabolic WENO scheme combined with a compression algorithm are used to evolve the flame hole progress variable. A key aspect of the method is the extension of the surface data to the three-dimensional space in an efficient manner. We present results of this method applied to canonical turbulent combusting flows where the flame holes interact and describe their statistics.

  12. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T.; Goossens, M.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less

  13. Transport of Ice on the Surface of Iapetus

    NASA Astrophysics Data System (ADS)

    Galuba, Götz G.

    2014-11-01

    The global black-and-white dichotomy as well as the dark floors and rims of equatorial craters on the Saturnian moon Iapetus can be explained by ice migration driven by a thermal feedback [1]. All icy moons in the Jovian and Saturnian systems are - with the exception of Titan - airless bodies. Yet it is unique, how these two types of surface features on Iapetus look. A physical model of the processes of absorption, sublimation and deposition was developed and a computational model that simulates ice migration of volatiles under these circumstances derived. The model tessellates the surfaces of an airless body into triangles of equal size that can each have different surface properties. These properties evolve while the model simulates a long-term development. A rate network of net migration is calculated from sublimation and redeposition under the assumptions ofa. a slowly rotating bodyb. undisturbed ballistic molecular trajectoriesc. isotropic emissiond. Maxwellian speed distributione. high sticking coefficients of the surfaces.The assumptions (b.) to (e.) are equally valid for all bigger outer solar system icy moons (except Titan). The very first assumption however is not equally valid throughout the moons of the outer solar system. Callisto being in many regards similar to Iapetus still has a five times higher rotation rate. So global effects depending on slow rotation are more profound on Iapetus. The computer model is complemented by a model for local ice migration from craters.First results show, that the global timescale of albedo change in our model is of the same order of magnitude as in the supporting material to [1] with a tendency towards slightly faster 2 Gyr instead of ~2.4 Gyr) darkening compared to the "Model B". The time rate of local crater darkening rates lies between the global darkening rate and rate of the opposing brightening effect as estimated in [2] to (τ between 10 and 100 MYr).[1] Formation of Iapetus’ Extreme Albedo Dichotomy by Exogenically Triggered Thermal Ice Migration, John R. Spencer , Tilmann Denk, Science 22, Vol. 327, January 2010.[2] Iapetus: Unique Surface Properties and a Global Color Dichotomy from Cassini Imaging T. Denk et al., Science 22, Vol. 327, January 2010.

  14. Co-Evolution of Social Learning and Evolutionary Preparedness in Dangerous Environments

    PubMed Central

    Lindström, Björn; Selbing, Ida; Olsson, Andreas

    2016-01-01

    Danger is a fundamental aspect of the lives of most animals. Adaptive behavior therefore requires avoiding actions, objects, and environments associated with danger. Previous research has shown that humans and non-human animals can avoid such dangers through two types of behavioral adaptions, (i) genetic preparedness to avoid certain stimuli or actions, and (ii) social learning. These adaptive mechanisms reduce the fitness costs associated with danger but still allow flexible behavior. Despite the empirical prevalence and importance of both these mechanisms, it is unclear when they evolve and how they interact. We used evolutionary agent-based simulations, incorporating empirically based learning mechanisms, to clarify if preparedness and social learning typically both evolve in dangerous environments, and if these mechanisms generally interact synergistically or antagonistically. Our simulations showed that preparedness and social learning often co-evolve because they provide complimentary benefits: genetic preparedness reduced foraging efficiency, but resulted in a higher rate of survival in dangerous environments, while social learning generally came to dominate the population, especially when the environment was stochastic. However, even in this case, genetic preparedness reliably evolved. Broadly, our results indicate that the relationship between preparedness and social learning is important as it can result in trade-offs between behavioral flexibility and safety, which can lead to seemingly suboptimal behavior if the evolutionary environment of the organism is not taken into account. PMID:27487079

  15. Co-Evolution of Social Learning and Evolutionary Preparedness in Dangerous Environments.

    PubMed

    Lindström, Björn; Selbing, Ida; Olsson, Andreas

    2016-01-01

    Danger is a fundamental aspect of the lives of most animals. Adaptive behavior therefore requires avoiding actions, objects, and environments associated with danger. Previous research has shown that humans and non-human animals can avoid such dangers through two types of behavioral adaptions, (i) genetic preparedness to avoid certain stimuli or actions, and (ii) social learning. These adaptive mechanisms reduce the fitness costs associated with danger but still allow flexible behavior. Despite the empirical prevalence and importance of both these mechanisms, it is unclear when they evolve and how they interact. We used evolutionary agent-based simulations, incorporating empirically based learning mechanisms, to clarify if preparedness and social learning typically both evolve in dangerous environments, and if these mechanisms generally interact synergistically or antagonistically. Our simulations showed that preparedness and social learning often co-evolve because they provide complimentary benefits: genetic preparedness reduced foraging efficiency, but resulted in a higher rate of survival in dangerous environments, while social learning generally came to dominate the population, especially when the environment was stochastic. However, even in this case, genetic preparedness reliably evolved. Broadly, our results indicate that the relationship between preparedness and social learning is important as it can result in trade-offs between behavioral flexibility and safety, which can lead to seemingly suboptimal behavior if the evolutionary environment of the organism is not taken into account.

  16. Program Costing with the CAMPUS Simulation Model. Project PRIME Report, Number 5.

    ERIC Educational Resources Information Center

    Cordes, David C.

    The first section of this report on program costing with the CAMPUS simulation discusses the structuring process of Program Planning and Budgeting (PPB) systems, and emphasizes the ideas, rules, and principles for structuring resource data that have evolved during the 10 years of PPB existence. It also discusses the WICHE-PMS program…

  17. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2017-02-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  18. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    PubMed

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Understanding the double peaked El Niño in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.

    2017-03-01

    Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

  20. Numerical simulations of convection at the surface of a ZZ Ceti white dwarf

    NASA Astrophysics Data System (ADS)

    Ludwig, H.-G.; Jordan, S.; Steffen, M.

    1994-04-01

    We applied two-dimensional hydrodynamics and non-grey radiative transfer calculations to the surface layers of a hydrogen-rich white dwarf (spectral type DA) with Teff = 12600 K and log g = 8.0, corresponding to a position in the HR-diagram slightly cooler than the hot boundary of the ZZ Ceti instability strip. In our simulation the entire convection zone including the overshoot layers is embedded in the computational box so that we obtain a complete and detailed model of convection for this representative object. We address the important question to what extent models based on mixing length theory (MLT) are able to predict the physical properties of convection. We find a rapidly (timescale approximately equals 100 ms) evolving flow pattern with fast concentrated downdrafts surrounded by slow broad upflows of warmer material. Convection carries up to 30% of the total flux and excites internal gravity waves by dynamical processes associated with the merging of downdrafts. The mean entropy gradient is reversed with respect to MLT predictions in the deeper layers of the convection zone. Strong overshoot occurs at its upper and lower boundary. A synthetic spectrum calculated from the mean photospheric temperature stratification can be fitted satisfactorily with a MLT model adopting alpha = 1.5. At greater depth the temperature profile approaches a model with alpha = 4. The total depth of the convective layers is rather small compared to values suggested by studies of the excitation mechanism for the pulsations of DAs.

  1. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  2. LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme

    NASA Technical Reports Server (NTRS)

    Hadjadj, A; Yee, H. C.; Sjogreen, B.

    2011-01-01

    An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).

  3. LES of Temporally Evolving Mixing Layers by Three High Order Schemes

    NASA Astrophysics Data System (ADS)

    Yee, H.; Sjögreen, B.; Hadjadj, A.

    2011-10-01

    The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  4. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  5. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  6. Survival and in-vessel redistribution of beryllium droplets after ITER disruptions

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.

    2018-07-01

    The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.

  7. A Computational Model of Coupled Multiphase Flow and Geomechanics to Study Fault Slip and Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Jha, B.

    2014-12-01

    The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.

  8. The Physical Origin of Long Gas Depletion Times in Galaxies

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-01

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y., E-mail: semenov@uchicago.edu

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results inmore » a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L {sub *}-sized galaxy simulation that reproduces the observed Kennicutt–Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.« less

  10. Imprints of feedback in young gasless clusters?

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Dale, James E.

    2013-06-01

    We present the results of N-body simulations in which we take the masses, positions and velocities of sink particles from five pairs of hydrodynamical simulations of star formation by Dale et al. and evolve them for further 10 Myr. We compare the dynamical evolution of star clusters that formed under the influence of mass-loss driven by photoionization feedback to the evolution of clusters that formed without feedback. We remove any remaining gas and follow the evolution of structure in the clusters (measured by the Q-parameter), half-mass radius, central density, surface density and the fraction of bound stars. There is little discernible difference in the evolution of clusters that formed with feedback compared to those that formed without. The only clear trend is that all clusters which form without feedback in the hydrodynamical simulations lose any initial structure over 10 Myr, whereas some of the clusters which form with feedback retain structure for the duration of the subsequent N-body simulation. This is due to lower initial densities (and hence longer relaxation times) in the clusters from Dale et al. which formed with feedback, which prevents dynamical mixing from erasing substructure. However, several other conditions (such as supervirial initial velocities) also preserve substructure, so at a given epoch one would require knowledge of the initial density and virial state of the cluster in order to determine whether star formation in a cluster has been strongly influenced by feedback.

  11. Porous micropillar structures for retaining low surface tension liquids.

    PubMed

    Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E

    2018-03-15

    The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction of burst Laplace pressure obtained under quasi-static condition (i.e., equilibrium thermodynamic analysis under low capillary number) is not applicable to highly dynamic flow conditions, where the liquid meniscus shape deformation by flow perturbation cannot be restored by surface tension force instantaneously. Therefore, the critical burst pressure is dependent on the liquid velocity and viscosity under dynamic flow conditions. A numerical simulation using Surface Evolver also predicts that surface defects along the outer micropillar edge can yield up to 50% lower Laplace pressures than those predicted with ideal feature geometries. The liquid retention strategy developed here can facilitate the routing and phase management of dielectric working fluids for application in heat exchangers. Further improvements in the retention performance can be realized by optimizing the fabrication process to reduce surface defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  13. Competing contact processes in the Watts-Strogatz network

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Malarz, Krzysztof; Kułakowski, Krzysztof

    2016-06-01

    We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has the same degree k i = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient 𝓒. For given values of rewiring probability q the set 𝓝(q)={𝓝1,𝓝2,...,𝓝 M } of M networks is generated. The network's nodes are decorated with spin-like variables s i ∈ { S,D }. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n S T on initial nodes S fraction n S 0. Then, we construct the surface of the unstable fixed points in (𝓒, p, n S 0) space. The system evolves more often toward n S T for (𝓒, p, n S 0) points situated above this surface while starting simulation with (𝓒, p, n S 0) parameters situated below this surface leads system to n S T =0. The points on this surface correspond to such value of initial fraction n S * of S nodes (for fixed values 𝓒 and p) for which their final density is n S T=1/2.

  14. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.

  15. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  16. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  17. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  18. Impact simulations on the rubble pile asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger

    2015-04-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be observed. References: Keller et al., 2010, Science, 327(5962), pp. 190-193; Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  19. Impact Simulations on the Rubble Pile Asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Snodgrass, Colin; Lowry, Stephen C.; Price, Mark C.; Sierks, Holger

    2014-11-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) has revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a ‘rubble pile’, created from the gravitational aggregation of spherical ‘pebbles’ that represent fragments from a major disruption event. These ‘pebbles’ follow a power law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in Autodyn. We show that this approach allows us to explicitly follow the behavior of a single ‘pebble’, while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to investigate if surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, can be explained by the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater.Acknowledgements: Jakob Deller thanks the Planetary Science Institute for a Pierazzo International Student Travel Award that funds his attendance at this conference. References: Keller et al., 2010, Science, 327(5962), pp. 190-193 Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Carter, Richard J.

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C).more » The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.« less

  1. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement

    DOE PAGES

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    2017-03-02

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  2. On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance

    2004-01-01

    We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.

  3. Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Breanna J.; Braden, Ellen M.; Sostaric, Ronald R.; Cerimele, Christopher J.; Lu, Ping

    2018-01-01

    In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases.

  4. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  5. Measuring Small Debris - What You Can't See Can Hurt You

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    While modeling gives us a tool to better understand the Earth orbit debris environment, it is measurements that give us "ground truth" about what is happening in space. Assets that can detect orbital debris remotely from the surface of the Earth, such as radars and telescopes, give us a statistical view of how debris are distributed in space, how they are being created, and how they are evolving over time. In addition, in situ detectors in space are giving us a better picture of how the small particle environment is actually damaging spacecraft today. IN addition, simulation experiments on the ground help us to understand what we are seeing in orbit. This talk will summarize the history of space debris measurements, how it has changed our view of the Earth orbit environment, and how we are designing the experiments of tomorrow.

  6. Nanopatterning as a Probe of Unstable Growth on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Cosert, Krista; Lin, Chuan-Fu; Hammouda, Ajmi; Kan, Hung-Chih; Subrumaniam, Kanakaraju; Richardson, Chris; Phaneuf, Ray

    2009-03-01

    We report on observations of unstable growth on nanopatterned GaAs(001) surfaces. For growth at 500^oC, 1 ML/sec and an As2/Ga beam equivalent pressure ratio of 10:1, we find that grooves oriented at right angles to [110] produce a build up of ridges of GaAs at the upper edges, while for grooves oriented at right angles to [110] no ridges form; instead cusps evolve at the bottoms of such grooves [1]. The cusp-forming grooves show a pronounced initial amplification of depth during growth which changes with length/width ratio, and become more narrow. The ridge-forming grooves instead broaden during growth. We compare these experimental observations with kinetic Monte Carlo simulations in which a small anisotropic Ehrlich-Schwoebel barrier is included. [1] T. Tadayyon-Eslami, H.-C. Kan, L. C. Calhoun and R. J. Phaneuf, Phys. Rev. Lett. 97, 126101 (2006)

  7. Adaptively biased molecular dynamics for free energy calculations

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2008-04-01

    We present an adaptively biased molecular dynamics (ABMD) method for the computation of the free energy surface of a reaction coordinate using nonequilibrium dynamics. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential and is inspired by the metadynamics method. The ABMD method has several useful features, including a small number of control parameters and an O(t ) numerical cost with molecular dynamics time t. The ABMD method naturally allows for extensions based on multiple walkers and replica exchange, where different replicas can have different temperatures and/or collective variables. This is beneficial not only in terms of the speed and accuracy of a calculation, but also in terms of the amount of useful information that may be obtained from a given simulation. The workings of the ABMD method are illustrated via a study of the folding of the Ace-GGPGGG-Nme peptide in a gaseous and solvated environment.

  8. Regional potentiometric surface of the Ozark aquifer in Arkansas, Kansas, Missouri, and Oklahoma, November 2014–January 2015

    USGS Publications Warehouse

    Nottmeier, Anna M.

    2015-12-21

    The Ozark aquifer, within the Ozark Plateaus aquifer system (herein referred to as the “Ozark system”), is the primary groundwater source in the Ozark Plateaus physiographic province (herein referred to as the “Ozark Plateaus”) of Arkansas, Kansas, Missouri, and Oklahoma. Groundwater from the Ozark system has historically been an important part of the water resource base, and groundwater availability is a concern in some areas; dependency on the Ozark aquifer as a water supply has caused evolving, localized issues. The construction of a regional potentiometric-surface map of the Ozark aquifer is needed to aid assessment of current and future groundwater use and availability. The regional potentiometric-surface mapping is part of the U.S. Geological Survey (USGS) Groundwater Resources Program initiative (http://water.usgs.gov/ogw/gwrp/activities/regional.html) and the Ozark system groundwater availability project (http://ar.water.usgs.gov/ozarks), which seeks to quantify current groundwater resources, evaluate changes in these resources over time, and provide the information needed to simulate system response to future human-related and environmental stresses.The Ozark groundwater availability project objectives include assessing (1) growing demands for groundwater and associated declines in groundwater levels as agricultural, industrial, and public supply pumping increases to address needs; (2) regional climate variability and pumping effects on groundwater and surface-water flow paths; (3) effects of a gradual shift to a greater surface-water dependence in some areas; and (4) shale-gas production requiring groundwater and surface water for hydraulic fracturing. Data compiled and used to construct the regional Ozark aquifer potentiometric surface will aid in the assessment of those objectives.

  9. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463

  10. A DTA/GC for the in Situ Identification of the Martian Surface Material

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; White, M. R.; Orenberg, J. B.

    1993-01-01

    The composition and mineralogy of the Martian surface material remain largely unknown. To determine its composition and mineralogy, several techniques are being considered for in situ analyses of the Martian surface material during missions to Mars. We have successfully developed, constructed, and tested a laboratory DTA/GC. The DTA is a Dupont model 1600 high temperature DTA coupled with a GC equipped with a MID detector. The system is operated by a Sun Sparc 11 workstation. When gas evolves during a thermal chemical event, it is shunted into the GC and the temperature is recorded in association with the specific thermal event. We have used this laboratory instrument to define experimental criteria necessary for determining the composition and mineralogy of the Martian surface in situ (e.g., heating of sample to 1100 C to distinguish clays). Our studies indicate that DTA/GC will provide a broad spectrum of mineralogical and evolved gas data pertinent to exobiology, geochemistry, and geology.

  11. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    NASA Astrophysics Data System (ADS)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  12. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters

    NASA Astrophysics Data System (ADS)

    Li, Y.; Chang, J.; Luo, L.

    2017-12-01

    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  13. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Moin, Parviz

    1991-01-01

    A high-order-accurate finite-difference approach to direct simulations of transition and turbulence in compressible flows is described. Attention is given to the high-free-stream disturbance case in which transition to turbulence occurs close to the leading edge. In effect, computation requirements are reduced. A method for numerically generating free-stream disturbances is presented.

  14. Hypercube technology

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Cwik, Tom; Ferraro, Robert D.; Liewer, Paulett C.; Patterson, Jean E.

    1991-01-01

    The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently.

  15. SIMULATION EXERCISES IN AREA TRAINING. PAPER PRESENTED IN A SYMPOSIUM AT THE 1965 ARMY HUMAN FACTORS RESEARCH AND DEVELOPMENT CONFERENCE.

    ERIC Educational Resources Information Center

    STEWART, EDWARD C.

    SPECIAL TECHNIQUES AND CONTENT ARE BEING DEVELOPED TO SUPPLEMENT CURRENT AREA TRAINING PROGRAMS. SIMULATION WAS CHOSEN AS THE TECHNIQUE, AND EXERCISES WERE DEVELOPED WHOSE CONTENT EMPHASIZED THE AMERICAN CULTURE AND THE FOREIGN, HOST CULTURE. THESE EVOLVED AS A CONFRONTATION BETWEEN AMERICAN CULTURAL ASSUMPTIONS AND VALUES AND A CONTRASTING SET,…

  16. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    NASA Astrophysics Data System (ADS)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  17. A large ozone-circulation feedback and its implications for global warming assessments.

    PubMed

    Nowack, Peer J; Abraham, N Luke; Maycock, Amanda C; Braesicke, Peter; Gregory, Jonathan M; Joshi, Manoj M; Osprey, Annette; Pyle, John A

    2015-01-01

    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever 1 . Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations 1,2 . Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO 2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies 1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks 3-5 .

  18. Was there a basis for anticipating the 2010 Russian heat wave?

    NASA Astrophysics Data System (ADS)

    Dole, Randall; Hoerling, Martin; Perlwitz, Judith; Eischeid, Jon; Pegion, Philip; Zhang, Tao; Quan, Xiao-Wei; Xu, Taiyi; Murray, Donald

    2011-03-01

    The 2010 summer heat wave in western Russia was extraordinary, with the region experiencing the warmest July since at least 1880 and numerous locations setting all-time maximum temperature records. This study explores whether early warning could have been provided through knowledge of natural and human-caused climate forcings. Model simulations and observational data are used to determine the impact of observed sea surface temperatures (SSTs), sea ice conditions and greenhouse gas concentrations. Analysis of forced model simulations indicates that neither human influences nor other slowly evolving ocean boundary conditions contributed substantially to the magnitude of this heat wave. They also provide evidence that such an intense event could be produced through natural variability alone. Analysis of observations indicate that this heat wave was mainly due to internal atmospheric dynamical processes that produced and maintained a strong and long-lived blocking event, and that similar atmospheric patterns have occurred with prior heat waves in this region. We conclude that the intense 2010 Russian heat wave was mainly due to natural internal atmospheric variability. Slowly varying boundary conditions that could have provided predictability and the potential for early warning did not appear to play an appreciable role in this event.

  19. Linking Mechanics and Statistics in Epidermal Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Hilgenfeldt, Sascha

    2015-03-01

    Disordered cellular structures, such as foams, polycrystals, or living tissues, can be characterized by quantitative measurements of domain size and topology. In recent work, we showed that correlations between size and topology in 2D systems are sensitive to the shape (eccentricity) of the individual domains: From a local model of neighbor relations, we derived an analytical justification for the famous empirical Lewis law, confirming the theory with experimental data from cucumber epidermal tissue. Here, we go beyond this purely geometrical model and identify mechanical properties of the tissue as the root cause for the domain eccentricity and thus the statistics of tissue structure. The simple model approach is based on the minimization of an interfacial energy functional. Simulations with Surface Evolver show that the domain statistics depend on a single mechanical parameter, while parameter fluctuations from cell to cell play an important role in simultaneously explaining the shape distribution of cells. The simulations are in excellent agreement with experiments and analytical theory, and establish a general link between the mechanical properties of a tissue and its structure. The model is relevant to diagnostic applications in a variety of animal and plant tissues.

  20. A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion

    NASA Astrophysics Data System (ADS)

    Fedorovich, E.; Thäter, J.

    Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.

  1. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  2. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; hide

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these volatiles.

  3. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea, during the monsoon season, from May 6 to May 20, 1986. The model results captured several dominant observed features, such as twin cyclones, a depression system over the Bay of Bengal, strong south-westerly winds over IndoChina before and during the on-set of convection over the SCS, and a vortex over the SCS. Two additional MM5 runs with different land process models, Blackadar and MRF, were performed, and their results are compared to the run with PLACE. The preliminary results indicate that the MM5 results using PLACE and Blackadar are in very good agreement, but the results using MRF do not contain the south-westerly wind over IndoChina prior to the on-set of convection over the SCS.

  4. Towards Evolving Electronic Circuits for Autonomous Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Haith, Gary L.; Colombano, Silvano P.; Stassinopoulos, Dimitris

    2000-01-01

    The relatively new field of Evolvable Hardware studies how simulated evolution can reconfigure, adapt, and design hardware structures in an automated manner. Space applications, especially those requiring autonomy, are potential beneficiaries of evolvable hardware. For example, robotic drilling from a mobile platform requires high-bandwidth controller circuits that are difficult to design. In this paper, we present automated design techniques based on evolutionary search that could potentially be used in such applications. First, we present a method of automatically generating analog circuit designs using evolutionary search and a circuit construction language. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm, we present experimental results for five design tasks. Second, we investigate the use of coevolution in automated circuit design. We examine fitness evaluation by comparing the effectiveness of four fitness schedules. The results indicate that solution quality is highest with static and co-evolving fitness schedules as compared to the other two dynamic schedules. We discuss these results and offer two possible explanations for the observed behavior: retention of useful information, and alignment of problem difficulty with circuit proficiency.

  5. Dynamics of cratons in an evolving mantle

    NASA Astrophysics Data System (ADS)

    O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.

    2008-04-01

    The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.

  6. Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials

    DOE PAGES

    Xu, Haixuan; Beland, Laurent K.; Stoller, Roger E.; ...

    2015-01-29

    The recent development of on-the-fly atomistic kinetic Monte Carlo methods has led to an increased amount attention on the methods and their corresponding capabilities and applications. In this review, the framework and current status of Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) are discussed. SEAKMC particularly focuses on defect interaction and evolution with atomistic details without assuming potential defect migration/interaction mechanisms and energies. The strength and limitation of using an active volume, the key concept introduced in SEAKMC, are discussed. Potential criteria for characterizing an active volume are discussed and the influence of active volume size on saddle point energies ismore » illustrated. A procedure starting with a small active volume followed by larger active volumes was found to possess higher efficiency. Applications of SEAKMC, ranging from point defect diffusion, to complex interstitial cluster evolution, to helium interaction with tungsten surfaces, are summarized. A comparison of SEAKMC with molecular dynamics and conventional object kinetic Monte Carlo is demonstrated. Overall, SEAKMC is found to be complimentary to conventional molecular dynamics, especially when the harmonic approximation of transition state theory is accurate. However it is capable of reaching longer time scales than molecular dynamics and it can be used to systematically increase the accuracy of other methods such as object kinetic Monte Carlo. Furthermore, the challenges and potential development directions are also outlined.« less

  7. Extinction events can accelerate evolution.

    PubMed

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  8. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  9. Chapter 5: Surface water quality sampling in streams and canals

    USDA-ARS?s Scientific Manuscript database

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  10. Unstable density distribution associated with equatorial plasma bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, E. A., E-mail: esfhan.kherani@inpe.br; Meneses, F. Carlos de; Bharuthram, R.

    2016-04-15

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion growsmore » to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.« less

  11. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  12. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    NASA Astrophysics Data System (ADS)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  13. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K.; Hakim, Ammar H.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically andmore » numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.« less

  14. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    PubMed Central

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-01-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions. PMID:26355955

  15. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co(2+) Solution: Interactional Performance and Mechanism.

    PubMed

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-10

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co(2+) solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co(2+) reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the "structural influence" crucial for the full and dynamical understanding of nZVI reactions.

  16. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.

  17. Long-term climate change commitment and reversibility: An EMIC intercomparison

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Eby, M.; Weaver, A. J.

    2012-12-01

    This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change "commitment" of a range of radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible if atmospheric CO2 is left to evolve freely or is artificially restored to pre-industrial levels. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate significant surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The additional warming by the year 3000 is 0.0-0.6 °C for RCP4.5 and 0.0-1.2 °C for RCP8.5, and the additional sea level rise is 0.1-1.0 m for RCP4.5 and 0.4-2.6 m for RCP8.5. Elimination of anthropogenic CO2 emissions results in constant or slightly decreasing surface air temperature in all EMICs. Thermosteric sea level rise continues after elimination of anthropogenic CO2 emissions, with additional sea level rise between 2300 and 3000 of 0.0-0.5 m for RCP4.5 and 0.2-2.4 m for RCP8.5. The largest warming and sea level rise commitment are simulated for the case with constant year-2300 CO2 emissions. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100-1000 years does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level rise exhibit a substantial time lag relative to atmospheric CO2, and requires large artificial removal of CO2 from the atmosphere. Results of the climate change commitment and reversibility simulations differ widely among EMICs, both in the physical and biogeochemical response. Particularly large differences are identified in the response of the terrestrial carbon cycle to atmospheric CO2 and climate, highlighting the need for improved understanding and representation of land carbon cycle processes in Earth System models.

  18. Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake

    NASA Astrophysics Data System (ADS)

    Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.

    2013-12-01

    We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A. Williams (2013), Journal of Geophysical Research, Solid Earth, 118, 3059-3079 Coussy, O. (1995), Mechanics of Porous Continua, John Wiley and Sons, England. Coussy, O., R. Eymard, and T. Lassabatere (1998), J. Eng. Mech., 124(6), 658-557. Kim, J., H. A. Tchelepi, and R. Juanes (2011), Comput. Methods Appl. Mech. Eng., 200, 1591-1606. Gonzalez, P. J., K. F. Tiampo, M. Palano, F. Cannavo, and J. Fernandez (2012), Nature Geoscience.

  19. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  20. Numerical simulation of intense multi-scale vortices generated by supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Finley, Catherine Ann

    1998-11-01

    A nested grid primitive equation model (RAMS version 3b) is used to study various aspects of tornadoes and the thunderstorms that produce them. A unique aspect of these simulations is that the model was initialized with synoptic data, and telescoping grids allow atmospheric flows ranging from the synoptic-scale down to sub- tornado-scale vortices to be represented in the model. Two different case studies were simulated in this study: June 30, 1993, and May 15, 1991. The June 30, 1993, simulation produced a classical supercell storm which developed at the intersection between a stationary front and an outflow boundary generated by previous convection. As the simulation progressed, additional storms developed west of the main storm along the stationary front. One of these storms interacted with the main storm to produce a single supercell storm. This storm had many characteristics of a high-precipitation (HP) supercell, and eventually evolved into a bow-echo. The transition of the storm into a bow-echo is discussed and possible physical processes responsible for the transition are presented. The June 30, 1993, simulated supercell produced two weak tornadoes. The first tornado developed along the flanking line of the storm to the southeast of the mesocyclone. The second tornado developed along a strong horizontal shear zone beneath the rotating comma-head structure of the HP supercell. Neither tornado was clearly linked to the mesocyclone in the parent storm, and both tornadoes formed first near the surface and then developed upward with time. Circulation and vorticity analyses were used to investigate the tornadogenesis process in this case. Results from these analyses indicated that the circulation associated with both tornadoes was already present at low-levels in the storm environment 15-20 minutes before the tornadoes developed. Although the baroclinic term associated with the downdraft air made a negligible contribution to the circulation in this case, the downdraft played an important role in tilting horizontal vorticity into the vertical just above the surface in the near tornado environment where horizontal convergence could then act to amplify it. A comparison with the proposed tornadogenesis process(es) in classical supercells is also presented. The May 15, 1991, simulation produced a classical supercell which developed along the dryline in the Texas panhandle. This supercell in turn produced a tornado which lasted for 50 minutes in the simulation. During a ten minute period toward the end of the simulation, six secondary vortices developed within the main tornado vortex. The simulated secondary vortices had many features in common with multiple-vortex tornadoes and secondary vortices produced in laboratory vortices. The evolution and structure of the simulated secondary vortices is presented, and physical mechanisms responsible for their development and dissipation are discussed.

  1. Options for a lunar base surface architecture

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.

  2. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander.

    PubMed

    Schulze-Makuch, Dirk; Turse, Carol; Houtkooper, Joop M; McKay, Christopher P

    2008-04-01

    In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.

  3. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    NASA Astrophysics Data System (ADS)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  4. Attribution of the Regional Patterns of North American Climate Trends

    NASA Astrophysics Data System (ADS)

    Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.

    2007-12-01

    North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.

  5. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  6. Early BHs: simulations and observations

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico; di-Matteo, Tiziana; Schawinski, Kevin; Fragos, Tassos

    We report recent investigations in the field of Early Black Holes. We summarize recent theoretical and observational efforts to understand how Black Holes formed and eventually evolved into Super Massive Black Holes at high-z. This paper makes use of state of the art computer simulations and multiwavelength surveys. Although non conclusive, we present results and hypothesis that pose exciting challenges to modern astrophysics and to future facilities.

  7. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    NASA Astrophysics Data System (ADS)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.

  8. Black Carbon and Sulfate Aerosols in the Arctic: Long-term Trends, Radiative Impacts, and Source Attributions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.

    2017-12-01

    The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and North America contributed significantly to the overall decreasing trend in Arctic BC and sulfate, especially, in the lower troposphere. The long-term changes in the spatial distributions of aerosols, their radiative impacts and source attributions, along with implications for the Arctic warming trend, will be discussed.

  9. Long-Term Evolution Studies of E. Coli under Combined Effects of Simulated Microgravity and Antibiotic.

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Tirumalai, Madhan R.; Ott, Mark C.; Pierson, Duane L.; Fox, George E.; Tran, Quyen

    2016-07-01

    Multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. However, while these studies have contributed to expand our understanding of the short-term effects of spaceflight or simulated microgravity on biological systems, it remains unclear the type of responses subsequent to long-term exposure to space environment and microgravity in particular. As such, organisms exposed to the space environment for extended periods of time may evolve in unanticipated ways thereby negatively impacting long duration space missions. We report here for the first time, an experimental study of microbial evolution in which the effect of long-term exposure to Low Shear Modeled MicroGravity (LSMMG) on microbial gene expression and physiology in Escherichia coli (E. coli) MG1655 was examined using functional genomics, and molecular techniques with and without simultaneous exposure to broad spectrum antibiotic chloramphenicol. E. coli cells were grown under simulated microgravity for 1000 generations in High Aspect Ratio Vessels (HARVs) that were either heat-sterilized (115 deg C, 15 min) or by using/rinsing the HARVs with a saturated solution of the broad-spectrum antibiotic chloramphenicol. In the case of the cells evolved using the antibiotic sterilized HARVs, the expression levels of 357 genes were significantly changed. In particular, fimbriae encoding genes were significantly up-regulated whereas genes encoding the flagellar motor complex were down-regulated. Re-sequencing of the genome revealed that a number of the flagellar genes were actually deleted. The antibiotic resistance levels of the evolved strains were analyzed using VITEK analyzer. The evolved strain was consistently resistant to the antibiotics used (viz., Ampicillin, Cefalotin, Cefurox-ime, Cefuroxime Axetil, Cefoxitin and Tetracycline), even after 11 cycles of 'erasure' of the 'adaptation memory' - this 'erasure' was accomplished by re-growing the evolved cells under shaker flask conditions and 1 cycle equals 10 generations. In the case of the cells evolved using heat sterilized HARVs, no resistance was observed to any of the an-tibiotics used (Ampicillin, Amoxicillin/Clavulanic Acid, Piperacillin/Tazobactam, Cefalotin, Cefazolin, Cefuroxime, Cefuroxime Axetil, Cefoxitin, Cefpodox-ime, Ceftazidime, Ceftriaxone, Cefepime, Gentamicin, Tobramycin, Ciprofloxacin, Levofloxacin, Norfloxacin, Tetracycline, Nitrofurantoin, and Trimethoprim/Sulfamethoxazole), even after 1000 generations of growth under LSMMG. Competition experiments using an isogenic pair revealed that the adaptive advantage of the 1000G strain (in both cases) over an unexposed strain was rapidly eliminated. While this obviously implies that the adaptation was primarily environmental rather than genomic, the levels of antibiotic resistance observed to be consistently maintained, raises the concern of persistent resistance conferred to bacterial communities through exposure to antibiotics on space missions. Supported by grants from the Center for Bionanotechnology and Environmental Research at Texas Southern University (NASA Cooperative Agreement NNX08B4A47A).

  10. A unique control system simulator for the evaluation of pulsed plasma thrusters

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1973-01-01

    Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.

  11. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  12. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    DTIC Science & Technology

    2010-09-30

    simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report

  13. Planetary science: Shepherds of Saturn's ring

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-09-01

    Saturn's F ring is chaperoned on both sides by the tiny moons Prometheus and Pandora. Numerical simulations show that this celestial ballet can result from the collision of two aggregates that evolved out of Saturn's main rings.

  14. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less

  15. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    DOE PAGES

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...

    2016-11-11

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less

  16. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  17. Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers

    NASA Technical Reports Server (NTRS)

    Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.

    2012-01-01

    Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  18. Extreme events in a vortex gas simulation of a turbulent half-jet

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Pathikonda, Gokul; Narasimha, Roddam

    2012-11-01

    Extensive simulations [arXiv:1008.2876v1 [physics.flu-dyn], BAPS.2010.DFD.LE.4] have shown that the temporally evolving vortex gas mixing layer has 3 regimes, including one which has a universal spreading rate. The present study explores the development of spatially evolving mixing layers, using a vortex gas model based on Basu et al. (1995 Appl. Math. Modelling). The effects of the velocity ratio (r) are analyzed via the most extensive simulations of this kind till date, involving up to 10000 vortices and averaging over up to 1000 convective times. While the temporal limit is approached as r approaches unity, striking features such as extreme events involving coherent structures, bending, deviation of the convection velocity from mean velocity, spatial feedback and greater sensitivity to downstream and free stream boundary conditions are observed in the half-jet (r = 0) limit. A detailed statistical analysis reveals possible causes for the large scatter across experiments, as opposed to the commonly adopted explanation of asymptotic dependence on initial conditions. Supported in part by contract no. Intel/RN/4288.

  19. Kinship, parental manipulation and evolutionary origins of eusociality

    PubMed Central

    Kapheim, Karen M.; Nonacs, Peter; Smith, Adam R.; Wayne, Robert K.; Wcislo, William T.

    2015-01-01

    One of the hallmarks of eusociality is that workers forego their own reproduction to assist their mother in raising siblings. This seemingly altruistic behaviour may benefit workers if gains in indirect fitness from rearing siblings outweigh the loss of direct fitness. If worker presence is advantageous to mothers, however, eusociality may evolve without net benefits to workers. Indirect fitness benefits are often cited as evidence for the importance of inclusive fitness in eusociality, but have rarely been measured in natural populations. We compared inclusive fitness of alternative social strategies in the tropical sweat bee, Megalopta genalis, for which eusociality is optional. Our results show that workers have significantly lower inclusive fitness than females that found their own nests. In mathematical simulations based on M. genalis field data, eusociality cannot evolve with reduced intra-nest relatedness. The simulated distribution of alternative social strategies matched observed distributions of M. genalis social strategies when helping behaviour was simulated as the result of maternal manipulation, but not as worker altruism. Thus, eusociality in M. genalis is best explained through kin selection, but the underlying mechanism is likely maternal manipulation. PMID:25694620

  20. Life's attractors : understanding developmental systems through reverse engineering and in silico evolution.

    PubMed

    Jaeger, Johannes; Crombach, Anton

    2012-01-01

    We propose an approach to evolutionary systems biology which is based on reverse engineering of gene regulatory networks and in silico evolutionary simulations. We infer regulatory parameters for gene networks by fitting computational models to quantitative expression data. This allows us to characterize the regulatory structure and dynamical repertoire of evolving gene regulatory networks with a reasonable amount of experimental and computational effort. We use the resulting network models to identify those regulatory interactions that are conserved, and those that have diverged between different species. Moreover, we use the models obtained by data fitting as starting points for simulations of evolutionary transitions between species. These simulations enable us to investigate whether such transitions are random, or whether they show stereotypical series of regulatory changes which depend on the structure and dynamical repertoire of an evolving network. Finally, we present a case study-the gap gene network in dipterans (flies, midges, and mosquitoes)-to illustrate the practical application of the proposed methodology, and to highlight the kind of biological insights that can be gained by this approach.

  1. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  2. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, M.; Leake, J. E.; Schuck, P. W.

    2016-12-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solar activity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of emerging magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution. We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data. These investigations will then be used to outline future prospects and challenges for using observed photospheric data to drive such solar atmospheric simulations. This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  3. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  4. A Search for Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, Helen

    2017-06-01

    Density substructure is expected in evolved starless cores: a single peak to form a protostar, or multiple peaks from fragmentation. Searches for this substructure have had mixed success. In an ALMA survey of Ophiuchus, we find two starless cores with signs of substructure, consistent with simulation predictions. A similar survey in Chameleon (Dunham et al. 2016) had no detections, despite expecting at least two. Our results suggest that Chamleon may lack a more evolved starless cores. Future ALMA observations will better trace the influence of environment on core substructure formation.

  5. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusnski, Luis Ricardo M.; Valio, Adriana, E-mail: lrtusnski@das.inpe.br, E-mail: avalio@craam.mackenzie.br

    2011-12-10

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit.more » The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R{sub Circled-Plus} with CoRoT and 0.3 R{sub Circled-Plus} with Kepler.« less

  6. Forming disc galaxies in major mergers - III. The effect of angular momentum on the radial density profiles of disc galaxies

    NASA Astrophysics Data System (ADS)

    Peschken, N.; Athanassoula, E.; Rodionov, S. A.

    2017-06-01

    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.

  7. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.

    PubMed

    Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J

    2017-04-18

    Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.

  8. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.

    PubMed

    Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J; Irle, Stephan; Morokuma, Keiji

    2009-11-24

    The atomic scale details of single-walled carbon nanotube (SWNT) nucleation on metal catalyst particles are elusive to experimental observations. Computer simulation of metal-catalyzed SWNT nucleation is a challenging topic but potentially of great importance to understand the factors affecting SWNT diameters, chirality, and growth efficiency. In this work, we use nonequilibrium density functional tight-binding molecular dynamics simulations and report nucleation of sp(2)-carbon cap structures on an iron particle consisting of 38 atoms. One C(2) molecule was placed every 1.0 ps around an Fe(38) cluster for 30 ps, after which a further 410 ps of annealing simulation without carbon supply was performed. We find that sp(2)-carbon network nucleation and annealing processes occur in three sequential and repetitive stages: (A) polyyne chains on the metal surface react with each other to evolve into a Y-shaped polyyne junction, which preferentially form a five-membered ring as a nucleus; (B) polyyne chains on the first five-membered ring form an additional fused five- or six-membered ring; and (C) pentagon-to-hexagon self-healing rearrangement takes place with the help of short-lived polyyne chains, stabilized by the mobile metal atoms. The observed nucleation process resembles the formation of a fullerene cage. However, the metal particle plays a key role in differentiating the nucleation process from fullerene cage formation, most importantly by keeping the growing cap structure from closing into a fullerene cage and by keeping the carbon edge "alive" for the addition of new carbon material.

  9. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Controlling Herds of Cooperative Robots

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2006-01-01

    A document poses, and suggests a program of research for answering, questions of how to achieve autonomous operation of herds of cooperative robots to be used in exploration and/or colonization of remote planets. In a typical scenario, a flock of mobile sensory robots would be deployed in a previously unexplored region, one of the robots would be designated the leader, and the leader would issue commands to move the robots to different locations or aim sensors at different targets to maximize scientific return. It would be necessary to provide for this hierarchical, cooperative behavior even in the face of such unpredictable factors as terrain obstacles. A potential-fields approach is proposed as a theoretical basis for developing methods of autonomous command and guidance of a herd. A survival-of-the-fittest approach is suggested as a theoretical basis for selection, mutation, and adaptation of a description of (1) the body, joints, sensors, actuators, and control computer of each robot, and (2) the connectivity of each robot with the rest of the herd, such that the herd could be regarded as consisting of a set of artificial creatures that evolve to adapt to a previously unknown environment. A distributed simulation environment has been developed to test the proposed approaches in the Titan environment. One blimp guides three surface sondes via a potential field approach. The results of the simulation demonstrate that the method used for control is feasible, even if significant uncertainty exists in the dynamics and environmental models, and that the control architecture provides the autonomy needed to enable surface science data collection.

  11. Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua

    2013-01-01

    Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

  12. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    NASA Astrophysics Data System (ADS)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  13. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    NASA Astrophysics Data System (ADS)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  14. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.

    PubMed

    Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H

    2010-11-01

    In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.

  15. The evolution of distributed sensing and collective computation in animal populations

    PubMed Central

    Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D

    2015-01-01

    Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003

  16. Morphological change in machines accelerates the evolution of robust behavior

    PubMed Central

    Bongard, Josh

    2011-01-01

    Most animals exhibit significant neurological and morphological change throughout their lifetime. No robots to date, however, grow new morphological structure while behaving. This is due to technological limitations but also because it is unclear that morphological change provides a benefit to the acquisition of robust behavior in machines. Here I show that in evolving populations of simulated robots, if robots grow from anguilliform into legged robots during their lifetime in the early stages of evolution, and the anguilliform body plan is gradually lost during later stages of evolution, gaits are evolved for the final, legged form of the robot more rapidly—and the evolved gaits are more robust—compared to evolving populations of legged robots that do not transition through the anguilliform body plan. This suggests that morphological change, as well as the evolution of development, are two important processes that improve the automatic generation of robust behaviors for machines. It also provides an experimental platform for investigating the relationship between the evolution of development and robust behavior in biological organisms. PMID:21220304

  17. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  18. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  19. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  20. The importance of selection in the evolution of blindness in cavefish.

    PubMed

    Cartwright, Reed A; Schwartz, Rachel S; Merry, Alexandra L; Howell, Megan M

    2017-02-07

    Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration. Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus. Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

  1. Electronic Ecosystem.

    ERIC Educational Resources Information Center

    Travis, John

    1991-01-01

    A discipline in which scientists seek to simulate and synthesize lifelike behaviors within computers, chemical mixtures, and other media is discussed. A computer program with self-replicating digital "organisms" that evolve as they compete for computer time and memory is described. (KR)

  2. An Evolving Entrepreneurship Simulation as a Vehicle for Career and Technical Education

    ERIC Educational Resources Information Center

    Troudt, Edgar E.; Schulman, Stuart A.; Winkler, Christoph

    2017-01-01

    This paper explores the model of a pedagogical system for business and entrepreneurship education and discusses the effects of its evolution on the balance between fidelity of implementation and ease of adoption.

  3. Human factors in aviation maintenance, phase two : progress report.

    DOT National Transportation Integrated Search

    1993-04-01

    In this second phase of research on Human Factors in Aviation Maintenance, the emphasis has evolved from problem definition to development of demonstrations and prototypes. These demonstrations include a computer-based training simulation for trouble...

  4. Is the adaptation to UV stress correlated with a higher resistance to other environmental stressors? First results of the space experiment ADAPT

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Wassmann, Marko; Rabbow, Elke; Moeller, Ralf; Panitz, Corinna; Horneck, Gerda; Douki, Thierry; Cadet, Jean

    The effects of one of the most important environmental factors that have influenced the biolog-ical evolution on earth, solar UV radiation, was investigated in the space experiment ADAPT in the ESA facility EXPOSE on the European ISS module Columbus. Three highly resistant microorganims from very distinct terrestrial habitats were selected: Bacillus subtilis, a well characterised spore forming soil bacterium, a natural community of cyanobacteria colonising rocks and a species of halophilic archaea isolated from rock salt, Halococcus dombrowskii. The capability of the three different microorganisms to survive in a qualitatively and quantitatively different UV climate like that in space and on Mars was investigated in EXPOSE and its effects as well as its interaction with other environmental parameters were characterised at the cellular and molecular level. In the EXPOSE facility the environmental parameters of space were provided by the exposure of samples in vented sample carriers under MgF2 windows allowing the transmittance of solar UV wavelengths down to 110 nm. In addition, the environmental conditions on the surface of Mars were simulated in earth orbit by using closed sample carriers with martian atmosphere and pressure and a martian UV climate realised by the use of suitable cut-off filters and the extraterrestrial solar UV radiation. Due to the different composition of the martian atmosphere and it's low pressure, the martian UV radiation climate is significantly different from that of today's earth. Energy-rich biologically harmful UVB and UVC radiation can penetrate to the surface of Mars. This UV radiation spectrum resembles that of the early earth before the rise of the atmospheric oxygen concentration. In the experiment ADAPT I the model organism Bacillus subtilis was used to test the hypothesis experimentally whether longer-lasting selective pressure by a mars-like UV radiation spectrum results in a higher UV resistance as well as in a higher resistance against the simultaneous action of further `extreme' environmental factors that exist in space or on other planets like vacuum / low pressure or cosmic radiation. In preparation of ADAPT a continuos culture of Bacillus subtilis 168 cells was grown for 700 generations under periodical polychromatic mars-like UV irradiation. Populations that evolved under this UV stress were about 4.7fold more resistant than the ancestral and non-UV evolved populations. In addition to the acquired increased UV resistance, further changes in microbial stress response to hydrogen peroxide, increased salinity and desiccation were observed in UV-evolved cells. For the space experiment spores of the strain MW01, isolated from this UV-resistant population, were exposed in earth orbit to space and simulated martian conditions. The biological endpoints under investigation include among others survival, mutation induction, loss of sporulation capability. The results of this experiment will contribute to our understanding of the adaptability of life to extreme environments on earth and on other planets in general.

  5. Inaccurate Color Discrimination by Pollinators Promotes Evolution of Discrete Color Polymorphism in Food-Deceptive Flowers.

    PubMed

    Kagawa, Kotaro; Takimoto, Gaku

    2016-02-01

    Many plant species employing a food-deceptive pollination strategy show discrete or continuous floral polymorphism within their populations. Previous studies have suggested that negative frequency-dependent selection (NFDS) caused by the learning behavior of pollinators was responsible for the maintenance of floral polymorphism. However, NFDS alone does not explain why and when discrete or continuous polymorphism evolves. In this study, we use an evolutionary simulation model to propose that inaccurate discrimination of flower colors by pollinators results in evolution of discrete flower color polymorphism. Simulations showed that associative learning based on inaccurate discrimination in pollinators caused disruptive selection of flower colors. The degree of inaccuracy determined the number of discrete flower colors that evolved. Our results suggest that animal behavior based on inaccurate discrimination may be a general cause of disruptive selection that promotes discrete trait polymorphism.

  6. Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.

    2018-01-01

    We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.

  7. DNS of a non-equilibrium adverse pressure gradient turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gungor, Taygun R.; Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2017-11-01

    A new direct numerical simulation (DNS) dataset of a non-equilibrium adverse pressure gradient (APG) turbulent boundary layer (TBL) that evolves from a zero-pressure-gradient (ZPG) TBL to a TBL which is very close to separation at Reθ is around 8200 is presented. There are two simulations running together in the DNS computational setup. The APG TBL spans Reθ = 1476 - 8276 . Mean velocity results do not satisfy the log law as the defect in the velocity increases. The production and the Reynolds stress peak are observed around y /δ* = 1 after the flow is evolved up to a certain point. The new dataset is compared with other datasets in terms of mean values, Reynolds stresses and turbulent kinetic energy budgets and using this comparison scaling study is performed. Funded by in part by ITU-AYP and NSERC of Canada.

  8. Bowen-York trumpet data and black-hole simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannam, Mark; Murchadha, Niall O; Husa, Sascha

    2009-12-15

    The most popular method to construct initial data for black-hole-binary simulations is the puncture method, in which compactified wormholes are given linear and angular momentum via the Bowen-York extrinsic curvature. When these data are evolved, they quickly approach a trumpet topology, suggesting that it would be preferable to use data that are in trumpet form from the outset. To achieve this, we extend the puncture method to allow the construction of Bowen-York trumpets, including an outline of an existence and uniqueness proof of the solutions. We construct boosted, spinning and binary Bowen-York puncture trumpets using a single-domain pseudospectral elliptic solver,more » and evolve the binary data and compare with standard wormhole-data results. We also show that for boosted trumpets the black-hole mass can be prescribed a priori, without recourse to the iterative procedure that is necessary for wormhole data.« less

  9. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    DTIC Science & Technology

    2011-09-30

    simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  11. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES observations will reveal variations of thermophysical parameters across the surface. We will present our results on what parameters best reproduce TES's measurements.

  12. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  13. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, Mark; Leake, James; Schuck, Peter W.

    2016-05-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solaractivity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of the magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution.We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data.This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  14. Merged or monolithic? Using machine-learning to reconstruct the dynamical history of simulated star clusters

    NASA Astrophysics Data System (ADS)

    Pasquato, Mario; Chung, Chul

    2016-05-01

    Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.

  15. Dynamic Speckle Imaging with Low-Cost Devices

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Arizaga, Ricardo; Rabal, Hector; Molesini, Giuseppe

    2008-01-01

    Light from a rough sample surface illuminated with a laser consists of a speckle pattern. If the surface evolves with time, the pattern becomes dynamic, following the activity of the sample. This phenomenon is used both in research and in industry to monitor processes and systems that change with time. The measuring equipment generally includes…

  16. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  17. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  18. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  19. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  20. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

Top