Sample records for surface exchange processes

  1. Acetone and Water on TiO₂(110): H/D Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in themore » high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.« less

  2. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  3. Laser Processed Condensing Heat Exchanger Technology Development

    NASA Technical Reports Server (NTRS)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  4. Cation Exchange in the Presence of Oil in Porous Media

    PubMed Central

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442

  5. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    PubMed

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  6. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  7. Adsorption and Exchange Kinetics of Hydrophilic and Hydrophobic Phosphorus Ligands on Gold Surface

    NASA Astrophysics Data System (ADS)

    Zhuge, X. Q.; Bian, Z. C.; Luo, Z. H.; Mu, Y. Y.; Luo, K.

    2017-02-01

    The adsorption kinetics process of hydrophobic ligand (triphenylphosphine, PPh3) and hydrophilic ligand (tris(hydroxymethyl)phosphine oxide, THPO) on the surface of gold electrode were estimated by using electrical double layer capacitance (EDLC). Results showed that the adsorption process of both ligands included fast and slow adsorption processes, and the fast adsorption process could fit the first order kinetic equation of Langmuir adsorption isotherm. During the slow adsorption process, the surface coverage (θ) of PPh3 was higher than that of THPO due to the larger adsorption kinetic constant of PPh3 than that of THPO, which implied that PPh3 could replace THPO on the gold electrode. The exchange process of both ligands on the surface of gold electrode proved that PPh3 take the place of THPO by testing the variation of EDLC which promote the preparation of Janus gold, and the theoretic simulation explained the reason of ligands exchange from the respect of energy..

  8. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    NASA Astrophysics Data System (ADS)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  9. Pu Anion Exchange Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through themore » large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.« less

  10. The solution of private problems for optimization heat exchangers parameters

    NASA Astrophysics Data System (ADS)

    Melekhin, A.

    2017-11-01

    The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  11. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  12. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  13. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1993-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  14. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1993-08-31

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  15. Adherent nanoparticles-mediated micro- and nanobubble nucleation

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.

  16. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    PubMed

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  17. An overview of surface radiance and biology studies in FIFE

    NASA Astrophysics Data System (ADS)

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  18. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  19. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  20. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  1. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  2. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  3. Chemistry of acetylene on platinum (111) and (100) surfaces

    PubMed Central

    Muetterties, E. L.; Tasi, M.-C.; Kelemen, S. R.

    1981-01-01

    An ultra-high vacuum experimental study of acetylene chemisorption on Pt(111) and Pt(100) and of the reaction of hydrogen with the acetylene adsorbate has established distinguishing features of carbon-hydrogen bond breaking and making processes as a function of pressure, temperature, and surface crystallography. The rates for both processes are substantially higher on the Pt(100) surface. Net acetylene-hydrogen processes, in the temperature range of 20°C to ≈130°C, are distinctly different on the two surfaces: on Pt(100) the net reaction is hydrogen exchange (1H-2H exchange) and on Pt(111) the only detectable reaction is hydrogenation. Stereochemical differences in the acetylene adsorbate structure are considered to be a contributing factor to the differences in acetylene chemistry on these two surfaces. Images PMID:16593110

  4. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  5. New directions: Time for a new approach to modeling surface-atmosphere exchanges in air quality models?

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Hicks, Bruce B.

    2016-03-01

    Just as the exchange of heat, moisture and momentum between the Earth's surface and the atmosphere are critical components of meteorological and climate models, the surface-atmosphere exchange of many trace gases and aerosol particles is a vitally important process in air quality (AQ) models. Current state-of-the-art AQ models treat the emission and deposition of most gases and particles as separate model parameterizations, even though evidence has accumulated over time that the emission and deposition processes of many constituents are often two sides of the same coin, with the upward (emission) or downward (deposition) flux over a landscape depending on a range of environmental, seasonal and biological variables. In this note we argue that the time has come to integrate the treatment of these processes in AQ models to provide biological, physical and chemical consistency and improved predictions of trace gases and particles.

  6. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels.

    PubMed

    Hwang, Sung-Woo; Kim, Tae-Youn; Hyun, Sang-Hoon

    2008-06-01

    The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).

  7. Using a Spectral Method to Evaluate Hyporheic Exchange and its Effect on Reach Scale Nitrate Removal.

    NASA Astrophysics Data System (ADS)

    Moren, I.; Worman, A. L. E.; Riml, J.

    2017-12-01

    Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically to evaluate if the mass removal is reaction or transport controlled.

  8. Kinetics of surfactant-mediated epitaxy of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Grandjean, N.; Massies, J.

    1996-05-01

    Surfactant-mediated epitaxy (SME) of III-V semiconductors is studied in the case of the GaAs(001) growth using Te as surfactant. To account for the strong surface segregation of Te, a phenomenological exchange mechanism is used. This process explains the reduction of the surface diffusion length evidenced by scanning tunneling microscopy (STM). However, this kinetics effect is observed only for restricted growth conditions: the As surface coverage should be sufficient to allow the exchange process. STM results as well as Monte Carlo simulations clearly show that the group-V element surface coverage plays a key role in the kinetics of SME of III-V semiconductors.

  9. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  10. Fin-and-tube heat exchanger material and inlet velocity effect under frosting conditions

    NASA Astrophysics Data System (ADS)

    Keryakos, Elie; Toubassy, Joseph; Danlos, Amélie; Clodic, Denis; Descombes, Georges

    2017-02-01

    The frosting fin-and-tube heat exchanger used in this study is implemented in the dehydration process of a biogas upgrading pilot. Water is separated from the biogas by frosting it at very low temperatures on the cold surfaces of the fin-and-tube heat exchanger. Once frosted, a defrosting system is used to remove water from the process. The main interest of this study is the frosting system. The effects of the biogas velocity, fin material, tube material and frost layer thickness on the performance of the fin-and-tube heat exchanger are investigated. Increasing the biogas velocity tends to increase the frosting layer thickness and the external pressure drop. This will lead to decrease the heat exchanger performance and the frosting cycle duration. The thermal conductivity of the fins and tubes has a major effect on the performance of the heat exchanger. Higher thermal conductivity decreases the heat exchanged surface. A numerical model has been developed, then numerical and experimental results extracted from a biogas upgrading pilot are compared.

  11. Modelling the Air–Surface Exchange of Ammonia from the Field to Global Scale

    EPA Science Inventory

    The Working Group addressed the current understanding and uncertainties in the processes controlling ammonia (NH3) bi-directional exchange, and in the application of numerical models to describe these processes. As a starting point for the discussion, the Working Group drew on th...

  12. Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.

    PubMed

    Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie

    2012-01-01

    A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.

  13. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    PubMed

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  14. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    PubMed

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.

  15. Distributed parameterization of complex terrain

    NASA Astrophysics Data System (ADS)

    Band, Lawrence E.

    1991-03-01

    This paper addresses the incorporation of high resolution topography, soils and vegetation information into the simulation of land surface processes in atmospheric circulation models (ACM). Recent work has concentrated on detailed representation of one-dimensional exchange processes, implicitly assuming surface homogeneity over the atmospheric grid cell. Two approaches that could be taken to incorporate heterogeneity are the integration of a surface model over distributed, discrete portions of the landscape, or over a distribution function of the model parameters. However, the computational burden and parameter intensive nature of current land surface models in ACM limits the number of independent model runs and parameterizations that are feasible to accomplish for operational purposes. Therefore, simplications in the representation of the vertical exchange processes may be necessary to incorporate the effects of landscape variability and horizontal divergence of energy and water. The strategy is then to trade off the detail and rigor of point exchange calculations for the ability to repeat those calculations over extensive, complex terrain. It is clear the parameterization process for this approach must be automated such that large spatial databases collected from remotely sensed images, digital terrain models and digital maps can be efficiently summarized and transformed into the appropriate parameter sets. Ideally, the landscape should be partitioned into surface units that maximize between unit variance while minimizing within unit variance, although it is recognized that some level of surface heterogeneity will be retained at all scales. Therefore, the geographic data processing necessary to automate the distributed parameterization should be able to estimate or predict parameter distributional information within each surface unit.

  16. Scraped surface heat exchangers.

    PubMed

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  17. The Measurement and modeling of the contribution of ...

    EPA Pesticide Factsheets

    In North America, ammonia (NH3) is increasingly being recognized not only for its role in atmospheric aerosol formation but also as an important component of atmospheric nitrogen deposition. This has been driven by the evolution of policies to protect ecosystems from nitrogen over-enrichment, an expansion of research underpinning these policy efforts, and technological advances in measurement and modeling tools applied to these research needs. Ammonia measurements from satellites, nitrogen focused field campaigns, and the National Atmospheric Deposition Program’s Ammonia Monitoring Network (AMoN) have advanced understanding of the processes controlling NH3 air-surface exchange and the spatio-temporal behavior of NH3 in the atmosphere. These datasets have subsequently lead to improvements in NH3 air-surface exchange models and therefore more accurate estimates of NH3 deposition. From a process standpoint, NH3 differs from other nitrogen compounds such as nitric acid in that NH3 is exchanged bi-directionally between the surface and atmosphere as regulated by a “compensation point”. Because natural surfaces may be sources or sinks of atmospheric NH3, and may alternate between emission and deposition on a timescale as short as hours, the deposition velocity concept does not accurately describe NH3 air surface exchange. Instead, a more mechanistic treatment of the nitrogen status and acidity of the surface must be employed, typically as a bi-directional fr

  18. Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process

    NASA Astrophysics Data System (ADS)

    Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo

    2017-06-01

    It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.

  19. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  20. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-04-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ. In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage.

  1. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  2. Research on Heat Exchange Process in Aircraft Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  3. Carbon speciation at the air-sea interface during rain

    NASA Astrophysics Data System (ADS)

    McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher

    2015-04-01

    This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the air-sea exchange of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and air-sea gas exchange will be discussed.

  4. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    PubMed

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  5. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    USGS Publications Warehouse

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  6. Volatiles on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    1988-08-01

    The long-term evolution of both the atmosphere and the surface of Mars can be understood by examining the history of volatiles in the Mars atmosphere, their non-atmospheric reservoirs, and the processes of exchange between the two. Clearly, the present state of both the surface and the atmosphere can only be seen, so that any inferences about the evolution of the climate system are just that, inferences. The processes which control the atmosphere and surface on a seasonal basis, however, are the same processes which can act on longer timescales; only the specific solar and atmospheric forcing will differ. Once the ability of each process to affect the seasonal behavior is understood, the long-timescale forcing may be applied to the various processes in order to clearly identify the ability of the processes to act over the entire history of Mars. The areas of surface-atmospheric interaction of Mars are addressed in the ongoing research. The climate system on Mars is controlled by processes involving the exchange between the surface and atmosphere, so it is important to understand the current behavior of those processes. This is especially so in light of the current interest in understanding Mars; the upcoming Mars Observer mission, and the potential for a future sample-return or human-exploration mission will focus emphasis on this area of Mars science.

  7. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  8. Quantifying Surface Water, Porewater, and Groundwater Interactions Using Tracers: Tracer Fluxes, Water Fluxes, and End-member Concentrations

    NASA Astrophysics Data System (ADS)

    Cook, Peter G.; Rodellas, Valentí; Stieglitz, Thomas C.

    2018-03-01

    Tracer approaches to estimate both porewater exchange (the cycling of water between surface water and sediments, with zero net water flux) and groundwater inflow (the net flow of terrestrially derived groundwater into surface water) are commonly based on solute mass balances. However, this requires appropriate characterization of tracer end-member concentrations in exchanging or discharging water. Where either porewater exchange or groundwater inflow to surface water occur in isolation, then the water flux is easily estimated from the net tracer flux if the end-member is appropriately chosen. However, in most natural systems porewater exchange and groundwater inflow will occur concurrently. Our analysis shows that if groundwater inflow (Qg) and porewater exchange (Qp) mix completely before discharging to surface water, then the combined water flux (Qg + Qp) can be approximated by dividing the combined tracer flux by the difference between the porewater and surface water concentrations, (cp - c). If Qg and Qp do not mix prior to discharge, then (Qg + Qp) can only be constrained by minimum and maximum values. The minimum value is obtained by dividing the net tracer flux by the groundwater concentration, and the maximum is obtained by dividing by (cp - c). Dividing by the groundwater concentration gives a maximum value for Qg. If porewater exchange and groundwater outflow occur concurrently, then dividing the net tracer flux by (cp - c) will provide a minimum value for Qp. Use of multiple tracers, and spatial and temporal replication should provide a more complete picture of exchange processes and the extent of subsurface mixing.

  9. Advanced Land Surface Processes in the Coupled WRF/CMAQ with MODIS Input

    EPA Science Inventory

    Land surface modeling (LSM) is important in WRF/CMAQ for simulating the exchange of heat, moisture, momentum, trace atmospheric chemicals, and windblown dust between the land surface and the atmosphere.? Vegetation and soil treatments are crucial in LSM for surface energy budgets...

  10. A comprehensive review of milk fouling on heated surfaces.

    PubMed

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  11. The Breathing Snowpack: Pressure-induced Vapor Flux of Temperate Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Selker, J. S.; Higgins, C. W.

    2017-12-01

    As surface air pressure increases, hydrostatic compression of the air column forces atmospheric air into snowpack pore space. Likewise, as surface air pressure decreases, the atmospheric air column decompresses and saturated air exits the snow. Alternating influx and efflux of air can be thought of as a "breathing" process that produces an upward vapor flux when air above the snow is not saturated. The impact of pressure-induced vapor exchange is assumed to be small and is thus ignored in model parameterizations of surface processes over snow. Rationale for disregarding this process is that large amplitude pressure changes as caused by synoptic weather patterns are too infrequent to credibly impact vapor flux. The amplitude of high frequency pressure changes is assumed to be too small to affect vapor flux, however, the basis for this hypothesis relies on pressure measurements collected over an agricultural field (rather than snow). Resolution of the impact of pressure changes on vapor flux over seasonal cycles depends on an accurate representation of the magnitude of pressure changes caused by changes in wind as a function of the frequency of pressure changes. High precision in situ pressure measurements in a temperature snowpack allowed us to compute the spectra of pressure changes vs. wind forcing. Using a simplified model for vapor exchange we then computed the frequency of pressure changes that maximize vapor exchange. We examine and evaluate the seasonal impact of pressure-induced vapor exchange relative to other snow ablation processes.

  12. On the parameters influencing air-water gas exchange

    NASA Astrophysics Data System (ADS)

    JäHne, Bernd; Münnich, Karl Otto; BöSinger, Rainer; Dutzi, Alfred; Huber, Werner; Libner, Peter

    1987-02-01

    Detailed gas exchange measurements from two circular and one linear wind/wave tunnels are presented. Heat, He, CH4, CO2, Kr, and Xe have been used as tracers. The experiments show the central importance of waves for the water-side transfer process. With the onset of waves the Schmidt number dependence of the transfer velocity k changes from k ∝ Sc-⅔ to k ∝ Sc-½indicating a change in the boundary conditions at the surface. Moreover, energy put into the wave field by wind is transferred to near-surface turbulence enhancing gas transfer. The data show that the mean square slope of the waves is the best parameter to characterize the free wavy surface with respect to water-side transfer processes.

  13. Bay of Bengal Surface and Thermocline and the Arabian Sea

    DTIC Science & Technology

    2015-09-30

    oceanographic processes that exchange low salinity surface and upper thermocline water of the Bay of Bengal with the salty Arabian Sea and tropical Indian Ocean ...two northern embayments of the Indian Ocean . OBJECTIVES Two northern Indian Ocean embayments, the Arabian Sea and the Bay of Bengal, are so close...e.g. where do the eddies come from? 2. Investigating advective pathways, and the role of isopycnal mixing, exchanging upper ocean water between the

  14. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  15. Testing of heat exchanger systems for reheating flue gases from wet scrubbing desulfurization plants

    NASA Astrophysics Data System (ADS)

    Than, K.

    1982-09-01

    Two heat exchanger systems: the cyclic process of GEA and, the plate heat exchanger of Kablitz/Thyssen, for reheating flue gases, which have been cooled to about 50 to 55 C due to wet scrubbing, to the required temperature at the outlet of the stack by extracting the sensible heat of the hot flue gases were tested. The problem of building materials and on keeping clean the heat exchanger surface are emphasized.

  16. Influence of surface crusting on infiltration of a loess plateau soil

    USDA-ARS?s Scientific Manuscript database

    Surface sealing and crusting are common widespread processes that occur in many cultivated soils worldwide, especially in arid and semiarid regions. Soil crusting negatively affects water infiltration, increases surface runoff, reduces seedling emergence, restricts air exchange between the soil and ...

  17. From watershed- to stream-reach-scale: the influence of multiple spatial scales on surface water-groundwater exchange

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Boano, Fulvio; Ridolfi, Luca

    2015-04-01

    Surface water bodies continuously interact with the subsurface and it is by now widely known that the hyporheic zone plays a key role in the mixing of river water with shallow groundwater. Hyporheic exchange occurs over a very wide range of spatial and temporal scales and the exchange processes at different scales interact and determine a complex system of nested flow cells. This intricacy results from the multiplicity of spatial scale that characterize landscape and river morphology. In the last years, many processes that regulate the surface-groundwater interactions have been elucidated and a more holistic view of groundwater and surface water has been adopted. However, despite several insights on the mechanisms of hyporheic exchange have been achieved, many important aspects remain to be clarified, i.e. how surface-groundwater interactions influence solute transport, microbial activity and biogeochemical transformations at the scale of entire watersheds. To date a deep knowledge of small-scale processes has been developed but what is lacking is a unifying overview of the role of surface water-groundwater exchange for the health of the whole water system at larger scales, i.e. the scale of the entire basin. In order to better understand the complex multiscale nature of spatial patterns of surface-subsurface exchange, we aim to assess the importance of the individual scales included in the range between watershed scale to stream reach scale. Hence, we study the large-scale subsurface flow field taking into account the surface-groundwater interactions induced by landscape topography from the basin scale to smaller scales ranging from tens of kilometers to tens of meters. The aim of this research is to analyze how individual topographic scales affect the flow field and to understand which ones are the most important and should be focused on. To study the impact of various scales of landscape topography we apply an analytical model that provides an exact solution of the underlying three dimensional groundwater flow and a numerical particle tracking routine that allows to obtain streamlines and residence time distributions from the flow field. Therefore, starting from a previously published mathematical tool we set the goal of investigating the interaction between the scales and clarifying their role. We consider real basin examples and describe subsurface flow at the landscape scale, identifying inflow patterns of groundwater to the river network, in order to obtain, in the near future, results to be used for conserving, managing and restoring of a riverine ecosystem.

  18. Ion Exchange Method - Diffusion Barrier Investigations

    NASA Astrophysics Data System (ADS)

    Pielak, G.; Szustakowski, M.; Kiezun, A.

    1990-01-01

    Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.

  19. [Intensification of the penicillin drying process based on the theory of short-term contact of material with a heat-exchange surface].

    PubMed

    Sadykov, R A; Migunov, V V

    1987-01-01

    The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.

  20. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  1. Scalable free energy calculation of proteins via multiscale essential sampling

    NASA Astrophysics Data System (ADS)

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2010-12-01

    A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less

  3. Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, L.; Liu, H.; Wang, L.; Du, Q.; Liu, Y.

    2017-12-01

    Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.

  4. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  5. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  6. 3D numerical modeling of hyporheic exchange processes in fractal riverbed

    NASA Astrophysics Data System (ADS)

    Lee, A.; Aubeneau, A.

    2017-12-01

    The subsurface region receiving stream water is known as the hyporheic zone and the flow of water in and out of this zone is called hyporheic exchange. The hyporheic zone is populated by biofilms and is a hotspot for nutrient uptake and contaminant transformation. Traditionally, pumping models predicting the head distribution over the riverbed boundary are used to obtain the velocity field in the subsurface. However, past research has largely overlooked the nonlinearity of the turbulent flow above the bumpy riverbed. The main objective of this research is to investigate the effect of spatial and temporal heterogeneity created by turbulent flow on hyporheic exchange and residence time distribution in fractal channel beds. The 3-D fractal riverbed is created from the power spectrum. Large-Eddy Simulation is used to provide the pressure field over the benthic boundary. Finally, Darcian fluxes in the sub-surface are calculated and hyporheic travel times computed using random walks. Surface and subsurface transport processes are represented explicitly and can be studied in detail. Our results suggest that (1) Eddies and wakes around the dunes force the exchange (2) The bigger the dunes, the greater the influence of turbulence (3) Turbulence induces more exchange than pumping predicts.

  7. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP

    NASA Astrophysics Data System (ADS)

    Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra

    2018-04-01

    Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.

  8. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less

  9. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  10. The efficiency of macroporous polystyrene ion-exchange resins in natural organic matter removal from surface water

    NASA Astrophysics Data System (ADS)

    Urbanowska, Agnieszka; Kabsch-Korbutowicz, Małgorzata

    2017-11-01

    Natural water sources used for water treatment contains various organic and inorganic compounds. Surface waters are commonly contaminated with natural organic matter (NOM). NOM removal from water is important e.g. due to lowering the risk of disinfection by-product formation during chlorination. Ion exchange with the use of synthetic ion-exchange resins is an alternative process to typical NOM removal approach (e.g. coagulation, adsorption or oxidation) as most NOM compounds have anionic character. Moreover, neutral fraction could be removed from water due to its adsorption on resin surface. In this study, applicability of two macroporous, polystyrene ion exchange resins (BD400FD and A100) in NOM removal from water was assessed including comparison of treatment efficiency in various process set-ups and conditions. Moreover, resin regeneration effectivity was determined. Obtained results shown that examined resins could be applied in NOM removal and it should be noticed that column set-up yielded better results (contrary to batch set-up). Among the examined resins A100 one possessed better properties. It was determined that increase of solution pH resulted in a slight decrease in treatment efficiency while higher temperature improved it. It was also observed that regeneration efficiency was comparable in both tested methods but batch set-up required less reagents.

  11. Monthly and seasonal variability of the land-atmosphere system

    Treesearch

    Yong-Qiang Liu

    2003-01-01

    The land surface and the atmosphere can interact with each other through exchanges of energy, water, and momentum. With the capacity of long memory, land surface processes can contribute to long-term variability of atmospheric processes. Great efforts have been made in the past three decades to study land-atmosphere interactions and their importance to long-term...

  12. Explicit modeling of groundwater-surface water interactions using a simple bucket-type model

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan

    2017-04-01

    Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.

  13. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  14. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  16. Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor

    NASA Astrophysics Data System (ADS)

    Chen, Gaofei; Gong, Maoqiong; Wu, Yinong

    2018-05-01

    Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.

  17. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation.

    PubMed

    Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H

    2014-11-18

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.

  18. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  20. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    NASA Astrophysics Data System (ADS)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  1. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  2. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.

  3. The mechanism and theoretical basis of the management of intensity of the heat transfer control through periodic influences on the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhaleva, Larisa V.; Chukalin, Andrey V.; Bondarenko, Aleksandr A.; Kovrizhnykh, Evgeny N.

    2017-07-01

    Generalization of classical model of a displacement way on the transfer of heat exchange and mass exchange of a stream in the boundary layer, confirmed by the control action of the different nature, is undertaken. Here are given the results of numerical research which have allowed explaining the mechanism, to reveal efficiency and limits of various ways of management of intensity in exchange processes. The possibility of management of intensity in processes of a thermolysis and friction by use of the perforated surface with the damping cavities is analyzed.

  4. COMMON ISSUES IN HUMAN AND ECOSYSTEM EXPOSURE ASSESSMENT: THE SIGNIFICANCE OF PARTITIONING, KINETICS, AND UPTAKE AT BIOLOGICAL EXCHANGE SURFACES

    EPA Science Inventory

    Exogenous chemicals enter organisms through critical surfaces in the lung, gills, gut, and skin. Transfer across these boundaries is the first step in characterizing the ratio of tissue dose to external exposure. Surface processes and fugacity are important elements of both human...

  5. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  6. Parameterizing atmosphere-land surface exchange for climate models with satellite data: A case study for the Southern Great Plains CART site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.

    High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less

  7. Exchange interactions of CaMnO3 in the bulk and at the surface

    NASA Astrophysics Data System (ADS)

    Keshavarz, S.; Kvashnin, Y. O.; Rodrigues, D. C. M.; Pereiro, M.; Di Marco, I.; Autieri, C.; Nordström, L.; Solovyev, I. V.; Sanyal, B.; Eriksson, O.

    2017-03-01

    We present electronic and magnetic properties of CaMnO3 (CMO) as obtained from ab initio calculations. We identify the preferable magnetic order by means of density functional theory plus Hubbard U calculations and extract the effective exchange parameters (Ji j's) using the magnetic force theorem. We find that the effects of geometrical relaxation at the surface as well as the change of crystal field are very strong and are able to influence the lower-energy magnetic configuration. In particular, our analysis reveals that the exchange interaction between the Mn atoms belonging to the surface and the subsurface layers is very sensitive to the structural changes. An earlier study [A. Filippetti and W. E. Pickett, Phys. Rev. Lett. 83, 4184 (1999), 10.1103/PhysRevLett.83.4184] suggested that this coupling is ferromagnetic and gives rise to the spin-flip (SF) process on the surface of CMO. In our work, we confirm their finding for an unrelaxed geometry, but once the structural relaxations are taken into account, this exchange coupling changes its sign. Thus, we suggest that the surface of CMO should have the same G -type antiferromagnetic order as in the bulk. Finally, we show that the suggested SF can be induced in the system by introducing an excess of electrons.

  8. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  9. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  10. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE PAGES

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...

    2017-04-17

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  11. Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along-Coast Estuaries

    NASA Astrophysics Data System (ADS)

    Giddings, S. N.; MacCready, P.

    2017-12-01

    Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.Plain Language SummaryEstuarine systems provide extensive biological and ecological functions as well as contribute to human uses and economies. However, estuaries are susceptible to change and most estuaries have been significantly impacted, threatening their important functionality. Understanding estuarine dynamics is critical to understanding estuarine ecosystems. Hydrodynamic connectivity between estuaries and the coastal ocean is a key dynamical driver impacting critical biological and biogeochemical processes such as ocean/estuarine nutrient and phytoplankton exchange and regulation of estuarine residence time, dissolved oxygen, and acidification levels. Typically estuarine-ocean exchange brings oceanic water into the estuary at depth, mixes it upwards within the estuary, and returns an outflowing mixture of oceanic and riverine water at the surface to the ocean. This manuscript documents seasonal reversals to this typical circulation pattern and the hydrodynamic drivers of the reversals. It highlights the importance of offshore winds and connectivity with neighboring estuaries. Improved understanding of these mechanisms can help us predict how estuaries will respond to a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014594"><span>Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.</p> <p>2010-01-01</p> <p>Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeCoA..73..543S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeCoA..73..543S"><span>A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando</p> <p>2009-02-01</p> <p>The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008773"><span>Engineered Multifunctional Surfaces for Fluid Handling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, Chris; Ma, Yonghui; Weislogel, Mark</p> <p>2012-01-01</p> <p>Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157933','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157933"><span>Natural radium and radon tracers to quantify water exchange and movement in reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Christopher G.; Baskaran, Mark</p> <p>2011-01-01</p> <p>Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RvGeo..55..287P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RvGeo..55..287P"><span>Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip</p> <p>2017-06-01</p> <p>The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B11I..08O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B11I..08O"><span>CentNet—A deployable 100-station network for surface exchange research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.</p> <p>2014-12-01</p> <p>Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5569668','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5569668"><span>Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The solvent exchange procedure has become the most-used protocol to produce surface nanobubbles, while the molecular mechanisms behind the solvent exchange are far from being fully understood. In this paper, we build a simple model and use molecular dynamics simulations to investigate the dynamic characteristics of solvent exchange for producing nanobubbles. We find that at the first stage of solvent exchange, there exists an interface between interchanging solvents of different gas solubility. This interface moves toward the substrate gradually as the exchange process proceeds. Our simulations reveal directed diffusion of gas molecules against the gas concentration gradient, driven by the solubility gradient of the liquid composition across the moving solvent–solvent interface. It is this directed diffusion that causes gas retention and produces a local gas oversaturation much higher near the substrate than far from it. At the second stage of solvent exchange, the high local gas oversaturation leads to bubble nucleation either on the solid surface or in the bulk solution, which is found to depend on the substrate hydrophobicity and the degree of local gas oversaturation. Our findings suggest that solvent exchange could be developed into a standard procedure to produce oversaturation and used to a variety of nucleation applications other than generating nanobubbles. PMID:28742364</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26479780','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26479780"><span>Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pohl, S; Madzgalla, M; Manz, W; Bart, H J</p> <p>2015-01-01</p> <p>The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335106','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335106"><span>Investigation of ammonia air-surface exchange processes in a ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23412062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23412062"><span>Catalytic biofilms on structured packing for the production of glycolic acid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina</p> <p>2013-02-01</p> <p>While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OptMa..34....1K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OptMa..34....1K"><span>SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.</p> <p>2011-11-01</p> <p>Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26..819A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26..819A"><span>Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke</p> <p>2018-05-01</p> <p>Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JTST...27..433M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JTST...27..433M"><span>Effect of Substrate and Process Parameters on the Gas-Substrate Convective Heat Transfer Coefficient During Cold Spraying</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahdavi, Amirhossein; McDonald, André</p> <p>2018-02-01</p> <p>The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6921B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6921B"><span>A Water Balance Model for Hill reservoir - Aquifer Exchange Water Flux Quantification and Uncertainty Analysis - Application to the Kamech catchment, Tunisia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme</p> <p>2013-04-01</p> <p>In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5070028','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5070028"><span>Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia</p> <p>2015-01-01</p> <p>Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0266187','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0266187"><span>INFLUENCE OF THE KRAMER EFFECT ON ADSORPTION ON METALS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>ADSORPTION, *ALLOYS, *FILMS, *METALS, *PROCESSING, ACIDS, ALCOHOLS , CYCLOHEXANES, EXCHANGE REACTIONS , FATTY ACIDS, HEAT TREATMENT , LEAD ALLOYS...LINOLENIC ACID, MACHINING , MEASUREMENT, MONOMOLECULAR FILMS, OLEIC ACID, SURFACES, TIN ALLOYS, WATER</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.4451Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.4451Z"><span>Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin</p> <p>2016-04-01</p> <p>Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East Asia are comparatively larger in magnitude than the rest of the world, suggesting substantial re-emission of previously deposited mercury from anthropogenic sources. The Hg0 exchange over pristine surfaces (e.g., background soil and water) and vegetation needs better constraints for global analyses of the atmospheric Hg budget. The existing knowledge gap and the associated research needs for future measurements and modeling efforts for the air-surface exchange of Hg0 are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17663256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17663256"><span>Solid phase monofunctionalization of gold nanoparticles using ionic exchange resin as polymer support.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun</p> <p>2007-07-01</p> <p>A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187678"><span>Land cover characterization and land surface parameterization research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.</p> <p>1997-01-01</p> <p>The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/903468','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/903468"><span>Gas Hydrate Storage of Natural Gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rudy Rogers; John Etheridge</p> <p>2006-03-31</p> <p>Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5502603','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5502603"><span>Heat exchange between a bouncing drop and a superhydrophobic substrate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shiri, Samira; Bird, James C.</p> <p>2017-01-01</p> <p>The ability to enhance or limit heat transfer between a surface and impacting drops is important in applications ranging from industrial spray cooling to the thermal regulation of animals in cold rain. When these surfaces are micro/nanotextured and hydrophobic, or superhydrophobic, an impacting drop can spread and recoil over trapped air pockets so quickly that it can completely bounce off the surface. It is expected that this short contact time limits heat transfer; however, the amount of heat exchanged and precise role of various parameters, such as the drop size, are unknown. Here, we demonstrate that the amount of heat exchanged between a millimeter-sized water drop and a superhydrophobic surface will be orders of magnitude less when the drop bounces than when it sticks. Through a combination of experiments and theory, we show that the heat transfer process on superhydrophobic surfaces is independent of the trapped gas. Instead, we find that, for a given spreading factor, the small fraction of heat transferred is controlled by two dimensionless groupings of physical parameters: one that relates the thermal properties of the drop and bulk substrate and the other that characterizes the relative thermal, inertial, and capillary dynamics of the drop. PMID:28630306</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4701H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4701H"><span>Band Formation and Ocean-Surface Interaction on Europa and Ganymede</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howell, Samuel M.; Pappalardo, Robert T.</p> <p>2018-05-01</p> <p>Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........28G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........28G"><span>Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, Bo</p> <p></p> <p>In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode. Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600˜800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ˜40 mum are fabricated by using a novel spray modified pressing method. Negligible bulk diffusion resistance is confirmed by parallel experiment and EIS analysis, resulting in exclusive focus on the surface process. It is ambiguously proved that Sr doping impairs the surface kinetics of lanthanum nickelates. The interstitial oxygen is suggested to be the key role when the oxygen incorporation is rat determining. For the first time, a physical model is proposed to illustrate how those interstitial species work to regulate the exchange rate of the incorporation reaction. To achieve better surface exchange ability on LNO, Mn is chosen as the doping element substituted for Ni with different levels to improve the surface kinetics because Mn is much active both for adsorption process and for incorporation process due to the high state of Mn leading to the high amount of the interstitial oxygen. Mn is found to substantially promote the surface kinetics, showing highest surface exchange coefficient (k) of 1.57x10-6cm/s at 700°C on composition of La1.8Sr0.2Ni0.9 Mn0.1O4+delta. Such value is ˜80% larger than that of the undoped sample, and is one of the highest k among the currently available R-P phase intermediate temperature (IT) cathode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThEng..65..155A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThEng..65..155A"><span>Heat Exchangers for Utilization of the Heat of High-Temperature Geothermal Brines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alkhasov, A. B.; Alkhasova, D. A.</p> <p>2018-03-01</p> <p>The basic component of two-circuit geothermal systems is the heat exchanger. When used in geothermal power systems, conventional shell-and-tube and plate heat exchangers cause problems related to the cleaning of the latter from salt-deposition and corrosion products. Their lifetime does not exceed, as a rule, 1 year. To utilize the heat of high-temperature geothermal brines, a heat exchanger of the "tube-in-tube" type is proposed. A heat exchanger of this design has been operated for several years in Ternair geothermal steam field; in this heat exchanger, the thermal potential of the saline thermal water is transferred to the fresh water of the secondary circuit of the heating system for apartment houses. The reduction in the weight and size characteristics of the heat exchangers is a topical problem that can be solved with the help of heat transfer enhancers. To enhance the heat transfer process in the heat exchanger, longitudinal ribbing of the heat exchange surface is proposed. The increase in the heat exchange surface from the heat carrier side by ribbing results in an increase in the amount of the heat transferred from the heating agent. The heat exchanger is easy to manufacture and is assembled out of components comprised of two concentrically positioned tubes of a definite length, 3-6 m, serially connected with each other. The method for calculation of the impact of the number and the size of the longitudinal ribs on the heat transfer in the well heat exchanger is presented and a criterion for the selection of the optimal number and design parameters of the ribs is formulated. To prevent the corrosion and salt deposition in the heat exchanger, the use of an effective OEDFK (oxyethylidenediphosphonic acid) agent is proposed. This agent has a long-lasting corrosion-inhibiting and antiscaling effect, which is explained by the formation of a strongly adhesive chelate layer difficult to wash off the surface. The passivating OEDFK layer is restored by periodical pulsed introduction of the agent solution into the brine at the heat exchanger inlet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870036109&hterms=desertification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddesertification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870036109&hterms=desertification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddesertification"><span>Monitoring the spring-summer surface energy budget transition in the Gobi Desert using AVHRR GAC data. [Global Area Coverage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Eric A.; Reiter, Elmar R.</p> <p>1986-01-01</p> <p>A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24277830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24277830"><span>Atmospheric deposition of methanol over the Atlantic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher</p> <p>2013-12-10</p> <p>In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2347K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2347K"><span>Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kleidon, Axel; Renner, Maik</p> <p>2016-04-01</p> <p>The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044357','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044357"><span>Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.</p> <p>2012-01-01</p> <p>Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDD37006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDD37006L"><span>Surface nanodroplets for highly efficient liquid-liquid microextraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua</p> <p>2016-11-01</p> <p>Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872466','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872466"><span>Combined heat and mass transfer device for improving separation process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tran, Thanh Nhon</p> <p>1999-01-01</p> <p>A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/678598','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/678598"><span>Combined heat and mass transfer device for improving separation process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tran, T.N.</p> <p>1999-08-24</p> <p>A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/49582-size-related-bioconcentration-kinetics-hydrophobic-chemicals-fish','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/49582-size-related-bioconcentration-kinetics-hydrophobic-chemicals-fish"><span>Size-related bioconcentration kinetics of hydrophobic chemicals in fish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sijm, D.T.H.M.; Linde, A. van der</p> <p>1994-12-31</p> <p>Uptake and elimination of hydrophobic chemicals by fish can be regarded as passive diffusive transport processes. Diffusion coefficients, lipid/water partitioning, diffusion pathlenghts, concentration gradients and surface exchange areas are key parameters describing this bioconcentration distribution process. In the present study two of these parameters were studied: the influence of lipid/water partitioning was studied by using hydrophobic chemicals of different hydrophobicity, and the surface exchange area by using different sizes of fish. By using one species of fish it was assumed that all other parameters were kept constant. Seven age classes of fish were exposed to a series of hydrophobic, formore » five days, which was followed by a deputation phase lasting up to 6 months. Bioconcentration parameters, such as uptake and elimination rate constants, and bioconcentration factors were determined. Uptake of the hydrophobic compounds was compared to that of oxygen. Uptake and elimination rates were compared to weight and estimated (gill) exchange areas. The role of weight and its implications for extrapolations of bioconcentration parameters to other species and sizes will be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20015192-adsorption-cadmium-ions-oxygen-surface-sites-activated-carbon','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20015192-adsorption-cadmium-ions-oxygen-surface-sites-activated-carbon"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jia, Y.F.; Thomas, K.M.</p> <p></p> <p>Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved inmore » the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26378728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26378728"><span>Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter</p> <p>2015-12-15</p> <p>This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26189208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26189208"><span>Adsorption of virus-like particles on ion exchange surface: Conformational changes at different pH detected by dual polarization interferometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yanli; Mengran Yu; Zhang, Songping; Ma, Guanghui; Su, Zhiguo</p> <p>2015-08-21</p> <p>Disassembling of virus-like particles (VLPs) like hepatitis B virus surface antigen (HB-VLPs) during chromatographic process has been identified as a major cause of loss of antigen activity. In this study, dual polarization interferometry (DPI) measurement, together with chromatography experiments, were performed to study the adsorption and conformational change of HB-VLPs on ion exchange surface at three different pHs. Changes in pH values of buffer solution showed only minimal effect on the HB-VLPs assembly and antigen activity, while significantly different degree of HB-VLPs disassembling was observed after ion exchange chromatography (IEC) at different pHs, indicating the conformational change of HB-VLPs caused mainly by its interactions with the adsorbent surface. By creating an ion exchange surface on chip surface, the conformational changes of HB-VLPs during adsorption to the surface were monitored in real time by DPI for the first time. As pH increased from 7.0 to 9.0, strong electrostatic interactions between oppositely charged HB-VLPs and the ion exchange surface make the HB-VLPs spread thinly or even adsorbed in disassembled formation on the surface as revealed by significant decrease in thickness of the adsorbed layer measured by DPI. Such findings were consistent with the results of IEC experiments operated at different pHs, that more disassembled HB-VLPs were detected in the eluted proteins at pH 9.0. At low pH like pH 5.0, however, possible bi-layer adsorption was involved as evidenced by an adsorbed layer thickness higher than average diameter of the HB-VLPs. The "lateral" protein-protein interactions might be unfavorable and would make additional contribution to the disassembling of HB-VLPs besides the primary mechanism related to the protein-surface interactions; therefore, the lowest antigen activity was observed after IEC at pH 5.0. Such real-time information on conformational change of VLPs is helpful for better understanding the real mechanism for the disassembling of VLPs on the solid-liquid interface. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7274510','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7274510"><span>Method for providing adhesion to a metal surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.</p> <p>1992-02-18</p> <p>A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868169','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868169"><span>Method for providing adhesion to a metal surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.</p> <p>1992-01-01</p> <p>A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869815','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869815"><span>Apparatus for silicon nitride precursor solids recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.</p> <p>1995-04-04</p> <p>Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868591','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868591"><span>Method for silicon nitride precursor solids recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.</p> <p>1992-12-15</p> <p>Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27203804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27203804"><span>Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy</p> <p>2016-06-14</p> <p>We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......101H"><span>The Characterization of Atmospheric Boundary Layer Depth and Turbulence in a Mixed Rural and Urban Convective Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hicks, Micheal M.</p> <p></p> <p>A comprehensive analysis of surface-atmosphere flux exchanges over a mixed rural and urban convective environment is conducted at Howard University Beltsville, MD Research Campus. This heterogeneous site consists of rural, suburban and industrial surface covers to its south, east and west, within a 2 km radius of a flux sensor. The eddy covariance method is utilized to estimate surface-atmosphere flux exchanges of momentum, heat and moisture. The attributes of these surface flux exchanges are contrasted to those of classical homogeneous sites and assessed for accuracy, to evaluate the following: (I) their similarity to conventional convective boundary layer (CBL) processes and (II) their representativeness of the surrounding environment's turbulent properties. Both evaluations are performed as a function of upwind surface conditions. In particular, the flux estimates' obedience to spectrum power laws and similarity theory relationships is used for performing the first evaluation, and their ability to close the surface energy balance and accurately model CBL heights is used for the latter. An algorithm that estimates atmospheric boundary layer heights from observed lidar extinction backscatter was developed, tested and applied in this study. The derived lidar based CBL heights compared well with those derived from balloon borne soundings, with an overall Pearson correlation coefficient and standard deviation of 0.85 and 223 m, respectively. This algorithm assisted in the evaluation of the response of CBL processes to surface heterogeneity, by deriving high temporal CBL heights and using them as independent references of the surrounding area averaged sensible heat fluxes. This study found that the heterogeneous site under evaluation was rougher than classical homogeneous sites, with slower dissipation rates of turbulent kinetic energy. Flux measurements downwind of the industrial complexes exhibited enhanced efficiency in surface-atmosphere momentum, heat, and moisture transport relative to their similarity theory predictions. In addition, these enhanced heat flux estimates ingested into the CBL slab model overestimated observed CBL heights. More spatial flux observations are needed to better understand the role that the industrial complexes are playing in enhancing the efficiency of turbulent processes, which may have important implications on the role humans are assuming in regional climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20866067','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20866067"><span>Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Xiao-Lan; Zhang, Jia-Zhong</p> <p>2010-10-15</p> <p>Dissolved organic phosphorus (DOP) has been recognized as dominant components in total dissolved phosphorus (TDP) pools in many coastal waters, and its exchange between sediment and water is an important process in biogeochemical cycle of phosphorus. Adenosine monophosphate (AMP) was employed as a model DOP compound to simulate phosphorus exchange across sediment-water interface in Florida Bay. The sorption data from 40 stations were fitted to a modified Freundlich equation and provided a detailed spatial distribution both of the sediment's zero equilibrium phosphorus concentration (EPC(0-T)) and of the distribution coefficient (K(d-T)) with respect to TDP. The K(d-T) was found to be a function of the index of phosphorus saturation (IPS), a molar ratio of the surface reactive phosphorus to the surface reactive iron oxide content in the sediment, across the entire bay. However, the EPC(0-T) was found to correlate to the contents of phosphorus in the eastern bay only. Sediment in the western bay might act as a source of the phosphorus in the exchange process due to their high EPC(0-T) and low K(d-T), whereas sediments in the eastern bay might act as a sink because of their low EPC(0-T) and high K(d-T). These results strongly support the hypothesis that both phosphorus and iron species in calcareous marine sediments play a critical role in governing the sediment-water exchange of both phosphate and DOP in the coastal and estuarine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GBioC..28..161B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GBioC..28..161B"><span>Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.</p> <p>2014-02-01</p> <p>Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25114504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25114504"><span>The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming</p> <p>2014-01-01</p> <p>Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4109635','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4109635"><span>The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming</p> <p>2014-01-01</p> <p>Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235301-kinetics-hydrogen-isotope-exchange-phase-pd','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235301-kinetics-hydrogen-isotope-exchange-phase-pd"><span>Kinetics of hydrogen isotope exchange in β-phase Pd-H-D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Luo, Weifang; Cowgill, Donald F.</p> <p>2015-07-22</p> <p>Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H 2 + PdD and D 2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H 2/atm cm 2 s is found for H 2 + PdD atmore » 298 K, 1.4 times higher than that for D 2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..MARW15005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..MARW15005A"><span>A Hybrid Density Functional Study of Atomic Hydrogen and Oxygen Adsorptions on the (0001) Surface of Non-Magnetic DHCP Americium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amdani-Moten, Shafaq; Atta-Fynn, Raymond; Ray, Asok</p> <p>2010-03-01</p> <p>As our group have recently shown^+, hybrid density functional theory (HDFT) which replaces a fraction (40%) of approximate DFT exchange with exact Hartree-Fock exchange yield structural, magnetic, and electronic properties for Americium-I that are in excellent agreement with experimental data. As a natural progression, ab initio calculations for atomic adsorptions on the (0001) surface of non-magnetic americium have been performed using HDFT. The americium surface is modeled by a seven-layer slab using inversion symmetry consisting of one atom per layer and non-magnetic ABAC stacking arrangement of these layers. Top, bridge, hcp and fcc chemisorption sites have been investigated with energies optimized with respect to the adatom distance from the surface. Details of the chemisorptions processes as well as comparisons of different sites will be presented. ^+ R. Atta-Fynn and A. K. Ray, Chemical Physics Letters, 482, 223-227 (2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4718T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4718T"><span>Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily</p> <p>2015-04-01</p> <p>The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum amplitude at the maximum depth of the net (33cm). To create a stable temperature stratification of the wind, the air entering the flume was heated to 30-40 oC. The water temperature was maintained about 15 degrees. The air flow velocity in the flume corresponded to the 10-m wind speed from 10 to 35 m/s. Turbulent fluxes of heat and momentum and roughness parameters were retrieved from the velocity and temperature profiles measured at the distance 6.5 m from the inlet of the flume and subsequent data processing exploiting the self-similarity of the temperature and velocity profiles. In a result surface drag and heat exchange coefficients and roughness parameters were obtained. Wind wave spectra and integral parameters (significant wave height, mean square slope) were retrieved from measurements by 3-channel array wave gauge by coherent spectral data processing. To estimate the amount of spray in the air flow, a spray marker was introduced using the effect of a sharp decline in film anemometer readings in contact with a droplet. Dependences of the exchange coefficients on the wind speed, wave parameters and the spray marker were obtained. It is shown that the exchange coefficients increase with the wind speed and wave height. It was found, that the sharp increase of the drag and heat exchange coefficients at wind speeds exceeded 25 m/s was accompanied by the emergence and increasing concentration of the spray in the air flow over water. The correlation coefficient between the drag coefficient and the spray marker was about 0.9. Using high-speed video revealed the dominant mechanism for the generation of spray at strong winds. It is shown that it is associated with the development of a special type of instability of the air-water interface, which is known as "bag-breakup instability" in the theory of fragmentation of liquids. The hypothesis is suggested, that the observed increase of surface drag and heat exchange can be attributed to the development of this type of instability. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 13-05-12093, 15-05-) and Alexander Kandaurov, Maxim Vdovin and Olga Ermakova acknowledge partial support from Russian Science Foundation (Agreement No. 14-17-00667).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1261476-surface-oxygen-exchange-rate-linked-bulk-ion-diffusivity-mixed-conducting-ruddlesdenpopper-phases','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1261476-surface-oxygen-exchange-rate-linked-bulk-ion-diffusivity-mixed-conducting-ruddlesdenpopper-phases"><span>Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; ...</p> <p>2015-03-02</p> <p>There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form A n-1A 2'BnO 3n+1, A n-1A 2'BnX 3n+1; LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2) and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1915b0007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1915b0007S"><span>Nonequilibrium processes of segregation and diffusion in metal-polymer tribosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidashov, A. V.; Kolesnikov, I. V.</p> <p>2017-12-01</p> <p>The article presents the results of exchange-diffusion processes between chemical elements in metal-polymer tribosystems (between a metal wheel of a rolling stock and a composite polymer brake shoe). The effect of the segregation processes on the strength characteristics of the working surface of a tribosystem is estimated by quantum chemical calculations, Auger and X-ray photoelectron spectroscopies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.P12E..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.P12E..02K"><span>Loss of Water to Space from Mars: Processes and Implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kass, D. M.</p> <p>2001-12-01</p> <p>One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since most of the water on Mars is likely to be in the form of ice, it is presumably further fractionated by ~ 0.8 due to ice/water vapor interactions. This yields an effective D/H enrichment of ~ 7 for reservoirs in equilibrium with the atmosphere. From a loss to space point of view, Martian water can be divided into three reservoirs. The first is the thin, 10 pr-\\micron, atmospheric water. The second is a global exchangeable reservoir in long term isotopic equilibrium with the atmosphere. This probably encompasses the polar caps, ice in polar layered deposits and any other near surface ice or adsorbed water. The third, more speculative, reservoir is a non-exchanging reservoir (a deep sub-surface cryosphere). In addition, due to the small size of the atmospheric reservoir, difficulty in isotopically equilibrating it with the entire exchangeable reservoir, and the relatively rapid H2 loss rate, there is also an intermediate exchangeable reservoir of ~ 4~mm. This is probably either a surface layer on the polar caps or near surface ice deposits. By assuming an initial terrestrial D/H ratio for Martian water (based on condritic meteorites) and a loss to space of ~ 50~m (based on the total O loss), the size of the exchangeable reservoir can be estimated. Two conceptual models are possible, depending on whether or not the non-exchangeable reservoir replenishes the exchangeable one. Quantitatively, the two models yield almost identical reservoir sizes, ~ 9~m (about the size of the northern polar cap). If, due to slow rate of isotopic diffusion in ice, the exchangeable reservoir actually has the same isotopic enrichment as the atmosphere, it would contain ~ 12~m of water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=229445','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=229445"><span>Simulation of within-canopy radiation exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70004693','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70004693"><span>Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai</p> <p>2011-01-01</p> <p>Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308459&keyword=microsoft+AND+office+AND+2013&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308459&keyword=microsoft+AND+office+AND+2013&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The interconnection of wet and dry deposition and the response of deposition to incorporation of new process understanding in regional models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Process level improvements in the CMAQ system have been made to WRF meteorology, lightning NO production, national ammonia emission profiles, and CMAQ ammonia air-surface exchange. An incremental study was conducted to quantify the impact of individual and combined changes on mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1099a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1099a/report.pdf"><span>The influences of land use and land cover on climate; an analysis of the Washington-Baltimore area that couples remote sensing with numerical simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pease, R.W.; Jenner, C.B.; Lewis, J.E.</p> <p>1980-01-01</p> <p>The Sun drives the atmospheric heat engine by warming the terrestrial surface which in turn warms the atmosphere above. Climate, therefore, is significantly controlled by complex interaction of energy flows near and at the terrestrial surface. When man alters this delicate energy balance by his use of the land, he may alter his climatic environment as well. Land use climatology has emerged as a discipline in which these energy interactions are studied; first, by viewing the spatial distributions of their surface manifestations, and second, by analyzing the energy exchange processes involved. Two new tools for accomplishing this study are presented: one that can interpret surface energy exchange processes from space, and another that can simulate the complex of energy transfers by a numerical simulation model. Use of a satellite-borne multispectral scanner as an imaging radiometer was made feasible by devising a gray-window model that corrects measurements made in space for the effects of the atmosphere in the optical path. The simulation model is a combination of mathematical models of energy transfer processes at or near the surface. Integration of these two analytical approaches was applied to the Washington-Baltimore area to coincide with the August 5, 1973, Skylab 3 overpass which provided data for constructing maps of the energy characteristics of the Earth's surface. The use of the two techniques provides insights into the relationship of climate to land use and land cover and in predicting alterations of climate that may result from alterations of the land surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012036"><span>TEMPUS: A facility for containerless electromagnetic processing onboard spacelab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lenski, H.; Willnecker, R.</p> <p>1990-01-01</p> <p>The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56137&Lab=NERL&keyword=database+AND+academic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56137&Lab=NERL&keyword=database+AND+academic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EMISSION AND SURFACE EXCHANGE PROCESS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This task supports the development, evaluation, and application of emission and dry deposition algorithms in air quality simulation models, such as the Models-3/Community Multiscale Air Quality (CMAQ) modeling system. Emission estimates influence greatly the accuracy of air qual...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H33G1404S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H33G1404S"><span>Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.</p> <p>2011-12-01</p> <p>Karst springs may reverse flow when allogenic runoff increases river stage faster than groundwater heads and may exchange of surface water with groundwater in the surrounding aquifer matrix. Recharged flood water is rich in nutrients, metals, and organic matter and is undersaturated with respect to calcite. Understanding the physical processes controlling this exchange of water is critical to understanding metal cycling, redox chemistry and dissolution in the subsurface. Ultimately the magnitude of conduit-matrix exchange should be governed by head gradients between the conduit and the aquifer which are affected by the hydraulic conductivity of the matrix, conduit properties and antecedent groundwater heads. These parameters are interrelated and it is unknown which ones exert the greatest control over the magnitude of exchange. This study uses MODFLOW-2005 coupled with the Conduit Flow Processes (CFP) package to determine how physical properties of conduits and aquifers influence the magnitude of surface water-groundwater exchange. We use hydraulic data collected during spring reversals in a mapped underwater cave that sources Madison Blue Spring in north-central Florida to explore which factors are most important in governing exchange. The simulation focused on a major flood in 2009, when river stage increased by about 10 meters over 9 days. In a series of simulations, we varied hydraulic conductivity, conduit diameter, roughness height and tortuosity in addition to antecedent groundwater heads to estimate the relative effects of each parameter on the magnitude of conduit-matrix exchange. Each parameter was varied across plausible ranges for karst aquifers. Antecedent groundwater heads were varied using well data recorded through wet and dry seasons throughout the spring shed. We found hydraulic conductivity was the most important factor governing exchange. The volume of exchange increased by about 61% from the lowest value (1.8x10-6 m/d) to the highest value (6 m/d) of matrix hydraulic conductivity. Other factors increased the amount of exchange by 1% or less, with tortuosity (which varied from 1 to 2) being most significant with a 1% increase, followed by conduit diameter (1 to 5 m) and roughness height (0.1 to 5m) with increases in exchange of 0.4% and 0.3% respectively. Antecedent aquifer conditions were also seen to exert important controls on influencing exchange with greater exchange occurring in floods following dry periods than during wet periods. These preliminary results indicate that heterogeneity of the hydraulic conductivity across karst aquifers will control the distribution of flood waters that enter into the aquifer matrix. Because flood waters are typically undersaturated with respect to the carbonate minerals, the location of this infiltrated water into the highest hydraulic conductivity zones should enhance dissolution, thereby increasing hydraulic conductivity in a feedback loop that will enhance future infiltration of floodwater. Portions of the aquifer prone to infiltrating flood water and dissolution will also be most sensitive to contamination from surface water infiltration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14667723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14667723"><span>Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barber, Jonathan L; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C</p> <p>2004-01-01</p> <p>Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons to be made between studies in order to improve our understanding of what causes any differences in measured data between sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1345408-dynamic-stabilization-metal-oxidewater-interfaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1345408-dynamic-stabilization-metal-oxidewater-interfaces"><span>Dynamic Stabilization of Metal Oxide–Water Interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.</p> <p>2017-02-08</p> <p>The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (1102) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locationsmore » and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JChPh.122c4701B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JChPh.122c4701B"><span>Molecular dynamic heterogeneity of confined lipid films by 1H magnetization-exchange nuclear magnetic resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.</p> <p>2005-01-01</p> <p>The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2002S"><span>A study of external heat exchange between the vibrofluidized bed surface and the coolant gas in devices used for spent nuclear fuel regeneration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapozhnikov, B. G.; Gorbunova, A. M.; Zelenkova, Yu O.; Shiriaeva, N. P.</p> <p>2017-10-01</p> <p>The oxidative recrystallization of spent nuclear fuel running in the vibrofluidized bed mode requires a continuous supply or removal of heat, which can be performed using various techniques. The most advantageous of these is supplying a coolant gas over the surface of the vibrofluidized bed. However, the available information about such heat exchange processes is limited. External heat exchange between the surface of the vibrofluidized bed and the blown coolant gas was investigated using fuel simulators, which construction was based on narrow-fraction electrocorundum exhibiting the particle size of dP = 0,07 ÷ 1,25 mm in a device with the diameter of 100 mm and the height of 160 mm according to a stationary technique. The data on the influence of the coolant flow, the amplitude and frequency of vibration, as well as the particle size of the dispersed material were obtained. In order to explain the results obtained, we used data on the pulsations of the gas flow velocities occurring in the vibrofluidized bed and depending on the parameters listed above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1331S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1331S"><span>Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra</p> <p>2017-04-01</p> <p>Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1029/CE053p0155/summary','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1029/CE053p0155/summary"><span>The role of thermal stratification in tidal exchange at the mouth of San Diego Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.</p> <p>1996-01-01</p> <p>We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27639209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27639209"><span>Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin</p> <p>2017-01-05</p> <p>The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51A2018Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51A2018Z"><span>Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, W.; Ek, M. B.; Mitchell, K.</p> <p>2017-12-01</p> <p>Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28870699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28870699"><span>Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin</p> <p>2018-01-01</p> <p>In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23083161','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23083161"><span>Ortho-para-H2 conversion by hydrogen exchange: comparison of theory and experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lique, François; Honvault, Pascal; Faure, Alexandre</p> <p>2012-10-21</p> <p>We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional (de)excitation of H(2) by H. Our calculations are based on the H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. The reactive hydrogen exchange channels are taken into account. We show that the ortho-para and para-ortho conversion of H(2) are significant processes at temperatures above ~300 K and for the last process we provide the first comparison with available experimental rate coefficients between 300 and 444 K. The good agreement between theory and experiment is a new illustration of our detailed understanding of the simplest chemical reaction. The importance of the ortho-para-H(2) conversion by hydrogen exchange in astrophysics is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1416730','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1416730"><span>Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.</p> <p></p> <p>Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70161810','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70161810"><span>Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bullen, Thomas D.; Chadwick, Oliver A.</p> <p>2016-01-01</p> <p>Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that decreasing heaviness of depth-integrated exchangeable Ba in deeper soils with increasing median annual precipitation across the climosequence reflects greater reliance on shallow nutrient sources as site water balance increases. While the Ca, Sr and Ba isotopes considered together were useful in confirming an important role for nutrient biolifting across the climosequence, the Ba isotopes provided the most robust tracer of biolifting and have the greatest potential to find application as an isotopic proxy for P dynamics in soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..306H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..306H"><span>A post-Cassini view of Titan's methane-based hydrologic cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.</p> <p>2018-05-01</p> <p>The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25710385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25710385"><span>Microscopic structure and properties of discrete water layer in Na-exchanged montmorillonite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Emmerich, Katja; Koeniger, Franz; Kaden, Heike; Thissen, Peter</p> <p>2015-06-15</p> <p>In this work, we focus on the atomic structure of the water interlayer of Na-exchanged montmorillonite. For two different surface charge densities, namely -0.086 and -0.172 C/m(2), the adsorption process in the presence of water is described by first principles calculations. We describe the interactions and forces for every water molecule entering the interlayer during the swelling process. In particular, the dielectric permittivity of the water interlayer is calculated. Finally, we confirm our results performing ab initio thermodynamics calculations leading to a wide range of realistic experimental scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1437159','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1437159"><span>Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard</p> <p></p> <p>The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop (STL) facility and s-CO 2 test facility at University of Wisconsin – Madison (UW).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H21J..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H21J..07L"><span>Dynamics of radiocesium exchange and interstratification in anhydrous clay interlayers: Bridging the atom and single crystal scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lammers, L. N.; Pestana, L. R.; Schaettle, K. B.; Head-Gordon, T.</p> <p>2016-12-01</p> <p>High structural charge clay minerals govern the transport and retention of radiocesium in soils and clay-rich geologic repositories. Cation exchange capacities in these phases are typically assumed to be limited to fast-exchanging basal and high-affinity edge sites, while ions in anhydrous interlayers, usually K+, are considered non-exchangeable. However, recent high resolution imaging and spectroscopic studies have demonstrated that Cs ions can in fact exchange with interlayer K without the formation of a hydrated intermediate.1,2 These exchange reactions result in sharp exchange fronts wherein K+ ions are completely replaced by Cs+ at the exchange interface, and the rate of exchange varies from layer to layer, resulting in the formation of interstratified structures (i.e., randomly alternating layers of exchanged and pristine interlayers). Currently, this process cannot be explained by any known exchange mechanism, and consequently, no kinetic expressions are available to account for this phenomenon in models of subsurface radiocesium fate and transport. We present a mesoscale model for direct exchange in anhydrous clay interlayers that is based on the kinetics of single ion migration events. Single atom migration kinetics derived from density functional theory (DFT) calculations are used as inputs to kinetic Monte Carlo (kMC) simulations, which capture the collective dynamics of the exchange process over length- and timescales relevant for implementation in reactive transport models. Potential energy surfaces derived from DFT demonstrate that exchange of Cs+ for K+ in anhydrous interlayers lowers the energy barrier to K ion migration by 145 kJ/mol, leading to a positive feedback mechanism that generates atomically sharp exchange fronts. Our work demonstrates the application of "coarse-graining" techniques to develop models for processes with characteristic length- and timescales not accessible by direct atomistic simulation. 1 Okumura T. et al. (2014) Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy 63(1), 65-72. 2 Fuller A. J. et al. (2015) Caesium incorporation and retention in illite interlayers. Appl. Clay Sci. 108, 128-134.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015756','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015756"><span>Surface energy fluxes at Central Florida during the convection and precipitation electrification experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nie, D.; Demetriades-Shah, T. D.; Kanemasu, E. T.</p> <p>1993-01-01</p> <p>One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz, 1982; Sud and Smith, 1985; Sato et. al, 1989). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al, 1989). In order to better describe the processes in the atmosphere at various scales and improve our ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870034957&hterms=humidification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhumidification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870034957&hterms=humidification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhumidification"><span>Injection of dust into the Martian atmosphere - Evidence from the Viking Gas Exchange experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huguenin, R. L.; Harris, S. L.; Carter, R.</p> <p>1986-01-01</p> <p>The hypothesis that predawn midlatitude storms are triggered by a soil humidification process is examined. A freeze/thaw model of the process is evaluated in the Viking Gas Exchange experiments conducted on Mars. The humidification-driven desorption and desiccation state of Martian soil samples are analyzed. The periodic humidification of equatorial regolith soil is studied in terms of pore space pressure during desorption events and soil diffusivity; the thermal properties of the regolith surface layer are modeled using the program of Clifford (1984). Consideration is given to the diurnal and seasonal cycles of the humidification process, the permanent, low-albedo features in the midlatitudes, and the production of H2SO4 and HCl aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43519','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43519"><span>Uncertainty in eddy covariance flux estimates resulting from spectral attenuation [Chapter 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>W. J. Massman; R. Clement</p> <p>2004-01-01</p> <p>Surface exchange fluxes measured by eddy covariance tend to be underestimated as a result of limitations in sensor design, signal processing methods, and finite flux-averaging periods. But, careful system design, modern instrumentation, and appropriate data processing algorithms can minimize these losses, which, if not too large, can be estimated and corrected using...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610587S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610587S"><span>Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schnieders, Jana; Garbe, Christoph</p> <p>2014-05-01</p> <p>The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat.tmp.2613Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat.tmp.2613Z"><span>Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei</p> <p>2018-04-01</p> <p>According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat..47.3376Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat..47.3376Z"><span>Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei</p> <p>2018-06-01</p> <p>According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......168B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......168B"><span>Surface modification of food contact materials for processing and packaging applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barish, Jeffrey A.</p> <p></p> <p>This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5385T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5385T"><span>Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.</p> <p>2015-04-01</p> <p>Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27460608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27460608"><span>Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fielitz, Peter; Borchardt, Günter</p> <p>2016-08-10</p> <p>In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035273','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035273"><span>Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.</p> <p>2011-01-01</p> <p>Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..196..109C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..196..109C"><span>Water exchange between Algeciras Bay and the Strait of Gibraltar: A study based on HF coastal radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chioua, J.; Dastis, C.; González, C. J.; Reyes, E.; Mañanes, R.; Ruiz, M. I.; Álvarez, E.; Yanguas, F.; Romero, J.; Álvarez, O.; Bruno, M.</p> <p>2017-09-01</p> <p>This study analyses the water mass exchanges at subinertial scale between Algeciras Bay and the adjacent Strait of Gibraltar. The mechanisms triggering this exchange process is investigated with the aid of recently-acquired data on surface currents obtained using a system of HF coastal radars deployed on the eastern side of the Strait, and remotely-sensed images of sea surface temperature (SST) and chlorophyll from the MODIS sensor of the Aqua satellite. HF radar data on surface currents are analyzed by the application of real empirical orthogonal function (EOF) decomposition, which produces three EOF modes explaining more than 70% of the variance of the surface currents at the mouth of the Bay (modes 2, 3, and 6). Mode 2 is related to the fluctuations of the Atlantic Jet in the central zone of the Strait, mainly due to a combined effect of the atmospheric pressure fluctuations in the Western Mediterranean Sea and local wind in the eastern side of the Strait; mode 3 is related to the coastal currents induced by zonal wind forcing on the north-western coast of the Strait and Alboran Sea; and mode 6 seems to be related to water transport induced by winds blowing with a significant north component into and out of the Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25192936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25192936"><span>Vortical ciliary flows actively enhance mass transport in reef corals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman</p> <p>2014-09-16</p> <p>The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ArTh...37..137A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ArTh...37..137A"><span>Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrzejczyk, Rafał; Muszyński, Tomasz</p> <p>2016-12-01</p> <p>The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....10.8415S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....10.8415S"><span>Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-05-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC observations and satellite estimates of phytoplankton growth rates and biomass, suggesting that δ13C can also be a useful test of ecosystem models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910958S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910958S"><span>Oceanus: A New Frontiers orbiter to study Titan's potential habitability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sotin, Christophe; Hayes, Alex; Malaska, Michael; Nimmo, Francis; Trainer, Melissa; Tortora, Paolo</p> <p>2017-04-01</p> <p>The New Frontiers 4 AO includes the theme "Ocean Worlds (Titan and/or Enceladus)" focused on the search for signs of extant life and/or characterizing the potential habitability of Titan and/or Enceladus. The Cassini has demonstrated that Titan is an organic world of two oceans: surface hydrocarbon seas [1,2] that cover part of the north polar region and a deep water ocean [3] that decouples the outer ice crust from an inner core likely composed of hydrated silicates [4]. Oceanus is an orbiter that would follow up on Cassini's amazing discoveries and assess Titan's habitability by following the organics through the methanologic cycle and assessing ex-change processes between the atmosphere, surface, and subsurface. Titan's reduced nitrogen-rich atmosphere operates as an organic factory [5] where heavy organic molecules are produced by a series of reations starting by the photolysis of methane [6,7]. The mass spectrometer will perform high-resolution in situ measurements of the organic material over a large mass range and at different altitudes. It will provide the information required to determine (i) the processes at work to form the heavy molecules, (ii) the functional group pattern of large molecules providing information on their composition. These organics coat Titan's surface and are moved around through a complex source-to-sink sediment transport system analogous to surface processes here on Earth. Titan's 90-95 K surface temperature at 1.5 bar surface pressure permit me-thane and ethane to condense out of the atmosphere and flow as liquids on the surface. As a result, Titan's methane-based hydrologic system produces a rich set of geologic features (dunes, river net-works, polar lakes/seas, etc.). Cassini's observations of this rich geomorphology is hindered by kilometer-scale resolution. Oceanus will take ad-vantage of a narrow atmospheric window at 5 µm to acquire 25 m/pixel (< 100 m resolution) images of Titan diverse surface [8]. The presence of 40Ar, a product of the decay of 40K contained in the silicate core, and methane whose origin is still controversial argue for ex-change processes between the interior and the atmosphere. Like we see here on Earth, these processes will be chronicled in the interaction between geological features on Titan's surface. Oceanus will investigate specific features identified by Cassini as potential candidates for cryvolcanism, impact, and tectonic processes that could facilitate exchange with the interior. Acknowledgments: This work has been per-formed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. References: [1] Stofan E.R. et al. (2007) Nature. [2] Sotin C. et al. (2012) Icarus. [3] Iess L. et al. (2012) Science. [4] Castillo-Rogez J.C. and Lunine J.I. (2010) Geophys. Res. Lett. [5] Coates A.J. et al. (2007) Geophys. Res. Let. [6] Lavvas P. et al. (2008) Planet. Space Sci. [7] Yung Y.L. et al. (1984) Astrophys. J. [8] Sotin C. et al. (2005) Nature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ACP.....4.1125H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ACP.....4.1125H"><span>Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.</p> <p>2004-07-01</p> <p>The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12387392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12387392"><span>Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C</p> <p>2002-10-15</p> <p>Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000064577&hterms=shrubs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dshrubs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000064577&hterms=shrubs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dshrubs"><span>A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.</p> <p>1998-01-01</p> <p>Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014374','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014374"><span>ASIRI: Remote Sensing of Atmospheric Waves and Instabilities (RAWI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>Dynamics, Academic, San Diego, Calif. Fujiwara, M., K. Kita, and T. Ogawa (1998), Stratosphere- troposphere exchange of ozone associated with the... Troposphere down to the Surface during ASIRI-RAWI Campaign, Fourth Symposium on Prediction of the Madden- Julian Oscillation: Processes, Prediction and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5557612','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5557612"><span>Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25402086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25402086"><span>Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing</p> <p>2014-11-17</p> <p>Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....10.5385F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....10.5385F"><span>Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.</p> <p>2013-03-01</p> <p>Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterisation, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.5183F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.5183F"><span>Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.</p> <p>2013-07-01</p> <p>Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2032U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2032U"><span>Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.</p> <p>2017-10-01</p> <p>The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850005886&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dheat%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850005886&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dheat%2Bexchange"><span>Air-sea heat exchange, an element of the water cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chahine, M. T.</p> <p>1984-01-01</p> <p>The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864313"><span>Atmospheric deposition of methanol over the Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher</p> <p>2013-01-01</p> <p>In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12806145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12806145"><span>Mercury exchange at the air-water-soil interface: an overview of methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Fengman; Wang, Qichao; Liu, Ruhai</p> <p>2002-06-12</p> <p>An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175147','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175147"><span>Process for the preparation of organoclays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chaiko, David J.</p> <p>2004-11-23</p> <p>A method for preparing organoclays for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a specific amount of polymeric hydrotrope, ranging from 0.1 to 15 weight percent relative to the weight of the clay, is adsorbed onto the clay surface. Quaternary amine exchange is also performed on the clay to modify the surface hydrophilic/lipophilic balance (HLB) of the clay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JTST...25.1056H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JTST...25.1056H"><span>Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.</p> <p>2016-06-01</p> <p>Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=252856','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=252856"><span>Semiarid ECohydrological Array – SECA 2058</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Southwestern ECohydrology Array (SECA) is a multi-user network that serves to assess biosphere / atmospheric exchange processes, as well as surface hydrology in semiarid ecosystems. SECA is administered through the USDA-ARS Southwest Watershed Research Center and the University of Arizona’s B2 E...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19045033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19045033"><span>The effect of salt on the melting of ice: A molecular dynamics simulation study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Jun Soo; Yethiraj, Arun</p> <p>2008-09-28</p> <p>The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28415028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28415028"><span>The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grunér, M S; Paananen, A; Szilvay, G R; Linder, M B</p> <p>2017-07-01</p> <p>Hydrophobins are surface-active proteins produced by filamentous fungi. They have amphiphilic structures and form multimers in aqueous solution to shield their hydrophobic regions. The proteins rearrange at interfaces and self-assemble into films that can show a very high degree of structural order. Little is known on dynamics of multimer interactions in solution and how this is affected by other components. In this work we examine the multimer dynamics by stopped-flow fluorescence measurements and Förster Resonance Energy Transfer (FRET) using the class II hydrophobin HFBII. The half-life of exchange in the multimer state was 0.9s at 22°C with an activation energy of 92kJ/mol. The multimer exchange process of HFBII was shown to be significantly affected by the closely related HFBI hydrophobin, lowering both activation energy and half-life for exchange. Lower molecular weight surfactants interacted in very selective ways, but other surface active proteins did not influence the rates of exchange. The results indicate that the multimer formation is driven by specific molecular interactions that distinguish different hydrophobins from each other. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29355299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29355299"><span>Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rastogi, Prachi; Palazon, Francisco; Prato, Mirko; Di Stasio, Francesco; Krahne, Roman</p> <p>2018-02-14</p> <p>The surface ligands on colloidal nanocrystals (NCs) play an important role in the performance of NC-based optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). On one hand, the NC emission depends critically on the passivation of the surface to minimize trap states that can provide nonradiative recombination channels. On the other hand, the electrical properties of NC films are dominated by the ligands that constitute the barriers for charge transport from one NC to its neighbor. Therefore, surface modifications via ligand exchange have been employed to improve the conductance of NC films. However, in LEDs, such surface modifications are more critical because of their possible detrimental effects on the emission properties. In this work, we study the role of surface ligand modifications on the optical and electrical properties of CdSe/CdS dot-in-rods (DiRs) in films and investigate their performance in all-solution-processed LEDs. The DiR films maintain high photoluminescence quantum yield, around 40-50%, and their electroluminescence in the LED preserves the excellent color purity of the photoluminescence. In the LEDs, the ligand exchange boosted the luminance, reaching a fourfold increase from 2200 cd/m 2 for native surfactants to 8500 cd/m 2 for the exchanged aminoethanethiol (AET) ligands. Moreover, the efficiency roll-off, operational stability, and shelf life are significantly improved, and the external quantum efficiency is modestly increased from 5.1 to 5.4%. We relate these improvements to the increased conductivity of the emissive layer and to the better charge balance of the electrically injected carriers. In this respect, we performed ultraviolet photoelectron spectroscopy (UPS) to obtain a deeper insight into the band alignment of the LED structure. The UPS data confirm similar flat-band offsets of the emitting layer to the electron- and hole-transport layers in the case of AET ligands, which translates to more symmetric barriers for charge injection of electrons and holes. Furthermore, the change in solubility of the NCs induced by the ligand exchange allows for a layer-by-layer deposition process of the DiR films, which yields excellent homogeneity and good thickness control and enables the fabrication of all the LED layers (except for cathode and anode) by spin-coating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960007722','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960007722"><span>Towards a theory of tropical/midlatitude mass exchange from the earth's surface through the stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartley, Dana</p> <p>1995-01-01</p> <p>The main focus of this work is to understand the dynamics of mass exchange between the tropics and the midlatitudes and to determine any links between tropospheric exchange and that in the stratosphere. We have approached this problem from two different perspectives. The first is aimed towards understanding the troposphere's role in inducing lower stratospheric tropical/midlatitude exchange. For this project we focus on observational analysis of the lower stratosphere to assess the key regions of transport in/out of the tropics and to what extent this transport is driven by tropospheric processes. The second approach is to determine the extent to which stratospheric processes influence the troposphere. In this project we are performing potential vorticity (PV) inversions to assess the winds induced near the tropopause when the stratospheric polar vortex is displaced equatorward. These are each discussed in more detail in the subsections below. Also, we have organized a session on Tropical/Midlatitude Interaction and Transport at the Fall AGU where we will be showing our latest results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..874S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..874S"><span>Observational Studies of Parameters Influencing Air-sea Gas Exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.</p> <p></p> <p>A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121.2216M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121.2216M"><span>Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mezbahuddin, M.; Grant, R. F.; Flanagan, L. B.</p> <p>2016-08-01</p> <p>Improved predictive capacity of hydrology and surface energy exchange is critical for conserving boreal peatland carbon sequestration under drier and warmer climates. We represented basic processes for water and O2 transport and their effects on ecosystem water, energy, carbon, and nutrient cycling in a process-based model ecosys to simulate effects of seasonal and interannual variations in hydrology on peat water content, water table depth (WTD), and surface energy exchange of a Western Canadian fen peatland. Substituting a van Genuchten model (VGM) for a modified Campbell model (MCM) in ecosys enabled a significantly better simulation of peat moisture retention as indicated by higher modeled versus measured R2 and Willmot's index (d) with VGM (R2 0.7, d 0.8) than with MCM (R2 0.25, d 0.35) for daily peat water contents from a wetter year 2004 to a drier year 2009. With the improved peat moisture simulation, ecosys modeled hourly WTD and energy fluxes reasonably well (modeled versus measured R2: WTD 0.6, net radiation 0.99, sensible heat >0.8, and latent heat >0.85). Gradually declining ratios of precipitation to evapotranspiration and of lateral recharge to discharge enabled simulation of a gradual drawdown of growing season WTD and a consequent peat drying from 2004 to 2009. When WTD fell below a threshold of 0.35 m below the hollow surface, intense drying of mosses in ecosys caused a simulated reduction in evapotranspiration and an increase in Bowen ratio during late growing season that were consistent with measurements. Hence, using appropriate water desorption curve coupled with vertical-lateral hydraulic schemes is vital to accurately simulate peatland hydrology and energy balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25081003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25081003"><span>Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Shangbo; Yuan, Xingzhong; Peng, Shuchan; Yue, Junsheng; Wang, Xiaofeng; Liu, Hong; Williams, D Dudley</p> <p>2014-12-01</p> <p>Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..553..188S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..553..188S"><span>High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Reading, Michael J.; Sanders, Christian J.</p> <p>2017-10-01</p> <p>We hypothesise that mangroves play an important role in groundwater exchange processes in sub-tropical and tropical estuarine waters. To investigate this, multiple high resolution time series measurements of radium across a tidal estuary (Coffs Creek, NSW, Australia) were performed as well as a spatial survey in both bottom and surface layers. Results from the spatial survey revealed increasing radium concentrations in parts of the estuary surrounded by mangroves. The average radium concentration in estuary areas lined with mangroves was 2.5 times higher than the average concentration at the mouth of the estuary and 6.5-fold higher than upstream freshwater areas. Additionally, the area enriched in radium coincided with low dissolved oxygen concentrations, implying that porewater exchange may drive anoxia. A radium mass balance model based on 223Ra and 224Ra isotopes at different sections of the estuary confirmed higher porewater exchange rates from areas fringed with mangrove vegetation. Estimated porewater exchange rates were 27.8 ± 5.3 and 13.6 ± 2.1 cm d-1 (0.8 ± 0.1 and 0.4 ± 0.1 m3 s-1) based on 223Ra and 224Ra isotopes, respectively. The average saline porewater exchange was ∼ 10-fold larger than the upstream surface freshwater inputs to the estuary. We suggest that mangrove environments within subtropical estuaries are hotspots for porewater exchange due to the complex belowground structure of crab burrows and the effect of tidal pumping. Because porewater exchange releases carbon and nitrogen from coastal sediments, development and modification of mangrove areas in subtropical estuaries have a significant effect on coastal biogeochemical cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2580H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2580H"><span>Ocean-shelf interaction and exchange (Fridtjof Nansen Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huthnance, John M.</p> <p>2016-04-01</p> <p>A brief review will be given of physical processes where shallow shelf seas border the deep ocean, including waves that travel and propagate responses around the ocean boundary. Some implications for ocean-shelf exchange of water and its physical and biochemical contents will be discussed, along with an outline of some studies estimating these exchanges. There will be an emphasis on the north-west European shelf edge. A recent study is the project FASTNEt: "Fluxes across sloping topography of the North East Atlantic". This aims to resolve seasonal, interannual and regional variations. Novel and varied measurements have been made in three contrasting sectors of shelf edge: the Celtic Sea south-west of Britain, the Malin-Hebrides shelf west of Scotland and the West Shetland shelf north of Scotland. Previous studies established the existence of flow along the continental slope in these areas, more persistently poleward in northern sectors. Modelling aims to diagnose and estimate the contribution of various processes to transports and to exchange along and across the slope. Estimates obtained so far will be presented; overall transport from drifters and moored current meters; effective "diffusivity" from drifter dispersion and salinity surveys; other estimates of velocity variance contributing to exchange. In addition to transport by the along-slope flow, possible process contributions which may be estimated include internal waves and their Stokes drift, tidal pumping, eddies and Ekman transports, in a wind-driven surface layer and in a bottom boundary layer. Overall estimates of exchange across the shelf edge here are large by global standards, several m**2/s (Sverdrups per 1000 km). However, the large majority of this exchange is in tides and other motion of comparably short period, and is only effective for water properties or contents that evolve on a time-scale of a day or less.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21963172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21963172"><span>Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Hui; Liu, Fan; Feng, Xionghan; Liu, Mingming; Tan, Wenfeng; Qiu, Guohong</p> <p>2011-11-30</p> <p>Co-containing birnessites were obtained by ion exchange at different initial concentrations of Co(2+). Ion exchange of Co(2+) had little effect on birnessite crystal structure and micromorphology, but resulted in an increase in specific surface areas from 19.26 to 33.35 m(2)g(-1), and a decrease in both crystallinity and manganese average oxidation state. It was due to that Mn(IV) in the layer structure was reduced to Mn(III) during the oxidation process of Co(2+) to Co(III). The hydroxyl groups on the surface of Co-containing birnessites gradually decreased with an increase of Co/Mn molar ratio owing to the occupance of Co(III) into vacancies and the location of large amounts of Co(2+/3+) and Mn(2+/3+) above/below the vacant sites. This greatly accounted for the monotonous reduction in Pb(2+) adsorption capacity, from 2538 mmol kg(-1) for the unmodified birnessite to 1500 mmol kg(-1) for the Co(2+) ion-exchanged birnessite with a Co/Mn molar ratio of 0.16. The amount of As(III) oxidized by birnessite was enhanced after ion exchange, but the apparent initial reaction rate was greatly decreased. The present work demonstrates that Co(2+) ion exchange has great influence on the adsorption and oxidation behavior of inorganic toxic metal ions by birnessite in water environments. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11207091','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11207091"><span>Heat and water rate transfer processes in the human respiratory tract at various altitudes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kandjov, I M</p> <p>2001-02-01</p> <p>The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime. Copyright 2001 Academic Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28447675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28447675"><span>Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A</p> <p>2017-05-17</p> <p>A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982STIN...8323776M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982STIN...8323776M"><span>Energy saving incineration of waste</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meierzukoecker, H.; Voegtli, R.</p> <p>1982-11-01</p> <p>The machanism and the dimension of the preoxidation of the pollutants in the heat exchanger were investigated. A temperature control system was developed and tested. It is found that the preoxidation in the heat exchanger depends on the peculiarity of the pollutants and is inhibited by inactive walls with increasing of the specific surface. Active materials like copper only promote the oxidation of all pollutants in the low temperature region. Savings of supplemental energy about 25% are possible using process controlled auxiliary firing and combustion enthalpy of pollutants as a substitute for the supplemental energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........30C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........30C"><span>Mixed ionic and electronic conducting membranes for hydrogen generation and separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Hengdong</p> <p></p> <p>Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22594363-inorganic-ligand-exchanging-time-effect-pbs-quantum-dot-solar-cell','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22594363-inorganic-ligand-exchanging-time-effect-pbs-quantum-dot-solar-cell"><span>Inorganic-ligand exchanging time effect in PbS quantum dot solar cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Byung-Sung; Hong, John; Hou, Bo</p> <p>2016-08-08</p> <p>We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbSmore » surface rather hinder high photovoltaic performance of the CQD solar cell.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014695','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014695"><span>Modifying Silicates for Better Dispersion in Nanocomposites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, Sandi</p> <p>2005-01-01</p> <p>An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915477O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915477O"><span>Advancing land surface model development with satellite-based Earth observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo</p> <p>2017-04-01</p> <p>The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31G0546S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31G0546S"><span>The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stiegler, C.; Meijide, A.; June, T.; Knohl, A.</p> <p>2016-12-01</p> <p>Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia. However, despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as El Niño-Southern Oscillation (ENSO) on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event on greenhouse gas exchange and surface energy budget. Measurements are in operation since July 2013 and we assess continuously turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. The full surface energy budget is completed by measurements of radiative components, ground heat fluxes, and soil thermal and hydrological properties. The study is part of a large interdisciplinary project focussing on the ecological and socioeconomic functions of lowland rainforest transformation systems (EFForTS). During the ENSO event, the area experienced a strong drought with decreasing soil moisture and increasing air and surface temperatures. During the peak in September and October 2015, hundreds of fires in the area resulted in strong smoke production decreasing incoming solar radiation and increasing the diffuse fraction. Compared to regular years, the carbon uptake of the oil palm plantation decreased during the ENSO event. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the Bowen-ratio. Overall, the ENSO event resulted in a major anomaly of exchange processes between the oil palm plantation and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874567','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874567"><span>Removal of dissolved and colloidal silica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Midkiff, William S.</p> <p>2002-01-01</p> <p>Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130010098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130010098"><span>Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, J. Brent; Clayson, Carol Anne</p> <p>2013-01-01</p> <p>Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6148686','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6148686"><span>Flue gas desulfurization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Im, K.H.; Ahluwalia, R.K.</p> <p>1984-05-01</p> <p>The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JMS....66..195F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JMS....66..195F"><span>Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO 2 budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fangohr, Susanne; Woolf, David K.</p> <p>2007-06-01</p> <p>One of the dominant sources of uncertainty in the calculation of air-sea flux of carbon dioxide on a global scale originates from the various parameterizations of the gas transfer velocity, k, that are in use. Whilst it is undisputed that most of these parameterizations have shortcomings and neglect processes which influence air-sea gas exchange and do not scale with wind speed alone, there is no general agreement about their relative accuracy. The most widely used parameterizations are based on non-linear functions of wind speed and, to a lesser extent, on sea surface temperature and salinity. Processes such as surface film damping and whitecapping are known to have an effect on air-sea exchange. More recently published parameterizations use friction velocity, sea surface roughness, and significant wave height. These new parameters can account to some extent for processes such as film damping and whitecapping and could potentially explain the spread of wind-speed based transfer velocities published in the literature. We combine some of the principles of two recently published k parameterizations [Glover, D.M., Frew, N.M., McCue, S.J. and Bock, E.J., 2002. A multiyear time series of global gas transfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm. In: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R. (Eds.), Gas Transfer at Water Surfaces, Geophys. Monograph 127. AGU,Washington, DC, 325-331; Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87-94] to calculate k as the sum of a linear function of total mean square slope of the sea surface and a wave breaking parameter. This separates contributions from direct and bubble-mediated gas transfer as suggested by Woolf [Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87-94] and allows us to quantify contributions from these two processes independently. We then apply our parameterization to a monthly TOPEX altimeter gridded 1.5° × 1.5° data set and compare our results to transfer velocities calculated using the popular wind-based k parameterizations by Wanninkhof [Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373-7382.] and Wanninkhof and McGillis [Wanninkhof, R. and McGillis, W., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett., 26(13): 1889-1892]. We show that despite good agreement of the globally averaged transfer velocities, global and regional fluxes differ by up to 100%. These discrepancies are a result of different spatio-temporal distributions of the processes involved in the parameterizations of k, indicating the importance of wave field parameters and a need for further validation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ZPC...232..819G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ZPC...232..819G"><span>Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goroncy, Christian; Saloga, Patrick E. J.; Gruner, Mathias; Schmudde, Madlen; Vonnemann, Jonathan; Otero, Edwige; Haag, Rainer; Graf, Christina</p> <p>2018-05-01</p> <p>For the application of iron oxide nanoparticles from thermal decomposition approaches as contrast agents in magnetic resonance imaging (MRI), their initial hydrophobic ligands have to be replaced by hydrophilic ones. This exchange can influence the surface oxidation state and the magnetic properties of the particles. Here, the effect of the anchor group of three organic ligands, citric acid and two catechols, dihydrocaffeic acid and its nitrated derivative nitro dihydrocaffeic acid on iron oxide nanoparticles is evaluated. The oleate ligands of Fe3O4/γ-Fe2O3 nanoparticles prepared by the thermal decomposition of iron oleate were exchanged against the hydrophilic ligands. X-ray absorption spectroscopy, especially X-ray magnetic circular dichroism (XMCD) measurements in the total electron yield (TEY) mode was used to investigate local magnetic and electronic properties of the particles' surface region before and after the ligand exchange. XMCD was combined with charge transfer multiplet calculations which provide information on the contributions of Fe2+ and Fe3+ at different lattice sites, i.e. either in tetrahedral or octahedral environment. The obtained data demonstrate that nitro hydrocaffeic acid leads to least reduction of the magnetizability of the surface region of the iron oxide nanoparticles compared to the two other ligands. For all hydrophilic samples, the proportion of Fe3+ ions in octahedral sites increases at the expense of the Fe2+ in octahedral sites whereas the percentage of Fe3+ in tetrahedral sites hardly changes. These observations suggest that an oxidation process took place, but a selective decrease of the Fe2+ ions in octahedral sites ions due to surface dissolution processes is unlikely. The citrate ligand has the least oxidative effect, whereas the degree of oxidation was similar for both catechol ligands regardless of the nitro group. Twenty-four hours of incubation in isotonic saline has nearly no influences on the magnetic properties of the nanoparticles, the least on those with the nitrated hydrocaffeic acid ligand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730011415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730011415"><span>Upgrading and extended testing of the MSC integrated water and waste management hardware</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.</p> <p>1972-01-01</p> <p>The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...105.8865H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...105.8865H"><span>Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.</p> <p>2000-04-01</p> <p>We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185675','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185675"><span>Chamber measurement of surface-atmosphere trace gas exchange--Numerical evaluation of dependence on soil interfacial layer, and source/sink products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.</p> <p>2000-01-01</p> <p>We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........17P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........17P"><span>Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palhares, Leticia F.</p> <p></p> <p>The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/12353','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/12353"><span>Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange : an RPSCB Peer Exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-08-01</p> <p>This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A"><span>The potential role of sea spray droplets in facilitating air-sea gas transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, E. L.; Vlahos, P.; Monahan, E. C.</p> <p>2016-05-01</p> <p>For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080040770&hterms=exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080040770&hterms=exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dexchange"><span>What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Snowden, Steven L.</p> <p>2007-01-01</p> <p>Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26927965','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26927965"><span>Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars</p> <p>2016-09-01</p> <p>This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816764O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816764O"><span>Developing multi-tracer approaches to constrain the parameterisation of leaf and soil CO2 and H2O exchange in land surface models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa</p> <p>2016-04-01</p> <p>The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7i5011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7i5011M"><span>VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism presents a unified foundation for the syntheses of nanotubes, primarily carbon nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammad, S. Noor</p> <p>2017-09-01</p> <p>Nanotubes are synthesized almost entirely by metal-catalyst-free and metal-catalyst-mediated non-eutectic mechanism(s). An investigation has been carried out to understand the basics of this mechanism. Various possible chemical and physical processes involved in nanotube synthesis have been researched. Various components and attributes of nanotube synthesis have been evaluated. Phase transitions, alloy formation, porosity, carrier transport and the fundamentals underlying them have been examined. Nanoparticle surfaces conducive to nanotube synthesis have been examined. The role of surface treatment, which includes oxidation, oxygenation, acid treatment, plasma treatment, water treatment, sputtering, etc in creating such surfaces, has been investigated. The role of surface treatment and phase transitions as functions of temperature, pressure, ambient, contaminants, surface amorphicity, etc in creating diffusion paths for the diffusion of growth species for supersaturation and nucleation has been explored. Interdiffusion of catalyst and source materials, and hence exchange of materials, on the nanoparticle surface, have been elucidated. This exchange of materials on catalyst surface appears to add a new dimension to the synthesis kinetics. Integrated together, they reveal a general mechanism for probably all metal-catalyst-free and metal-catalyst-mediated non-eutectic nanotube synthesis. Available experiments strongly support the proposed mechanism; they suggest that this mechanism has a broad appeal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030105556','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030105556"><span>Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.</p> <p>2003-01-01</p> <p>The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data fiom the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo- China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the lowlevel temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......163D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......163D"><span>In Situ Infrared Spectroscopic Studies of Molecular Layer Deposition and Atomic Layer Etching Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DuMont, Jaime Willadean</p> <p></p> <p>In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2151G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2151G"><span>The evaluation of energy efficiency of convective heat transfer surfaces in tube bundles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigoriev, B. A.; Pronin, V. A.; Salohin, V. I.; Sidenkov, D. V.</p> <p>2017-11-01</p> <p>When evaluating the effectiveness of the heat exchange surfaces in the main considered characteristics such as heat flow (Q, Watt), the power required for pumps (N, Watt), and surface area of heat transfer (F, m2). The most correct comparison provides a comparison “ceteris paribus”. Carried out performance comparison “ceteris paribus” in-line and staggered configurations of bundles with a circular pipes can serve as a basis for the development of physical models of flow and heat transfer in tube bundles with tubes of other geometric shapes, considering intertubular stream with attached eddies. The effect of longitudinal and transverse steps of the pipes on the energy efficiency of different configurations would take into account by mean of physical relations between the structure of shell side flow with attached eddies and intensity of transfer processes of heat and momentum. With the aim of energy-efficient placement of tubes, such an approach opens up great opportunities for the synthesis of a plurality of tubular heat exchange surfaces, in particular, the layout of the twisted and in-line-diffuser type with a drop-shaped pipes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3525936','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3525936"><span>Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Koarashi, Jun; Moriya, Koichi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Fujita, Hiroki; Nagaoka, Mika</p> <p>2012-01-01</p> <p>The fate of 137Cs derived from the Fukushima nuclear accident fallout and associated radiological hazards are largely dependent on its mobility in the surface soils of forest ecosystems. Thus, we quantified microbial and adsorptive retentions of 137Cs in forest surface (0–3 cm) soils. The K2SO4 extraction process liberated 2.1%–12.8% of the total 137Cs from the soils. Two soils with a higher content of clay- and silt-sized particles, organic carbon content, and cation exchange capacity showed higher 137Cs extractability. Microbial biomass was observed in all of the soils. However, the 137Cs extractability did not increase after destruction of the microbial biomass by chloroform fumigation, providing no evidence for microbial retention of the Fukushima-fallout 137Cs. The results indicate that uptake of 137Cs by soil microorganisms is less important for retention of potentially mobile 137Cs in the forest surface soils compared to ion-exchange adsorption on non-specific sites provided by abiotic components. PMID:23256039</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CG.....36.1283P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CG.....36.1283P"><span>Improving the scalability of hyperspectral imaging applications on heterogeneous platforms using adaptive run-time data compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plaza, Antonio; Plaza, Javier; Paz, Abel</p> <p>2010-10-01</p> <p>Latest generation remote sensing instruments (called hyperspectral imagers) are now able to generate hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. In previous work, we have reported that the scalability of parallel processing algorithms dealing with these high-dimensional data volumes is affected by the amount of data to be exchanged through the communication network of the system. However, large messages are common in hyperspectral imaging applications since processing algorithms are pixel-based, and each pixel vector to be exchanged through the communication network is made up of hundreds of spectral values. Thus, decreasing the amount of data to be exchanged could improve the scalability and parallel performance. In this paper, we propose a new framework based on intelligent utilization of wavelet-based data compression techniques for improving the scalability of a standard hyperspectral image processing chain on heterogeneous networks of workstations. This type of parallel platform is quickly becoming a standard in hyperspectral image processing due to the distributed nature of collected hyperspectral data as well as its flexibility and low cost. Our experimental results indicate that adaptive lossy compression can lead to improvements in the scalability of the hyperspectral processing chain without sacrificing analysis accuracy, even at sub-pixel precision levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23I1785B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23I1785B"><span>Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.</p> <p>2017-12-01</p> <p>Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.15900017K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.15900017K"><span>Cooling the vertical surface by conditionally single pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor</p> <p>2017-10-01</p> <p>You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597828-formation-periodic-interfacial-misfit-dislocation-array-insb-gaas-interface-via-surface-anion-exchange','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597828-formation-periodic-interfacial-misfit-dislocation-array-insb-gaas-interface-via-surface-anion-exchange"><span>Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai</p> <p></p> <p>The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24143869','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24143869"><span>Review of exchange processes on Ganymede in view of its planetary protection categorization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grasset, O; Bunce, E J; Coustenis, A; Dougherty, M K; Erd, C; Hussmann, H; Jaumann, R; Prieto-Ballesteros, O</p> <p>2013-10-01</p> <p>In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA542667','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA542667"><span>Near-Surface Dispersion and Circulation in the Marmara Sea (MARMARA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>NURC (P.I.s: Drs. S. Besiktepe and J. Chiggiato ) • The NRL Exchange Processes in Ocean Straits (EPOS) project to improve our understanding on the...View/AEGEAN_SEA ) PUBLICATIONS Chiggiato , J., S. Besiktepe, E. Jarosz, J. Book, R. Gerin, P.-M. Poulain and L. Torrisi (2010) Numerical modelling of...EGU2010-2697. Chiggiato , J., S. Besiktepe, E. Jarosz, J. Book, R. Gerin, P.-M. Poulain and L. Torrisi (2010) Numerical modelling of the surface</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22503588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22503588"><span>An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahmoud, Akrama; Hoadley, Andrew F A</p> <p>2012-06-15</p> <p>Hybrid ion exchange electrodialysis, also called electrodeionization (IXED), is a technology in which a conventional ion exchange (IX) is combined with electrodialysis (ED) to intensify mass transfer and to increase the limiting current density and therefore to carry out the treatment process more effectively. It allows the purification of metal-containing waters, as well as the production of concentrated metal salt solutions, which could be recycled. The objective of this paper was to investigate the ability of the IXED technique for the treatment of acidified copper sulphate solutions simulating rinsing water of copper plating lines. A single-stage IXED process at lab-scale with a small bed of ion exchanger resin with a uniform composition was evaluated, and the treatment performance of the process was thoroughly investigated. The IXED stack was assembled as a bed layered with the ion exchanger resin (strong acid cation-exchange Dowex™) and inert materials. The stack configuration was designed to prevent a non-uniform distribution of the current in the bed and to allow faster establishment of steady-state in the cell for IXED operation. The influence of operating conditions (e.g. ion exchanger resin with a cross-linking degree from 2 to 8% DVB, and current density) on IXED performance was examined. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of IXED on (i) the abatement yield of the metal cation, which is a fundamental purification parameter and an excellent indicator of the extent of IXED, (ii) the current yield or the efficiency of copper transport induced by the electrical field and (iii) the energy consumption. The experimental results showed that the performance at steady-state of the IXED operation with a layered bed remained modest, because of the small dimension of the bed and notably the current efficiency varied from 25 to 47% depending on the conditions applied. The feasibility of using the IXED in operations for removal of heavy metals from moderately dilute rinsing waters was successfully demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169031','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169031"><span>The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.</p> <p>2016-01-01</p> <p>Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry season. These findings highlight the important role that both tidal- and seasonal-scale forcings play on groundwater movement in low-gradient hydrologic systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..90s5416I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..90s5416I"><span>Importance of considering helium excited states in He+ scattering by an aluminum surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iglesias-García, A.; García, Evelina A.; Goldberg, E. C.</p> <p>2014-11-01</p> <p>The He+/Al system is a very interesting projectile-surface combination which was thought initially as an example of a pure Auger neutralization mechanism. Then, because of the measured reionization explained by the antibonding interaction of the projectile state with the core target states, the resonant charge exchange with the band states was considered as another important contribution to the neutralization. Nevertheless, by only considering the neutralization to the ground state of helium, the measured ion survival probability is still overestimated. On the other hand, measurements of electron emission from an Al surface bombarded by He positive ions suggested the possibility of occupied excited states of helium due to the ion-surface collision. In this work, we also include the excited states of He within the time-dependent scattering process in which both neutralization mechanisms, resonant and Auger, are simultaneously contemplated. Our starting point is a multiorbital Anderson Hamiltonian projected over the selected space of ground and excited atomic configurations. An extra term related to the Auger mechanism is added to this Hamiltonian. A difference with previous works is that this approach includes the electron spin and, therefore, the spin fluctuation statistics in the charge-exchange process is correctly taken into account. We find a notable improvement in the agreement with the experiments and also that the interference between both mechanisms is not dramatic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MARX17005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MARX17005B"><span>Robust isothermal electric control of exchange bias at room temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Binek, Christian</p> <p>2011-03-01</p> <p>Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia (0001) surface magnetization and provide a coherent interpretation of our results on robust isothermal electric control of exchange bias. The latter promise a new route towards purely voltage-controlled spintronics and an exciting way to electrically control magnetism. Financial support by NSF through Nebraska MRSEC, SRC/NSF Supplement to Nebraska MRSEC, CAREER DMR-0547887, NRI, and Cottrell Research Corporation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMMM..393..239N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMMM..393..239N"><span>Memory effect versus exchange bias for maghemite nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nadeem, K.; Krenn, H.; Szabó, D. V.</p> <p>2015-11-01</p> <p>We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740057434&hterms=CO2+H2O&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCO2%2BH2O','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740057434&hterms=CO2+H2O&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCO2%2BH2O"><span>Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fanale, F. P.; Cannon, W. A.</p> <p>1974-01-01</p> <p>Estimates have been made of the capacity of the Martian regolith to exchange adsorbed H2O and CO2 with the atmosphere-plus-cap system (APCS). These estimates are based upon measured isotherms for H2O and CO2 adsorption on pulverized basalt at low temperatures and on theoretical considerations. A unit column (1 sq cm) of regolith with a deep subsurface temperature of -77 C, considered average for the disk, will contain about 0.4 g of adsorbed CO2 and about 1 g of adsorbed H2O per meter of depth. Under favorable circumstances the top 3 cm can exchange much more H2O with the lower atmosphere each day than is necessary to produce the diurnal brightening. The process appears to be seasonally reversible. The total regolith may contain, in the adsorbed phase alone, as much as 1% of the H2O and 5% of the CO2 surface inventories expected for a hypothetical Mars that has experienced degassing as intensive as that of earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873533','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873533"><span>Uniform-burning matrix burner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bohn, Mark S.; Anselmo, Mark</p> <p>2001-01-01</p> <p>Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21121352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21121352"><span>Nanosilver particle formation on a high surface area titanate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M</p> <p>2010-12-01</p> <p>Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030994','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030994"><span>Integrated Heat Exchange For Recuperation In Gas Turbine Engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-12-01</p> <p>exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat...transfer coefficients in turbomachinery are extremely high, making this possible. Heat transfer between the turbine and compressor blade surfaces could be...exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat transfer</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19746709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19746709"><span>Role of interlayer hydration in lincomycin sorption by smectite clays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui</p> <p>2009-08-15</p> <p>Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT........49O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT........49O"><span>The energy balance of an urban area: Examining temporal and spatial variability through measurements, remote sensing and modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Offerle, Brian</p> <p></p> <p>Urban environmental problems related to air quality, thermal stress, issues of water demand and quality, all of which are linked directly or indirectly to urban climate, are emerging as major environmental concerns at the start of the 21st century. Thus there are compelling social, political and economic, and scientific reasons that make the study and understanding of the fundamental causes of urban climates critically important. This research addresses these topics through an intensive study of the surface energy balance of Lodz, Poland. The research examines the temporal variability in long-term measurements of urban surface-atmosphere exchange at a downtown location and the spatial variability of this exchange over distinctly different neighborhoods using shorter-term observations. These observations provide the basis for an evaluation of surface energy balance models. Monthly patterns in energy exchange are consistent from year-to-year with variability determined by net radiation and the timing and amount of precipitation. Spatial variability can be determined from plan area fractions of vegetation and impervious surface, though heat storage exerts a strong control on shorter term variability of energy exchange, within and between locations in an urban area. Anthropogenic heat fluxes provide most of the energy driving surface-atmosphere exchange in winter, From a modeling perspective, sensible heat fluxes can be reliably determined from radiometrically sensed surface temperatures and spatially representative surface-atmosphere exchange in an urban area can be determined from satellite remote sensing products. Models of the urban surface energy balance showed good agreement with mean values of energy exchange and under most conditions represented the temporal variability due to synoptic and shorter time scale forcing well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..893.1237G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..893.1237G"><span>Inter-Wire Antiferromagnetic Exchange Interaction in Ni/Si-Ferromagnetic/Semiconductor Nanocomposites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granitzer, P.; Rumpf, K.; Hofmayer, M.; Krenn, H.; Pölt, P.; Reichmann, A.; Hofer, F.</p> <p>2007-04-01</p> <p>A matrix of mesoporous silicon offering an array of quasi 1-dimensional oriented pores of high aspect ratio perpendicular to the sample surface has been produced. This porous silicon (PS) skeleton is filled with Ni in a further process-step to achieve ferromagnetic metallic nanostructures within the channels. This produced silicon based nanocomposite is compatible with state-of-the-art silicon technology. Beside the vertical magnetic surface anisotropy of this Ni-filled composite the nearly monodisperse distribution of pore diameters and its regular arrangement in a quasi 2-dimensional lattice provides novel magnetic phenomena like a depression of the magnetization curve at magnetic fields beyond 2T, which can be interpreted as a field induced antiferromagnetic exchange interaction between Ni-wires which is strongly influenced by magnetostrictive stresses at the Ni/Si-interface. 2007 American Institute of Physics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8083441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8083441"><span>Effect of grinding and fluoride-gel exposure on strength of ion-exchanged porcelain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anusavice, K J; Hojjatie, B; Chang, T C</p> <p>1994-08-01</p> <p>Strengthening of dental porcelain through a diffusion heat treatment at 450 degrees C of a potassium-enriched, ion-exchange surface coating has been demonstrated in several recent studies. However, little attention has been focused on the potential strength reduction of these materials when the treated surfaces are ground or etched under clinically simulated conditions. The objective of this study was to test the hypothesis that partial removal of the surface layers of ion-exchanged porcelains by grinding or exposure to acidulated fluoride gel will significantly reduce their flexure strength. Nine groups of body porcelain disks were ion-exchanged at 450 degrees C for 30 min. One of these groups was subjected to ion exchange and no further surface treatment. Eight specimen groups were subjected to the following procedures after ion exchange: grinding to depths of 50 microns, 100 microns, 150 microns, 200 microns, and 250 microns, and exposure to acidulated fluoride for 30 min, 60 min, and 300 min. A tenth group (FC) was fired at 960 degrees C and fast-cooled in air, but the disks were not subjected to the ion-exchange treatment. Surface stress was calculated from measured values of cracks induced in the treated surfaces. Fluoride exposure for up to 60 min resulted in a significant decrease in surface compression (P < or = 0.05), although this treatment had no effect on strength. Grinding to a depth of from 100 microns to 250 microns caused a significant decrease in strength, while removal of a 50-microns layer caused no significant change (P > 0.05).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998ApJ...507..339H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998ApJ...507..339H"><span>Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hannestad, Steen; Raffelt, Georg</p> <p>1998-11-01</p> <p>Elastic scattering on nucleons, νN --> Nν, is the dominant supernova (SN) opacity source for μ and τ neutrinos. The dominant energy- and number-changing processes were thought to be νe- --> e-ν and νν¯<-->e+e- until Suzuki showed that the bremsstrahlung process νν¯NN<-->NN was actually more important. We find that for energy exchange, the related ``inelastic scattering process'' νNN<-->NNν is even more effective by about a factor of 10. A simple estimate implies that the νμ and ντ spectra emitted during the Kelvin-Helmholtz cooling phase are much closer to that of ν¯e than had been thought previously. To facilitate a numerical study of the spectra formation we derive a scattering kernel that governs both bremsstrahlung and inelastic scattering and give an analytic approximation formula. We consider only neutron-neutron interactions; we use a one-pion exchange potential in Born approximation, nonrelativistic neutrons, and the long-wavelength limit, simplifications that appear justified for the surface layers of an SN core. We include the pion mass in the potential, and we allow for an arbitrary degree of neutron degeneracy. Our treatment does not include the neutron-proton process and does not include nucleon-nucleon correlations. Our perturbative approach applies only to the SN surface layers, i.e., to densities below about 1014 g cm-3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090032075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090032075"><span>Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsai, Chung-Yi; Alexander, Jerry</p> <p>2009-01-01</p> <p>A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486192-observation-elimination-broken-symmetry-l1-sub-fept-nanostructures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486192-observation-elimination-broken-symmetry-l1-sub-fept-nanostructures"><span>Observation and elimination of broken symmetry in L1{sub 0} FePt nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Quarterman, P.; Wang, Hao; Qiu, Jiao-Ming</p> <p>2015-12-07</p> <p>An unexplained surface anisotropy effect was observed and confirmed in the magnetization reversal process of both L1{sub 0} phase FePt nanoparticles with octahedral shape and (001) textured L1{sub 0} FePt thin films with island nanostructures. We suggest that the nature of the observed surface effect is caused by broken symmetry on the FePt surface, which results in weakened exchange coupling for surface atoms. Furthermore, we propose, and experimentally demonstrate, a method to repair the broken symmetry by capping the FePt islands with a Pt layer, which could prove invaluable in understanding fundamental limitations of magnetic nanostructures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19788272','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19788272"><span>Making Mn substitutional impurities in InAs using a scanning tunneling microscope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A</p> <p>2009-12-01</p> <p>We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1129017','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1129017"><span>Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu</p> <p>2014-04-01</p> <p>A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.5793S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.5793S"><span>Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-09-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC observations and satellite estimates of phytoplankton growth rates and biomass, suggesting that δ13C can also be a useful test of ecosystem models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21046431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21046431"><span>Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cha, Jihoon; Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Moon, Deok Hyun; Khim, Jeehyeong</p> <p>2011-01-01</p> <p>This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24167510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24167510"><span>"Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burkhardt, Juergen; Hunsche, Mauricio</p> <p>2013-01-01</p> <p>"Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335106&keyword=ammonia&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335106&keyword=ammonia&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Investigation of ammonia air-surface exchange processes in a deciduous montane forest in the southeastern U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implicati...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=113543&keyword=Ford&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=113543&keyword=Ford&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=280754&keyword=english+AND+o+AND+level&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=280754&keyword=english+AND+o+AND+level&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The Influence on CMAQ Modeled Wet and Dry Deposition of Advances in the CMAQ Systems for Meteorology and Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Process level improvements in the CMAQ system have been made to WRF meteorology, national ammonia emission profiles, and CMAQ ammonia air-surface exchange. An incremental study was conducted to quantify the impact of individual and combined changes on modeled inorganic depositio...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChPhL..35a6101L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChPhL..35a6101L"><span>Surface Carbonization of GaN and the Related Structure Evolution during the Annealing Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jin-Long; Chen, Liang-Xian; Wei, Jun-Jun; Hei, Li-Fu; Zhang, Xu; Li, Cheng-Ming</p> <p>2018-01-01</p> <p>Not Available Supported by the National Natural Science Foundation of China under Grant No 51402013, the National Key Research and Development Program of China under Grant No 2016YFE0133200, and the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme under Grant No 734578.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010P%26SS...58..166O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010P%26SS...58..166O"><span>SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.; The Serena Team</p> <p>2010-01-01</p> <p>'Search for Exospheric Refilling and Emitted Natural Abundances' (SERENA) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). It will investigate Mercury's complex particle environment that is composed of thermal and directional neutral atoms (exosphere) caused by surface release and charge-exchange processes, and of ionized particles caused by photo-ionization of neutrals as well by charge exchange and surface release processes. In order to investigate the structure and dynamics of the environment, an in-situ analysis of the key neutral and charged components is necessary, and for this purpose the SERENA instrument shall include four units: two neutral particle analyzers (Emitted Low Energy Neutral Atoms (ELENA) sensor and Start from a Rotating FIeld mass spectrometer (STROFIO)) and two ion spectrometers (Miniature Ion Precipitation Analyzer (MIPA) and Planetary Ion Camera (PICAM)). The scientific merits of SERENA are presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28266746','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28266746"><span>High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon</p> <p>2017-05-01</p> <p>Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865790','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865790"><span>Minimum wear tube support hole design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Glatthorn, Raymond H.</p> <p>1986-01-01</p> <p>A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.803a2122P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.803a2122P"><span>Software for storage and processing coded messages for the international exchange of meteorological information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popov, V. N.; Botygin, I. A.; Kolochev, A. S.</p> <p>2017-01-01</p> <p>The approach allows representing data of international codes for exchange of meteorological information using metadescription as the formalism associated with certain categories of resources. Development of metadata components was based on an analysis of the data of surface meteorological observations, atmosphere vertical sounding, atmosphere wind sounding, weather radar observing, observations from satellites and others. A common set of metadata components was formed including classes, divisions and groups for a generalized description of the meteorological data. The structure and content of the main components of a generalized metadescription are presented in detail by the example of representation of meteorological observations from land and sea stations. The functional structure of a distributed computing system is described. It allows organizing the storage of large volumes of meteorological data for their further processing in the solution of problems of the analysis and forecasting of climatic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H42F..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H42F..04M"><span>Recent developments and emergent challenges in Ecohydrology: Focus on the belowground frontier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mackay, D. S.</p> <p>2017-12-01</p> <p>The broad spectrum of ecohydrology issues touch on many areas of research in hydrology. But what are the emerging themes and challenges that represent the core of ecohydrology as a maturing discipline? To answer this question the ecohydrology lens was applied to manuscripts published in Water Resources Research over period of 2015 through July 2017. The 235 manuscripts retrieved can be broadly grouped into catchment hydrology, riparian-hyporheic-stream processes, critical zone, land-atmosphere exchange, wetlands, and sustainability. Three dominant crosscutting themes (i.e., coevolution, interfaces, and energy exchange) account for more than half the papers retrieved. In the context of ecohydrology, coevolution refers to the development of physical systems in concert with biological systems and their interactions. In an ecohydrology context, interfaces refer to subsurface, and sometime surface connections that influence transport (e.g., solutes concentration-discharge) influenced by vegetative plumbing, ecophysiology, animal behavior, and microbial processes. Energy exchange in ecohydrology connects vegetative processes to movement of water to the atmosphere through evapotranspiration. Across these themes there is emerging theory and methodology that emphasizes the integrated roles of biology and hydrology in the subsurface. In particular, there is a notable surge of interest in the role of plant roots on subsurface processes. But these are hard to observe and remain challenging to model. By adopting principles of coevolution, in particular, significant advances will be made in modeling plant roots and their depths, corroborated with new geophysical and tracer tools, for improving understanding of critical zone development, subsurface flow processes, and land-atmosphere energy exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7206896-evaluation-direct-exchange-areas-cylindrical-enclosure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7206896-evaluation-direct-exchange-areas-cylindrical-enclosure"><span>Evaluation of direct-exchange areas for a cylindrical enclosure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sika, J.</p> <p>1991-11-01</p> <p>This paper reports on a method for calculating the radiative heat transfer direct-exchange areas for surface-to-surface, volume-to-surface, and volume-to-volume pairs of zones in axisymmetric cylindrical geometries. With this method the calculation of the direct-exchange areas can be transformed from the original four-, five-, and sixfold integrals in the defining relations to just single and/or double integrals. Gray gas with absorption coefficient K is assumed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26672387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26672387"><span>Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D</p> <p>2016-09-01</p> <p>This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5189J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5189J"><span>Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto; Parmentier, Frans-Jan W.; Wik, Martin; Crill, Patrick; Friborg, Thomas</p> <p>2017-11-01</p> <p>Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33 % of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/971675','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/971675"><span>A Coupled THMC model of FEBEX mock-up test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zheng, Liange; Samper, Javier</p> <p>2008-09-15</p> <p>FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model ofmore » the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ACPD....4.1339H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ACPD....4.1339H"><span>Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.</p> <p>2004-03-01</p> <p>The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22405471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22405471"><span>Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Lei; Yang, Kun; Jiang, Wei; Du, Peng; Xing, Baoshan</p> <p>2012-06-01</p> <p>In this work, the influence of particle size and surface functional groups on the adsorption behavior of bovine serum albumin (BSA) by three types of oxide nanoparticles (NPs), TiO(2) (50±5 nm), SiO(2) (30±5 nm), and Al(2)O(3) (150±5 nm for α type and 60±5 nm for γ type) was investigated in deionized water, in order to explore their interaction mechanisms without competitive influence of other ions. Bulkparticles (BPs) were also used for comparison with NPs. BSA adsorption maxima on oxide particles were controlled by the surface area and hydrogen content, while adsorption process was primarily induced by electrostatic interaction, hydrophobic interaction and ligand exchange between BSA and oxide surfaces. With the increase of hydrogen content, the BSA adsorption mechanism switched from mainly hydrophobic interaction to hydrogen bonding and ligand exchange. Calculations, based on surface area and BSA size, suggested that a multilayer of BSA covered on α-Al(2)O(3), and single layer on the other oxide particle surfaces. BPs led to greater conformational change of BSA molecules after the adsorption on the surfaces of oxide particles though NPs adsorbed more BSA than BPs. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4650330','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4650330"><span>Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lončar, Nikola; Slavić, Marinela Šokarda; Vujčić, Zoran; Božić, Nataša</p> <p>2015-01-01</p> <p>Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L−1 was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth. PMID:26492875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020050253&hterms=ab-initio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dab-initio','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020050253&hterms=ab-initio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dab-initio"><span>Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)</p> <p>1997-01-01</p> <p>Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1233528','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1233528"><span>Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fischer, ML; Biraud, SC</p> <p>2015-05-01</p> <p>Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO2 mixing ratios. Radon-222 (222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1232638','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1232638"><span>Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fischer, ML; Biraud, SC; Hirsch, A</p> <p>2015-05-01</p> <p>Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO 2 mixing ratios). The radioisotope radon-222 ( 222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17653933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17653933"><span>Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eguía, Emilio; Trueba, Alfredo; Girón, Alfredo; Río-Calonge, Belén; Otero, Félix; Bielva, Carlos</p> <p>2007-01-01</p> <p>Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6053F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6053F"><span>Physicochemical signatures of natural surfactant sea films from coastal Middle Adriatic stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frka, Sanja; Pogorzelski, Stanislaw; Kozarac, Zlatica; Ćosović, Božena</p> <p>2013-04-01</p> <p>Boundary layers between different environmental compartments represent critical interfaces for biological, chemical and physical processes. The sea surface microlayer (SSM) as a top layer of the sea surface represents natural interface between the atmosphere and ocean. Although < 1 mm in thickness the SML plays a key role in the global biogeochemical cycling because all gaseous, liquid and particulate materials must pass through this interface when exchanging between the ocean and the atmosphere. The SSM thus represents a very important driver enhancing air-water exchange processes. A variety of natural and anthropogenic organic compounds, particularly those which are surface active (SA) are generally enriched in the SML. It is widely acknowledged that the SSM is complex matrix of SA organics as carbohydrates, proteins, lipids and humic substances. Although lipid material is much less abundant than carbohydrates and proteins in the SML, their contribution to surface activity may be disproportionately large. The surfactant films at the air-sea interface change its physicochemical properties reducing air-sea exchange possesses by impeding molecular diffusion across the interface and influencing the hydrodynamic characteristics of water motion at the interface. Various biological, chemical and physical processes lead to the alteration of the film chemical composition, surface physical properties, surface concentration and spatial distribution of film-forming components. Instead of analyzing its chemical composition, it should be possible to scale the SML surface pressure-area (π-A) isotherms in terms of structural parameters which appear to be a sensitive and quantitative measure of the film physicochemical composition, surface concentration and miscibility of its film-forming components. We will present a large data set obtained by electrochemical and monolayer techniques, accompanied with the novel scaling approach for physicochemical characterization of SA substances of the natural microlayers from coastal Middle Adriatic stations including saline Rogoznica Lake and Krka river estuarine station. Higher primary production during late spring-early autumn is reflected in the presence of microlayers of higher surfactant activity containing on average molecules of lower molecular masses (Mw=0.65±0.27 kDa) and higher miscibility (y=6.46±1.33) and elasticity (E=18.33±2.02 mN/m) modulus in comparison to structural parameters (average Mw=2.15±1.58 kDa; y=3.51±1.46; E=6.41±1.97 mN/m) obtained for microlayers from period of lower organic matter production. Higher inhibition effect on the reduction process of cadmium ions is observed for natural microlayers abundant with SA material from more productive period. This kind of distribution is explained as the consequence of competitive adsorption of hydrophobic lipid-like substances of lower Mw which highly influence the surface structural properties of natural air-water interface forming there segregated surface films during more productive period. This study will offer different perspective on contemporary SML concept taking into account the lipids that act as end-members highly influencing seasonal change of SA concentration and surface structural properties of natural films at the air-water interface.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AcGeo..60.1589H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AcGeo..60.1589H"><span>A new approach to define surface/sub-surface transition in gravel beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William</p> <p>2012-12-01</p> <p>The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H42A..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H42A..05D"><span>Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day-Lewis, F. D.; Slater, L. D.; Johnson, T.</p> <p>2012-12-01</p> <p>Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19863115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19863115"><span>Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F</p> <p>2010-01-14</p> <p>The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMiMi..25b7003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMiMi..25b7003H"><span>Internal passivation of Al-based microchannel devices by electrochemical anodization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.</p> <p>2015-02-01</p> <p>Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996ApPhL..68.1510B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996ApPhL..68.1510B"><span>Kinetic modeling of microscopic processes during electron cyclotron resonance microwave plasma-assisted molecular beam epitaxial growth of GaN/GaAs-based heterostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.</p> <p>1996-03-01</p> <p>Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvB..85k5124Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvB..85k5124Q"><span>Asymptotic behavior of the Kohn-Sham exchange potential at a metal surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Zhixin</p> <p>2012-03-01</p> <p>The asymptotic structure of the Kohn-Sham exchange potential vx(r) in the classically forbidden region of a metal surface is investigated, together with that of the Slater exchange potential VxS(r) and those of the approximate Krieger-Li-Iafrate VxKLI(r) and Harbola-Sahni Wx(r) exchange potentials. Particularly, the former is shown to have the form of vx(z→∞)=-αx/z with αx a constant dependent only of bulk electron density. The same result in previous work is thus confirmed; in the meanwhile, a controversy raised recently gets resolved. The structure of the exchange hole ρx(r,r') is examined, and the delocalization of it in the metal bulk when the electron is at large distance from the metal surface is demonstrated with analytical expressions. The asymptotic structures of vx(r), VxS(r), VxKLI(r), and Wx(r) at a slab metal surface are also investigated. Particularly, vx(z→∞)=-1/z in the slab case. The distinction, in this respect, between the semi-infinite and the slab metal surfaces is elucidated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1247947','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1247947"><span>Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung</p> <p>2015-12-17</p> <p>Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..555...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..555...15W"><span>Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming</p> <p>2017-12-01</p> <p>Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1339391-precise-determination-water-exchanges-mineral-surface','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1339391-precise-determination-water-exchanges-mineral-surface"><span>Precise determination of water exchanges on a mineral surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; ...</p> <p>2016-10-03</p> <p>Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO 4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but asmore » temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Ba aq 2+ is 208 ps and SO 4aq 2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H33C1612H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H33C1612H"><span>Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, J. W.; Gomez-Velez, J. D.</p> <p>2015-12-01</p> <p>River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by vertical exchange beneath small bedforms throughout river networks. Future implementations of NEXSS will expand the model to consider flow variation and to consider HEFs beyond hyporheic flow to include exchange with marginal surface waters such as riparian wetlands, floodplains, and ponded water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25252174','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25252174"><span>Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam</p> <p>2014-11-14</p> <p>Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25968278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25968278"><span>Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping</p> <p>2015-05-01</p> <p>The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.1379C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.1379C"><span>Technical Note: A simple method for air-sea gas exchange measurements in mesocosms and its application in carbon budgeting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czerny, J.; Schulz, K. G.; Ludwig, A.; Riebesell, U.</p> <p>2013-03-01</p> <p>Mesocosms as large experimental units provide the opportunity to perform elemental mass balance calculations, e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Here, we present a simple method for precise determination of air-sea gas exchange in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, transfer velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic KOSMOS (Kiel Off Shore Mesocosms for future Ocean Simulation) experiment as an exemplary dataset, it is shown that the presented method improves accuracy of carbon budget estimates substantially. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100026667','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100026667"><span>A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Juhasz, Albert J.</p> <p>2010-01-01</p> <p>Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100037206','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100037206"><span>A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Juhasz, Albert J.</p> <p>2010-01-01</p> <p>Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28826031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28826031"><span>Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping</p> <p>2018-01-01</p> <p>A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.9403V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.9403V"><span>Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.</p> <p>2014-09-01</p> <p>The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1332703V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1332703V"><span>Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.</p> <p>2013-12-01</p> <p>The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=211903&keyword=Biosphere&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=211903&keyword=Biosphere&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Description and Initial Simulation of a Dynamic Bidirectional Air-Surface Exchange Model for Mercury in Community Multiscale Air Quality Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Emissions of elemental mercury (Hg<SUP>0</SUP>) from natural processes are believed to be as large as anthropogenic mercury emissions and are a critical source required to model the transport and fate of mercury. Recent ecosystem scale measurements indicate that a fraction of rec...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10621E..27P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10621E..27P"><span>Evaluation and testing of image quality of the Space Solar Extreme Ultraviolet Telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Jilong; Yi, Zhong; Zhou, Shuhong; Yu, Qian; Hou, Yinlong; Wang, Shanshan</p> <p>2018-01-01</p> <p>For the space solar extreme ultraviolet telescope, the star point test can not be performed in the x-ray band (19.5nm band) as there is not light source of bright enough. In this paper, the point spread function of the optical system is calculated to evaluate the imaging performance of the telescope system. Combined with the actual processing surface error, such as small grinding head processing and magnetorheological processing, the optical design software Zemax and data analysis software Matlab are used to directly calculate the system point spread function of the space solar extreme ultraviolet telescope. Matlab codes are programmed to generate the required surface error grid data. These surface error data is loaded to the specified surface of the telescope system by using the communication technique of DDE (Dynamic Data Exchange), which is used to connect Zemax and Matlab. As the different processing methods will lead to surface error with different size, distribution and spatial frequency, the impact of imaging is also different. Therefore, the characteristics of the surface error of different machining methods are studied. Combining with its position in the optical system and simulation its influence on the image quality, it is of great significance to reasonably choose the processing technology. Additionally, we have also analyzed the relationship between the surface error and the image quality evaluation. In order to ensure the final processing of the mirror to meet the requirements of the image quality, we should choose one or several methods to evaluate the surface error according to the different spatial frequency characteristics of the surface error.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194502','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194502"><span>Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,</p> <p>2017-01-01</p> <p>The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411868P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411868P"><span>Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.</p> <p>2017-12-01</p> <p>The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22429694-experimental-investigation-hydrogen-cryogenic-distillation-equipped-package-made-icit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22429694-experimental-investigation-hydrogen-cryogenic-distillation-equipped-package-made-icit"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bornea, A.; Zamfirache, M.; Stefan, L.</p> <p></p> <p>ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, themore » installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1371485-chemical-weathering-layered-ni-rich-oxide-electrode-materials-evidence-cation-exchange','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1371485-chemical-weathering-layered-ni-rich-oxide-electrode-materials-evidence-cation-exchange"><span>Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.; ...</p> <p>2017-05-13</p> <p>Lithiated ternary oxides containing nickel, cobalt, and manganese are intercalation compounds that are used as positive electrodes in high-energy lithium-ion batteries. These materials undergo compositional changes that adversely affect their cycling performance when they are stored in humid air or exposed to moisture. There is a new urgency to better understanding of these “weathering” processes as manufacturing moves towards a more environmentally benign aqueous processing of the positive electrode. Delithiation in the oxide subsurface regions and the formation of lithium salts (such as hydroxides and carbonates) coating the surface, have been suggested as chemical drivers for these processes, but themore » mechanistic details remain poorly known. The redox reactions which follow oxide delithiation are believed to cause all of the observed transformations. In this article we suggest another possibility: namely, the proton – lithium exchange. We argue that this hypothesis provides a simple, comprehensive rationale for our observations from X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and electrochemical measurements. These observations include contraction of the c-axis (unit cell) lattice parameter, strain in the crystalline oxide bulk, directionality of the chemical damage, formation of amorphous surface films, and the partial recovery of capacity loss by electrochemical relithiation of the material. Lastly, these effects need to be mitigated before aqueous processing of the positive electrode can find widespread adoption during cell manufacturing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/913185','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/913185"><span>DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>JOCHEN, R.M.</p> <p>2007-08-02</p> <p>The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting themore » six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28768415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28768415"><span>Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S</p> <p>2017-08-22</p> <p>Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..522B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..522B"><span>Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.</p> <p>2017-12-01</p> <p>We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2928740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2928740"><span>Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter</p> <p>2010-01-01</p> <p>The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14587925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14587925"><span>Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R</p> <p>2003-11-01</p> <p>Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23D1692K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23D1692K"><span>Turnover Time in the Hyporheic Zone as Assessed by 3D Geophysical Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, B.; Hall, R. O., Jr.; Carr, B.</p> <p>2017-12-01</p> <p>The hyporheic zone (HZ) is a region of interest in stream hydrology and ecology, however, its heterogeneity across small spatial scales and difficulty to directly measure has hampered researchers' efforts to understand its specific contribution to processes such as solute transport and nutrient retention and removal. In recent years researchers have combined geophysical imaging, such as electrical resistivity tomography (ERT), with tracer additions to directly measure exchange between surface waters and the HZ without physically disrupting natural subsurface flow paths. We conducted constant-rate tracer additions in two small headwater mountain streams while collecting 3D ERT images downstream before, during, after each tracer addition to yield spatially comprehensive models of solute exchange with the HZ through time. From our 3D HZ models, we calculated the active volume of the HZ, normalized to the maximum measured size, for each time step giving a breakthrough curve of tracer abundance in the HZ through time. We then described the tracer's turnover time in the HZ by applying exponential and power decay models to the breakthrough curve of HZ volume in a similar manner that one would for a tracer breakthrough curve in surface waters. Our models suggest that the flushing of solutes from the HZ exhibit multi-domain behavior, where advective and diffusive exchange between HZ and surface waters occur simultaneously and operate at distinctly different rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=320512&keyword=air&subject=air%20research&showcriteria=2&datebeginpublishedpresented=10/19/2011&dateendpublishedpresented=10/19/2016&sortby=pubdateyear&','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=320512&keyword=air&subject=air%20research&showcriteria=2&datebeginpublishedpresented=10/19/2011&dateendpublishedpresented=10/19/2016&sortby=pubdateyear&"><span>Application of an online ion chromatography-based instrument ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>In North America, the dry component of total nitrogen and sulfur deposition remains uncertain due to a lack of measurements of sufficient chemical speciation and temporal extent to develop complete annual mass budgets or of sufficient process level detail to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous chemical measurement techniques with sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. We characterize for the first time the performance of the Monitor for AeRosols and GAses in ambient air (MARGA), an on-line ion chromatography-based analyzer, as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions and total uncertainty of fluxes measured by the aerodynamic gradient method are assessed for a representative 3-week period in the fall of 2012. During this period, percentages of hourly chemical gradients larger than the corresponding gradient detection limit were 86%, 55%, 81%, 74%, 77%, and 71% for NH3, NH4+, HNO3, NO3-, SO2, and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly sma</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025313','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025313"><span>Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.</p> <p>2003-01-01</p> <p>Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.955a2002D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.955a2002D"><span>The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.</p> <p>2018-01-01</p> <p>The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27177987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27177987"><span>Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun</p> <p>2017-10-01</p> <p>Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SurSc.667...45A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SurSc.667...45A"><span>The atomistic mechanism for Sb segregation and As displacement of Sb in InSb(001) surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Evan M.; Millunchick, Joanna M.</p> <p>2018-01-01</p> <p>Interfacial broadening occurs in mixed-anion alloy heterostructures such as InAs/InAsSb due to both Sb-segregation and As-for-Sb exchange. In order to determine the atomistic mechanisms for these processes, we conduct ab initio calculations coupled with a cluster expansion formalism to determine the surface reconstructions of the pure and As-exposed InSb(001) surfaces. This approach provides a predicted phase diagram for pure InSb that is in better agreement with experiments. Namely, the α2(2 × 4) and α3c(4 × 4) structures are ultimately stable at 0K, but the α(4 × 3) and α2c(2 × 6) are within 1 meV/Å2. Exposure of the InSb(001) surface to As results in the As atoms infiltrating into the crystal and displacing subsurface Sb, thus providing the atomistic mechanisms for experimental observations of the As-for-Sb exchange reaction and Sb segregation. Experiments show that the widely reported A-(1 × 3) reconstruction is actually comprised of multiple reconstructions, which is consistent with the prediction of several nearly stable possible reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28583390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28583390"><span>Relating saturation capacity to charge density in strong cation exchangers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo</p> <p>2017-07-21</p> <p>In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119z3401S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119z3401S"><span>Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.</p> <p>2017-12-01</p> <p>We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/915245','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/915245"><span>Heat and mass exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas</p> <p>2007-09-18</p> <p>A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1018726','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1018726"><span>Heat and mass exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lowenstein, Andrew [Princeton, NJ; Sibilia, Marc J [Princeton, NJ; Miller, Jeffrey A [Hopewell, NJ; Tonon, Thomas [Princeton, NJ</p> <p>2011-06-28</p> <p>A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26568026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26568026"><span>Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Yang; Wang, Fudong; Buhro, William E</p> <p>2015-12-09</p> <p>Reaction of n-octylamine-passivated {CdSe[n-octylamine](0.53±0.06)} quantum belts with anhydrous metal carboxylates M(oleate)2 (M = Cd, Zn) results in a rapid exchange of the L-type amine passivation for Z-type M(oleate)2 passivation. The cadmium-carboxylate derivative is determined to have the composition {CdSe[Cd(oleate)2](0.19±0.02)}. The morphologies and crystal structures of the quantum belts are largely unaffected by the exchange processes. Addition of n-octylamine or oleylamine to the M(oleate)2-passivated quantum belts removes M(oleate)2 and restores the L-type amine passivation. Analogous, reversible surface exchanges are also demonstrated for CdS quantum platelets. The absorption and emission spectra of the quantum belts and platelets are reversibly shifted to lower energy by M(oleate)2 passivation vs amine passivation. The largest shift of 140 meV is observed for the Cd(oleate)2-passivated CdSe quantum belts. These shifts are attributed entirely to changes in the strain states in the Zn(oleate)2-passivated nanocrystals, whereas changes in strain states and confinement dimensions contribute roughly equally to the shifts in the Cd(oleate)2-passivated nanocrystals. Addition of Cd(oleate)2, which electronically couples to the nanocrystal lattices, increases the effective thickness of the belts and platelets by approximately a half of a monolayer, thus increasing the confinement dimension.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...349...57F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...349...57F"><span>Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fathi, H.; Raoof, A.; Mansouri, S. H.</p> <p>2017-05-01</p> <p>The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983WRR....19..860G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983WRR....19..860G"><span>An Analysis of the Effect of Surface Heat Exchange on the Thermal Behavior of an Idealized Aquifer Thermal Energy Storage System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Güven, O.; Melville, J. G.; Molz, F. J.</p> <p>1983-06-01</p> <p>Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11B1642W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11B1642W"><span>Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.</p> <p>2012-12-01</p> <p>Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7..121A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7..121A"><span>From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.</p> <p>2010-01-01</p> <p>Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009BGD.....6.7717A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009BGD.....6.7717A"><span>From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.</p> <p>2009-07-01</p> <p>Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26443502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26443502"><span>The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Galano-Frutos, Juan J; Morón, M Carmen; Sancho, Javier</p> <p>2015-11-21</p> <p>Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455619"><span>Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele</p> <p>2015-01-01</p> <p>In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers. PMID:28793427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28793427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28793427"><span>Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele</p> <p>2015-07-07</p> <p>In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171172&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsimulation%2Bprocesses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171172&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsimulation%2Bprocesses"><span>Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, W.-K.; Lau, W.; Baker, R.</p> <p>2004-01-01</p> <p>The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171423&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsimulation%2Bprocesses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171423&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsimulation%2Bprocesses"><span>Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.</p> <p>2004-01-01</p> <p>The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840046278&hterms=biology+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbiology%2Bresearch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840046278&hterms=biology+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbiology%2Bresearch"><span>A program in global biology. [biota-environment interaction important to life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mooneyhan, D. W.</p> <p>1983-01-01</p> <p>NASA's Global Biology Research Program and its goals for greater understanding of planetary biological processes are discussed. Consideration is given to assessing major pathways and rates of exchange of elements such as carbon and nitrogen, extrapolating local rates of anaerobic activities, determining exchange rates of ocean nutrients, and developing models for the global cycles of carbon, nitrogen, sulfur, and phosphorus. Satellites and sensors operating today are covered: the Nimbus, NOAA, and Landsat series. Block diagrams of the software and hardware for a typical ground data processing and analysis system are provided. Samples of the surface cover data achieved with the Advanced Very High Resolution Radiometer, the Multispectral Scanner, and the Thematic Mapper are presented, as well as a productive capacity model for coastal wetlands. Finally, attention is given to future goals, their engineering requirements, and the necessary data analysis system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E..101a2090K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E..101a2090K"><span>Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan</p> <p>2015-12-01</p> <p>Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29031960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29031960"><span>The effect of post-synthesis aging on the ligand exchange activity of iron oxide nanoparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davis, Kathleen; Vidmar, Michael; Khasanov, Airat; Cole, Brian; Ghelardini, Melanie; Mayer, Justin; Kitchens, Christopher; Nath, Amar; Powell, Brian A; Mefford, O Thompson</p> <p>2018-02-01</p> <p>Ligand exchange is a widely-used method of controlling the surface chemistry of nanomaterials. Exchange is dependent on many factors including the age of the core particle being modified. Aging of the particles can impact surface structure and composition, which in turn can affect ligand binding. To quantify the effects of aging on ligand exchange, we employed a technique to track the exchange of radiolabeled 14 C-oleic acid with unlabeled, oleic acid bound to iron oxide nanoparticles. Liquid scintillation counting (LSC) was used to determine the amount of 14 C-oleic acid adsorbing to the particles throughout the duration of the exchange for particles aged for 2days, 7days, and 30days. Results revealed an increase in the total amount of ligands exchanged with aging up to 30days. Kinetic analysis of these results revealed a significant decrease in the overall rate of ligand exchange between 2 and 30days. The change in extent of adsorption with age could suggest increased availability of free binding sites. A follow-up study comparing exchange with oxidized and unoxidized particles suggested this increase in ligand adsorption may be due to changes in the Fe 2+ /Fe 3+ ratio on the surface as the particles aged. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510348S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510348S"><span>Light-induced diurnal pattern of methane exchange in a boreal forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders</p> <p>2013-04-01</p> <p>Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B11E..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B11E..08C"><span>Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.</p> <p>2007-12-01</p> <p>The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16904121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16904121"><span>Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zarzycki, Piotr; Thomas, Fabien</p> <p>2006-10-15</p> <p>The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27874045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27874045"><span>Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liao, Y; Williams, T J; Ye, J; Charlesworth, J; Burns, B P; Poljak, A; Raftery, M J; Cavicchioli, R</p> <p>2016-11-22</p> <p>Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5118699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5118699"><span>Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liao, Y.; Williams, T. J.; Ye, J.; Charlesworth, J.; Burns, B. P.; Poljak, A.; Raftery, M. J.; Cavicchioli, R.</p> <p>2016-01-01</p> <p>Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community. PMID:27874045</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13C0649R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13C0649R"><span>New Observationally-Based Metrics for the Analysis of Coupled Climate Model and Earth System Model Simulations of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, J. L.</p> <p>2014-12-01</p> <p>The exchange of heat and carbon dioxide between the atmosphere and ocean are major controls on Earth's climate under conditions of anthropogenic forcing. The Southern Ocean south of 30°S, occupying just over ¼ of the surface ocean area, accounts for a disproportionate share of the vertical exchange of properties between the deep and surface waters of the ocean and between the surface ocean and the atmosphere; thus this region can be disproportionately influential on the climate system. Despite the crucial role of the Southern Ocean in the climate system, understanding of the particular mechanisms involved remains inadequate, and the model studies underlying many of these results are highly controversial. As part of the overall goal of working toward reducing uncertainties in climate projections, we present an analysis using new data/model metrics based on a unified framework of theory, quantitative datasets, and numerical modeling. These new metrics quantify the mechanisms, processes, and tendencies relevant to the role of the Southern Ocean in climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21216057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21216057"><span>A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu</p> <p>2011-03-01</p> <p>Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatNa..12..387C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatNa..12..387C"><span>Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri</p> <p>2017-05-01</p> <p>When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021133"><span>Overview of the CHarring Ablator Response (CHAR) Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin</p> <p>2016-01-01</p> <p>An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3635458','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3635458"><span>Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La1–xSrxCoO3−δ Thin Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P53A1832C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P53A1832C"><span>Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.</p> <p>2013-12-01</p> <p>The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a first insight and discussion into how to interpret statistically-inverted radar data from an icy planetary surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27626824','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27626824"><span>Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W</p> <p>2016-10-12</p> <p>Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThEng..63..674D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThEng..63..674D"><span>Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.</p> <p>2016-09-01</p> <p>One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in this case, the filling degree of contact elements by the liquid must be maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860055222&hterms=contact+area&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcontact%2Barea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860055222&hterms=contact+area&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcontact%2Barea"><span>Fluid to fluid contact heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, W. E.</p> <p>1986-01-01</p> <p>Heat transfer and pressure drop test results for a fluid to fluid contact heat exchanger are reported. The heat exchanger, fabricated and tested to demonstrate one method of transferring heat between structures in space, had a total contact area of 0.18 sq m. It utilized contact surfaces which were flexible and conformed to the mating contact surfaces upon pressurization of the fluid circulating within the heat exchanger. During proof-of-concept performance tests, the heat exchanger was operated in a typical earth environment. It demonstrated a contact conductance of 3.8 kW/sq m C at contact pressures in the 15 to 70 kPa range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171830','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171830"><span>Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.</p> <p>2004-01-01</p> <p>The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040182250','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040182250"><span>Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.</p> <p>2004-01-01</p> <p>The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were significantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-China peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and merit, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation and associated moisture transport and convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950005054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950005054"><span>NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.</p> <p>1994-01-01</p> <p>This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...32a2053R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...32a2053R"><span>Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.</p> <p>2016-03-01</p> <p>A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1242684-all-inorganic-germanium-nanocrystal-films-cationic-ligand-exchange','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1242684-all-inorganic-germanium-nanocrystal-films-cationic-ligand-exchange"><span>All-inorganic Germanium nanocrystal films by cationic ligand exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...</p> <p>2016-01-21</p> <p>In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29398018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29398018"><span>Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jindal, Shivali; Anand, Sanjeev; Metzger, Lloyd; Amamcharla, Jayendra</p> <p>2018-04-01</p> <p>Flow of milk through the plate heat exchanger (PHE) results in denaturation of proteins, resulting in fouling. This also accelerates bacterial adhesion on the PHE surface, eventually leading to the development of biofilms. During prolonged processing, these biofilms result in shedding of bacteria and cross-contaminate the milk being processed, thereby limiting the duration of production runs. Altering the surface properties of PHE, such as surface energy and hydrophobicity, could be an effective approach to reduce biofouling. This study was conducted to compare the extent of biofouling on native stainless steel (SS) and modified-surface [Ni-P-polytetrafluoroethylene (PTFE)] PHE during the pasteurization of raw milk for an uninterrupted processing run of 17 h. For microbial studies, raw and pasteurized milk samples were aseptically collected from inlets and outlets of both PHE at various time intervals to examine shedding of bacteria in the milk. At the end of the run, 3M quick swabs (3M, St. Paul, MN) and ATP swabs (Charm Sciences Inc., Lawrence, MA) were used to sample plates from different sections of the pasteurizers (regeneration, heating, and cooling) for biofilm screening and to estimate the efficiency of cleaning in place, respectively. The data were tested for ANOVA, and means were compared. Modified PHE experienced lower mesophilic and thermophilic bacterial attachment and biofilm formation (average log 1.0 and 0.99 cfu/cm 2 , respectively) in the regenerative section of the pasteurizer compared with SS PHE (average log 1.49 and 1.47, respectively). Similarly, higher relative light units were observed for SS PHE compared with the modified PHE, illustrating the presence of more organic matter on the surface of SS PHE at the end of the run. In addition, at h 17, milk collected from the outlet of SS PHE showed plate counts of 5.44 cfu/cm 2 , which were significantly higher than those for pasteurized milk collected from modified PHE (4.12 log cfu/cm 2 ). This provided further evidence in favor of the modified PHE achieving better microbial quality of pasteurized milk in long process runs. Moreover, because cleaning SS PHE involves an acid treatment step, whereas an alkali treatment step is sufficient for the modified-surface PHE, use of the latter is both cost and time effective, making it a better surface for thermal processing of milk and other fluid dairy products. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=342730','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=342730"><span>Comparing crop growth and carbon budgets simulated across AmeriFlux agricultural sites using the community land model (CLM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Improving process-based crop models is needed to achieve high fidelity forecasts of regional energy, water, and carbon exchange. However, most state-of-the-art Land Surface Models (LSMs) assessed in the fifth phase of the Coupled Model Inter-comparison project (CMIP5) simulated crops as simple C3 or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869902','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869902"><span>Self-regenerating column chromatography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Park, Woo K.</p> <p>1995-05-30</p> <p>The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24609773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24609773"><span>Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima</p> <p>2014-06-01</p> <p>This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4073168','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4073168"><span>Graphene/Ionic Liquid Composite Films and Ion Exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan</p> <p>2014-01-01</p> <p>Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11291034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11291034"><span>Mechanism of charged pollutants removal in an ion exchange membrane bioreactor: drinking water denitrification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Velizarov, S; Rodrigues, C M; Reis, M A; Crespo, J G</p> <p></p> <p>The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031908','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031908"><span>Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.</p> <p>2008-01-01</p> <p>Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1169086','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1169086"><span>Surface treatment of nanocrystal quantum dots after film deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro</p> <p>2015-02-03</p> <p>Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8324S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8324S"><span>Investigation of a long time series of CO2 from a tall tower using WRF-SPA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smallman, Luke; Williams, Mathew; Moncrieff, John B.</p> <p>2013-04-01</p> <p>Atmospheric observations from tall towers are an important source of information about CO2 exchange at the regional scale. Here, we have used a forward running model, WRF-SPA, to generate a time series of CO2 at a tall tower for comparison with observations from Scotland over multiple years (2006-2008). We use this comparison to infer strength and distribution of sources and sinks of carbon and ecosystem process information at the seasonal scale. The specific aim of this research is to combine a high resolution (6 km) forward running meteorological model (WRF) with a modified version of a mechanistic ecosystem model (SPA). SPA provides surface fluxes calculated from coupled energy, hydrological and carbon cycles. This closely coupled representation of the biosphere provides realistic surface exchanges to drive mixing within the planetary boundary layer. The combined model is used to investigate the sources and sinks of CO2 and to explore which land surfaces contribute to a time series of hourly observations of atmospheric CO2 at a tall tower, Angus, Scotland. In addition to comparing the modelled CO2 time series to observations, modelled ecosystem specific (i.e. forest, cropland, grassland) CO2 tracers (e.g., assimilation and respiration) have been compared to the modelled land surface assimilation to investigate how representative tall tower observations are of land surface processes. WRF-SPA modelled CO2 time series compares well to observations (R2 = 0.67, rmse = 3.4 ppm, bias = 0.58 ppm). Through comparison of model-observation residuals, we have found evidence that non-cropped components of agricultural land (e.g., hedgerows and forest patches) likely contribute a significant and observable impact on regional carbon balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090015376','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090015376"><span>Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.</p> <p>2009-01-01</p> <p>Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=332786','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=332786"><span>Impact of aerodynamic resistance formulations used in two-source modeling of energy exchange from the soil and vegetation using land surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A12F..05I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A12F..05I"><span>Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivey, C. E.; Sun, X.; Holmes, H.</p> <p>2017-12-01</p> <p>Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent heat fluxes during the CAP event are overestimated. The sensitivity of WRF results to large-scale forcing datasets, PBL schemes and land surface models (LSMs) are also investigated. The optimal WRF configuration for simulating surface turbulent fluxes and atmospheric mixing during CAP events is determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JCli....8.1810W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JCli....8.1810W"><span>A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wetzel, Peter J.; Boone, Aaron</p> <p>1995-07-01</p> <p>This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RJPCA..92.1229L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RJPCA..92.1229L"><span>Comparative Study of Chromium(VI) Removal from Simulated Industrial Wastewater with Ion Exchange Resins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiaofan; Shi, Shaoyuan; Cao, Hongbin; Li, Yuping; Xu, Dongyao</p> <p>2018-06-01</p> <p>Ion exchange process is an alternative technique for removal of heavy metal ions from industrial wastewater. The main aim of this paper is to evaluate the performance of different ion exchange resins in removing Cr(VI) from wastewater. The effects of resin types and dosage, initial pH were examined systemically. The results showed that the performance of different resins had obvious difference for the removal of the Cr(VI) ions, in which the type of functional groups of the resin was the main factor. The SEM images indicated that the micro-morphology of resins before and after adsorption of the Cr(VI) presented a little difference. The EDS analysis showed that the adsorbed Cr(VI) was uniformly distributed at the surface of the resins with formation of oxygen-containing groups. The adsorption isotherms and kinetics of Cr(VI) by the different resins are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29485405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29485405"><span>Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia</p> <p>2018-05-25</p> <p>This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co 9 S 8 aerogel with a high surface area (274.2 m 2 g -1 ) and large pore volume (0.87 cm 3 g -1 ) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co 9 S 8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g -1 at 1 A g -1 ), good rate capability (74.3% capacitance retention from 1 to 20 A g -1 ) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanot..29u5601G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanot..29u5601G"><span>Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia</p> <p>2018-05-01</p> <p>This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24266611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24266611"><span>Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trueba, Alfredo; García, Sergio; Otero, Félix M</p> <p>2014-01-01</p> <p>Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger-condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1182569','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1182569"><span>Power module packaging with double sided planar interconnection and heat exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei</p> <p>2015-05-26</p> <p>A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrMat...4...13K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrMat...4...13K"><span>Trends in Effective Diffusion Coefficients for Ion-exchange Strengthening of Soda Lime Silicate Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo</p> <p>2017-04-01</p> <p>Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP51A3518H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP51A3518H"><span>Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, J. W.; Gomez-Velez, J. D.</p> <p>2014-12-01</p> <p>Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GMS...127...71T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GMS...127...71T"><span>Numerical simulation of hydrodynamic processes beneath a wind-driven water surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsai, Wu-ting</p> <p></p> <p>Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20013654-oxygen-mobility-ceo-sub-ce-sub-zr-sub-sub-compounds-study-co-transient-oxidation-sup-sup-isotopic-exchange','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20013654-oxygen-mobility-ceo-sub-ce-sub-zr-sub-sub-compounds-study-co-transient-oxidation-sup-sup-isotopic-exchange"><span>Oxygen mobility in CeO{sub 2} and Ce{sub x}Zr({sub 1-x})O{sub 2} compounds: Study by CO transient oxidation and {sup 18}O/{sup 16}O isotopic exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Madier, Y.; Descorme, C.; Govic, A.M. Le</p> <p></p> <p>Cerium-zirconium mixed oxides (Ce{sub x}Zr{sub 1{minus}x}O{sub 2}), precalcined at 900 C in dry air, were supplied by Rhodia Terres Rares as monophasic solid solutions. Introduction of some zirconium atoms in the ceria lattice by isomorphous substitution clearly influences the final properties of these materials as long as the cubic structure of ceria is maintained. Modifications in oxygen storage capacity (OSC measurements), redox properties (CO TPR), and oxygen exchange processes (TPIE) were studied. Ce{sub 0.63}Zr{sub 0.37}O{sub 2} was shown to have the most promising properties with the largest OSC at 400 C and the highest reactivity in O{sub 2} exchange. Allmore » mixed oxides are able to exchange very large amounts of oxygen compared to ceria, implying the participation of bulk oxygen. Furthermore, on Ce{sub x}Zr{sub (1{minus}x)}O{sub 2} samples, oxygen is predominantly exchanged via a multiple heteroexchange mechanism involving surface dioxygen species as superoxides or peroxides.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611343P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611343P"><span>Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert</p> <p>2014-05-01</p> <p>Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer months likely from primary production and spatially there is less suppression of air-sea gas exchange with increasing distance from the shoreline, which is likely due to riverine inputs. REFERENCES Bock, E. J., Hara, T., Frew, N. M., and McGillis, W. R., 1999. Relationship between air-sea gas transfer and short wind waves. Journal of Geophysical Research-Oceans 104, 25821-25831. Brockmann, U. H., Huhnerfuss, H., Kattner, G., Broecker, H. C., and Hentzschel, G., 1982. Artificial surface-films in the sea area near sylt. Limnology and Oceanography 27, 1050-1058. Goldman, J. C., Dennett, M. R., and Frew, N. M., 1988. Surfactant effects on air sea gas-exchange under turbulent conditions. Deep-Sea Research Part a-Oceanographic Research Papers 35, 1953-1970. McKenna, S. P. and McGillis, W. R., 2004. The role of free-surface turbulence and surfactants in air-water gas transfer. International Journal of Heat and Mass Transfer 47, 539-553. Salter, M. E., R. C. Upstill-Goddard, P. D. Nightingale, S. D. Archer, B. Blomquist, D. T. Ho, B. Huebert, P. Schlosser, and M. Yang (2011), Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II, J. Geophys. Res., 116, C11016, doi:10.1029/2011JC00702 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 554-577.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17583773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17583773"><span>Concomitant Zn-Cd and Pb retention in a carbonated fluvio-glacial deposit under both static and dynamic conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lassabatere, Laurent; Spadini, Lorenzo; Delolme, Cécile; Février, Laureline; Galvez Cloutier, Rosa; Winiarski, Thierry</p> <p>2007-11-01</p> <p>The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21197993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21197993"><span>Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A</p> <p>2010-12-28</p> <p>H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28657736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28657736"><span>Kinetics from Replica Exchange Molecular Dynamics Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stelzl, Lukas S; Hummer, Gerhard</p> <p>2017-08-08</p> <p>Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2037K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2037K"><span>Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korobova, Elena; Romanov, Sergey</p> <p>2016-04-01</p> <p>Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1262474-simulations-ecosystem-hydrological-processes-using-unified-multi-scale-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1262474-simulations-ecosystem-hydrological-processes-using-unified-multi-scale-model"><span>Simulations of ecosystem hydrological processes using a unified multi-scale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin</p> <p>2015-01-01</p> <p>This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770064039&hterms=reverse+osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dreverse%2Bosmosis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770064039&hterms=reverse+osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dreverse%2Bosmosis"><span>Wash water reclamation technology for advanced manned spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Putnam, D. F.</p> <p>1977-01-01</p> <p>The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27459463','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27459463"><span>Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hofmann, Laurie C; Koch, Marguerite; de Beer, Dirk</p> <p>2016-01-01</p> <p>Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4961294','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4961294"><span>Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hofmann, Laurie C.; Koch, Marguerite; de Beer, Dirk</p> <p>2016-01-01</p> <p>Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4′ diisothiocyanatostilbene-2,2′-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA. PMID:27459463</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21175183','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21175183"><span>A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dong, Angang; Ye, Xingchen; Chen, Jun; Kang, Yijin; Gordon, Thomas; Kikkawa, James M; Murray, Christopher B</p> <p>2011-02-02</p> <p>The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile ligand-exchange strategy for NC surface functionalization and represents an important step toward controllably engineering the surface properties of NCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007HyPr...21..323G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007HyPr...21..323G"><span>A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greig, S. M.; Sear, D. A.; Carling, P. A.</p> <p>2007-01-01</p> <p>Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780024444','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780024444"><span>Development of a Direct Contact Heat Exchanger, Phase 1 Study Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manvi, R.</p> <p>1978-01-01</p> <p>Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/26415','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/26415"><span>NCHRP peer exchange 2008.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-09-01</p> <p>Peer exchanges for state department of transportation (DOT) research programs originated with : the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). That federal legislation : required the states to conduct periodic peer exchanges to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23516904','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23516904"><span>[Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G</p> <p>2012-12-01</p> <p>The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThEng..64..680B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThEng..64..680B"><span>Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.</p> <p>2017-09-01</p> <p>Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HydJ...25.2015X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HydJ...25.2015X"><span>Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong</p> <p>2017-11-01</p> <p>Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034197','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034197"><span>Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.</p> <p>2011-01-01</p> <p>Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3501124','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3501124"><span>Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.</p> <p>2012-01-01</p> <p>This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H32B..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H32B..06Z"><span>Multi-Scale Observation and Modelling of Energy and Matter Exchange in the Atmospheric Boundary-Layer (ScaleX Campaigns)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeeman, M. J.; Wolz, K.; Adler, B.; Brenner, C.; De Roo, F.; Emeis, S.; Kalthoff, N.; Mauder, M.; Schäfer, K.; Wohlfahrt, G.; Zhao, P.</p> <p>2016-12-01</p> <p>We investigated biosphere-atmosphere exchange processes in relation to the atmospheric boundary-layer (ABL) flow in a shallow valley. Land-use heterogeneity and topography can force local atmospheric flow patterns, including local circulations. Such flow patterns can impair current techniques for the quantification and source attribution of surface-exchange fluxes due to flux-divergence, advection and decoupling. Wind field, temperature and humidity structures in the ABL were observed in high resolution with spatially distributed observations in a 1 km3 experimental domain. Remote-sensing observations of wind, temperature and particles in the ABL (Raman-lidar; RASS; ceilometer; microwave radiometer; 3D Doppler-lidar) were combined with a high-resolution network of in-situ observations that included vertical and horizontal profiles of wind, temperature, carbon dioxide, methane and water vapor concentrations. The experiments were co-located with the long-term eddy covariance (EC) observatory Fendt (DE-Fen; ICOS, TERENO) and were part of international cooperative efforts in 2015 and 2016 (the ScaleX campaigns). The gathered experimental data offers a scale-transcending insight in local flow patterns in mountainous terrain and their influence on surface-exchange fluxes of energy and matter as observed by EC and flux-gradient methodology. In addition, the data is used for validation of Large-Eddy Simulations in complex terrain using PALM-LES. Within this modelling framework, virtual measurements are conducted to further assess the importance of three-dimensional advective and horizontal turbulent transport terms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26246274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26246274"><span>Sorption of Cu(2+) on humic acids sequentially extracted from a sediment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Kun; Miao, Gangfen; Wu, Wenhao; Lin, Daohui; Pan, Bo; Wu, Fengchang; Xing, Baoshan</p> <p>2015-11-01</p> <p>In addition to the diverse properties of humic acids (HAs) extracted from different soils or sediments, chemical compositions, functional groups and structures of HAs extracted from a single soil or sediment could also be diverse and thus significantly affect sorption of heavy metals, which is a key process controlling the transfer, transformation and fate of heavy metals in the environment. In this study, we sequentially extracted four HA fractions from a single sediment and conducted the sorption experiments of Cu(2+) on these HA fractions. Our results showed that aromaticity and acidic group content of HA fraction decreased with increasing extraction. Earlier extracted HA fraction had higher sorption capacity and affinity for Cu(2+). There were two fractions of adsorbed Cu(2+) on HAs, i.e., ion exchanged fraction and surface bonded fraction, which can be captured mechanically by the bi-Langmuir model with good isotherm fitting. The ion exchanged fraction had larger sorption capacity but lower sorption affinity, compared with the surface bonded fraction. The dissociated carboxyl groups of HAs were responsible for both fractions of Cu(2+) sorption, due to the more Cu(2+) sorption on the earlier extracted HA fraction with more carboxyl groups and at higher pH. The intensive competition between H(+) and the exchangeable Cu(2+) could result in the decrease of ion exchanged capacity and affinity for Cu(2+) on HAs. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H11B1297C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H11B1297C"><span>Evaluate the Relative Importance of Subsurface Lateral Energy Exchange to Ground Heat Flux and Energy Balance over the Heterogeneous Surface of a Sub-tropical Wetland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>CUI, W.; Chui, T. F. M.</p> <p>2016-12-01</p> <p>Subsurface lateral water and energy exchanges are often ignored in methods involving a surface energy balance under the homogeneity assumption, which may affect the estimation of evapotranspiration over a heterogeneous surface. Wetlands, however, are heterogeneous with vegetated areas and open water, making it difficult to accurately measure and estimate evapotranspiration. This study estimated the subsurface lateral energy exchange between the reed bed and shallow open water of a wetland within Mai Po Nature Reserve in Hong Kong, and further discussed its relative importance to the ground heat flux and energy balance over the wetland surface. An array of water level and temperature sensors were installed in the reed bed and the adjacent water, together with an eddy covariance system. The results suggested that the lateral energy exchange was over 30% of ground heat flux for half of the monitoring period, and should therefore be accounted for during the measurement of ground heat flux. However, the lateral energy exchange could not explain the energy balance disclosure at the site, as the variation was in phase with the residual of energy budget during the summer but was out of phase during the winter. Furthermore, this study developed a convolution model to estimate the lateral energy exchange based on air temperature which is readily available at many sites worldwide. This study overall enhanced our understanding of the subsurface lateral energy exchange, and possibly our estimation of evapotranspiration in heterogeneous environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B52B..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B52B..02D"><span>High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.</p> <p>2013-12-01</p> <p>Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23E2114I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23E2114I"><span>3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irvine, M.; Lagouarde, J. P.</p> <p>2017-12-01</p> <p>Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low image resolution compared with standard RGB sensors. At the session B081, we intend to present first results of our thermal photogrammetric experiments with 3D surface temperature plots in order to discuss and adapt our methods to the modelling community's needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3996538','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3996538"><span>Trapping of drops by wetting defects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>'t Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder</p> <p>2014-01-01</p> <p>Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26478368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26478368"><span>Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu</p> <p>2016-01-01</p> <p>A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27930922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27930922"><span>Molecular dynamics simulations of cesium adsorption on illite nanoparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lammers, Laura N; Bourg, Ian C; Okumura, Masahiko; Kolluri, Kedarnath; Sposito, Garrison; Machida, Masahiko</p> <p>2017-03-15</p> <p>The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs ( 134 Cs, 135 Cs, 137 Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SurSc.667...79Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SurSc.667...79Z"><span>Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei</p> <p>2018-01-01</p> <p>We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950065430&hterms=Perfluorinated+perfluor+Polyfluor+perfluoroalkyl+Fluorochemical+Fluorotelomer+PFCs+PFAS+pFOA+PFOS+PFHxS+PFDA&qs=Ntx%3Dmode%2Bmatchany%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPerfluorinated%2Bperfluor*%2BPolyfluor*%2Bperfluoroalkyl%2BFluorochemical%2BFluorotelomer%2BPFCs%2BPFAS%2BpFOA%2BPFOS%2BPFHxS%2BPFDA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950065430&hterms=Perfluorinated+perfluor+Polyfluor+perfluoroalkyl+Fluorochemical+Fluorotelomer+PFCs+PFAS+pFOA+PFOS+PFHxS+PFDA&qs=Ntx%3Dmode%2Bmatchany%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPerfluorinated%2Bperfluor*%2BPolyfluor*%2Bperfluoroalkyl%2BFluorochemical%2BFluorotelomer%2BPFCs%2BPFAS%2BpFOA%2BPFOS%2BPFHxS%2BPFDA"><span>Nafion(TM) Coats For Electrodes In Liquid-Feed Fuel Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald; Vamos, Eugene; Frank, Harvey A.</p> <p>1995-01-01</p> <p>Coating or impregnation with commercially available material enables oxidation of organic liquid fuels. Nafion(TM) investigated for use in application because of known combination of desirable characteristics: It is perfluorinated, hydrophilic, proton-conducting ion-exchange polymer exhibiting relatively high thermal and electrochemical stability and not detrimental to kinetics of electrochemical processes. Available in solubilized form and used to apply stable coats to surfaces of electrodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25782028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25782028"><span>Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Aeree; Lee, Chan; Kim, Hyungmo; Kim, Joonwon</p> <p>2015-04-08</p> <p>Frost formation can cause operational difficulty and efficiency loss for many facilities such as aircraft, wind turbines, and outdoor heat exchangers. Self-propelled jumping by condensate droplets on superhydrophobic surfaces delays frost formation, so many attempts have been made to exploit this phenomenon. However, practical application of this phenomenon is currently unfeasible because many processes to fabricate the superhydrophobic surfaces are inefficient and because self-propelled jumping is difficult to be achieved in a humid and low-temperature environment because superhydrophobicity is degraded in these conditions. Here, we achieved significantly effective anti-icing superhydrophobic aluminum. Its extremely low adhesive properties allow self-propelled jumping under highly supersaturated conditions of high humidity or low surface temperature. As a result, this surface helps retard frost formation at that condition. The aluminum was made superhydrophobic by a simple and cost-effective process that is adaptable to any shape. Therefore, it has promise for use in practical and industrial applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..255..135G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..255..135G"><span>Lunar exospheric argon modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.</p> <p>2015-07-01</p> <p>Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A41A0025M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A41A0025M"><span>Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacKellar, M.; McGowan, H. A.; Phinn, S. R.</p> <p>2011-12-01</p> <p>Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between sites to the extent that under unstable, south-easterly Trade Winds the net flux of heat was positive and negative over different geomorphic zones. The surface drag coefficient ranged from 1 to 2.5 x 10-3, with no significant difference between sites. Results highlight the spatial variation of air-sea energetics across a lagoonal platform reef in response to local meteorology, hydrodynamics and benthic/substrate cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18754367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18754367"><span>Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A</p> <p>2008-07-15</p> <p>At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of interannual variability for 2002-2004 using the optimal configuration. We estimated the uncertainty of the model results to the Hg/Br reaction rate coefficient to be approximately 6%. Springtime is clearly demonstrated as the most active period of mercury exchanges and net surface gain (approximately 46% of annual accumulation) in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1370406-analytical-modeling-localized-surface-plasmon-resonance-heterostructure-copper-sulfide-nanocrystals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1370406-analytical-modeling-localized-surface-plasmon-resonance-heterostructure-copper-sulfide-nanocrystals"><span>Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue</p> <p>2014-10-28</p> <p>Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu 1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.141p4125C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.141p4125C"><span>Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue; Robinson, Richard D.</p> <p>2014-10-01</p> <p>Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ˜8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22479683-level-energy-dependent-mean-velocities-excited-tungsten-atoms-sputtered-krypton-ion-bombardment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22479683-level-energy-dependent-mean-velocities-excited-tungsten-atoms-sputtered-krypton-ion-bombardment"><span>Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota</p> <p>2015-11-15</p> <p>Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4198866','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4198866"><span>Uncoupled surface spin induced exchange bias in α-MnO2 nanowires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Wenxian; Zeng, Rong; Sun, Ziqi; Tian, Dongliang; Dou, Shixue</p> <p>2014-01-01</p> <p>We have studied the microstructure, surface states, valence fluctuations, magnetic properties, and exchange bias effect in MnO2 nanowires. High purity α-MnO2 rectangular nanowires were synthesized by a facile hydrothermal method with microwave-assisted procedures. The microstructure analysis indicates that the nanowires grow in the [0 0 1] direction with the (2 1 0) plane as the surface. Mn3+ and Mn2+ ions are not found in the system by X-ray photoelectron spectroscopy. The effective magnetic moment of the manganese ions fits in with the theoretical and experimental values of Mn4+ very well. The uncoupled spins in 3d3 orbitals of the Mn4+ ions in MnO6 octahedra on the rough surface are responsible for the net magnetic moment. Spin glass behavior is observed through magnetic measurements. Furthermore, the exchange bias effect is observed for the first time in pure α-MnO2 phase due to the coupling of the surface spin glass with the antiferromagnetic α-MnO2 matrix. These α-MnO2 nanowires, with a spin-glass-like behavior and with an exchange bias effect excited by the uncoupled surface spins, should therefore inspire further study concerning the origin, theory, and applicability of surface structure induced magnetism in nanostructures. PMID:25319531</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AIPC..380....3R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AIPC..380....3R"><span>Study of negative ion transport phenomena in a plasma source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riz, D.; Paméla, J.</p> <p>1996-07-01</p> <p>NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25600122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25600122"><span>Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moya, A A</p> <p>2015-02-21</p> <p>This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880025281&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheat%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880025281&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheat%2Bexchange"><span>Heat transfer to and from vegetated surfaces - An analytical method for the bulk exchange coefficients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massman, William J.</p> <p>1987-01-01</p> <p>The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54.1867X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54.1867X"><span>Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao</p> <p>2018-07-01</p> <p>Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23895531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23895531"><span>Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J</p> <p>2013-12-12</p> <p>The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.E4003J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.E4003J"><span>Respiratory Mechanics and Gas Exchange: The Effect of Surfactants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jbaily, Abdulrahman; Szeri, Andrew J.</p> <p>2017-11-01</p> <p>The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074334','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074334"><span>Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.</p> <p>2012-01-01</p> <p>Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021284','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021284"><span>Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stottlemyer, R.; Toczydlowski, D.</p> <p>1999-01-01</p> <p>We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering products, especially C(B), HCO3-, and Si, from deeper soils. Soil water was a major component in the hydrologic and chemical budgets.We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soils were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (CB), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. D</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26233625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26233625"><span>Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E</p> <p>2015-12-01</p> <p>Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830027222','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830027222"><span>Evaluation of the ion implantation process for production of solar cells from silicon sheet materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spitzer, M. B.</p> <p>1983-01-01</p> <p>The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112369&hterms=DNA+formation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DDNA%2Bformation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112369&hterms=DNA+formation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DDNA%2Bformation"><span>Relationship between radiation-induced aberrations in individual chromosomes and their DNA content: effects of interaction distance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, H.; Durante, M.; Lucas, J. N.</p> <p>2001-01-01</p> <p>PURPOSE: To study the effect of the interaction distance on the frequency of inter- and intrachromosome exchanges in individual chromosomes with respect to their DNA content. Assumptions: Chromosome exchanges are formed by misrejoining of two DNA double-strand breaks (DSB) induced within an interaction distance, d. It is assumed that chromosomes in G(0)/G(1) phase of the cell cycle occupy a spherical domain in a cell nucleus, with no spatial overlap between individual chromosome domains. RESULTS: Formulae are derived for the probability of formation of inter-, as well as intra-, chromosome exchanges relating to the DNA content of the chromosome for a given interaction distance. For interaction distances <1 microm, the relative frequency of interchromosome exchanges predicted by the present model is similar to that by Cigarran et al. (1998) based on the assumption that the probability of interchromosome exchanges is proportional to the "surface area" of the chromosome territory. The "surface area" assumption is shown to be a limiting case of d-->0 in the present model. The present model also predicts that the probability of intrachromosome exchanges occurring in individual chromosomes is proportional to their DNA content with correction terms. CONCLUSION: When the interaction distance is small, the "surface area" distribution for chromosome participation in interchromosome exchanges has been expected. However, the present model shows that for the interaction distance as large as 1 microm, the predicted probability of interchromosome exchange formation is still close to the surface area distribution. Therefore, this distribution does not necessarily rule out the formation of complex chromosomal aberrations by long-range misrejoining of DSB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1332673','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1332673"><span>Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Spencer, W.; Korinko, P.</p> <p></p> <p>Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D 2O or possiblemore » CD 4 was observed at mass 20. The main off-gas in all of the studies was H 2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was found to be inadequate. All of the studies indicated that vessels needed several days of vacuum baking at 350-450° C to fully outgas the residual gases, which were mostly hydrogen. The current standard practice of out-gassing from ultra-clean, electro-polished 304L vessels with both vacuum bake-out and followed by an oxidative bake out to enhance the chromium surface performed the best in these studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867310','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867310"><span>Preventing CO poisoning in fuel cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gottesfeld, Shimshon</p> <p>1990-01-01</p> <p>Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867004','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867004"><span>Corrosive resistant heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Richlen, Scott L.</p> <p>1989-01-01</p> <p>A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170030','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170030"><span>Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.</p> <p>2016-01-01</p> <p>The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JMagR.145..192R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JMagR.145..192R"><span>Separation of Anisotropy and Exchange Broadening Using 15N CSA- 15N- 1H Dipole-Dipole Relaxation Cross-Correlation Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renner, Christian; Holak, Tad A.</p> <p>2000-08-01</p> <p>Based on the measurement of cross-correlation rates between 15N CSA and 15N-1H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874378','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874378"><span>Heat exchanger with transpired, highly porous fins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kutscher, Charles F.; Gawlik, Keith</p> <p>2002-01-01</p> <p>The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24813351','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24813351"><span>Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I</p> <p>2014-09-01</p> <p>Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMOS43A..13L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMOS43A..13L"><span>Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.</p> <p>2005-05-01</p> <p>Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016863','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016863"><span>Electrodeionization Using Microseparated Bipolar Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110016863'); toggleEditAbsImage('author_20110016863_show'); toggleEditAbsImage('author_20110016863_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110016863_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110016863_hide"></p> <p>2004-01-01</p> <p>An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28125290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28125290"><span>Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sunde, Margaret; Pham, Chi L L; Kwan, Ann H</p> <p>2017-06-20</p> <p>Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867167','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867167"><span>Interpenetrating polymer network ion exchange membranes and method for preparing same</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip</p> <p>1989-01-01</p> <p>Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24983101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24983101"><span>Spatial organization of surface nanobubbles and its implications in their formation process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua</p> <p>2014-02-21</p> <p>We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H54B..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H54B..02H"><span>Coupling surface water (Delft3D) to groundwater (MODFLOW) in the Bay-Delta community model: the effect of major abstractions in the Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendriks, D.; Ball, S. M.; Van der Wegen, M.; Verkaik, J.; van Dam, A.</p> <p>2016-12-01</p> <p>We present a coupled groundwater-surface water model for the San Francisco Bay and Sacramento Valley that consists of a combination of a spatially-distributed groundwater model (Modflow) based on the USGS Central Valley model(1) and the Flexible Mesh (FM) surface water model of the Bay Area(2). With this coupled groundwater-surface water model, we assessed effects of climate, surface water abstractions and groundwater pumping on surface water and groundwater levels, groundwater-surface water interaction and infiltration/seepage fluxes. Results show that the effect of climate (high flow and low flow) on surface water and groundwater is significant and most prominent in upstream areas. The surface water abstractions cause significant local surface water levels decrease (over 2 m), which may cause inflow of bay water during low flow periods, resulting in salinization of surface water in more upstream areas. Groundwater level drawdown due to surface water withdrawal is moderate and limited to the area of the withdrawals. The groundwater pumping causes large groundwater level drawdowns (up to 0.8 m) and significant changes in seepage/infiltration fluxes in the model. However, the effect on groundwater-surface water exchange is relatively small. The presented model instrument gives a sound first impression of the effects of climate and water abstraction on both surface water and groundwater. The combination of Modflow and Flexible Mesh has potential for modelling of groundwater-surface water exchange in deltaic areas, also in other parts of the world. However, various improvements need to be made in order to make the simulation results useful in practice. In addition, a water quality aspect could be added to assess salinization processes as well as groundwater-surface water aspects of water and soil pollution. (1) http://ca.water.usgs.gov/projects/central-valley/central-valley-hydrologic-model.html (2) www.d3d-baydelta.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS31C1000O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS31C1000O"><span>Importance of 3D Processes Near the Ocean's Surface for Material Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozgokmen, T. M.</p> <p>2014-12-01</p> <p>There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26093466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26093466"><span>Microbial biofilms for the removal of Cu²⁺ from CMP wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mosier, Aaron P; Behnke, Jason; Jin, Eileen T; Cady, Nathaniel C</p> <p>2015-09-01</p> <p>The modern semiconductor industry relies heavily on a process known as chemical mechanical planarization, which uses physical and chemical processes to remove excess material from the surface of silicon wafers during microchip fabrication. This process results in large volumes of wastewater containing dissolved metals including copper (Cu(2+)), which must then be filtered and treated before release into municipal waste systems. We have investigated the potential use of bacterial and fungal biomass as an alternative to the currently used ion-exchange resins for the adsorption of dissolved Cu(2+) from high-throughput industrial waste streams. A library of candidate microorganisms, including Lactobacillus casei and Pichia pastoris, was screened for ability to bind Cu(2+) from solution and to form static biofilm communities within packed-bed adsorption columns. The binding efficiency of these biomass-based adsorption columns was assessed under various flow conditions and compared to that of industrially used ion-exchange resins. We demonstrated the potential to regenerate the biomass within the adsorption columns through the use of a hydrochloric acid wash, and subsequently reuse the columns for additional copper binding. While the binding efficiency and capacity of the developed L. casei/P. pastoris biomass filters was inferior to ion-exchange resin, the potential for repeated reuse of these filters, coupled with the advantages of a more sustainable "green" adsorption process, make this technique an attractive candidate for use in industrial-scale CMP wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13G0307W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13G0307W"><span>How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.</p> <p>2013-12-01</p> <p>Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ASAJ..114Q2411B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ASAJ..114Q2411B"><span>Radiant exchange in partially specular architectural environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beamer, C. Walter; Muehleisen, Ralph T.</p> <p>2003-10-01</p> <p>The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870046022&hterms=energy+transition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Btransition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870046022&hterms=energy+transition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Btransition"><span>Transition of surface energy budget in the Gobi Desert between spring and summer seasons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Eric A.; Reiter, Elmar R.; Gao, Youxi</p> <p>1986-01-01</p> <p>The surface energetics of the southwest Gobi Desert, including the temporal variations and diurnally averaged properties of the surface energy budget components, was investigated. The field program was conducted during the spring and summer of 1984, with the measurement system designed to monitor radiative exchange, heat/moisture storage in the soil, and sensible and latent heat exhange between the ground and the atmosphere. Results of the analysis reveal a seasonal transition feature not expected of a midlatitude desert. Namely, the differences in both surface radiation exchange and the distibution of sensible and latent heat transfer arise within a radiatively forced environment that barely deviates from spring to summer in terms of available solar energy at the surface. Both similarities and differences in the spring and summer surface energy budgets arise from differences imparted to the system by an increase in the summertime atmospheric moisture content. Changes in the near-surface mixing ratio are shown to alter the effectiveness of the desert surface in absorbing radiative energy and redistibuting it to the lower atmosphere through sensible and latent heat exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6562578','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6562578"><span>A corrosive resistant heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Richlen, S.L.</p> <p>1987-08-10</p> <p>A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000454&hterms=Zeolite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DZeolite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000454&hterms=Zeolite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DZeolite"><span>Copper-Exchanged Zeolite L Traps Oxygen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharma, Pramod K.; Seshan, Panchalam K.</p> <p>1991-01-01</p> <p>Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMMM..432..336T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMMM..432..336T"><span>Exchange biased Co3O4 nanowires: A new insight into its magnetic core-shell nature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, S.; Jose, A.; Thanveer, T.; Anantharaman, M. R.</p> <p>2017-06-01</p> <p>We investigated interfacial exchange coupling effect in nano casted Co3O4 nanowires. Magnetometry measurements indicated that the magnetic response of the wires has two contributions. First one from the core of the wire which has characteristics of a 2D-DAFF(two-dimensional diluted antiferromagnet in a field). The second one is from uncompensated surface spins which get magnetically ordered towards the field direction once field cooled below 25 K. Below 25 K, the net magnetization of the core of the wire gets exchange coupled with the uncompensated surface spins giving rise to exchange bias effect. The unique 2D-DAFF/spin-glass core/shell heterostructure showed a pronounced training effect in the first field cycling itself. The magnitude of exchange bias field showed a maximum at intermediate cooling fields and for the higher cooling field, exchange bias got reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96b4447S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96b4447S"><span>Intermixing enables strong exchange coupling in nanocomposites: Magnetism through the interfacial ferrite in γ -Fe2O3/NiO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skoropata, E.; Su, T. T.; Ouyang, H.; Freeland, J. W.; van Lierop, J.</p> <p>2017-07-01</p> <p>γ -Fe2O3 particles, surface modified with NiO crystallites, form a unique nanocomposite that points to how to tune strong interfacial exchange coupling. We find that Ni2 + migrates into the octahedral sites of the γ -Fe2O3 nanoparticle surface, and this NiFe2O4 -like layer permits effective magnetic coupling of Ni and Fe sites that strengthens the interface exchange. A large increase in coercivity coinciding with a loss of exchange bias is achieved by this strong interfacial coupling that results in a Ni2 + moment reversal in the NiO with the γ -Fe2O3 . This work reveals the importance of intermixing in, and possibility to use, such an exchange coupling regime to alter substantially the coercivity and hence control an important property of exchange-coupled nanocomposite magnets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA608596','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA608596"><span>Post-Self-Assembly Cross-Linking to Integrate Molecular Nanofibers with Copolymers in Oscillatory Hydrogels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-05-09</p> <p>The BZ reaction provides a model system to mimic a variety of complex processes, such as biological morphogenesis, in monodisperse microemulsions .15...surfaces, ion-exchange resins, membranes, and microemulsions . For example, in addition to minimizing the hydrodynamic effects and formation of bubbles...Reaction-Diffusion Microemulsions Reveals Three-Dimensional Tu- ring Patterns. Science (Washington, DC, U.S.) 2011, 331, 1309−1312. (16) Agladze, K. I</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802027"><span>An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zelano, I O; Sivry, Y; Quantin, C; Gélabert, A; Maury, A; Phalyvong, K; Benedetti, M F</p> <p>2016-12-06</p> <p>In this study an innovative approach is proposed to predict the relative contribution of each mineral phase to the total metal availability in soils, which, in other words, could be called the available metal fractionation. Through the use of isotopic exchange kinetics (IEK) performed on typical Ni bearing phases (i.e., two types of serpentines, chlorite, smectite, goethite, and hematite) the isotopic exchange and metal-solid interaction processes are connected, considering both the thermodynamic and kinetic aspects. Results of Ni IEK experiments on mineral phases are fitted with a pseudo-first order kinetic model. For each Ni bearing phase, this allows to (i) determine the number and size of exchangeable pools (E Ni(i) ), (ii) assess their corresponding kinetic constants (k (i) ), and (iii) discuss the mechanism of Ni isotopic exchange at mineral surfaces. It is shown that all the phases investigated, with the only exception of hematite, present at least two distinct reactive pools with significantly different k (i) values. Results suggest also that metal involved in outer-sphere complexes would display isotopic exchange between 100 and 1000 times faster than metal involved in inner-sphere complexes, and that the presence of high and low affinity sites may influence the rate of isotopic exchange up to 1 order of magnitude. Moreover, the method developed represents a tool to predict and estimate Ni mobility and availability in natural soil samples on the basis of soil mineral composition, providing information barely obtained with other techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C"><span>Suppressing breakers with polar oil films: Using an epic sea rescue to model wave energy budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cox, Charles S.; Zhang, Xin; Duda, Timothy F.</p> <p>2017-02-01</p> <p>Oil has been used to still stormy seas for centuries, but the mechanisms are poorly understood. Here we examine the processes by using quantitative information from a remarkable 1883 sea rescue where oil was used to reduce large breakers during a storm. Modeling of the oil film's extent and waves under the film suggests that large breakers were suppressed by a reduction of wind energy input. Modification of surface roughness by the film is hypothesized to alter the wind profile above the sea and the energy flow. The results are central to understanding air-sea momentum exchange, including its role in such processes as cyclone growth and storm surge, although they address only one aspect of the complex problem of wind interaction with the ocean surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Nanos...6.9646N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Nanos...6.9646N"><span>Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina</p> <p>2014-07-01</p> <p>Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456601','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456601"><span>Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Perry, Nicola H.; Ishihara, Tatsumi</p> <p>2016-01-01</p> <p>Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThEng..63...35I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThEng..63...35I"><span>Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.</p> <p>2016-01-01</p> <p>The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H42C..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H42C..03H"><span>Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, J. W.</p> <p>2016-12-01</p> <p>Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S"><span>Assessing sea wave and spray effects on Marine Boundary Layer structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George</p> <p>2017-04-01</p> <p>Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23D2394H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23D2394H"><span>Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.</p> <p>2017-12-01</p> <p>Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24C2594E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24C2594E"><span>Changes in optical characteristics of surface microlayers in the Peruvian upwelling region hint to photochemically and microbially-mediated DOM turnover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engel, A.; Galgani, L.</p> <p>2016-02-01</p> <p>The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96x5137P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96x5137P"><span>Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.</p> <p>2017-12-01</p> <p>In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610558F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610558F"><span>Measuring surface salinity in the N. Atlantic subtropical gyre. The SPURS-MIDAS cruise, spring 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Font, Jordi; Ward, Brian; Emelianov, Mikhail; Morisset, Simon; Salvador, Joaquin; Busecke, Julius</p> <p>2014-05-01</p> <p>SPURS-MIDAS (March-April 2013) on board the Spanish R/V Sarmiento de Gamboa was a contribution to SPURS (Salinity Processes in the Upper ocean Regional Study) focused on the processes responsible for the formation and maintenance of the salinity maximum associated to the North Atlantic subtropical gyre. Scientists from Spain, Ireland, France and US sampled the mesoscale and submesoscale structures in the surface layer (fixed points and towed undulating CTD, underway near surface TSG) and deployed operational and experimental drifters and vertical profilers, plus additional ocean and atmospheric data collection. Validation of salinity maps obtained from the SMOS satellite was one of the objectives of the cruise. The cruise included a joint workplan and coordinated sampling with the US R/V Endeavor, with contribution from SPURS teams on land in real time data and analysis exchange. We present here an overview of the different kinds of measurements made during the cruise, as well as a first comparison between SMOS-derived sea surface salinity products and salinity maps obtained from near-surface sampling in the SPURS-MIDAS area and from surface drifters released during the cruise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918870D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918870D"><span>Statistical and hydrogeochemical approach to study processes that affect groundwater composition in the Ferrara province (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di roma, Antonella; Vaccaro, Carmela</p> <p>2017-04-01</p> <p>The ground water should not be seen only as a reserve for the water supply, but also be protected for its environmental value. Groundwater plays an essential role in the hydrological cycle for which the characterization, pollution prevention, monitoring and restoration are essential in view of the recovery and identification of the water bodies to be submitted to recharge for the adaptation to DM n. 100/2016. Groundwater of Ferrara province presents salinisation problems and pollution of noxious metals that can be mitigated through recharge processes evaluated based on the specific site characteristics. It is essential to know the hydrogeochemical characteristics of different aquifer levels. To do this have been discuss analytical results of groundwater (2014-2015 monitoring phreatic ground water and temporal series from 2003-2015 A1-A2-A3 samples from Emilia Romagna databases). Results showed that in the territory analyzed insist both salinization and refreshening processes. Factor analysis(FA) conducted on samples has divided them into three groups. 1: samples affected by ionic exchange, 2: pH reaction on heavy metal, 3: samples affected by mineralization. The geochemical groundwater facies changed from Ca-HCO3, and NaHCO3 with a small samples group of CaSO4 and through geochemical investigations were observed the reactions that take place in the waters mixing of different composition. The Na excesses are explained by ionic exchange processes. A determinant role is played by ionic exchange between Ca and Na. In this territory is important also the role of CH4 presence which typically rises towards the surface along faults and fractures and influence rise of deep water with different composition. On samples selected from FA Group 1 has been observed an increase of the CEC (Cation exchange capacity). Adsorption-desorption exchanges take place between water and the fine fraction sediment rich in clay minerals. Higher CEC values are found in rich organic substance areas which is noticeably water sediment interaction contributing to the increase of some elements (Ca, Na, Mg, K). The salinization processes are attributable to a change in the weather conditions, with increased evapotranspiration and change in pH that leads to the decomposition of organic matter resulting in an increase of Na in the waters. The refreshening processes involving deepwater characterized by a marked increase in HCO3. Overall, mixing, cation exchange and oxidation of organic matter are identified as the major processes determining the general groundwater quality. This approach represents a new method of identification and classification of phreatic and deep groundwater and identifies areas on which it would be interesting to intensify monitoring to see which water bodies may be intended for regeneretion through innovative processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4065617','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4065617"><span>HEAT TRANSFER MEANS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fraas, A.P.; Wislicenus, G.F.</p> <p>1961-07-11</p> <p>A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004308','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004308"><span>Phoretic Force Measurement for Microparticles Under Microgravity Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, E. J.; Zheng, R.</p> <p>1999-01-01</p> <p>This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800023349','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800023349"><span>A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolotukhin, V. G.; Kolosov, B. I.; Usikov, D. A.; Borisenko, V. I.; Mosin, S. T.; Gorokhov, V. N.</p> <p>1980-01-01</p> <p>A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPCS..111..335M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPCS..111..335M"><span>Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marques, Thalles M. F.; Strayer, Megan E.; Ghosh, Anupama; Silva, Alexandre; Ferreira, Odair P.; Fujisawa, Kazunori; Alves da Cunha, Jose R.; Abreu, Guilherme J. P.; Terrones, Mauricio; Mallouk, Thomas E.; Viana, Bartolomeu C.</p> <p>2017-12-01</p> <p>Hexaniobate nanosheets derived from the parent compound K4Nb6O17 have been decorated with CeO2 nanoparticles by ion exchange with aqueous cerium (IV) solution. Very homogeneous CeO2 nanoparticle decoration of the hexaniobate sheets can be achieved by this method and the resulting composites may absorb visible light. HRTEM images show that ∼3.0 nm diameter CeO2 nanoparticles adhere to hexaniobate nanosheets that are exfoliated and then restacked prior to Ce deposition. The interfacial interaction between CeO2 nanoparticles and nanosheets would be due to an electrostatic attraction mechanism. Raman and XRD measurements have given strong evidence that CeO2 nanoparticles have fluorite structure. EDS, FTIR and XPS results suggest almost complete exchange of TBA+ and K+ by Ce4+. Cerium ion exchange on the acid exchanged parent compound, H2.9K1.1Nb6O17, revealed that the extent of Ce ion exchange is much greater in case of nanosheets, which may be rationalized by the larger surface area available after exfoliation. XPS measurements show that the ratio of Ce4+/Ce3+ is around 4.4, in agreement with the formation of fluorite structure (CeO2). Thus, these CeO2 nanoparticle/nanosheet composites may be useful for catalytic processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrMat...3...14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrMat...3...14S"><span>Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten</p> <p>2016-03-01</p> <p>Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018251','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018251"><span>The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Triska, F.J.; Duff, J.H.; Avanzino, R.J.</p> <p>1993-01-01</p> <p>The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel. ?? 1993 Kluwer Academic Publishers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33B1669L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33B1669L"><span>Turbulent water vapor exchanges and two source energy balance model estimated fluxes of heterogeneous vineyard canopies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.</p> <p>2017-12-01</p> <p>Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low frequency events. Aerodynamic resistances derived by the TSEB model are examined, and modeled fluxes of water and energy are compared to measured values for various conditions. Efforts to characterize periods of intermittent behavior are presented and particular attention to model performance is given to these intermittent periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26910987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26910987"><span>[Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue</p> <p>2015-11-01</p> <p>Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26753514','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26753514"><span>Surfactant-associated bacteria in the near-surface layer of the ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William</p> <p>2016-01-12</p> <p>Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4709576','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4709576"><span>Surfactant-associated bacteria in the near-surface layer of the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William</p> <p>2016-01-01</p> <p>Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026006','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026006"><span>Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krest, J.M.; Harvey, J.W.</p> <p>2003-01-01</p> <p>Radium activity in pore water of wetland sediments often differs from the amount expected from local production, decay, and exchange with solid phases. This disequilibrium results from vertical transport of radium with groundwater that flows between the underlying aquifer and surface water. In situations where groundwater recharge or discharge is significant, the rate of vertical water flow through wetland sediment can be determined from the radium disequilibrium by a combined model of transport, production, decay, and exchange with solid phases. We have developed and tested this technique at three sites in the freshwater portion of the Everglades by quantifying vertical advective velocities in areas with persistent groundwater recharge or discharge and estimating a coefficient of dispersion at a site that is subject to reversals between recharge and discharge. Groundwater velocities (v) were determined to be between 0 and -0.5 cm d-1 for a recharge site and 1.5 ?? 0.4 cm d-1 for a discharge site near Levee 39 in the Everglades. Strong gradients in 223Ra and 224Ra usually occurred at the base of the peat layer, which avoided the problems of other tracers (e.g., chloride) for which greatest sensitivity occurs near the peat surface - a zone readily disturbed by processes unrelated to groundwater flow. This technique should be easily applicable to any wetland system with different production rates of these isotopes in distinct sedimentary layers or surface water. The approach is most straightforward in systems where constant pore-water ionic strength can be assumed, simplifying the modeling of radium exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850023425','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850023425"><span>Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, W. T.; Niiler, P. P.</p> <p>1985-01-01</p> <p>A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H53A1376G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H53A1376G"><span>The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganot, Y.; Weisbrod, N.; Dragila, M. I.</p> <p>2011-12-01</p> <p>Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/911844','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/911844"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stuart Adler; L. Dunyushkina; S. Huff</p> <p></p> <p>The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on themore » mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24A2922S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24A2922S"><span>Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safaie, A.; Davis, K. A.; Pawlak, G. R.</p> <p>2016-02-01</p> <p>The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29303516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29303516"><span>Gas phase 1H NMR studies and kinetic modeling of dihydrogen isotope equilibration catalyzed by Ru-nanoparticles under normal conditions: dissociative vs. associative exchange.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Limbach, Hans-Heinrich; Pery, Tal; Rothermel, Niels; Chaudret, Bruno; Gutmann, Torsten; Buntkowsky, Gerd</p> <p>2018-04-25</p> <p>The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2. In that case, the conversion of H2 into gaseous HD was detected. In order to analyze the experimental kinetic and spectroscopic data, we explored two different mechanisms taking into account potential kinetic and equilibrium H/D isotope effects. Firstly, we explored the dissociative exchange mechanism consisting of dissociative adsorption of dihydrogen, fast hydride surface diffusion and associative desorption of dihydrogen. It is shown that if D2 is the reaction partner, only H2 will be released in the beginning of the reaction, and HD only in later reaction stages. The second mechanism, dubbed here associative exchange consists of the binding of dihydrogen to Ru surface atoms, followed by a H-transfer to or by H-exchange with an adjacent hydride site, and finally of the associative desorption of dihydrogen. In that case, in the exchange with D2, only HD will be released in the beginning of the reaction. Our experimental results are not compatible with the dissociative exchange but can be explained in terms of the associative exchange. Whereas the former will dominate at low temperatures and pressures, the latter will prevail around room temperature and normal pressures where transition metal nanoparticles are generally used as reaction catalysts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JChPh.12010483T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JChPh.12010483T"><span>Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.</p> <p>2004-06-01</p> <p>Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31F1576S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31F1576S"><span>Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.</p> <p>2017-12-01</p> <p>The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26556067','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26556067"><span>Optimization of Manganese Reduction in Biotreated POME onto 3A Molecular Sieve and Clinoptilolite Zeolites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jami, Mohammed S; Rosli, Nurul-Shafiqah; Amosa, Mutiu K</p> <p>2016-06-01</p> <p>Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60376&keyword=high+AND+flow+AND+oxygen&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60376&keyword=high+AND+flow+AND+oxygen&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=328803','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=328803"><span>Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B33C0612P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B33C0612P"><span>Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.</p> <p>2016-12-01</p> <p>Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000932"><span>B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa</p> <p>2016-01-01</p> <p>Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThEng..63..329M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThEng..63..329M"><span>Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.</p> <p>2016-05-01</p> <p>The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916140S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916140S"><span>The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander</p> <p>2017-04-01</p> <p>The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke generally decreased the magnitude of the turbulent heat fluxes by 45% compared to pre-ENSO values. Overall, the ENSO event forest fires resulted in a major anomaly of exchange processes between the oil palm plantation and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20005635-enhanced-heat-transfer-characteristics-viscous-liquid-flows-chevron-plate-heat-exchanger','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20005635-enhanced-heat-transfer-characteristics-viscous-liquid-flows-chevron-plate-heat-exchanger"><span>Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muley, A.; Manglik, R.M.; Metwally, H.M.</p> <p>1999-11-01</p> <p>Thermal processing and manufacturing in the chemical, foods, pharmaceutical, hygiene products, and biochemical industries invariably involve heating and cooling of highly viscous fluid media. These fluids tend to flow in the low Reynolds number regime, inherently have relatively low heat transfer coefficients, and are often temperature sensitive and prone to thermal degradation in the presence of large temperature differences. In recent times, plate heat exchangers (PHEs) have found increasing usage in such applications, primarily due to their features that promote enhanced heat transfer, and provide for the flexibility in altering their unit thermal size with ease, close approach temperature operation,more » and mitigation of thermal degradation of the process fluid. Here, steady-state heat transfer and pressure drop data for single-phase viscous fluid flows (2 {le} Re {le} 400) in a single-pass U-type counterflow plate heat exchanger (PHE) with chevron plates are presented. With vegetable oil as test fluid (130 {lt} Pr {lt} 290), three different plate arrangements are employed: two symmetric ({beta} = 30 deg/30 deg and 60 deg/60 deg) and one mixed ({beta} = 30 deg/60 deg). The effects of chevron angle {beta}, corrugation aspect ratio {gamma}, and flow conditions (Re, Pr, {mu}/{mu}{sub w}) on Nu and f characteristics of the PHE are delineated. The results show a rather complex influence of plate surface corrugations on the enhanced thermal-hydraulic behavior. Relative to the performance of equivalent flat-plate packs, chevron plates sustain up to 2.9 times higher heat transfer rates on a fixed geometry and constant pumping power basis, and require up to 48% less surface area for the fixed heat load and pressure drop constraint.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4686240-cationic-exchanger-activated-clay-part-characteristics-materials-preparation-cationic-exchanger-part-ii-chemical-separation-part-iii-effect-thermal-treatment-gamma-irradiation-internal-surface-capacity-acidic-montmorillonite-scambio-cationico-con-argille-attivate-parte-caratteristiche-dei-materiali-preparazione-dello-scambiatore-cationico-parte-ii-separazioni-chimiche-parte-iii-effetto-del-trattamento-termico-della-irradiazione-gamma-sulla-superficie-interna-sulla-capacita-delle-montmorilloniti-acide','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4686240-cationic-exchanger-activated-clay-part-characteristics-materials-preparation-cationic-exchanger-part-ii-chemical-separation-part-iii-effect-thermal-treatment-gamma-irradiation-internal-surface-capacity-acidic-montmorillonite-scambio-cationico-con-argille-attivate-parte-caratteristiche-dei-materiali-preparazione-dello-scambiatore-cationico-parte-ii-separazioni-chimiche-parte-iii-effetto-del-trattamento-termico-della-irradiazione-gamma-sulla-superficie-interna-sulla-capacita-delle-montmorilloniti-acide"><span>Cationic Exchanger with Activated Clay. Part I. Characteristics of the Materials and Preparation of the Cationic Exchanger. Part II. Chemical Separation. Part III. Effect of Thermal Treatment and Gamma Irradiation on the Internal Surface and Capacity of Acidic Montmorillonite; SCAMBIO CATIONICO CON ARGILLE ATTIVATE. PARTE I. CARATTERISTICHE DEI MATERIALI E PREPARAZIONE DELLO SCAMBIATORE CATIONICO. PARTE II. SEPARAZIONI CHIMICHE. PARTE III. EFFETTO DEL TRATTAMENTO TERMICO E DELLA IRRADIAZIONE GAMMA SULLA SUPERFICIE INTERNA E SULLA CAPACITA DELLE MONTMORILLONITI ACIDE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cerrai, E.; Ronchetti, C.; Triulzi, C.</p> <p>1963-05-01</p> <p>The preparation of an acidic cationic exchanger from a calcium bentonite is described. The behavior and properties of acidic montmorillonite and activated clay are given as well as the effect of thermal treatment and gamma irradiation on cationic exchange capacity and internal surface area. (auth)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6553E..1LR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6553E..1LR"><span>Adsorption coefficients for TNT on soil and clay minerals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen</p> <p>2007-04-01</p> <p>To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........17O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........17O"><span>Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz-Suslow, David G.</p> <p></p> <p>The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790060856&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790060856&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bboundaries"><span>A model of the planetary boundary layer over a snow surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halberstam, I.; Melendez, R.</p> <p>1979-01-01</p> <p>A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29511391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29511391"><span>Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L</p> <p>2018-01-01</p> <p>We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5827802','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5827802"><span>Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.</p> <p>2018-01-01</p> <p>Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24476099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24476099"><span>Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J</p> <p>2014-02-27</p> <p>We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26456071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26456071"><span>Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Subrahmanyam, Kota S; Malliakas, Christos D; Sarma, Debajit; Armatas, Gerasimos S; Wu, Jinsong; Kanatzidis, Mercouri G</p> <p>2015-11-04</p> <p>We report the synthesis of ion-exchangeable molybdenum sulfide chalcogel through an oxidative coupling process, using (NH4)2MoS4 and iodine. After supercritical drying, the MoS(x) amorphous aerogel shows a large surface area up to 370 m(2)/g with a broad range of pore sizes. X-ray photoelectron spectroscopic and pair distribution function analyses reveal that Mo(6+) species undergo reduction during network assembly to produce Mo(4+)-containing species where the chalcogel network consists of [Mo3S13] building blocks comprising triangular Mo metal clusters and S2(2-) units. The optical band gap of the brown-black chalcogel is ∼1.36 eV. The ammonium sites present in the molybdenum sulfide chalcogel network are ion-exchangeable with K(+) and Cs(+) ions. The molybdenum sulfide aerogel exhibits high adsorption selectivities for CO2 and C2H6 over H2 and CH4. The aerogel also possesses high affinity for iodine and mercury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....1215901V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....1215901V"><span>Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.</p> <p>2015-09-01</p> <p>Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2228564','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2228564"><span>Calcium distribution in Amoeba proteus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>1979-01-01</p> <p>A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady- state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels. PMID:512628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12834726','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12834726"><span>Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rivera-Utrilla, J; Sánchez-Polo, M</p> <p>2003-08-01</p> <p>The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8673B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8673B"><span>The Benefits of Past and Current Regional Hydroclimate Projects to the Third Pole Environment (TPE) Water and Energy Exchanges Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benedict, Sam; van Oevelen, Peter</p> <p>2014-05-01</p> <p>To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456772','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456772"><span>Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aoyagi, Wataru; Omiya, Masaki</p> <p>2016-01-01</p> <p>An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators. PMID:28773599</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B33G..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B33G..02L"><span>Spatial variation in energy exchange across coastal environments in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lund, M.; Abermann, J.; Citterio, M.; Hansen, B. U.; Larsen, S. H.; Stiegler, C.; Sørensen, L. L.; van As, D.</p> <p>2015-12-01</p> <p>The surface energy partitioning in Arctic terrestrial and marine areas is a crucial process, regulating snow, glacier ice and sea ice melt, and permafrost thaw, as well as modulating Earth's climate on both local, regional, and eventually, global scales. The Arctic region has warmed approximately twice as much as the global average, due to a number of feedback mechanisms related to energy partitioning, most importantly the snow and ice-albedo feedback. However, direct measurements of surface energy budgets in the Arctic are scarce, especially for the cold and dark winter period and over transects going from the ice sheet and glaciers to the sea. This study aims to describe annual cycles of the surface energy budget from various surface types in Arctic Greenland; e.g. glacier, snow, wet and dry tundra and sea ice, based on data from a number of measurement locations across coastal Greenland related to the Greenland Ecosystem Monitoring (GEM) program, including Station Nord/Kronprins Christians Land, Zackenberg/Daneborg, Disko, Qaanaq, Nuuk/Kobbefjord and Upernaviarsuk. Based on the available time series, we will analyze the sensitivity of the energy balance partitioning to variations in meteorological conditions (temperature, cloudiness, precipitation). Such analysis would allow for a quantification of the spatial variation in the energy exchange in aforementioned Arctic environments. Furthermore, this study will identify uncertainties and knowledge gaps in Arctic energy budgets and related climate feedback effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28131567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28131567"><span>Short communication: Evaluation of a sol-gel-based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd</p> <p>2017-04-01</p> <p>Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11U..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11U..08K"><span>The tropopause inversion layer at midlatitudes: Formation processes and relation to stratosphere-troposphere exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunkel, D.; Hoor, P. M.; Wirth, V.</p> <p>2016-12-01</p> <p>Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA566393','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA566393"><span>An Integrated Experimental and Computational Study of Heating due to Surface Catalysis under Hypersonic Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-08-01</p> <p>17 1.1.1 Mass production / destruction terms . . . . . . . . . . . . . . . . . . . . 18 1.1.2 Energy exchange terms...that US3D does not cur- rently model electronic energy . If the US3D solution is post-processed to account for electronic energy modes, the computed...nonequilibrium model for electronic energy to the 12 Distribution A: Approved for public release; distribution is unlimited. Figure 9: (left) jet profile solution</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48796','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48796"><span>Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch</p> <p>2008-01-01</p> <p>Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>