Sample records for surface exploration systems

  1. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  2. Human Exploration of Phobos

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Chappell, Steven P.; Gernhardt, Michael L.; Lee, David E.; Howe, A. Scott

    2015-01-01

    This study developed, analyzed, and compared mission architectures for human exploration of Mars' Moons within the context of an Evolvable Mars Campaign. METHODS: All trades assumed conjunction class missions to Phobos (approximately 500 days in Mars system) as it was considered the driving case for the transportation architecture. All architectures assumed that the Mars Transit Habitat would remain in a High Mars Orbit with crewmembers transferring between HMO and Phobos in a small crew taxi vehicle. A reference science / exploration program was developed including performance of a standard set of tasks at 55 locations on the Phobos surface. Detailed EVA timelines were developed using realistic flight rules to accomplish the reference science tasks using exploration systems ranging from jetpacks to multi-person pressurized excursion vehicles combined with Phobos surface and orbital (L1, L4/L5, 20km Distant Retrograde Orbit) habitat options. Detailed models of propellant mass, crew time, science productivity, radiation exposure, systems and consumables masses, and other figures of merit were integrated to enable quantitative comparison of different architectural options. Options for pre-staging assets using solar electric propulsion (SEP) vs. delivering all systems with the crew were also evaluated. Seven discrete mission architectures were evaluated. RESULTS: The driving consideration for habitat location (Phobos surface vs. orbital) was radiation exposure, with an estimated reduction in cumulative mission radiation exposure of up to 34% (vs. Mars orbital mission) when the habitat is located on the Phobos surface, compared with only 3-6% reduction for a habitat in a 20km DRO. The exploration utility of lightweight unpressurized excursion vehicles was limited by the need to remain within 20 minutes of Solar Particle Event radiation protection combined with complex GN&C systems required by the non-intuitive and highly-variable gravitational environment. Two-person pressurized excursion vehicles as well as mobile surface habitats offer significant exploration capability and operational benefits compared with unpressurized EVA mobility systems at the cost of increased system and propellant mass. Mechanical surface translation modes (i.e. hopping) were modeled and offer potentially significant propellant savings and the possibility of extended exploration operations between crewed missions. Options for extending the utilization of the crew taxi vehicle were examined, including use as an exploration asset for Phobos surface exploration (when combined with an alternate mobility system) and as an EVA platform, both on Phobos and for contingency EVA on the Mars Transit Habitat. CONCLUSIONS: Human exploration of Phobos offers a scientifically meaningful first step towards human Mars surface missions that develops and validates transportation, habitation, and exploration systems and operations in advance of the Mars landing systems.

  3. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  4. Operation and performance of the Mars Exploration Rover imaging system on the Martian surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date.

  5. Operation and performance of the mars exploration rover imaging system on the martian surface

    USGS Publications Warehouse

    Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.

  6. Research on lunar and planet development and utilization

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.

  7. Integrated Surface Power Strategy for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    A National Aeronautics and Space Administration (NASA) study team evaluated surface power needs for a conceptual crewed 500-day Mars mission. This study had four goals: 1. Determine estimated surface power needed to support the reference mission; 2. Explore alternatives to minimize landed power system mass; 3. Explore alternatives to minimize Mars Lander power self-sufficiency burden; and 4. Explore alternatives to minimize power system handling and surface transportation mass. The study team concluded that Mars Ascent Vehicle (MAV) oxygen propellant production drives the overall surface power needed for the reference mission. Switching to multiple, small Kilopower fission systems can potentially save four to eight metric tons of landed mass, as compared to a single, large Fission Surface Power (FSP) concept. Breaking the power system up into modular packages creates new operational opportunities, with benefits ranging from reduced lander self-sufficiency for power, to extending the exploration distance from a single landing site. Although a large FSP trades well for operational complexity, a modular approach potentially allows Program Managers more flexibility to absorb late mission changes with less schedule or mass risk, better supports small precursor missions, and allows a program to slowly build up mission capability over time. A number of Kilopower disadvantages-and mitigation strategies-were also explored.

  8. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  9. Simulation of Lunar Surface Communications Network Exploration Scenarios

    NASA Technical Reports Server (NTRS)

    Linsky, Thomas W.; Bhasin, Kul B.; White, Alex; Palangala, Srihari

    2006-01-01

    Simulations and modeling of surface-based communications networks provides a rapid and cost effective means of requirement analysis, protocol assessments, and tradeoff studies. Robust testing in especially important for exploration systems, where the cost of deployment is high and systems cannot be easily replaced or repaired. However, simulation of the envisioned exploration networks cannot be achieved using commercial off the shelf network simulation software. Models for the nonstandard, non-COTS protocols used aboard space systems are not readily available. This paper will address the simulation of realistic scenarios representative of the activities which will take place on the surface of the Moon, including selection of candidate network architectures, and the development of an integrated simulation tool using OPNET modeler capable of faithfully modeling those communications scenarios in the variable delay, dynamic surface environments. Scenarios for exploration missions, OPNET development, limitations, and simulations results will be provided and discussed.

  10. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  11. Recovery of Lunar Surface Access Module Residual and Reserve Propellants

    NASA Technical Reports Server (NTRS)

    Notardonato, William U.

    2007-01-01

    The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.

  12. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.; Crues, Edwin Z.; Li, Zu Qun; Bielski, Paul; Howe, A. Scott

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development, which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo pre-deploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work from portable foot restraints or body restrain tethers in the vicinity of the habitat. Prototype structures were tested as part of NEEMO 20.

  13. Autonomous Landing and Smart Anchoring for In-Situ Exploration of Small Bodies

    NASA Technical Reports Server (NTRS)

    Ghavimi, Ali R.; Serricchio, Frederick; Hadaegh, Fred Y.; Dolgin, Ben

    2000-01-01

    Future NASA missions include in-situ scientific explorations of small interplanetary objects like comets and asteroids. Sample acquisition systems are envisioned to operate directly from the landers that are anchored to the surface. Landing and anchoring proves to be challenging in the absence of an attitude control system and in the presence of nearly zero-gravity environments with uncertain surface terrain and unknown mechanical properties. This paper presents recent advancements in developing a novel landing and anchoring control system for the exploration of small bodies.

  14. Options for Affordable Planetary Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Nuclear fission systems could serve as "workhorse" power plants for the Vision for Space Exploration. In this context, the "workhorse" power plant is defined as a system that could provide power anywhere on the surface of the moon or Mars, land on the moon using a Robotic Lunar Exploration Program (RLEP)-developed lander, and would be a viable, affordable option once power requirements exceed that which can be provided by existing energy systems.

  15. Multi-Purpose Avionic Architecture for Vision Based Navigation Systems for EDL and Surface Mobility Scenarios

    NASA Astrophysics Data System (ADS)

    Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.

    2015-09-01

    Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.

  16. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also address important science questions by determining the form of lunar surface volatiles. Science missions to examine the lunar interior and space weathering will also inform exploration systems with regard to the locations of large moonquakes and the radiation environment. Such examples highlight the Moon as an enabling Solar System science and exploration asset.

  17. HERRO: A Science-Oriented Strategy for Crewed Missions Beyond LEO

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    2011-01-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around exploration targets of interest, such as Mars, and conducting astronaut exploration of the surfaces using telerobots and remotely controlled systems. By eliminating the significant communications delay with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments, in effect giving them a "virtual presence" on planetary surfaces, and thus expanding the scientific return at these destinations. It also eliminates development of the numerous man-rated landers, ascent vehicles and surface systems that are required to land humans on planetary surfaces. The propulsive requirements to travel from LEO to many destinations with shallow gravity-wells in the inner solar system are quite similar. Thus, a single spacecraft design could perform a variety of missions, including orbit-based surface exploration of the Moon, Mars and Venus, and rendezvous with Near Earth Asteroids (NEAs), as well as Phobos and Deimos. Although HERRO bypasses many of the initial steps that have been historically associated with human space exploration, it opens the door to many new destinations that are candidates for future resource utilization and settlement. HERRO is a first step that takes humans to exciting destinations beyond LEO, while expanding the ability to conduct science within the inner solar system.

  18. ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology

  19. The Space Launch System and the Proving Ground: Pathways to Mars

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.

    2014-11-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability. We focus on mission concepts relevant to NASA’s Cislunar Proving Ground and the Global Exploration Roadmap (GER).Asteroid Redirect Mission (ARM): ARM in part is a mission to the lunar vicinity. The ARM mission requirements result in system design based on a modified version of our 702 spacecraft. Including a NASA Docking System (NDS) on the Asteroid Redirect Vehicle allows for easier crewed exploration integration and execution. Exploration Augmentation Module (EAM): Crew operations at a redirected asteroid could be significantly enhanced by providing additional systems and EVA capabilities beyond those available from the Orion only. An EAM located with the asteroid would improve the science and technical return of the mission while also increasing Orion capability through resource provision, abort location and safe haven for contingencies. The EAM could be repurposed as a cislunar exploration platform that advances scientific research, enables lunar surface exploration and provides a deep space vehicle assembly and servicing site. International Space Station (ISS) industry partners have been working for the past several years on concepts for using ISS development methods and assets to support a broad range of exploration missions.Lunar Surface: The mission objectives are to provide lunar surface access for crew and cargo and to provide as much system reuse as possible. Subsequent missions to the surface can reuse the same lander and Lunar Transfer Vehicle.Mars Vicinity: The International space community has declared that our unified horizon goal is for a human mission to Mars. Translunar infrastructure and heavy lift capability are key to this approach. The moons of Mars would provide an excellent stepping stone to the surface. As a “shake-down” cruise before landing, a mission to Deimos or Phobos would test all of the systems except those needed to get to the surface and back. This test would provide confidence for the in-space transportations and crew habitat systems.

  20. Small Body Hopper Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Gernhardt, Michael L.; Lee, Dave E.; Crues, E. Zack; Dexter, Dan E.; Abercromby, Andrew F. J.; Chappell, Steve P.; Nguyen, Hung T.

    2015-01-01

    A propellant-saving hopper mobility system was studied that could help facilitate the exploration of small bodies such as Phobos for long-duration human missions. The NASA Evolvable Mars Campaign (EMC) has proposed a mission to the moons of Mars as a transitional step for eventual Mars surface exploration. While a Mars transit habitat would be parked in High-Mars Orbit (HMO), crew members would visit the surface of Phobos multiple times for up to 14 days duration (up to 50 days at a time with logistics support). This paper describes a small body surface mobility concept that is capable of transporting a small, two-person Pressurized Exploration Vehicle (PEV) cabin to various sites of interest in the low-gravity environment. Using stored kinetic energy between bounces, a propellant-saving hopper mobility system can release the energy to vector the vehicle away from the surface in a specified direction. Alternatively, the stored energy can be retained for later use while the vehicle is stationary in respect to the surface. The hopper actuation was modeled using a variety of launch velocities, and the hopper mobility was evaluated using NASA Exploration Systems Simulations (NExSyS) for transit between surface sites of interest. A hopper system with linear electromagnetic motors and mechanical spring actuators coupled with Control Moment Gyroscope (CMG) for attitude control will use renewable electrical power, resulting in a significant propellant savings.

  1. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  2. Long-Lived In-Situ Solar System Explorer (LLISSE)

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hunter, Gary; Rock, Jennifer

    2017-01-01

    This presentation provides an update on development of the Long-Lived In-situ Solar System Explorer (LLISSE). LLISSE is a small probe being developed to provide long-term measurements of simple but important scientific parameters from the surface of Venus. High level summary of recent activities and progress is provided. LLISSE is a small and completely independent probe for Venus surface applications

  3. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  4. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  5. PERCIVAL mission to Mars

    NASA Astrophysics Data System (ADS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-12-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  6. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  7. A new experimental capability for the study of regolith surface physical properties to support science, space exploration, and in situ resource utilization (ISRU)

    NASA Astrophysics Data System (ADS)

    Dreyer, Christopher B.; Abbud-Madrid, Angel; Atkinson, Jared; Lampe, Alexander; Markley, Tasha; Williams, Hunter; McDonough, Kara; Canney, Travis; Haines, Joseph

    2018-06-01

    Many surfaces found on the Moon, asteroids, Mars, moons, and other planetary bodies are covered in a fine granular material known as regolith. Increased knowledge of the physical properties of extraterrestrial regolith surfaces will help advance the scientific knowledge of these bodies as well as the development of exploration (e.g., instrument and robotic) and in situ resource utilization (ISRU) systems. The Center for Space Resources at the Colorado School of Mines as part of the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust of NASA's Solar System Exploration Research Virtual Institute has developed a novel system, called the ISRU Experimental Probe (IEP) that can support studies of dry and icy regolith from -196 to 150 °C and pressure from laboratory ambient pressure to 10-7 Torr. The IEP system and proof-of-concept results are presented in this paper.

  8. A celestial assisted INS initialization method for lunar explorers.

    PubMed

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  9. A Celestial Assisted INS Initialization Method for Lunar Explorers

    PubMed Central

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998

  10. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-02-01

    Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.

  11. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  12. Cascade Helps JPL Explore the Solar System

    NASA Technical Reports Server (NTRS)

    Burke, G. R.

    1996-01-01

    At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.

  13. The Space Launch System and the Proving Ground: Pathways to Mars

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2014-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability. We present mission concepts relevant to NASA's Cislunar Proving Ground and the Global Exploration Roadmap (GER).Asteroid Redirect Mission (ARM): ARM in part is a mission to the lunar vicinity. The ARM mission requirements result in system design based on a modified version of our 702 spacecraft. Including a NASA Docking System (NDS) on the Asteroid Redirect Vehicle allows for easier crewed exploration integration and execution. Exploration Augmentation Module (EAM): Crew operations at a redirected asteroid could be significantly enhanced by providing additional systems and EVA capabilities beyond those available from the Orion only. An EAM located with the asteroid would improve the science and technical return of the asteroid mission while also increasing Orion capability through resource provision and providing an abort location and safe haven for contingencies. The EAM could be repurposed as a cislunar exploration platform that advances scientific research, enables lunar surface exploration and provides a deep space vehicle assembly and servicing site. International Space Station (ISS) industry partners have been working for the past several years on concepts for using ISS development methods and assets to support a broad range of missions. These concepts have matured along with planning details for NASA's SLS and Orion for a platform located in the Earth-Moon Libration (EML) system or Distant Retrograde Orbit (DRO).Lunar Surface: The mission objectives are to provide lunar surface access for crew and cargo and to provide as much reuse as possible. Subsequent missions to the surface can reuse the same lander and Lunar Transfer Vehicle.Mars Vicinity: The International space community has declared that our unified horizon goal is for a human mission to Mars. Translunar infrastructure and heavy lift capability are key to this approach. The moons of Mars would provide an excellent stepping stone to the surface. As a "shake-down" cruise before landing, a mission to Deimos or Phobos would test all of the systems except those needed to get to the surface and back. This test would provide confidence for the in-space transportations and crew habitat systems.

  14. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work from portable foot restraints or body restrain tethers in the vicinity of the habitat. Prototype structures were tested as part of NEEMO 20. PEVs would contain closed loop guidance and provide life support and consumables for two crew for 2 weeks plus reserves. The PEV has a cabin that uses the exploration atmosphere of 8.2 psi with 34% oxygen, enabling use of suit ports for rapid EVA with minimal oxygen prebreathe as well as dust control by keeping the suits outside the pressurized volume. When equipped with outriggers and control moment gyros, the PEV enables EVA tasks of up to 8 pounds of force application without the need to anchor. Tasks with higher force requirements can be performed with PEV propulsion providing the necessary thrust to react forces. Exploration of Phobos builds heavily from the developments of the cis-lunar proving ground, and significantly reduces Mars surface risk by facilitating the development and testing of habitats, MAVs, and pressurized rover cabins that are all Mars surface forward. A robotic precursor mission to Phobos and Deimos is also under consideration and would need to launch in 2022 to support a 2031 human Phobos mission.

  15. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, Dave

    2010-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.

  16. A Dual Launch Robotic and Human Lunar Mission Architecture

    NASA Technical Reports Server (NTRS)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  17. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  18. Open System Architecture design for planet surface systems

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  19. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration program and reducing the risks that are indigenous to Mars exploration. Among those areas being explored are alternative space propulsion approaches, solar vs. nuclear power, and reductions in the size of crews.

  20. Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Franzen, M. A.; Preble, J.; Schoenoff, M.; Halona, K.; Long, T. E.; Park, T.; Sears, D. W. G.

    2004-01-01

    The return of samples from solar system bodies is becoming an essential element of solar system exploration. The recent National Research Council Solar System Exploration Decadal Survey identified six sample return missions as high priority missions: South-Aitken Basin Sample Return, Comet Surface Sample Return, Comet Surface Sample Return-sample from selected surface sites, Asteroid Lander/Rover/Sample Return, Comet Nucleus Sample Return-cold samples from depth, and Mars Sample Return [1] and the NASA Roadmap also includes sample return missions [2] . Sample collection methods that have been flown on robotic spacecraft to date return subgram quantities, but many scientific issues (like bulk composition, particle size distributions, petrology, chronology) require tens to hundreds of grams of sample. Many complex sample collection devices have been proposed, however, small robotic missions require simplicity. We present here the results of experiments done with a simple but innovative collection system for sample return from small solar system bodies.

  1. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  2. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  3. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  4. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  5. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  6. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  7. The Potential Benefits of Nuclear Power on the Surface of Mars: The Robotic Exploration Perspective

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.; Balint, Tibor S.

    2006-01-01

    This viewgraph presentation reviews the future planning for further exploration of the Martian Surface by robotic vehicles. Particular emphasis is given to the use of nuclear power in the planning process. Advantages of Radioisotope Power Systems and Radioisotope Heating units are reviewed.

  8. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  9. Titan Explorer: The Next Step in the Exploration of a Mysterious World

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Wright, Henry S.

    2005-01-01

    The Titan Explorer Mission outlined in this report is a proposed next step in the exploration of Titan, following the highly successful Huygens Titan probe of 2005. The proposed Titan Explorer Mission consists of an Orbiter and an Airship that traverses the atmosphere of Titan and can land on its surface. The Titan Explorer Mission is science driven and addresses some of the fundamental questions about the atmosphere, surface and evolution of Titan, which will add to our understanding of the origin and evolution of life on Earth and assess the likelihood of life elsewhere in the Solar System.

  10. Radiation analysis for manned missions to the Jupiter system

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Radiation analysis for manned missions to the Jupiter system.

    PubMed

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  13. Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James

    2017-01-01

    This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.

  14. An Overview of Power Capability Requirements for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak

    2005-01-01

    Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.

  15. The Pluto system: Initial results from its exploration by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Bagenal, F.; Ennico, K.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Olkin, C. B.; Spencer, J. R.; Weaver, H. A.; Young, L. A.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Hinson, D. P.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lisse, C. M.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Strobel, D. F.; Stryk, T.; Summers, M. E.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.; Zirnstein, E.

    2015-10-01

    The Pluto system was recently explored by NASA’s New Horizons spacecraft, making closest approach on 14 July 2015. Pluto’s surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto’s atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto’s diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto’s large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.

  16. Bio-Inspired Engineering of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Thakoor, Sanita

    2003-01-01

    The multidisciplinary concept of "bioinspired engineering of exploration systems" (BEES) is described, which is a guiding principle of the continuing effort to develop biomorphic explorers as reported in a number of articles in the past issues of NASA Tech Briefs. The intent of BEES is to distill from the principles found in successful nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods but that are accomplished rather deftly in nature by biological organisms. The intent is not just to mimic operational mechanisms found in a specific biological organism but to imbibe the salient principles from a variety of diverse bio-organisms for the desired crucial function. Thereby, we can build explorer systems that have specific capabilities endowed beyond nature, as they will possess a combination of the best nature-tested mechanisms for that particular function. The approach consists of selecting a crucial function, for example, flight or some selected aspects of flight, and develop an explorer that combines the principles of those specific attributes as seen in diverse flying species into one artificial entity. This will allow going beyond biology and achieving unprecedented capability and adaptability needed in encountering and exploring what is as yet unknown. A classification of biomorphic flyers into two main classes of surface and aerial explorers is illustrated in the figure, with examples of a variety of biological organisms that provide the inspiration in each respective subclass. Such biomorphic explorers may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and aerial exploration. Preprogrammed for a specific function, they could serve as one-way communicating beacons, spread over the exploration site, autonomously looking for/at the targets of interest. In a hierarchical organization, these biomorphic explorers would report to the next level of exploration mode (say, a large conventional lander/rover) in the vicinity. A widespread and affordable exploration of new/hazardous sites at lower cost and risk would thus become possible by utilizing a faster aerial flyer to cover long ranges and deploying a variety of function- specific, smaller biomorphic explorers for distributed sensing and local sample acquisition. Several conceptual biomorphic missions for planetary and terrestrial exploration applications have been illustrated in "Surface-Launched Explorers for Reconnaissance/ Scouting" (NPO-20871), NASA Tech Briefs, Vol. 26, No. 4 (April, 2002), page 69 and "Bio-Inspired Engineering of Exploration Systems," Journal of Space Mission Architecture, Issue 2, Fall 2000, pages 49-79.

  17. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.

  18. A Descriptive Guide to Trade Space Analysis

    DTIC Science & Technology

    2015-09-01

    Development QFD Quality Function Deployment RSM Response Surface Method RSE Response Surface Equation SE Systems Engineering SME Subject Matter...surface equations ( RSEs ) as surrogate models. It uses the RSEs with Monte Carlo simulation to quantitatively explore changes across the surfaces to

  19. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  20. Ultra-Compact Raman Spectrometer for Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  1. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  2. Mars Surface System Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Toups, Larry

    2016-01-01

    NASA has begun a process to identify and evaluate candidate locations where humans could land, live and work on the martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. In parallel with this process, NASA continues to make progress on the Evolvable Mars Campaign examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. This involves ongoing assessments of surface systems and operations to enable a permanent, sustainable human presence. Because of the difficulty in getting equipment and supplies to the surface of Mars, part of these assessments involve identifying those systems and processes that can perform in multiple, sometimes completely unrelated, situations. These assessments have been performed in a very generic surface mission carried out at a very generic surface location. As specific candidate EZs are identified it becomes important to evaluate the current suite of surface systems and operations as they are likely to perform for the specific locations and for the types of operations - both scientific and development - that are proposed for these EZs. It is also important to evaluate the proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. This means looking at setting up and operating a field station at a central location within the EZ as well as traversing to and exploring the scientific ROIs within the boundaries of the EZ. The proposed paper will describe the current status of common systems and operations as they can be applied to actual EZ locations on Mars. Initially these EZs will be the four locations identified MEPAG's Human Exploration of Mars Science Analysis Group (HEM-SAG) that will be used as representative of the EZs that will emerge from the process that NASA has initiated. An example process that could be commonly applied is an approach for developing a field station site plan that would be demonstrated by applying this process to each of the four HEM-SAG sites. Examples of common systems include (a) mobility systems that can be used to off-load and move payloads to specific locations at the central field station location that could also be used to traverse long distances to reach some of the more remote ROIs or (b) robotic systems that can support various activities (such as system set up and maintenance) at the field station that could also be used to explore scientific ROIs and used to support site-specific ISRU production activities.

  3. A Potential Role for smallsats and Cubesats in Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Bérengère; De Rosa, Diego; Schiemann, Jens D.; Walker, Roger; Zeppenfeldt, Frank

    2015-04-01

    The Moon is an important exploration destination for ESA, which is currently engaged in activities to access and exploit the Moon through developments in future human exploration systems and precursor robotic surface missions. However, recent major advancements in Smallsat and Cubesat technologies, and their application to fields such as Earth imaging and atmospheric science, has opened the possibility of utilising these smaller, lower cost platforms beyond LEO and potentially at the Moon. ESA is interested in understanding how emerging Smallsat & Cubesat instrument and platform technology could be applied to Lunar Exploration, particularly in the fields of technology demonstration and investigations which can be precursors to longer term l exploration activies. Lunar Cubesats can offer an means of access to the Moon, which complements larger ESA-led opportunities on international surface missions and via future human exploration systems. In this talk ESA will outline its current objectives in Lunar Exploration and highlight potential future opportunities for Smallsat and Cubesat platforms to play a role.

  4. Cluster structures influenced by interaction with a surface.

    PubMed

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  5. KSC-2014-4375

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  6. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  7. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  8. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Poston, David I.

    2011-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.

  9. A Rover Concept for Exploring the Surface of Titan

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Shirley, J. H.; Schriener, T. M.

    2005-12-01

    Titan is one of the premier targets for future in-situ exploration in the outer solar system, as unique "pre-biotic" organic chemical processes may be presently occurring at its surface. A mission to the surface of Titan is not as technically difficult as one to Europa; Titan's atmosphere allows for aerobraking descents, the radiation environment is not a mission-critical factor, and the organic materials we want to sample should be widely distributed (and easily accessible). The recent Titan landing by the Huygens Probe has focused considerable scientific interest on this remarkable body, and future missions to Titan are under consideration. We evaluated a Titan Rover mission concept that would have the capability to survive on Titan's surface for a period of 3 terrestrial years. This long mission lifetime is enabled by employing a radioisotope power system (RPS). To minimize costs and use as much flight heritage as possible, we began by assuming that system masses, dimensions, and instrumentation would be comparable to those of the Mars Surface Lander (MSL). We found that a rover configuration with a 110 W (electric) power system and four 1.5 m diameter inflatable wheels could potentially enable traverse distances up to ~500 km, depending on science and mission requirements, surface environments, and the capability of the autonomous navigation system employed. Direct to Earth communication would simplify the mission by removing the need for a relay orbiter. We will describe our strawman instrument payload and rover subsystems. Trades between the potentially available RPS systems (RTG, Advanced RTG, TPV, SRG, Advanced Stirling and Brayton RPSs) will be outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  10. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  11. The Pluto system: Initial results from its exploration by New Horizons.

    PubMed

    Stern, S A; Bagenal, F; Ennico, K; Gladstone, G R; Grundy, W M; McKinnon, W B; Moore, J M; Olkin, C B; Spencer, J R; Weaver, H A; Young, L A; Andert, T; Andrews, J; Banks, M; Bauer, B; Bauman, J; Barnouin, O S; Bedini, P; Beisser, K; Beyer, R A; Bhaskaran, S; Binzel, R P; Birath, E; Bird, M; Bogan, D J; Bowman, A; Bray, V J; Brozovic, M; Bryan, C; Buckley, M R; Buie, M W; Buratti, B J; Bushman, S S; Calloway, A; Carcich, B; Cheng, A F; Conard, S; Conrad, C A; Cook, J C; Cruikshank, D P; Custodio, O S; Dalle Ore, C M; Deboy, C; Dischner, Z J B; Dumont, P; Earle, A M; Elliott, H A; Ercol, J; Ernst, C M; Finley, T; Flanigan, S H; Fountain, G; Freeze, M J; Greathouse, T; Green, J L; Guo, Y; Hahn, M; Hamilton, D P; Hamilton, S A; Hanley, J; Harch, A; Hart, H M; Hersman, C B; Hill, A; Hill, M E; Hinson, D P; Holdridge, M E; Horanyi, M; Howard, A D; Howett, C J A; Jackman, C; Jacobson, R A; Jennings, D E; Kammer, J A; Kang, H K; Kaufmann, D E; Kollmann, P; Krimigis, S M; Kusnierkiewicz, D; Lauer, T R; Lee, J E; Lindstrom, K L; Linscott, I R; Lisse, C M; Lunsford, A W; Mallder, V A; Martin, N; McComas, D J; McNutt, R L; Mehoke, D; Mehoke, T; Melin, E D; Mutchler, M; Nelson, D; Nimmo, F; Nunez, J I; Ocampo, A; Owen, W M; Paetzold, M; Page, B; Parker, A H; Parker, J W; Pelletier, F; Peterson, J; Pinkine, N; Piquette, M; Porter, S B; Protopapa, S; Redfern, J; Reitsema, H J; Reuter, D C; Roberts, J H; Robbins, S J; Rogers, G; Rose, D; Runyon, K; Retherford, K D; Ryschkewitsch, M G; Schenk, P; Schindhelm, E; Sepan, B; Showalter, M R; Singer, K N; Soluri, M; Stanbridge, D; Steffl, A J; Strobel, D F; Stryk, T; Summers, M E; Szalay, J R; Tapley, M; Taylor, A; Taylor, H; Throop, H B; Tsang, C C C; Tyler, G L; Umurhan, O M; Verbiscer, A J; Versteeg, M H; Vincent, M; Webbert, R; Weidner, S; Weigle, G E; White, O L; Whittenburg, K; Williams, B G; Williams, K; Williams, S; Woods, W W; Zangari, A M; Zirnstein, E

    2015-10-16

    The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. Copyright © 2015, American Association for the Advancement of Science.

  12. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  13. Automation &robotics for future Mars exploration

    NASA Astrophysics Data System (ADS)

    Schulte, W.; von Richter, A.; Bertrand, R.

    2003-04-01

    Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another site. In the frame of near-term Mars exploration a dedicated exobiology mission is envisaged. Scientific and technical studies for a facility to detect the evidence of past of present life have been carried out under ESA contract. Mars soil/rock samples are to be analyzed for their morphology, organic and inorganic composition using a suite of scientific instruments. Robotic devices, e.g. for the acquisition, handling and onboard processing of Mars sample material retrieved from different locations, and surface mobility are important elements in a fully automated mission. Necessary robotic elements have been identified in past studies. Their realization can partly be based on heritage of existing space hardware, but will require dedicated development effort.

  14. Lunar exploration: opening a window into the history and evolution of the inner Solar System

    PubMed Central

    Crawford, Ian A.; Joy, Katherine H.

    2014-01-01

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. PMID:25114318

  15. Lunar exploration: opening a window into the history and evolution of the inner Solar System.

    PubMed

    Crawford, Ian A; Joy, Katherine H

    2014-09-13

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the Martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. Four locations identified in the Mars Exploration Program Analysis Group (MEPAG)'s Human Exploration of Mars Science Analysis Group (HEM-SAG) report are used in this paper as representative of candidate EZs that will emerge from the selection process that NASA has initiated. A field station site plan is developed for each of these four HEM-SAG sites. Because of the difficulty in getting equipment and supplies to the surface of Mars, specific assessments have been conducted to identify those systems and processes that can perform in multiple, sometimes completely unrelated, situations. Examples of common systems that are assessed at all of these sites include: (a) habitation and associated logistics storage systems, (b) a centralized power plant capable of supplying power to a geographically distributed (but within the central habitation zone) set of systems, (c) mobility systems that can be used to off-load and move payloads to specific locations at the central field station location that could also be used to traverse long distances to reach some of the more remote ROIs and (d) robotic systems that can support various activities (such as system set up and maintenance) at the field station that could also be used to explore scientific ROIs and used to support site-specific ISRU (In Situ Resource Utilization) production activities.

  17. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.

  18. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.

  19. Three dimensional tracking of exploratory behavior of barnacle cyprids using stereoscopy.

    PubMed

    Maleschlijski, S; Sendra, G H; Di Fino, A; Leal-Taixé, L; Thome, I; Terfort, A; Aldred, N; Grunze, M; Clare, A S; Rosenhahn, B; Rosenhahn, A

    2012-12-01

    Surface exploration is a key step in the colonization of surfaces by sessile marine biofoulers. As many biofouling organisms can delay settlement until a suitable surface is encountered, colonization can comprise surface exploration and intermittent swimming. As such, the process is best followed in three dimensions. Here we present a low-cost transportable stereoscopic system consisting of two consumer camcorders. We apply this novel apparatus to behavioral analysis of barnacle larvae (≈800 μm length) during surface exploration and extract and analyze the three-dimensional patterns of movement. The resolution of the system and the accuracy of position determination are characterized. As a first practical result, three-dimensional swimming trajectories of the cypris larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass surface and close to PEG2000-OH and C(11)NMe(3)(+)Cl(-) terminated self-assembled monolayers. Although less frequently used in biofouling experiments due to its short reproductive season, the selected model species [Marechal and Hellio (2011), Int Biodeterior Biodegrad, 65(1):92-101] has been used following a number of recent investigations on the settlement behavior on chemically different surfaces [Aldred et al. (2011), ACS Appl Mater Interfaces, 3(6):2085-2091]. Experiments were scheduled to match the availability of cyprids off the north east coast of England so that natural material could be used. In order to demonstrate the biological applicability of the system, analysis of parameters such as swimming direction, swimming velocity and swimming angle are performed.

  20. Robotic Recon for Human Exploration

    NASA Technical Reports Server (NTRS)

    Deans, Matthew; Fong, Terry; Ford, Ken; Heldmann, Jennifer; Helper, Mark; Hodges, Kip; Landis, Rob; Lee, Pascal; Schaber, Gerald; Schmitt, Harrison H.

    2009-01-01

    Robotic reconnaissance has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon may increase crew productivity and reduce operational risk for exploration. However, additional research, development and field-testing is needed to mature robot and ground control systems, refine operational protocols, and specify detailed requirements. When the new lunar surface campaign begins around 2020, and before permanent outposts are established, humans will initially be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots will be available to perform surface operations under ground control. Understanding how robotic systems can best address surface science needs, therefore, becomes a central issue Prior to surface missions, lunar orbiters (LRO, Kaguya, Chandrayyan-1, etc.) will map the Moon. These orbital missions will provide numerous types of maps: visible photography, topographic, mineralogical and geochemical distributions, etc. However, remote sensing data will not be of sufficient resolution, lighting, nor view angle, to fully optimize pre-human exploration planning, e.g., crew traverses for field geology and geophysics. Thus, it is important to acquire supplemental and complementary surface data. Robotic recon can obtain such data, using robot-mounted instruments to scout the surface and subsurface at resolutions and at viewpoints not achievable from orbit. This data can then be used to select locations for detailed field activity and prioritize targets to improve crew productivity. Surface data can also help identify and assess terrain hazards, and evaluate alternate routes to reduce operational risk. Robotic recon could be done months in advance, or be part of a continuing planning process during human missions.

  1. A Modular Habitation System for Human Planetary and Space Exploration

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2015-01-01

    A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.

  2. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  3. Alternative Strategies for Exploring Mars and the Moons of Mars

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Baker, John D.; Hoffman, Stephen J.; Landau, Damon; Voels, Stephen A.

    2012-01-01

    The possible human exploration of Mars represents one of civilization s next major challenges and is an enterprise that would confirm the potential of humans to leave our home planet system and make our way outward into the cosmos. As exploration endeavors begin to set sights beyond low Earth orbit, potential exploration of the surface of Mars continues to serve as the horizon destination to help focus technology development and research efforts. Recent thoughts on exploration follow a flexible path approach beginning with missions that do not extend down into planetary gravity wells including surface exploration. Consistent with that flexible path strategy is the notion of exploring the moons of Mars, namely Phobos and Deimos, prior to exploring the surface. The premise behind this thought is that exploring Mars moons would be less costly and risky since these missions would avoid the difficulties associated with landing on the surface and subsequent ascent back to orbit. A complete assessment of this strategy has not been performed in the context of the flexible path approach and is needed to clearly understand all of the advantages and disadvantages. This paper examines the strategic implications of possible human exploration of the moons of Mars as a potential prelude to surface exploration. Various operational concepts for Phobos and Deimos exploration that include the infusion of different propulsion technologies are assessed in terms of mission duration, technologies required, overall risk and difficulty, and operational construct. Finally, the strategic implications of each concept are assessed to determine the overall key challenges and strategic links to other key flexible path destinations.

  4. Alternative Strategies for Exploring Mars and the Moons of Mars

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Baker, John D.; Hoffman, Stephen J.; Landau, Damon; Voels, Stephen A.

    2012-01-01

    The human exploration of Mars represents one of civilizations next major challenges and is an enterprise that would confirm the potential of humans to leave our home planet system and make our way outward into the cosmos. As exploration endeavors begin to set sights beyond low-Earth orbit, exploration of the surface of Mars continues to serve as the horizon destination to help focus technology development and research efforts. Recent thoughts on exploration follow a flexible path approach beginning with missions which do not extend down into planetary gravity wells including surface exploration. Consistent with that flexible path strategy is the notion of exploring the moons of Mars, namely Phobos and Deimos, prior to exploring the surface. The premise behind this thought is that exploring Mars moons would be less costly and risky since these missions would avoid the difficulties associated with landing on the surface and subsequent ascent back to orbit. A complete assessment of this strategy has not been performed in the context of the flexible path approach and is needed to clearly understand all of the advantages and disadvantages. This paper examines the strategic implications of human exploration of the moons of Mars as a potential prelude to surface exploration. Various operational concepts for Phobos and Deimos exploration that include the infusion of different propulsion technologies are assessed in terms of mission duration, technologies required, overall risk and difficulty, and operational construct. Finally, the strategic implications of each concept are assessed to determine the overall key challenges and strategic links to other key flexible path destinations.

  5. Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2007-01-01

    The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.

  6. Supervised space robots are needed in space exploration

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.

  7. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.

    1991-01-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.

  8. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  9. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  10. A perception system for a planetary explorer

    NASA Technical Reports Server (NTRS)

    Hebert, M.; Krotkov, E.; Kanade, T.

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.

  11. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  12. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  13. PISCES: A "Stepping Stone" to International Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank

    2007-01-01

    The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.

  14. Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2012-01-01

    NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.

  15. MER surface fault protection system

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy

    2005-01-01

    The Mars Exploration Rovers surface fault protection design was influenced by the fact that the solar-powered rovers must recharge their batteries during the day to survive the night. the rovers needed to autonomously maintain thermal stability, initiate safe and reliable communication with orbiting assets or directly to Earth, while maintaining energy balance. This paper will describe the system fault protection design for the surface phase of the mission.

  16. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand the fidelity and integration of these surface exploration and infrastructure capabilities while adding Mars exploration technologies, improving remote operations and control of hardware, and promoting the use of common software, interfaces, & standards for control and operation for surface exploration and science. The next field test will also attempt to include greater involvement by industry, academia, and other countries/space agencies. This paper will provide an overview of the development and demonstration approach utilized to date, the results of the previous two ISRU-focused field analogue tests in Hawaii, and the current objectives and plans for the 3rd international Hawaii analogue field test.

  17. Exploring Ocean-World Habitability within the Planned Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.

    2017-12-01

    A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.

  18. The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team

    2017-10-01

    A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.

  19. Task Adaptive Walking Robots for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Hickey, Gregory; Kennedy, Brett; Aghazarian, Hrand

    2000-01-01

    There are exciting opportunities for robot science that lie beyond the reach of current manipulators, rovers, balloons, penetrators, etc. Examples include mobile explorations of the densely cratered Mars highlands, of asteroids, and of moons. These sites are believed to be rich in geologic history and mineralogical detail, but are difficult to robotically access and sample. The surface terrains are rough and changeable, with variable porosity and dust layering; and the small bodies present further challenges of low-temperature, micro-gravity environments. Even the more benign areas of Mars are highly variegated in character (>VL2 rock densities), presenting significant risk to conventional rovers. The development of compact walking robots would have applications to the current mission set for Mars surface exploration, as well as enabling future Mars Outpost missions, asteroid rendezvous missions for the Solar System Exploration Program (SSE) and the mechanical assembly/inspection of large space platforms for the Human Exploration and Development of Spaces (HEDS).

  20. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    NASA Astrophysics Data System (ADS)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.

  1. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  2. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  3. Dust/Regolith for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Peters, Benjamin

    2017-01-01

    System-wide dust protection is a key design driver for xEMUsurface operations, and development of dust proof mechanisms, bearings, materials, and coatings coupled with specific operations and surface architecture development is critical for success.

  4. Revolutionary Concepts for Human Outer Planet Exploration (HOPE)

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L., Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A.

    2003-01-01

    This paper summarizes the content of a NASA-led study performed to identify revolutionary concepts and supporting technologies for Human Outer Planet Exploration (HOPE). Callisto, the fourth of Jupiter's Galilean moons, was chosen as the destination for the HOPE study. Assumptions for the Callisto mission include a launch year of 2045 or later, a spacecraft capable of transporting humans to and from Callisto in less than five years, and a requirement to support three humans on the surface for a minimum of 30 days. Analyses performed in support of HOPE include identification of precursor science and technology demonstration missions and development of vehicle concepts for transporting crew and supplies. A complete surface architecture was developed to provide the human crew with a power system, a propellant production plant, a surface habitat, and supporting robotic systems. An operational concept was defined that provides a surface layout for these architecture components, a list of surface tasks, a 30-day timeline, a daily schedule, and a plan for communication from the surface.

  5. KSC-2014-4377

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  6. KSC-2014-4378

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  7. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  8. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  9. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  10. How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.

    2005-01-01

    For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.

  11. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  12. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  13. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  14. Planetary exploration in the time of astrobiology: Protecting against biological contamination

    PubMed Central

    Rummel, John D.

    2001-01-01

    These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions. PMID:11226203

  15. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  16. Mission to Mars: food production and processing for the final frontier.

    PubMed

    Perchonok, Michele H; Cooper, Maya R; Catauro, Patricia M

    2012-01-01

    The food systems of the National Aeronautics and Space Administration (NASA) have evolved tremendously since the early manned spaceflights of the 1960s. To date, NASA's mission focus has been limited to exploration of low Earth orbit (LEO), and the agency's prepackaged food systems have been adequate to enable success of their parent programs. With NASA's mission focus increasing to achieve manned space exploration of the Martian surface, the agency is considering a significant departure from the prepackaged food systems of current and past space programs. NASA's Advanced Food Technology (AFT) project is presently investigating the introduction of a bioregenerative food system to support long duration habitat missions to the Martian surface. A bioregenerative food system is expected to impart less of a burden on critical mission resources, such as mass and volume, than a prepackaged, shelf-stable system. This review provides an introduction to past and present spaceflight food systems, and provides a broad examination of the research conducted to date to enable crop production and food processing on the Martian surface.

  17. Developing a Crew Time Model for Human Exploration Missions to Mars

    NASA Technical Reports Server (NTRS)

    Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce

    2015-01-01

    Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.

  18. HERRO Mission to Mars Using Telerobotic Surface Exploration from Orbit

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Landis, Geoffrey A.; McGuire, Melissa L.; Schmidt, George R.

    2013-01-01

    This paper presents a concept for a human mission to Mars orbit that features direct robotic exploration of the planet s surface via teleoperation from orbit. This mission is a good example of Human Exploration using Real-time Robotic Operations (HERRO), an exploration strategy that refrains from sending humans to the surfaces of planets with large gravity wells. HERRO avoids the need for complex and expensive man-rated lander/ascent vehicles and surface systems. Additionally, the humans are close enough to the surface to effectively eliminate the two-way communication latency that constrains typical robotic space missions, thus allowing real-time command and control of surface operations and experiments by the crew. Through use of state-of-the-art telecommunications and robotics, HERRO provides the cognitive and decision-making advantages of having humans at the site of study for only a fraction of the cost of conventional human surface missions. It is very similar to how oceanographers and oil companies use telerobotic submersibles to work in inaccessible areas of the ocean, and represents a more expedient, near-term step prior to landing humans on Mars and other large planetary bodies. Results suggest that a single HERRO mission with six crew members could achieve the same exploratory and scientific return as three conventional crewed missions to the Mars surface.

  19. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  20. Comparing Apollo and Mars Exploration Rover (MER) Operations Paradigms for Human Exploration During NASA Desert-Rats Science Operations

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.

    2011-01-01

    NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.

  1. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1973-01-01

    The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.

  2. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  3. Human Mars Surface Science Operations

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2014-01-01

    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.

  4. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  5. Space Medicine Issues and Healthcare Systems for Space Exploration Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeff

    2007-01-01

    This viewgraph presentation reviews issues of health care in space. Some of the issues reviewed are: (1) Physiological adaptation to microgravity, partial gravity, (2) Medical events during spaceflight, (3) Space Vehicle and Environmental and Surface Health Risks, (4) Medical Concept of Operations (CONOPS), (4a) Current CONOPS & Medical Hardware for Shuttle (STS) and ISS, (4b) Planned Exploration Medical CONOPS & Hardware needs, (5) Exploration Plans for Lunar Return Mission & Mars, and (6) Developing Medical Support Systems.

  6. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  7. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  8. 30 CFR 732.15 - Criteria for approval or disapproval of State programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... programs. 732.15 Section 732.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... laws and regulations pertaining to coal exploration and surface coal mining and reclamation operations... system consistent with the regulations of subchapter G of this chapter and prohibit surface coal mining...

  9. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  10. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  11. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  12. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  13. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures.

    PubMed

    Yang, Biao; Guo, Qinghua; Tremain, Ben; Liu, Rongjuan; Barr, Lauren E; Yan, Qinghui; Gao, Wenlong; Liu, Hongchao; Xiang, Yuanjiang; Chen, Jing; Fang, Chen; Hibbins, Alastair; Lu, Ling; Zhang, Shuang

    2018-03-02

    Weyl points are the crossings of linearly dispersing energy bands of three-dimensional crystals, providing the opportunity to explore a variety of intriguing phenomena such as topologically protected surface states and chiral anomalies. However, the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and are separated from any other bands poses a serious limitation to the further development of Weyl physics and potential applications. By experimentally characterizing a microwave photonic crystal of saddle-shaped metallic coils, we observed ideal Weyl points that are related to each other through symmetry operations. Topological surface states exhibiting helicoidal structure have also been demonstrated. Our system provides a photonic platform for exploring ideal Weyl systems and developing possible topological devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: evaluation of the control climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Phipps, S.J.; Pitman, A.J.

    The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulatedmore » well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.« less

  15. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  16. Methane Propulsion Elements for Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; Polsgrove, Tara; Thomas, Dan

    2017-01-01

    Human exploration beyond LEO relies on a suite of propulsive elements to: (1) Launch elements into space, (2) Transport crew and cargo to and from various destinations, (3) Provide access to the surface of Mars, (4) Launch crew from the surface of Mars. Oxygen/Methane propulsion systems meet the unique requirements of Mars surface access. A common Oxygen/Methane propulsion system is being considered to reduce development costs and support a wide range of primary & alternative applications.

  17. Resource Prospector (RP) - Early Prototyping and Development

    NASA Technical Reports Server (NTRS)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    The Resource Prospector (RP) is an In-Situ Resource Utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorate's (HEOMD) Advanced Exploration Systems (AES) Division. The mission, currently planned to launch in 2020, will demonstrate extraction of oxygen from lunar regolith to validate ISRU capability. The mission will address key Strategic Knowledge Gaps (SKGs) for robotic and human exploration to the Moon, Near Earth Asteroids (NEAs), and ultimately Mars, as well as meet the strategic goals of the Global Exploration Roadmap (GER), offered by the International Space Exploration Coordination Group (ISECG). In this roadmap, the use of local resources is specifically addressed relating to human exploration. RP will provide knowledge to inform the selection of future mission destinations, support the development of exploration systems, and reduce the risk associated with human exploration. Expanding human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. Lunar regolith contains useful resources such as oxygen, water, silicon, and light metals, like aluminum and titanium. Oxygen can be separated from the regolith for life support (breathable air), or used to create rocket propellant (oxidizer). Regolith can be used to protect against radiation exposure, be processed into solar cells, or used to manufacture construction materials such as bricks and glass. RP will characterize the constituents and distribution of water and other volatiles at the poles of the Moon, enabling innovative uses of local resources, in addition to validating ISRU capabilities. This capability, as well as a deeper understanding of regolith, will be valuable in the exploration of near-Earth asteroids (NEAs) and Mars. In order to reduce risk and explore system designs, the RP project is attempting two-fold approaches to development as it looks towards flight. We continue to explore flight planning, requirements, and interfaces definition by using Engineering Test Units (ETUs), looking towards lunar deployment, while also using fiscal year 2015 to develop, build and test an earth-terrestrial prototype rover and payload system. This terrestrial prototype, called "RP15", is built to both inform the system design, and to be a partnership advocacy tool for this unique mission. RP15 must be affordable within the resource and time constraints of fiscal year 2015, while working to the following Needs, Goals, and Objectives provided by HEOMD/AES: 1. Demonstrate rover mobility in a 1g environment 2. The Surface Segment (prototype rover + payload system) shall represent the flight system concept with as much fidelity as affordable (limited by cost and schedule) - Surface Segment shall be the approximate size/dimension/footprint -Surface Segment shall package all the expected devices (instruments, systems, etc.), even if some facets are mocked-up due to time/cost constraints -Overall Surface Segment fidelity negotiable to make achievable 3. Priority should be given to illustrating mission functionality over support functionality, which exists solely to support mission functionality This paper will provide an overview of RP project developments, including the design and build, capturing the development and initial integrated testing of RP15 in relevant environments.

  18. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  19. MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitch; Bresina, John; Charest, Leonard; Hsu, Jennifer; Jonsson, Ari K.; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    This document describes the Mixed-initiative Activity Plan Generation system MAPGEN. The system is be- ing developed as one of the tools to be used during surface operations of NASA's Mars Exploration Rover mission (MER). However, the core technology is general and can be adapted to different missions and applications. The motivation for the system is to better support users that need to rapidly build activity plans that have to satisfy complex rules and fit within resource limits. The system therefore combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The demonstration will show the key capabilities of the automated reasoning and planning component of the system, with emphasis on how these capabilities will be used during surface operations of the MER mission.

  20. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  1. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  2. Unmanned surface vessel (USV) systems for bridge inspection : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    The use of unmanned surface vehicles (USVs) for bridge inspection has been explored. The following issues were considered: (1) the requirements of and : current techniques utilized in on-water bridge inspection; (2) USV design and configuration consi...

  3. Automation and Robotics for Human Mars Exploration (AROMA)

    NASA Technical Reports Server (NTRS)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  4. Automation and Robotics for Human Mars Exploration (AROMA).

    PubMed

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  5. High-temperature electronics applications in space exploration

    NASA Astrophysics Data System (ADS)

    Jurgens, R. F.

    1982-05-01

    One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.

  6. High-temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1982-01-01

    One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.

  7. Time-resolved spectroscopy at surfaces and adsorbate dynamics:insights from a model-system approach

    NASA Astrophysics Data System (ADS)

    Boström, Emil; Mikkelsen, Anders; Verdozzi, Claudio

    We introduce a finite-system, model description of the initial stages of femtosecond laser induced desorption at surfaces. Using the exact many-body time evolution and also results from a novel time-dependent DFT description for electron-nuclear systems, we analyse the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols impact desorption in a variety of prototypical experiments.

  8. Software Productivity of Field Experiments Using the Mobile Agents Open Architecture with Workflow Interoperability

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten

    2011-01-01

    We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.

  9. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; hide

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant operations, and critical system capabilities that are needed for dormant operations. This paper will compare dormancy operations of past robotic missions to identify lessons that can be applied to planned human exploration missions. Finally, this paper will also identify future work and analysis planned to assess system performance metrics and integrated system operations.

  10. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  11. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  12. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  13. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  14. Microbead-regulated surface wrinkling patterns in a film-substrate system

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wang, Jiawen; Cao, Yan-Ping; Lu, Conghua; Li, Bo; Feng, Xi-Qiao

    2017-10-01

    The control of surface wrinkling patterns at the microscale is a concern in many applications. In this letter, we regulate surface wrinkling patterns on a film-substrate system by introducing microbeads atop the film. Both experiments and theoretical analysis reveal the changes in surface wrinkles induced by microbeads. Under equibiaxial compression, the film-substrate system without microbeads bonded on its upper surface often buckles into global, uniform labyrinths, whereas the labyrinthine pattern locally gives way to radial stripes emanating from the microbeads. This regulation of surface wrinkles depends on the sizes and spacing of microbeads. We combine the finite element method and the Fourier spectral method to explore the physical mechanisms underlying the phenomena. This study offers a viable technique for engineering surfaces with tunable functions.

  15. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  16. 50 CFR 37.21 - Application requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...

  17. 50 CFR 37.21 - Application requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...

  18. 50 CFR 37.21 - Application requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...

  19. Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.

    2018-04-01

    Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.

  20. 30 CFR 780.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.1 Scope. This part provides the... operations and reclamation plan portions of applications for permits for surface mining activities, except to...

  1. 30 CFR 775.13 - Judicial review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS... to judicial review by a court of competent jurisdiction, as provided for in the State program, but...

  2. Triton Hopper: Exploring Neptune's Captured Kuiper Belt Object

    NASA Technical Reports Server (NTRS)

    Oleson, Steve; Landis, Geoffrey

    2018-01-01

    Neptune's moon Triton is a fascinating object, a dynamic moon with an atmosphere, and geysers. Triton is unique in the outer solar system in that it is most likely a captured Kuiper belt object (KBO), a leftover building block of the solar system. When Voyager flew by it was the coldest body yet found in our solar system (33 degrees Kelvin) and had volcanic activity, geysers, and a thin atmosphere. It is covered in ices made from nitrogen, water, and carbon-dioxide, and shows surface deposits of tholins, organic compounds that may be precursor chemicals to the origin of life. Exploring Triton will be a challenge well beyond anything done in previous missions; but the unique environment of Triton also allows some new possibilities for mobility. We developed a conceptual design of a Triton Hopping probe that both analyzes the surface and collects it for use to propel its hops. The Hopper would land near the South Pole in 2040 where geysers have been detected. Depending the details of propulsion chosen the Hopper should be able to jump over 300 kilometers in 60 hops or less, exploring the surface and thin atmosphere on its way. This craft will autonomously carry out detailed scientific investigations on the surface, below the surface (drilling) and in the upper atmosphere to provide unprecedented knowledge of a KBO-turned moon and expanding NASA's existing capabilities in deep space planetary exploration to include Hoppers using different ices for propellant. Triton is roughly 2700 kilometers in diameter with a surface of mostly frozen nitrogen, mostly water ice crust and core of metal and rock. Its gravity is half that of Earth's Moon and its atmosphere is 170,000th of Earth's or 0.3 of Mars.The mission concept studied investigated the full surface and atmospheric phenomenon: chemical composition of surface and near subsurface materials, the thin atmosphere, volcanic and geyser activity. Measurements of all these aspects of Triton's unique environment can only be made through focused in-situ exploration with a well-instrumented craft. And this craft will be provided revolutionary mobility, nearly global, using in-situ ices as propellants. While other concepts have looked at gathering gases at Mars to propel a hopper, long periods of time are needed to gather the thin CO2 atmosphere. Several gases, mainly nitrogen are on the surface in a readily dense ice form and just need to be picked up, vaporized and used for propellant.

  3. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  4. Habitat Options to Protect Against Decompression Sickness on Mars

    NASA Astrophysics Data System (ADS)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  5. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.; Watts, Kevin

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC.

  6. Surface models of Mars, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.

  7. Exploration Planetary Surface Structural Systems: Design Requirements and Compliance

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    2011-01-01

    The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

  8. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; hide

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  9. Analysis of Water Surplus at the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.

    2010-01-01

    This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.

  10. Moonraker and Tetris: Japanese Microrovers for Lunar Cave Exploration

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Britton, N.; Walker, J.; Shimizu, T.; Tanaka, T.; Hakamada, T.

    2015-10-01

    A Japanese team HAKUTO is developing a robotic system for exploration of Lunar lava tubes. Motivated by Google Lunar XPRIZE that requires 500 m travel on any surface of Moon, but the team plans to go down into a skylight in Lacus Mortis.

  11. Approach for Mitigating Pressure Garment Design Risks in a Mobile Lunar Surface Systems Architecture

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2009-01-01

    The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.

  12. Lunar Dust Characterization for Exploration Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2007-01-01

    Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.

  13. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.

    2016-01-01

    The moon’s surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  14. An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements

    NASA Technical Reports Server (NTRS)

    Wagner, Sandy

    2004-01-01

    Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

  15. 30 CFR 780.37 - Road systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...

  16. 30 CFR 780.37 - Road systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...

  17. 30 CFR 780.37 - Road systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...

  18. 30 CFR 778.15 - Right-of-entry information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION... upon which the applicant bases his legal right to enter and begin surface coal mining and reclamation...

  19. 30 CFR 785.13 - Experimental practices mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Experimental practices mining. 785.13 Section 785.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  20. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Each of these themes were then further subdivided into categories to address specific SKG issues. Robotic Precursor Contributions to SKGs: Robotic reconnaissance missions should be able to address specific aspects related to SKG themes 1 through 4. Theme 1 deals with the identification of human mission targets within the NEA population. The current guideline indicates that human missions to fastspinning, tumbling, or binary asteroids may be too risky to conduct successfully from an operational perspective. However, no spacecraft mission has been to any of these types of NEAs before. Theme 2 addresses the concerns about interacting on the small body surface under microgravity conditions, and how the surface and/or sub-surface properties affect or restrict the interaction for human exploration. The combination of remote sensing instruments and in situ payloads will provide good insight into the asteroid's surface and subsurface properties. SKG theme 3 deals with the environment in and around the small body that may present a nuisance or hazard to any assets operating in close proximity. Impact and surface experiments will help address issues related to particle size, particle longevity, internal structure, and the near-surface mechanical stability of the asteroid. Understanding or constraining these physical characteristics are important for mission planning. Theme 4 addresses the resource potential of the small body. This is a particularly important aspect of human exploration since the identification and utilization of resources is a key aspect for deep space mission architectures to the Martian system (i.e., Phobos and Deimos). Conclusions: Robotic reconnaissance of small bodies can provide a wealth of information relevant to the science and planetary defense of NEAs. However, such missions to investigate NEAs can also provide key insights into small body strategic knowledge gaps and contribute to the overall success for human exploration missions to asteroids.

  1. Europa Geophysical Explorer Mission Concept Studies

    NASA Astrophysics Data System (ADS)

    Green, J. R.; Abelson, R. D.; Smythe, W.; Spilker, T. R.; Shirley, J. H.

    2005-12-01

    The Strategic Road Map for Solar System Exploration recommended in May 2005 that NASA implement the Europa Geophysical Explorer (EGE) as a Flagship mission early in the next decade. This supported the recommendations of the National Research Council's Solar System Decadal Survey and the priorities of the Outer Planets Assessment Group (OPAG). The Europa Geophysical Explorer would: (1) Characterize tidal deformations of the surface of Europa and surface geology, to confirm the presence of a subsurface ocean; (2) Measure the three-dimensional structure and distribution of subsurface water; and (3) Determine surface composition from orbit, and potentially, prebiotic chemistry, in situ. As the next step in Europa exploration, EGE would build on previous Europa Orbiter concepts, for example, the original Europa Orbiter and the Jupiter Icy Moons Orbiter (JIMO). As well, a new set of draft Level One Requirements, provided by NASA sponsors, guided the concept development. These requirements included: (1) Earliest Launch: 2012; (2) Launch Vehicle: Delta IV Heavy or Atlas V; (3) Primary Propulsion: Chemical; (4) Power: Radioisotope Power System (RPS); (4) Orbital Mission: 30 days minimum to meet orbital science objectives; and (5) Earth Gravity Assists: Allowed. The previous studies and the new requirements contributed to the development of several scientifically capable and relatively mass-rich mission options. In particular, Earth-gravity assists (EGA) were allowed, resulting in an increased delivered mass. As well, there have been advances in radiation-hardened components and subsystems, due to the investments from the X-2000 technology program and JIMO. Finally, developments in radioisotope power systems (RPS) have added to the capability and reliability of the mission. Several potential mission options were explored using a variety of trade study methods, ranging from the work of the JPL EGE Team of scientists and engineers in partnership with the OPAG Europa Sub-Group Advisory Team, JPL's Team X, and parametric modeling and simulation tools. We explored the system impacts of selecting different science payloads, power systems, mission durations, Deep Space Network (DSN) architectures, trajectory types, and launch vehicles. The comparisons show that there are feasible mission options that provide potentially available mass for enhanced spacecraft margins and science return, in addition to a 150-kg orbiter science instrument payload mass. This presentation describes high-priority science objectives for an EGE mission, results of the recent studies, and implementation options.

  2. A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gruener, John

    2012-01-01

    Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).

  3. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  4. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.

  5. Crew Exploration Vehicle Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Tuan, George; Peterson, Laurie J.; Vega, Leticia M.

    2010-01-01

    A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.

  6. 30 CFR 778.13 - Providing property interest information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...) Each legal or equitable owner(s) of record of the surface and mineral. (2) The holder(s) of record of...

  7. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  8. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  9. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  10. Mars manned transportation vehicle

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Faymon, Karl A.

    1987-01-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  11. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  12. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  13. The case for Mars III: Strategies for exploration - General interest and overview

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R. (Editor)

    1989-01-01

    Papers on the possibilities for manned Mars missions are presented, covering topics such as space policy, space education and Mars exploration, economic issues, international cooperation, life support, biomedical factors, human factors, the Mars Rover Sample Return Mission, and possible unmanned precursor missions to Mars. Other topics include the scientific objectives for human exploration of Mars, mission strategies, possible transportation systems for manned Mars flight, advanced propulsion techniques, and the utilization of Mars resources. Additional subjects include the construction and maintenance of a Martian base, possible systems for mobility on the Martian surface, space power systems, and the use of the Space Station for a Mars mission.

  14. Evaluation of Robotic Systems to Carry Out Traverse Execution, Opportunistic Science, and Landing Site Evaluation Tasks

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Leonard, Matther J.; Pacal, Lee

    2011-01-01

    This report covers the execution of and results from the activities proposed and approved in Exploration Analogs and Mission Development (EAMD) Field Test Protocol HMP2010: Evaluation of Robotic Systems to carry out Traverse Execution, Opportunistic Science, and Landing Site Evaluation Tasks. The field tests documented in this report examine one facet of a larger program of planetary surface exploration. This program has been evolving and maturing for several years, growing from a broad policy statement with a few specified milestones for NASA to an international effort with much higher fidelity descriptions of systems and operations necessary to accomplish this type of exploration.

  15. Multistate metadynamics for automatic exploration of conical intersections

    NASA Astrophysics Data System (ADS)

    Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland

    2018-05-01

    We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.

  16. The Explored Asteroids: Science and Exploration in the Space Age

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.

    2015-11-01

    Interest in asteroids is currently high in view of their scientific importance, the impact hazard, and the in situ resource opportunities they offer. They are also a case study of the intimate relationship between science and exploration. A detailed review of the twelve asteroids that have been visited by eight robotic spacecraft is presented here. While the twelve explored asteroids have many features in common, like their heavily cratered and regolith covered surfaces, they are a remarkably diverse group. Some have low-eccentricity orbits in the main belt, while some are potentially hazardous objects. They range from dwarf planets to primary planetesimals to fragments of larger precursor objects to tiny shards. One has a moon. Their surface compositions range from basaltic to various chondrite-like compositions. Here their properties are reviewed and what was confirmed and what was newly learned is discussed, and additionally the explored asteroids are compared with comets and meteorites. Several topics are developed. These topics are the internal structure of asteroids, water distribution in the inner solar system and its role in shaping surfaces, and the meteoritic links.

  17. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Kring, D. A.

    2015-12-01

    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills developed during the Zuni-Bandera training will prepare students for their own thesis studies of volcanic provinces on any solar system planetary surface where basaltic volcanism has occurred. Further details of these field trainings will also be discussed.

  18. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This presentation delineates the role of Life Sciences and its frontiers, especially Cell Science, in the context of human exploration. Life support systems, food production, and medical equipment encompass many of vital aspects related to the new vision for NASA.

  19. PHOBOS Exploration using Two Small Solar Electric Propulsion Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Baker, John D.; Castillo-Rogez, Julie C.; McElrath, Timothy P.; Piacentine, Jamie S.; Snyder, J. Steve

    2012-01-01

    Primitive bodies are exciting targets for exploration as they provide clues to the early Solar system conditions and dynamical evolution. The two moons of Mars are particularly interesting because of their proximity to an astrobiological target. However, after four decades of Mars exploration, their origin and nature remain enigmatic. In addition, when considering the long-term objectives of the flexible path for the potential human exploration to Mars, Phobos and Deimos present exciting intermediate opportunities without the complication and expense of landing and ascending from the surface. As interest in these targets for the next frontier of human exploration grows, characterization missions designed specifically to examine surface properties, landing environments, and surface mapping prior to human exploration are becoming increasingly important. A precursor mission concept of this sort has been developed using two identical spacecraft designed from low cost, flight proven and certified off-the-shelf component and utilizing Solar Electric Propulsion (SEP) to orbit both targets as secondary payloads launched aboard any NASA or GTO launch. This precursor mission has the potential to address both precursor measurements that are strategic knowledge gaps and decadal science, including soil physical properties at the global and local (human) scale and the search for in situ resources.

  20. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  1. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  2. Integration of CubeSat Systems with Europa Surface Exploration Missions

    NASA Astrophysics Data System (ADS)

    Erdoǧan, Enes; Inalhan, Gokhan; Kemal Üre, Nazım

    2016-07-01

    Recent studies show that there is a high probability that a liquid ocean exists under thick icy surface of Jupiter's Moon Europa. The findings also show that Europa has features that are similar to Earth, such as geological activities. As a result of these studies, Europa has promising environment of being habitable and currently there are many missions in both planning and execution level that target Europa. However, these missions usually involve extremely high budgets over extended periods of time. The objective of this talk is to argue that the mission costs can be reduced significantly by integrating CubeSat systems within Europa exploration missions. In particular, we introduce an integrated CubeSat-micro probe system, which can be used for measuring the size and depth of the hypothetical liquid ocean under the icy surface of Europa. The systems consist of an entry module that houses a CubeSat combined with driller measurement probes. Driller measurement probes deploy before the system hits the surface and penetrate the surface layers of Europa. Moreover, a micro laser probe could be used to examine the layers. This process enables investigation of the properties of the icy layer and the environment beneath the surface. Through examination of different scenarios and cost analysis of the components, we show that the proposed CubeSat systems has a significant potential to reduce the cost of the overall mission. Both subsystem requirements and launch prices of CubeSats are dramatically cheaper than currently used satellites. In addition, multiple CubeSats may be used to dominate wider area in space and they are expandable in face of potential failures. In this talk we discuss both the mission design and cost reduction aspects.

  3. SeisCube Instrument and Environment Considerations for the Didymos System Geophysical Exploration

    NASA Astrophysics Data System (ADS)

    Cadu, Alexandre; Murdoch, Naomi; Mimoun, David; Karatekin, Ozgur; Garica, Raphaël F.; Carrasco, Jose A.; De Quiros, Francisco G.; Vasseur, Hugues; Eubanks, Marshall; Radley, Charles; Ritter, Birgit; Dehant, Veronique

    2016-04-01

    In the context of the Asteroid Impact & Deviation Assessment (AIDA) mission proposed by ESA and NASA, the Asteroid Geophysical Explorer (AGEX) mission concept has been selected for a preliminary study phase. Two 3-Unit CubeSats are embedded into the AIM probe and released into the asteroid binary system [1]. SeisCube will be deployed close to the secondary to reach its surface at a low relative velocity in order to stay on the ground after several rebounds, in a similar way that is foreseen for Mascot-2. The purpose of SeisCube is to provide information about the surface, the sub-surface and the internal structure of the asteroid, by analyzing rebound acceleration profile and seismic activity [2]. We describe the considered instrumentation necessary to fulfill the science objectives (gravimeters, accelerometers, geophones, etc.) in terms of measurement dynamics, frequency ranges, acquisition methods and other common budgets for space equipment. We also present the environment considerations which have to be taken into account for the platform and payload designs. The thermal aspect will be particularly discussed since it is a major issue in the airless body exploration [3] [4]. It implies some modifications in the CubeSat structure, integration and thermal regulation to ensure survival and operations under extreme conditions at the asteroid surface. We then describe the platform subsystems needed to ensure the operations after the deployment and the associated budgets and accommodation. As a direct consequence of the previous topics, we will finally discuss the possible trades-off to satisfy the main science requirements and the associated concept of operations. [1] O. Karatekin, D. Mimoun, J. A. Carrasco, N. Murdoch, A. Cadu, R. F. Garcia, F. G. De Quiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehant, "The Asteroid Geophysical Explorer (AGEX): Proposal to explore Didymos system using Cubsats," in European Geophysical Union, 2016. [2] N. Murdoch, A. Cadu, D. Mimoun, O. Karatekin, R. F. Garcia, J. A. Carrasco, F. G. De Guiros, H. Vasseur, B. Ritter, M. Eubanks, C. Radley and V. Dehart, "Invertigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat," in European Geophysical Union, 2016. [3] J. De Lafontaine and D. Kassing, "Technologies and Concepts for Lunar Surface Exploration," Acta Astronautica, vol. 38, no. 2, pp. 125-129, 1996. [4] S. Ulamec, J. Biele and E. Trollope, "How to survive a Lunar night," Planetary and Space Science, vol. 58, no. 14-15, pp. 1985-1995, 2010.

  4. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  5. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  6. Integration and Utilization of Nuclear Systems on the Moon and Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon

    2006-01-20

    Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less

  7. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.

    1975-01-01

    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.

  8. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  9. Electrical and Chemical Interactions at Mars Workshop. Part 2: Appendix

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives of the workshop were the following: (1) to identify issues related to electrical and chemical interactions between systems and their local environments at Mars; and (2) to recommend means of addressing those issues, including the dispatch of robotic spacecraft to Mars to acquire necessary information. Presentations about Mars' surface and orbital environments, Space Exploration Initiative (SEI) systems, environmental interactions, modeling and analysis, and plans for exploration are presented in viewgraph form.

  10. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    NASA Astrophysics Data System (ADS)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  11. 30 CFR 780.4 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.4...

  12. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-01-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems for interplanetary probes. System upgrades are expected to evolve that will result in even shorter trip times, improved payload capabilities, and enhanced safety and reliability.

  13. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  14. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and longer duration missions in cis-lunar space and beyond, to eventually being independent from Earth. The goal is no longer just to reach a destination, but to enable people to work, learn, operate, and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite.

  15. 30 CFR 777.11 - Format and contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Format and contents. 777.11 Section 777.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS GENERAL CONTENT REQUIREMENTS FOR PERMIT...

  16. Tunable geometric Fano resonances in a metal/insulator stack

    NASA Astrophysics Data System (ADS)

    Grotewohl, Herbert

    We present a theoretical analysis of surface-plasmon-mediated mode-coupling in a planar thin film metal/insulator stack. The spatial overlap of a surface plasmon polariton (SPP) and a waveguide mode results in a Fano interference analog. Tuning of the material parameters effects the modes and output fields of the system. Lastly, the intensity and phase sensitivity of the system are compared to a standard surface plasmon resonance (SPR). We begin with background information on Fano interference, an interference effect between two indistinguishable pathways. Originally described for autoionization, we discuss the analogs in other systems. We discuss the features of Fano interference in the mode diagrams, and the Fano resonance observed in the output field. The idea of a geometric Fano resonance (GFR) occurring in the angular domain is presented. Background information on surface plasmon polaritons is covered next. The dielectric properties of metals and how they relate to surface plasmons is first reviewed. The theoretical background of SPPs on an infinite planar surface is covered. The modes of a two planar interface metal/insulator stack are reviewed and the leaky properties of the waveguide are shown in the reflectance. We solve for modes of a three interface metal/insulator stack and shows an avoided crossing in the modes indicative of Fano interference. We observe the asymmetric Fano resonance in the angular domain in the reflectance. The tunability of the material parameters tunes the GFR of the system. The GFR tuning is explored and different Fano lineshapes are observed. We also observe a reversal of the asymmetry Fano lineshape, attributed to the relate phase interactions of the non-interacting modes. The phase of the GFR is calculated and discussed for the variations of the parameters. The reflected field is explored as the insulator permittivities are varied. As the waveguide permittivity is varied, we show there is little response from the system. As the exterior permittivity is varied, the reflectance exhibits the geometric Fano resonance and the tunability of the lineshape is explored. Finally, we calculate the sensitivities of our metal/insulator stack to changes in the permittivity and compare them to the sensitivities of SPRs.

  17. A U.S. perspective on the human exploration and expansion on the planet Mars

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Connolly, John F.

    1992-01-01

    A NASA perspective on the human exploration of Mars is presented which is based on the fundamental background available from the many previous studies. A hypothetical architecture of the Mars surface system is described which represents the complete spectrum of envisioned activities. Using the Strategic Implementation Architecture it is possible to construct a thoughtful roadmap which would enable a logical and flexible evolution of missions. Based on that architecture a suite of Martian surface elements is proposed to provide increasing levels of capability to the maturing infrastructure.

  18. Reducing the Risk of Human Missions to Mars Through Testing

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-07-01

    The NASA Deputy Administrator charted an internal NASA planning group to develop the rationale for exploration beyond low-Earth orbit. This team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond Low-Earth Orbit through the human exploration of Mars. Following the results of the Exploration Blueprint study, the NASA Administrator asked for a recommendation on the next steps in human and robotic exploration. Much of the focus during this period was on integrating the results from the previous studies into more concrete implementation strategies in order to understand the relationship between NASA programs, timing, and resulting budgetary implications. This resulted in an integrated approach including lunar surface operations to retire risk of human Mars missions, maximum use of common and modular systems including what was termed the exploration transfer vehicle, Earth orbit and lunar surface demonstrations of long-life systems, collaboration of human and robotic missions to vastly increase mission return, and high-efficiency transportation systems (nuclear) for deep-space transportation and power. The data provided in this summary presentation was developed to begin to address one of the key elements of the emerging implementation strategy, namely how lunar missions help retire risk of human missions to Mars. During this process the scope of the activity broadened into the issue of how testing in general, in various venues including the moon, can help reduce the risk for Mars missions.

  19. 30 CFR 780.29 - Diversions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.29 Diversions...

  20. 30 CFR 780.2 - Objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.2 Objectives...

  1. 30 CFR 778.14 - Providing violation information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  2. Mars sample collection and preservation

    NASA Technical Reports Server (NTRS)

    Blanchard, Douglas P.

    1988-01-01

    The intensive exploration of Mars is a major step in the systematic exploration of the solar system. Mars, earth, and Venus provide valuable contrasts in planetary evolution. Mars exploration has progressed through the stages of exploration and is now ready for a sample-return mission. About 5 kg of intelligently selected samples will be returned from Mars. A variety of samples are wanted. This requires accurate landing in areas of high interest, surface mobility and analytical capability, a variety of sampling tools, and stringent preservation and isolation measures.

  3. An evolutionary communications scenario for Mars exploration

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1987-01-01

    As Mars exploration grows in complexity with time, the corresponding communication needs will grow in variety and complexity also. From initial Earth/Mars links, further needs will arise for complete surface connectivity for the provision of navigation, position location, and voice, data, and video communications services among multiple Mars bases and remote exploration sites. This paper addresses the likely required communication functions over the first few decades of Martian exploration and postulates systems for providing these services. Required technologies are identified and development requirements indicated.

  4. Outpost Assembly Using the ATHLETE Mobility System

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Wilcox, Brian

    2016-01-01

    A planetary surface outpost will likely consist of elements delivered on multiple manifests, that will need to be assembled from a scattering of landings. Using the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) limbed robotic mobility system, the outpost site can be prepared in advance through leveling, paving, and in-situ structures. ATHLETE will be able to carry pressurized and non-pressurized payloads overland from the lander descent stage to the outpost location, and perform precision docking and assembly of components. In addition, spent descent stages can be carried to assembly locations to form elevated decks for external work platforms above the planet surface. This paper discusses several concepts that have been studied for possible inclusion in the NASA Evolvable Mars Campaign human exploration mission scenarios.

  5. Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars

    NASA Astrophysics Data System (ADS)

    Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick

    2016-07-01

    In December 2015, the "Third Community Workshop on Affording and Sustaining Human Mars Exploration" (AM III) was held, which was designed to provide community recommendations on the potential human exploration of Mars. To facilitate the workshop, we focused on two key questions: 1) From the dual and interrelated perspectives of affordability and sustainability, what are the strengths/challenges of Mars exploration scenarios?; and 2) From the perspective of prioritized scientific objectives for the martian system (the planet's surface or its moons), what are the most enabling capabilities of the different exploration architecture(s) and why? Group discussion over three days resulted in the following findings and observations: 1. NASA's incremental approach to deep-space exploration defines the so-called "Proving Ground," specifically in cis-lunar space, generally occurring in the 2020s and prior to human journeys to Mars. We concluded that there are capabilities directly related to, and on the critical path to, human exploration of Mars that could be developed in cis-lunar space. However, we also concluded that the Proving Ground should best be viewed as a campaign that occurs within a certain timeframe (including activities at Mars), rather than merely occurring at a specific location. 2. The workshop participants agreed that the most valuable purposes of sending humans to the martian system would be accomplished only by surface operations. We concluded that specific benefits, both technical and cost, of sending humans to the Mars system without landing on the martian surface should be assessed in depth. We discussed - although were unable to conclude - whether Mars orbit or Phobos/Deimos as a destination would make sufficient contributions towards humans landing on the martian surface or to answering high-priority science questions (as identified by the Decadal Survey) to justify their associated costs and possible risks. Further study on the value of an orbital mission prior to a Mars surface mission should be initiated. 3. A well-planned set of science objectives for a future human-landed mission to Mars is essential in order to sustain coordination among the science and human spaceflight communities. In particular, while it is clear how humans on the surface of Mars would significantly accelerate the pace of the search for past life, it is unclear how humans would play a role in (and not serve as a hindrance to) the search for extant life. Further study should be supported. 4. Sustained formal collaboration among Mars scientists, engineers, technologists, and teams developing scenarios for Mars exploration should be supported. The human and robotic sides of the Mars exploration community need to become further engaged with each other, particularly as we enter a potential period of dual-purpose (science + human precursor) missions. Central to this era is generating mutual support for a Mars sample return architecture as a goal that has crucial value to both the human preparatory program and planetary science.

  6. OEXP exploration studies technical report. Volume 3: Special reports, studies, and indepth systems assessments

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  7. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  8. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  9. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  10. Considerations Regarding the Development of an Environmental Control and Life Support System for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.

    2008-01-01

    NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.

  11. Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2013-01-01

    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.

  12. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  13. Heliospheric Physics and NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2007-01-01

    The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.

  14. Advantages of a Modular Mars Surface Habitat Approach

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  15. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.

  16. Crew systems and architectural considerations for first lunar surface return missions

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Ximenes, S.

    1992-08-01

    The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.

  17. 30 CFR 778.12 - Providing permit history information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  18. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  19. An Exploration of Radiation Physics in Electromagnetics

    NASA Technical Reports Server (NTRS)

    Lee, Katherine K.

    2005-01-01

    Contents include the following: NASA's Missions and Aeronautics Research. Today's Air Traffic Control System. Development of Decision-Support Tools. The Center-TRACON Automation System (CTAS). The Traffic Management Advisor (TMA). The Multi-Center Traffic Management Advisor (McTMA). The Surface Management System (SMS). Future Directions: The Joint Planning and Development Office.

  20. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  1. Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.

    2008-01-01

    NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.

  2. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1971-01-01

    Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.

  3. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    NASA Astrophysics Data System (ADS)

    Noble, R. J.; Sykes, M. V.

    The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  4. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert; /SLAC; Sykes, Mark V.

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less

  5. Workshop on the Martian Surface and Atmosphere Through Time

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M. (Editor); Jakosky, Bruce M. (Editor)

    1992-01-01

    The purpose of the workshop was to bring together the Mars Surface and Atmosphere Through Time (MSATT) Community and interested researchers to begin to explore the interdisciplinary nature of, and to determine the relationships between, various aspects of Mars science that involve the geological and chemical evolution of its surface, the structure and dynamics of its atmosphere, interactions between the surface and atmosphere, and the present and past states of its volatile endowment and climate system.

  6. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  7. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  8. Mars Exploration Rovers 2004-2013: Evolving Operational Tactics Driven by Aging Robotic Systems

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Seibert, Michael; Bellutta, Paolo; Ferguson, Eric; Forgette, Daniel; Herman, Jennifer; Justice, Heather; Keuneke, Matthew; Sosland, Rebekah; Stroupe, Ashley; hide

    2014-01-01

    Over the course of more than 10 years of continuous operations on the Martian surface, the operations team for the Mars Exploration Rovers has encountered and overcome many challenges. The twin rovers, Spirit and Opportunity, designed for a Martian surface mission of three months in duration, far outlived their life expectancy. Spirit explored for six years and Opportunity still operates and, in January 2014, celebrated the 10th anniversary of her landing. As with any machine that far outlives its design life, each rover has experienced a series of failures and degradations attributable to age, use, and environmental exposure. This paper reviews the failures and degradations experienced by the two rovers and the measures taken by the operations team to correct, mitigate, or surmount them to enable continued exploration and discovery.

  9. The development of a virtual camera system for astronaut-rover planetary exploration.

    PubMed

    Platt, Donald W; Boy, Guy A

    2012-01-01

    A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.

  10. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical properties; to investigate the nature, sources and history of activity on these bodies; and to explore the diversity of the broader Trojan asteroid population.

  11. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and longer duration missions in cis-lunar space and beyond, to eventually being independent from Earth. The goal is no longer just to reach a destination, but to enable people to work, learn, operate, and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite.

  12. Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, D.

    1977-10-01

    Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Datamore » from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)« less

  13. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  14. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2009-01-01

    Many options for exploration of the Moon and Mars have been identified and evaluated since the Vision for Space Exploration VSE was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of the moon and Mars and those of the Augustine human spaceflight commission for the implications of each architecture on the Environmental Control and Life Support, ExtraVehicular Activity and Thermal Control systems. The advantages and disadvantages of each architecture and options are presented.

  15. Towards a Mars base - Critical steps for life support on the moon and beyond

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    In providing crew life support for future exploration missions, overall exploration objectives will drive the life support solutions selected. Crew size, mission tasking, and exploration strategy will determine the performance required from life support systems. Human performance requirements, for example, may be offset by the availability of robotic assistance. Once established, exploration requirements for life support will be weighed against the financial and technical risks of developing new technologies and systems. Other considerations will include the demands that a particular life support strategy will make on planetary surface site selection, and the availability of precursor mission data to support EVA and in situ resource recovery planning. As space exploration progresses, the diversity of life support solutions that are implemented is bound to increase.

  16. Conclusions and recommendations: Exploration of the Saturn system

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1978-01-01

    Saturn missions have the following principal goals, in order of importance: (1) Intensive investigation of the atmosphere of Saturn; (2) determination of regional surface chemistry and properties of the surface features of satellites and properties of ring particles; (3) intensive investigation of Titan; and (4) atmospheric dynamics and structure of Saturn satellites and Saturn rings.

  17. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New Frontiers AO release. Scalable high temperature motor, resolver and bearing developments allow for creation of long lasting sample acquisition systems, booms, robot arms and even mobility systems that operate outside of an environment-controlled landed platform on the surface of Venus. The SR and BLDC motors are no longer expected to limit the life of Venus surface operations. With the accompanying high temperature bearing and other mechanisms development, surface operations will be limited only by available power. Therefore, the motor and resolver's capability to survive for hours (and potentially longer) in the environment is a major benefit to future Venus science missions and they also allow time for communication ground loops to optimize sample target selection and the possibility for acquiring multiple samples from the surface. The extreme temperature motors, resolver and other high temperature mechanisms therefore revolutionize the exploration of Venus.

  18. Automated Reasoning CICT Program/Intelligent Systems Project ATAC-PRT Review

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Smith, Ben

    2003-01-01

    An overview is presented of the Automated Reasoning CICT Program/Intelligent Systems project. Automated reasoning technology will help NASA missions by increasing the amount of science achieved, ensuring safety of spacecraft and surface explorers, and by enabling more robust mission operations.

  19. Scientific Investigations Associated with the Human Exploration of Mars in the Next 35 Years

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Beaty, David; Hays, Lindsay; Bass, Deborah; Bell, Mary Sue; Bleacher, Jake; Cabrol, Nathalie A.; Conrad, Pan; Eppler, Dean; Hamilton, Vicky; hide

    2017-01-01

    A human mission to Mars would present an unprecedented opportunity to investigate the earliest history of the solar system. This history that has largely been overwritten on Earth by active geological processing throughout its history, but on Mars, large swaths of the ancient crust remain exposed at the surface, allowing us to investigate martian processes at the earliest time periods when life first appeared on the Earth. Mars' surface has been largely frozen in place for 4 billion years, and after losing its atmosphere and magnetic field what re-mains is an ancient landscape of former hydrothermal systems, river beds, volcanic eruptions, and impact craters. This allows us to investigate scientific questions ranging from the nature of the impact history of the solar system to the origins of life. We present here a summary of the findings of the Human Science Objectives Science Analysis Group, or HSO-SAG chartered by MEPAG in 2015 to address science objectives and landing site criteria for future human missions to Mars (Niles, Beaty et al. 2015). Currently, NASA's plan to land astronauts on Mars in the mid 2030's would allow for robust human exploration of the surface in the next 35 years. We expect that crews would be able to traverse to sites up to 100 km away from the original landing site using robust rovers. A habitat outfitted with state of the art laboratory facilities that could enable the astronauts to perform cutting edge science on the surface of Mars. Robotic/human partnership during exploration would further enhance the science return of the mission.

  20. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  1. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.

    PubMed

    Ensign, Daniel L; Webb, Lauren J

    2011-12-01

    Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.

  2. 30 CFR 778.22 - Facilities or structures used in common.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  3. Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

    2006-01-01

    The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

  4. Battery and Fuel Cell Development for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  5. Logistics Modeling for Lunar Exploration Systems

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.

    2008-01-01

    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  6. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  7. KSC-2014-4376

    NASA Image and Video Library

    2014-11-03

    CAPE CANAVERAL, Fla. - Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky

  8. NASA's future space power needs and requirements

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sovie, Ronald J.

    1990-01-01

    The National Space Policy of 1988 established the U.S.'s long-range civil space goals, and has served to guide NASA's recent planning for future space mission operations. One of the major goals was to extend the human presence beyond earth's boundaries and to advance the scientific knowledge of the solar system. A broad spectrum of potential civil space mission opportunities and interests are currently being investigated by NASA to meet the espoused goals. Participation in many of these missions requires power systems with capabilities far beyond what exists today. In other mission examples, advanced power systems technology could enhance mission performance significantly. Power system requirements and issues that need resolution to ensure eventual mission accomplishment are addressed, in conjunction with the ongoing NASA technology development efforts and the need for even greater innovative efforts to match the ambitious solar exploration mission goals. Particular attention is given to potential lunar surface operations and technology goals, based on investigations to date. It is suggested that the nuclear reactor power systems can best meet long-life requirements as well as dramatically reduce the earth-surface-to-lunar-surface transportation costs due to the lunar day/night cycle impact on the solar system's energy storage mass requirements. The state of the art of candidate power systems and elements for the lunar application and the respective exploration technology goals for mission life requirements from 10 to 25 years are examined.

  9. Can We Power Future Mars Missions?

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Sturm, Erick J., II; Woolley, Ryan C.; Jordan, James F.

    2006-01-01

    The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.

  10. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  11. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  12. Tools for Asteroid Regolith Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Calle, Carlos I.; Mantovani, James G.

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment.The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 56 and could be rapidly implemented in time for an ARM mission in this decade.

  13. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less

  14. Environmental Verification Experiment for the Explorer Platform (EVEEP)

    NASA Technical Reports Server (NTRS)

    Norris, Bonnie; Lorentson, Chris

    1992-01-01

    Satellites and long-life spacecraft require effective contamination control measures to ensure data accuracy and maintain overall system performance margins. Satellite and spacecraft contamination can occur from either molecular or particulate matter. Some of the sources of the molecular species are as follows: mass loss from nonmetallic materials; venting of confined spacecraft or experiment volumes; exhaust effluents from attitude control systems; integration and test activities; and improper cleaning of surfaces. Some of the sources of particulates are as follows: leaks or purges which condense upon vacuum exposure; abrasion of movable surfaces; and micrometeoroid impacts. The Environmental Verification Experiment for the Explorer Platform (EVEEP) was designed to investigate the following aspects of spacecraft contamination control: materials selection; contamination modeling of existing designs; and thermal vacuum testing of a spacecraft with contamination monitors.

  15. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, M. S.

    2010-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  16. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  17. NASA SSERVI Contributions to Lunar Science and Exploration

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.

    2015-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration that will enable deeper understanding of the Moon and other airless bodies as we move further out of low-Earth orbit. The new Solar System Exploration Research Virtual Institute (SSERVI) will focus on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. The Institute focuses on interdisciplinary, exploration-related science centered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. We will provide a detailed look at research being conducted by each of the 9 domestic US teams as well as our 7 international partners. The research profile of the Institute integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies.

  18. Second Annual HEDS-UP Forum

    NASA Technical Reports Server (NTRS)

    Duke, Michael B. (Editor)

    1999-01-01

    HEDS-UP (Human Exploration and Development of Space-University Partners) conducted its second annual forum on May 6-7, 1999, at the Lunar and Planetary Institute in Houston. This year, the topics focused on human exploration of Mars, including considerations ranging from systems analysis of the transportation and surface architecture to very detailed considerations of surface elements such as greenhouses, rovers, and EVA suits. Ten undergraduate projects and four graduate level projects were presented with a total of 13 universities from around the country. Over 200 students participated on the study teams and nearly 100 students attended the forum meeting.

  19. Field Testing of Utility Robots for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matt; Allan, Mark; Bouyssounouse, Xavier; Broxton, Michael; Edwards, Laurence; Lee, Pascal; Lee, Susan Y.; Lees, David; hide

    2008-01-01

    Since 2004, NASA has been working to return to the Moon. In contrast to the Apollo missions, two key objectives of the current exploration program is to establish significant infrastructure and an outpost. Achieving these objectives will enable long-duration stays and long-distance exploration of the Moon. To do this, robotic systems will be needed to perform tasks which cannot, or should not, be performed by crew alone. In this paper, we summarize our work to develop "utility robots" for lunar surface operations, present results and lessons learned from field testing, and discuss directions for future research.

  20. Lunar Applications in Reconfigurable Computing

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin

    2008-01-01

    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.

  1. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors.

    PubMed

    Kalograiaki, Ioanna; Campanero-Rhodes, María A; Proverbio, Davide; Euba, Begoña; Garmendia, Junkal; Aastrup, Teodor; Solís, Dolores

    2018-01-01

    Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment. © 2018 Elsevier Inc. All rights reserved.

  2. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  3. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  4. Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Larson, William E.

    2010-01-01

    The NASA project to develop In-Situ Resource Utilization (ISRU) technologies, in partnership with commercial and international collaborators, has achieved full system demonstrations of oxygen production using native regolith simulants. These demonstrations included robotic extraction of material from the terrain, sealed encapsulation of material in a pressurized reactor; chemical extraction of oxygen from the material in the form of water, and the electrolysis of water into oxygen and hydrogen for storage and reuse. These successes have provided growing confidence in the prospects of ISRU oxygen production as a credible source for critical mission consumables in preparation for and during crewed missions to the moon and other destinations. Other ISRU processes, especially relevant to early lunar exploration scenarios, have also been shown to be practical, including the extraction of subsurface volatiles, especially water, and the thermal processing of surface materials for civil engineering uses and for thermal energy storage. This paper describes these recent achievements and current NASA ISRU development and demonstration activity. The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables; and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example. the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08. Flagstaff in 9/09; and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with international space agencies.

  5. Exploring Remote Sensing Products Online with Giovanni for Studying Urbanization

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina; Kempler, Steve

    2012-01-01

    Recently, a Large amount of MODIS land products at multi-spatial resolutions have been integrated into the online system, Giovanni, to support studies on land cover and land use changes focused on Northern Eurasia and Monsoon Asia regions. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data. The customized Giovanni Web portals (Giovanni-NEESPI and Giovanni-MAIRS) are created to integrate land, atmospheric, cryospheric, and social products, that enable researchers to do quick exploration and basic analyses of land surface changes and their relationships to climate at global and regional scales. This presentation documents MODIS land surface products in Giovanni system. As examples, images and statistical analysis results on land surface and local climate changes associated with urbanization over Yangtze River Delta region, China, using data in Giovanni are shown.

  6. Applied design methodology for lunar rover elastic wheel

    NASA Astrophysics Data System (ADS)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  7. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  8. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  9. Lunar Exploration Orbiter (LEO)

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.

    2007-08-01

    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and radar experiments, a very sensitive magnetometer and gradiometer, a subsatellite, and a state-of-the-art optical communication system. The Lunar Explorations Orbiter concept is technologically challenging but feasible, and will gather unique, integrated, interdisciplinary data sets that are of high scientific interest and will provide an unprecedented new context for all other international lunar missions. In fact, the Lunar Explorations Orbiter will further establish Germany as a leader among space-faring nations and will demonstrate expertise and technological know-how, which is "Made in Germany". With its high visibility, LEO will foster the growing acceptance of space exploration in Germany and will capture the imagination of the general public.

  10. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  11. Remote control and navigation tests for application to long-range lunar surface exploration

    NASA Technical Reports Server (NTRS)

    Mastin, W. C.; White, P. R.; Vinz, F. L.

    1971-01-01

    Tests conducted with a vehicle system built at the Marshall Space Flight Center to investigate some of the unknown factors associated with remote controlled teleoperated vehicles on the lunar surface are described. Test data are summarized and conclusions are drawn from these data which indicate that futher testing will be required.

  12. Flight Validation of Mars Mission Technologies

    NASA Technical Reports Server (NTRS)

    Eberspeaker, P. J.

    2000-01-01

    Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.

  13. SPINDLE: A 2-Stage Nuclear-Powered Cryobot for Ocean World Exploration

    NASA Astrophysics Data System (ADS)

    Stone, W.; Hogan, B.; Siegel, V. L.; Howe, T.; Howe, S.; Harman, J.; Richmond, K.; Flesher, C.; Clark, E.; Lelievre, S.; Moor, J.; Rothhammer, B.

    2016-12-01

    SPINDLE (Sub-glacial Polar Ice Navigation, Descent, and Lake Exploration) is a 2-stage autonomous vehicle system consisting of a robotic ice-penetrating carrier vehicle (cryobot) and a marsupial, hovering autonomous underwater vehicle (HAUV). The cryobot will descend through an ice body into a sub-ice aqueous environment and deploy the HAUV to conduct long range reconnaissance, life search, and sample collection. The HAUV will return to, and auto-dock with, the cryobot at the conclusion of the mission for subsequent data uplink and sample return to the surface. The SPINDLE cryobot has been currently designed for a 1.5 kilometer penetration through a terrestrial ice sheet and the HAUV has been designed for persistent exploration and science presence in for deployments up to a kilometer radius from the cryobot. Importantly, the cryobot is bi-directional and vertically controllable both in an ice sheet as well as following breakthrough into a subglacial water cavity / ocean. The vehicle has been designed for long-duration persistent science in subglacial cavities and to allow for subsequent return-to-surface at a much later date or subsequent season. Engineering designs for the current SPINDLE cryobot will be presented in addition to current designs for autonomous rendezvous, docking, and storing of the HAUV system into the cryobot for subsequent recovery of the entire system to the surface. Taken to completion in a three-phase program, SPINDLE will deliver an integrated and field-tested system that will be directly transferable into a Flagship-class mission to either the hypothesized shallow lakes of Europa, the sub-surface ocean of Ganymede, or the geyser/plume sources on both Europa and Enceladus. We present the results of several parallel laboratory investigations into advanced power transmission systems (laser, high voltage) as well as onboard systems that enable the SPINDLE vehicle to access any subglacial lake on earth while using non-nuclear surrogate, surface-based power systems and accounting for full re-freeze of the hole behind the cryobot. We additionally present new designs for a compatible nuclear drop-in power source and include preliminary design results for both radio-thermal and compact fission power plant designs that would be used for actual ocean world missions.

  14. New Age for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  15. Onboard planning for geological investigations using a rover team

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca

    2004-01-01

    This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.

  16. Human factor roles in design of teleoperator systems

    NASA Technical Reports Server (NTRS)

    Janow, C.; Malone, T. B.

    1973-01-01

    Teleoperator systems are considered, giving attention to types of teleoperators, a manned space vehicle attached manipulator, a free-flying teleoperator, a surface exploration roving vehicle, the human factors role in total system design, the manipulator system, the sensor system, the communication system, the control system, and the mobility system. The role of human factors in the development of teleoperator systems is also discussed, taking into account visual systems, an operator control station, and the manipulators.

  17. Workshop on Science and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    2001-01-01

    The exploration of Mars will be a multi-decadal activity. Currently, a scientific program is underway, sponsored by NASA's Office of Space Science in the United States, in collaboration with international partners France, Italy, and the European Space Agency. Plans exist for the continuation of this robotic program through the first automated return of Martian samples in 2014. Mars is also a prime long-term objective for human exploration, and within NASA, efforts are being made to provide the best integration of the robotic program and future human exploration missions. From the perspective of human exploration missions, it is important to understand the scientific objectives of human missions, in order to design the appropriate systems, tools, and operational capabilities to maximize science on those missions. In addition, data from the robotic missions can provide critical environmental data - surface morphology, materials composition, evaluations of potential toxicity of surface materials, radiation, electrical and other physical properties of the Martian environment, and assessments of the probability that humans would encounter Martian life forms. Understanding of the data needs can lead to the definition of experiments that can be done in the near-term that will make the design of human missions more effective. This workshop was convened to begin a dialog between the scientific community that is central to the robotic exploration mission program and a set of experts in systems and technologies that are critical to human exploration missions. The charge to the workshop was to develop an understanding of the types of scientific exploration that would be best suited to the human exploration missions and the capabilities and limitations of human explorers in undertaking science on those missions.

  18. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.

  19. Noble gas isotopes as low-budget exploration and monitoring tool for high- and low-temperature geothermal systems in extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Kraml, Michael; Jodocy, Marco; Aeschbach, Werner; Kreuter, Horst

    2017-04-01

    Since viable geothermal systems in extensional settings are sparse compared to those situated in subduction zone environments, a specifically adapted exploration methodology of the former is currently not fully established. Standardized exploration methods applicable to geothermal systems related to subduction zones do not always deliver reliable or even deliver misleading results (e.g. Ochmann et al. 2010). The identification of promising prospects at the beginning of surface exploration studies is saving time and money of the project developer and investor. Noble gas isotope analyses can provide a low-budget tool for assessing the quality of the prospect in a very early exploration phase. Case studies of high- and low-temperature prospects situated in the East African Rift System and the Upper Rhine Graben, Germany will be presented and compared to other extensional areas like the Basin and Range Province, U.S.A. (Kraml et al. 2016a,b). Noble gas isotopes are also a versatile tool for monitoring of geothermal reservoirs during the production/exploitation phase. References Kraml, M., Jodocy, M., Reinecker, J., Leible, D., Freundt, F., Al Najem, S., Schmidt, G., Aeschbach, W., and Isenbeck-Schroeter, M. (2016a): TRACE: Detection of Permeable Deep-Reaching Fault Zone Sections in the Upper Rhine Graben, Germany, During Low-Budget Isotope-Geochemical Surface Exploration. Proceedings European Geothermal Congress 2016, Strasbourg, France, 19-24 Sept 2016 Kraml, M., Kaudse, T., Aeschbach, W. and Tanzanian Exploration Team (2016b): The search for volcanic heat sources in Tanzania: A helium isotope perspective. Proceedings 6th African Rift Geothermal Conference, Addis Ababa, Ethiopia, 2nd-4th November 2016 Ochmann, N., Kraml, M., Lindenfeld, M., Yakovlev, A., Rümpker, G., Babirye, P. (2010): Microearthquake Survey at the Buranga Geothermal Prospect (Western Uganda). Proceedings World Geothermal Congress, 25-29 April 2010, Bali, Indonesia (paper number 1126)

  20. Reaction: Chemistry Driven by the Harsh Space Environment

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2018-01-01

    The studies by Solar System Exploration Research Virtual Institute (SSERVI) teams such as REVEALS and DREAM2 not only connect back to the highest planetary science decadal goals regarding volatiles but also feed forward to understanding the chemical origins of potential resources at the surface useful for human exploration. See https://sservi.nasa.gov for more about SSERVI and its dynamic teams.

  1. Remotely manned systems: Exploration and operation in space; Proceedings of the First National Conference, California Institute of Technology, Pasadena, Calif., September 13-15, 1972.

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1973-01-01

    Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.

  2. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. A summary of calculations of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission mass assessments related to use of a high specific impulse space based propulsion system is provided. Those calculations lead to the conclusion that the SHM concept can significantly reduce the mass required and streamline mission operations to explore Mars (and thus all exploration destinations).

  3. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. The paper also provides a summary of calculations of the mass of the Habitat Propulsion System (HPS) needed to get the habitat from low-Mars orbit (LMO) to the surface and back to LMO, and an overview of trajectory and mission mass assessments related to use of a high specific impulse space-based propulsion system. Those calculations led to the conclusion that the SHM concept results in low total mass required and streamlines mission operations to explore Mars (or other exploration destinations).

  4. Options for a lunar base surface architecture

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.

  5. Scale-free networks of the earth’s surface

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Kaitian; Gao, Peichao; Ma, Lei

    2016-06-01

    Studying the structure of real complex systems is of paramount importance in science and engineering. Despite our understanding of lots of real systems, we hardly cognize our unique living environment — the earth. The structural complexity of the earth’s surface is, however, still unknown in detail. Here, we define the modeling of graph topology for the earth’s surface, using the satellite images of the earth’s surface under different spatial resolutions derived from Google Earth. We find that the graph topologies of the earth’s surface are scale-free networks regardless of the spatial resolutions. For different spatial resolutions, the exponents of power-law distributions and the modularity are both quite different; however, the average clustering coefficient is approximately equal to a constant. We explore the morphology study of the earth’s surface, which enables a comprehensive understanding of the morphological feature of the earth’s surface.

  6. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  7. Micro-technology for planetary exploration and education

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Varsi, Giulio

    1991-01-01

    The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.

  8. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    NASA Technical Reports Server (NTRS)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  9. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  10. Automated Rock Identification for Future Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-01-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. The algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples.

  11. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  12. NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems

    NASA Technical Reports Server (NTRS)

    Lawson, B. Michael; Jan, Darrell

    2006-01-01

    Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.

  13. Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.

  14. Environmental interactions in space exploration: Environmental interactions working group

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Hillard, G. Barry

    1992-01-01

    With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales heretofore unattempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group was established as part of the Robotic Missions Working Group. The working group is described, and its current activities are updated.

  15. The UV reflectance of Patroclus: Exploring the surface composition and origins of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Molyneux, Pippa

    2017-08-01

    (617) Patroclus is a binary system comprising two almost equally sized Trojan asteroids, Patroclus and Menoetius. (617) Patroclus has never been observed in the UV spectral region, which contains important diagnostic features of major Trojan surface constituents inferred from fits to visible-near IR spectra. Previous spectral observations have not been spatially resolved, precluding a direct spectral comparison of the two bodies. We propose to obtain full surface UV reflectance maps of both Patroclus and Menoetius using the STIS G230L mode, to search for characteristic absorption features of silicates, carbons/graphites and NH3, which together make up the major inferred Jupiter Trojan surface constituents, and for signs of ''spectral bluing'' that occurs for space-weathered objects. The Jupiter Trojans are believed to represent the most readily accessible Kuiper Belt material in the solar system, having been scattered from that region to their current orbits following a dynamical instability. A direct spectral comparison of Patroclus and Menoetius, indicating whether the objects share a common origin and evolution, will explore the hypothesis that the system is a rare binary survivor of this scattering. (617) Patroclus is also a target of the upcoming Lucy mission, and constraints on surface composition would represent a valuable input to instrument configuration and observation planning work for the mission. As Lucy will not carry a UV instrument, the proposed observations would remain unique and complementary to the results of the mission.

  16. SMART-1/CLEMENTINE Study of Humorum and Procellarum Basins

    NASA Astrophysics Data System (ADS)

    Carey, William; Foing, Bernard H.; Koschny, Detlef; Pio Rossi, Angelo; Josset, Jean-Luc

    A study undertaken by ESA to define a European Reference Architecture for Space Exploration is due to be completed in September 2008. The development of this architecture over the past twelve months has identified a number of key capabilities, among them a lunar lander system, which could form the basis for Europe's contribution to the future exploration of space in collaboration with International Partners. The focus of this paper will be on the lunar lander system, and will present the results of an analysis of possible payloads that could be accommodated by the lander. As the industrial study is at the Phase 0 or Pre-Phase A level, the design of such a lander system is at a very early stage in its development, but an estimation of the payload capacity allows a general assessment of the types of possible payloads that could be carried, currently this capacity is estimated at 1.1 tonnes of gross payload mass to the lunar surface (assuming an Ariane 5 ECA launch). An important characteristic of the lunar lander is that it provides a versatile and flexible system for utilisation in a broad range of lunar missions which include: - Independent lunar exploration missions for science, technology demonstration and research. - Delivery of logistics and cargo to support human surface sortie missions. - Delivery of logistics to a lunar base/outpost. - Deployment of individual infrastructure elements in support of a lunar base/outpost. Based on the above different types of missions, a number of configurations of "reference payload" sets are in the process of being defined that cover specific exploration objectives related primarily to capability demonstration, exploration enabling research and enabled science. Aspects covered include: ISRU, robotics, mobility, human preparation, life science and geology. This paper will present the current status of definition of the Reference Payload sets.

  17. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    NASA Technical Reports Server (NTRS)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry system's robustness to a variety of environmental conditions could aid in reaching more varied landing sites."

  18. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.

  19. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  20. An Explorative Study to Use DBD Plasma Generation for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zhou, Wenwu; Liu, Yang; Kolbakir, Cem

    2017-11-01

    An explorative investigation was performed to demonstrate the feasibility of utilizing thermal effect induced by Dielectric-Barrier-Discharge (DBD) plasma generation for aircraft icing mitigation. The experimental study was performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). A NACA0012 airfoil/wing model embedded with DBD plasma actuators was installed in ISU-IRT under typical glaze icing conditions pertinent to aircraft inflight icing phenomena. While a high-speed imaging system was used to record the dynamic ice accretion process over the airfoil surface for the test cases with and without switching on the DBD plasma actuators, an infrared (IR) thermal imaging system was utilized to map the corresponding temperature distributions to quantify the unsteady heat transfer and phase changing process over the airfoil surface. The thermal effect induced by DBD plasma generation was demonstrated to be able to keep the airfoil surface staying free of ice during the entire ice accretion experiment. The measured quantitative surface temperature distributions were correlated with the acquired images of the dynamic ice accretion and water runback processes to elucidate the underlying physics. National Science Foundation CBET-1064196 and CBET-1435590.

  1. Examining Model Atmospheric Particles Inside and Out

    NASA Astrophysics Data System (ADS)

    Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2017-12-01

    Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.

  2. Materials Challenges in Space Exploration

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2005-01-01

    United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.

  3. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  4. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.; Carson, John M., III

    2017-01-01

    On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  5. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  6. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.

    1973-01-01

    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.

  7. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

  8. Biochip-based instruments development for space exploration: influence of the antibody immobilization process on the biochip resistance to freeze-drying, temperature shifts and cosmic radiations

    NASA Astrophysics Data System (ADS)

    Coussot, G.; Moreau, T.; Faye, C.; Vigier, F.; Baqué, M.; Le Postollec, A.; Incerti, S.; Dobrijevic, M.; Vandenabeele-Trambouze, O.

    2017-04-01

    Due to the diversity of antibody (Ab)-based biochips chemistries available and the little knowledge about biochips resistance to space constraints, immobilization of Abs on the surface of the biochips dedicated to Solar System exploration is challenging. In the present paper, we have developed ten different biochip models including covalent or affinity immobilization with full-length Abs or Ab fragments. Ab immobilizations were carried out in oriented/non-oriented manner using commercial activated surfaces with N-hydroxysuccinic ester (NHS-surfaces) or homemade surfaces using three generations of dendrimers (dendrigraft of poly L-lysine (DGL) surfaces). The performances of the Ab -based surfaces were cross-compared on the following criteria: (i) analytical performances (expressed by both the surface density of immobilized Abs and the amount of antigens initially captured by the surface) and (ii) resistance of surfaces to preparation procedure (freeze-drying, storage) or spatial constraints (irradiation and temperature shifts) encountered during a space mission. The latter results have been expressed as percentage of surface binding capacity losses (or percentage of remaining active Abs). The highest amount of captured antigen was achieved with Ab surfaces having full-length Abs and DGL-surfaces that have much higher surface densities than commercial NHS-surface. After freeze-drying process, thermal shift and storage sample exposition, we found that more than 80% of surface binding sites remained active in this case. In addition, the resistance of Ab surfaces to irradiation with particles such as electron, carbon ions or protons depends not only on the chemistries (covalent/affinity linkages) and strategies (oriented/non-oriented) used to construct the biochip, but also on the type, energy and fluence of incident particles. Our results clearly indicate that full-length Ab immobilization on NHS-surfaces and DGL-surfaces should be preferred for potential use in instruments for planetary exploration.

  9. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Carl Baily; Tom Hill

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  10. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  11. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  12. Extravehicular Activity and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  13. The Nomad Explorer assembly assist vehicle: An architecture for rapid global extraterrestrial base infrastructure establishment

    NASA Technical Reports Server (NTRS)

    Thangavelu, Madhu

    1994-01-01

    Traditional concepts of lunar bases describe scenarios where components of the bases are landed on the lunar surface, one at a time, and then put together to form a complete stationary lunar habitat. Recently, some concepts have described the advantages of operating a mobile or 'roving' lunar base. Such a base vastly improves the exploration range from a primary lunar base. Roving bases would also allow the crew to first deploy, test, operationally certify, and then regularly maintain, service, and evolve long life-cycle facilities like observatories or other science payload platforms that are operated far apart from each other across the extraterrestrial surface. The Nomad Explorer is such a mobile lunar base. This paper describes the architectural program of the Nomad Explorer, its advantages over a stationary lunar base, and some of the embedded system concepts which help the roving base to speedily establish a global extraterrestrial infrastructure. A number of modular autonomous logistics landers will carry deployable or erectable payloads, service, and logistically resupply the Nomad Explorer at regular intercepts along the traverse. Starting with the deployment of science experiments and telecommunication networks, and the manned emplacement of a variety of remote outposts using a unique EVA Bell system that enhances manned EVA, the Nomad Explorer architecture suggests the capability for a rapid global development of the extraterrestrial body. The Moon and Mars are candidates for this 'mission oriented' strategy. The lunar case is emphasized in this paper.

  14. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  15. Zephyr: A Landsailing Rover for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  16. Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro

    2004-01-01

    System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.

  17. Colours of the Outer Solar System Origins Survey (Col-OSSOS): New Insights into Kuiper belt Surfaces

    NASA Astrophysics Data System (ADS)

    Schwamb, M. E.; Fraser, W. C.; Bannister, M. T.; Pike, R. E.; Marsset, M.; Kavelaars, J. J.; Benecchi, S.; Delsanti, A.; Lehner, M. J.; Thirouin, A.; Guilbert-Lepoutre, A.; Peixinho, N.; Vernazza, P.

    2016-12-01

    The icy planetesimals of the Kuiper belt inform our knowledge about the growth of planetary embryos and our Solar System's dynamical history. The majority of the known Pluto-sized Kuiper belt objects (KBOs) are bright enough for their surfaces to be studied through optical and infrared spectroscopy. But for the typical smaller r mag > 22 mag KBOs, we must rely on what colors reveal by proxy, and this picture of Kuiper belt surfaces remains incomplete. Previous studies in this size range examined the hodgepodge set of KBOs discovered by surveys with varying and sometimes unknown detection biases that make it challenging to explore the true frequency of surface colors within the Kuiper belt. The Colours of the Outer Solar System Origins Survey (Col-OSSOS) aims to explore and explain the compositional variety within the Kuiper belt through near simultaneous u, g,r and J colors with the Gemini North Telescope and the Canada-France-Hawaii Telescope. The survey targets KBOs brighter than 23.6 r' mag ( 50-300 km) found by the Outer Solar System Origins Survey (OSSOS). With Col-OSSOS, we have a set of colors measured for a KBO sample discovered in a brightness limited survey, with a well-measured detection efficiency. Col-OSSOS will provide a compositional-dynamical map of the Kuiper belt in which to study the end of stages of Neptune migration and the conditions of the early planetesimal disk where these small icy bodies formed. We will give an overview of Col-OSSOS and an update on the program's current status. We will present the photometry from the first 30 KBOs studied from the first complete OSSOS block and examine the implications for Kuiper belt surfaces. We derive the observed and debiased ratio of neutral to red KBOs, measure the masses of the three color populations within the Kuiper belt (the red and neutral dynamically excited population and the red cold classical belt), and explore the radial color distribution in the primordial planetesimal disk before Neptune migration.

  18. Payload topography camera of Chang'e-3

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-11-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.

  19. An Automated Sample Processing System for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Soto, Juancarlos; Lasnik, James; Roark, Shane; Beegle, Luther

    2012-01-01

    An Automated Sample Processing System (ASPS) for wet chemistry processing of organic materials on the surface of Mars has been jointly developed by Ball Aerospace and the Jet Propulsion Laboratory. The mechanism has been built and tested to demonstrate TRL level 4. This paper describes the function of the system, mechanism design, lessons learned, and several challenges that were overcome.

  20. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  1. Radar and optical remote sensing in offshore domain to detect, characterize, and quantify ocean surface oil slicks

    NASA Astrophysics Data System (ADS)

    Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baqué, R.; Déliot, Ph.; Miegebielle, V.

    2017-10-01

    Radar and optical sensors are operationally used by authorities or petroleum companies for detecting and characterizing maritime pollution. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as the oil real fraction, which is critical for both exploration purposes and efficient cleanup operations. Today state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI, the airborne system developed by ONERA, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this data set lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the electromagnetic spectrum. Specific processing techniques have been developed in order to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows to estimate slick surface properties such as the spatial abundance of oil and the relative concentration of hydrocarbons on the sea surface.

  2. Fission Surface Power Technology Development Testing at NASA's Early Flight Fission Test Facility

    NASA Technical Reports Server (NTRS)

    Houts. Michael G.

    2009-01-01

    Fission surface power (FSP) systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at polar locations, at locations away from the poles, or in permanently shaded regions, with excellent performance at all sites. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system (FSPS) is also readily extensible for use on Mars. At Mars the system would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Under the NASA Exploration Technology Development Program (ETDP), NASA and the Department of Energy (DOE) have begun technology development on Fission Surface Power (FSP). The primary customer for this technology is the NASA Constellation Program which is responsible for the development of surface systems to support human exploration on the moon and Mars. The objectives of the FSP technology project are: 1) Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FSP design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow Agency decision-makers to consider FSP as a viable option for flight development. To be mass efficient, FSP systems must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial systems. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference FSP system uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance on the surface of the moon or Mars. Recent testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference FSP system, and has helped evaluate methods for system integration. In June, 2009, a representative pumped NaK loop (provided by Marshall Space Flight Center) was coupled to a Stirling power converter (provided by Glenn Research Center) and tested at various conditions representative of those that would be seen during actual FSP system operation. In all areas, performance of the integrated system exceeded project goals. High-temperature NaK pump testing has also been performed at the EFF-TF, as has testing of methods for providing long-duration NaK purity.

  3. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  4. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  5. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    ERIC Educational Resources Information Center

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  6. Interpreting OCO-2 Constrained CO2 Surface Flux Estimates Through the Lens of Atmospheric Transport Uncertainty.

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Jacobson, A. R.; Basu, S.; Weir, B.; Baker, D. F.; Bowman, K. W.; Chevallier, F.; Crowell, S.; Deng, F.; Denning, S.; Feng, L.; Liu, J.

    2017-12-01

    The orbiting carbon observatory (OCO-2) was launched in July 2014 and has collected three years of column mean CO2 (XCO2) data. The OCO-2 model inter-comparison project (MIP) was formed to provide a means of analysis of results from many different atmospheric inversion modeling systems. Certain facets of the inversion systems, such as observations and fossil fuel CO2 fluxes were standardized to remove first order sources of difference between the systems. Nevertheless, large variations amongst the flux results from the systems still exist. In this presentation, we explore one dimension of this uncertainty, the impact of different atmospheric transport fields, i.e. wind speeds and directions. Early results illustrate a large systematic difference between two classes of atmospheric transport, arising from winds in the parent GEOS-DAS (NASA-GMAO) and ERA-Interim (ECMWF) data assimilation models. We explore these differences and their effect on inversion-based estimates of surface CO2 flux by using a combination of simplified inversion techniques as well as the full OCO-2 MIP suite of CO2 flux estimates.

  7. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  8. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.

    2014-12-01

    Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Clipper concept provides an efficient means to explore Europa and investigate its habitability. Development of the mission concept is ongoing with current studies focusing on spacecraft design trades and refinements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few.

  9. Thin Film Delamination Using a High Power Pulsed Laser Materials Interaction

    NASA Astrophysics Data System (ADS)

    Sherman, Bradley

    Thin films attached to substrates are only effective while the film is adhered to the substrate. When the film begins to spall the whole system can fail, thus knowing the working strength of the film substrate system is important when designing structures. Surface acoustic waves (SAWs) are suitable for characterization of thin film mechanical properties due to the confinement of their energy within a shallow depth from a material surface. In this project, we study the feasibility of inducing dynamic interfacial failure in thin films using surface waves generated by a high power pulsed laser. Surface acoustic waves are modeled using a finite element numerical code, where the ablative interaction between the pulsed laser and the incident film is modeled using equivalent surface mechanical stresses. The numerical results are validated using experimental results from a laser ultrasonic setup. Once validated the normal film-substrate interfacial stress can be extracted from the numerical code and tends to be in the mega-Pascal range. This study uses pulsed laser generation to produce SAW in various metallic thin film/substrate systems. Each system varies in its response based on its dispersive relationship and as such requires individualized numerical modeling to match the experimental data. In addition to pulsed SAW excitation using an ablative source, a constrained thermo-mechanical load produced by the ablation of a metal film under a polymer layer is explored to generate larger dynamic mechanical stresses. These stresses are sufficient to delaminate the thin film in a manner similar to a peel test. However, since the loading is produced by a pulsed laser source, it occurs at a much faster rate, limiting the influence of slower damage modes that are present in quasi-static loading. This approach is explored to predict the interfacial fracture toughness of weak thin film interfaces.

  10. Surface Tension Mediated Conversion of Light to Work

    PubMed Central

    Okawa, David; Pastine, Stefan J.; Zettl, Alex; Fréchet, Jean M. J.

    2009-01-01

    As energy demands increase, new, more direct, energy collection and utilization processes must be explored. We present a system that intrinsically combines the absorption of sunlight with the production of useful work in the form of locomotion of objects on liquids. Focused sunlight is locally absorbed by a nanostructured composite, creating a thermal surface tension gradient and, subsequently, motion. Controlled linear motion and rotational motion are demonstrated. The system is scale independent, with remotely powered and controlled motion shown for objects in the milligram to tens of grams range. PMID:20560635

  11. Reflectance spectroscopy in planetary science: Review and strategy for the future

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B. (Editor)

    1987-01-01

    Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.

  12. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Coomes, Edmund P.; Dagle, Jeffery E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.

  13. Anchoring Technology for In Situ Exploration of Small Bodie

    NASA Technical Reports Server (NTRS)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  14. Space and surface power for the space exploration initiative: Results from project outreach

    NASA Technical Reports Server (NTRS)

    Shipbaugh, C.; Solomon, K.; Gonzales, D.; Juncosa, M.; Bauer, T.; Salter, R.

    1991-01-01

    The analysis and evaluations of the Space and Surface Power panel, one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program, is documented. In addition to managing and evaluating the responses, or submissions, to this public outreach program, RAND conducted its own analysis and evaluation relevent to SEI mission concepts, systems, and technologies. The Power panel screened and analyzed submissions for which a substantial portion of the concepts involved power generation sources, transmission, distribution, thermal management, and handling of power (including conditioning, conversion, packaging, and enhancements in system components). A background discussion of the areas the Power panel covered and the issues the reviewers considered pertinent to the analysis of power submissions are presented. An overview of each of the highest-ranked submissions and then a discussion of these submissions is presented. The results of the analysis is presented.

  15. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2004-01-01

    The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.

  16. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  17. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  18. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Conduct the First Detailed Reconnaissance of the Jupiter Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Olkin, Cathy; Castillo-Rogez, Julie

    2015-11-01

    Among the most potentially diagnostic but least explored populations of small bodies are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. The Trojans provide a unique perspective on solar system history, because their locations and physical, compositional, and mineralogic properties preserve evidence for important gravitational interactions among the giant planets. The locations and orbital properties of more than 6200 Jupiter Trojans are now known, but that is likely only a small fraction of a population of up to ~1e6 Trojans >1 km in size. The Trojans are hypothesized to be either former KBOs scattered into the inner solar system by early giant planet migration and then trapped in L4 and L5, or bodies formed near 5 AU in a more quiescent early solar system.Important Planetary Decadal Survey questions that can be addressed by studying the Trojans include: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft?Here we describe the Trojan Tour and Rendezvous (TTR) New Frontiers mission concept, which is designed to answer these Decadal questions and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of many of these objects, and orbital characterization of at least one large Trojan, TTR will enable the initial up-close exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical properties; to investigate the nature, sources and history of activity on these bodies; and to explore the diversity of the broader Trojan asteroid population.

  19. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  20. Sensing through friction: the biomechanics of texture perception in rodents and primates

    NASA Astrophysics Data System (ADS)

    Debrégeas, Georges; Boubenec, Yves

    2015-10-01

    Rodents and primates possess an exquisite tactile sensitivity, which allows them to extract a wealth of information about their immediate environment. They can distinguish subtle differences in surface roughness through tactile exploration in a much more precise way than they can do visually. In both sensory systems, tactile information is contained in the sequence of deformation of the tactile organ--the facial hair for rodents (the whiskers), the digital skin for primates -- elicited by active rubbing on the probed surface (Figure 8.1). These deformations, registered by mechanosensitive neurons located in inner tissues, are processed by the central nervous system to produce a sensory representation of the surface...

  1. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  2. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.

  3. The role of spatial integration in the perception of surface orientation with active touch.

    PubMed

    Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G

    2009-10-01

    Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.

  4. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  5. Liquid Acquisition Strategies for Exploration Missions: Current Status 2010

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2010-01-01

    NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.

  6. Exploring Statistical Characterizations of Morphologic Change and Variability: Fire Island, New York

    NASA Astrophysics Data System (ADS)

    Lentz, E. E.; Hapke, C. J.

    2012-12-01

    A comprehensive understanding of coastal barrier behavior requires high-resolution observations that capture a wide range of morphological changes occurring over a range of spatial and temporal scales. Fire Island National Seashore, located along the coast of Long Island, New York, is a well studied barrier island coast where understanding how morphological changes contribute to barrier island vulnerability have important implications for coastal land management. Previous work has shown that morphologic differences in eastern and western reaches are attributable to the underlying geology and variations sediment transport in the system. In this study, we further explore western and eastern differences and variability with lidar-derived topographic surfaces to provide a unique and comprehensive investigation of dune-beach change at Fire Island, New York. Continuous topographic surfaces generated from 12 lidar surveys collected between 1998 and 2011 are used to examine the three-dimensional variability over a range of time periods over the 50 km long island. Because surveys were collected over a range of seasons and in response to a number of storm events, we explore morphologic configurations reflecting the seasonality, post-storm configuration, and replenishment response to the system through the generation of a representative or average surface. These averaged surfaces provide the context for what would be an expected or typical coastal configuration under certain conditions, and through comparison with an individual event, can be used to derive an event-specific spatial-change signature. To investigate anthropogenic influences, differences in morphology between a survey collected after a substantial beach replenishment project and a typical fair-weather configuration averaged from six surveys are determined. Storm response variations are also explored by assessing differences between Tropical Storm Irene (2011), Nor'Ida (2009), and a typical post-storm configuration averaged from five post-storm surveys. In addition to averaged surfaces, surveys are combined to generate a new raster surface reflecting cell by cell standard deviations over a defined period. Standard deviation surfaces are generated to highlight 1) where areas of highest and lowest morphologic variation are located over the entire period, and 2) whether spatial similarities exist in variability between storm and non-storm morphologies. Results show there are distinct and variable responses in eastern and western reaches attributable to wave climate, profile gradient, and offshore bathymetry, as well as to a general along-coast increase in sediment availability.

  7. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  8. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  9. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  10. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  11. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  12. Exploiting the flexibility and the polarization of ferroelectric perovskite surfaces to achieve efficient photochemistry and enantiospecificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappe, Andrew

    This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4more » JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions« less

  13. Autonomous Navigation Error Propagation Assessment for Lunar Surface Mobility Applications

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In this document, the results of an autonomous navigation error propagation assessment are provided. The analysis is intended to be the baseline error propagation analysis for which Earth-based and Lunar-based radiometric data are added to compare these different architecture schemes, and quantify the benefits of an integrated approach, in how they can handle lunar surface mobility applications when near the Lunar South pole or on the Lunar Farside.

  14. Mapping the Upper Subsurface of MARS Using Radar Polarimetry

    NASA Technical Reports Server (NTRS)

    Carter, L. M.; Rincon, R.; Berkoski, L.

    2012-01-01

    Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.

  15. Development of a passive sampler for gaseous mercury

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.

    2011-10-01

    Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.

  16. Summaries of the thematic conferences on remote sensing for exploration geology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.

  17. Reducing the Risk of Human Missions to Mars Through Testing

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-07-01

    During the summer of 2002 the NASA Deputy Administrator charted an internal NASA planning group to develop the rationale for exploration beyond low-Earth orbit. This team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond Low-Earth Orbit through the human exploration of Mars. The previous NASA Exploration Team (NEXT) activities laid the foundation and framework for development of NASA s Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the Stepping Stone approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low- Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars. Following the results of the Exploration Blueprint study, the NASA Administrator has asked for a recommendation by June, 2003 on the next steps in human and robotic exploration in order to put into context an updated Integrated Space Transportation Plan (post- Columbia) and guide Agency planning. NASA was on the verge of committing significant funding in programs that would be better served if longer term goals were better known including the Orbital Space Plane, research on the ISS, National Aerospace Initiative, Shuttle Life Extension Program, Project Prometheus, as well as a wide range of technology development throughout the Agency. Much of the focus during this period was on integrating the results from the previous studies into more concrete implementation strategies in order to understand the relationship between NASA programs, timing, and resulting budgetary implications. This resulted in an integrated approach including lunar surface operations to retire risk of human Mars missions, maximum use of common and modular systems including what was termed the exploration transfer vehicle, Earth orbit and lunar surface demonstrations of long-life systems, collaboration of human and robotic missions to vastly increase mission return, and high-efficiency transportation systems (nuclear) for deep-space transportation and power. The data provided in this summary viewgraph presentation was developed to begin to address one of the key elements of the emerging implementation strategy, namely how lunar missions help retire risk of human missions to Mars. During this process the scope of the activity broadened into the issue of how testing in general, in various venues including the Moon, can help reduce the risk for Mars missions.

  18. Reducing the Risk of Human Missions to Mars Through Testing

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2007-01-01

    During the summer of 2002 the NASA Deputy Administrator charted an internal NASA planning group to develop the rationale for exploration beyond low-Earth orbit. This team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond Low-Earth Orbit through the human exploration of Mars. The previous NASA Exploration Team (NEXT) activities laid the foundation and framework for development of NASA s Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the Stepping Stone approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low- Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars. Following the results of the Exploration Blueprint study, the NASA Administrator has asked for a recommendation by June, 2003 on the next steps in human and robotic exploration in order to put into context an updated Integrated Space Transportation Plan (post- Columbia) and guide Agency planning. NASA was on the verge of committing significant funding in programs that would be better served if longer term goals were better known including the Orbital Space Plane, research on the ISS, National Aerospace Initiative, Shuttle Life Extension Program, Project Prometheus, as well as a wide range of technology development throughout the Agency. Much of the focus during this period was on integrating the results from the previous studies into more concrete implementation strategies in order to understand the relationship between NASA programs, timing, and resulting budgetary implications. This resulted in an integrated approach including lunar surface operations to retire risk of human Mars missions, maximum use of common and modular systems including what was termed the exploration transfer vehicle, Earth orbit and lunar surface demonstrations of long-life systems, collaboration of human and robotic missions to vastly increase mission return, and high-efficiency transportation systems (nuclear) for deep-space transportation and power. The data provided in this summary viewgraph presentation was developed to begin to address one of the key elements of the emerging implementation strategy, namely how lunar missions help retire risk of human missions to Mars. During this process the scope of the activity broadened into the issue of how testing in general, in various venues including the Moon, can help reduce the risk for Mars missions.

  19. 30 CFR 780.10 - Information collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.10... activities, including a requirement that the application include an operation and reclamation plan. The...

  20. 30 CFR 778.16 - Status of unsuitability claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED... assertion that the applicant made substantial legal and financial commitments before January 4, 1977...

  1. The UKC2 regional coupled prediction system

    NASA Astrophysics Data System (ADS)

    Castillo, Juan; Lewis, Huw; Graham, Jennifer; Saulter, Andrew; Arnold, Alex; Fallmann, Joachim; Martinez de la Torre, Alberto; Blyth, Eleanor; Bricheno, Lucy

    2017-04-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather through the environment, requires a more integrated approach to forecasting. This approach also delivers research benefits through providing tools with which to explore the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land. This hypothesis is being tested in a UK regional context at km-scale through the UK Environmental Prediction Project. This presentation will provide an introduction to the UKC2 UK Environmental Prediction research system. This incorporates models of the atmosphere (Met Office Unified Model), land surface (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled (via OASIS3-MCT libraries) at unprecedentedly high resolution across the UK and the wider north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a unique new research tool for UK environmental science. The presentation will highlight work undertaken to review and improve the computational cost of running these systems for efficient research application. Research will be presented highlighting case study evaluation on the sensitivity of the ocean and surface waves to the representation of feedbacks to the atmosphere, and on the sensitivity of weather systems and boundary layer cloud development to the exchange of heat and momentum at the ocean surface modified through sea surface temperature and wave-induced roughness. The presentation will discuss plans for future development through UKC3 and beyond.

  2. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  3. Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base

    NASA Technical Reports Server (NTRS)

    Moon, Michael J.; McCleskey, Carey M.

    2017-01-01

    Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.

  4. Exploring Liquid Water Beneath Glaciers and Permafrost in Antarctica Through Airborne Electromagnetic Surveys

    NASA Astrophysics Data System (ADS)

    Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.

    2015-12-01

    Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.

  5. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  6. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; hide

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  7. An alternative approach to solar system exploration providing safety of human mission to Mars.

    PubMed

    Gitelson, J I; Bartsev, S I; Mezhevikin, V V; Okhonin, V A

    2003-01-01

    For systematic human Mars exploration, meeting crew safety requirements, it seems perspective to assemble into a spacecraft: an electrical rocket, a well-shielded long-term life support system, and a manipulator-robots operating in combined "presence effect" and "master-slave" mode. The electrical spacecraft would carry humans to the orbit of Mars, providing short distance (and low signal time delay) between operator and robot-manipulators, which are landed on the surface of the planet. Long-term hybrid biological and physical/chemical LSS could provide environment supporting human health and well being. Robot-manipulators operating in "presence effect" and "master-slave" mode exclude necessity of human landing on Martian surface decreasing the level of risk for crew. Since crewmen would not have direct contact with the Martian environment then the problem of mutual biological protection is essentially reduced. Lightweight robot-manipulators, without heavy life support systems and without the necessity of returning to the mother vessel, could be sent as scouts to different places on the planet surface, scanning the most interesting for exobiological research site. Some approximate estimations of electric spacecraft, long-term hybrid LSS, radiation protection and mission parameters are conducted and discussed. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  8. Thermodynamics of Surface Nanobubbles.

    PubMed

    Zargarzadeh, Leila; Elliott, Janet A W

    2016-11-01

    In this paper, we examine the thermodynamic stability of surface nanobubbles. The appropriate free energy is defined for the system of nanobubbles on a solid surface submerged in a supersaturated liquid solution at constant pressure and temperature, under conditions where an individual nanobubble is not in diffusive contact with a gas phase outside of the system or with other nanobubbles on the time scale of the experiment. The conditions under which plots of free energy versus the radius of curvature of the nanobubbles show a global minimum, which denotes the stable equilibrium state, are explored. Our investigation shows that supersaturation and an anomalously high contact angle (measured through the liquid) are required to have stable surface nanobubbles. In addition, the anomalously high contact angle of surface nanobubbles is discussed from the standpoint of a framework recently proposed by Koch, Amirfazli, and Elliott that relates advancing and receding contact angles to thermodynamic equilibrium contact angles, combined with the existence of a gas enrichment layer.

  9. Space Science in Action: Planets and the Solar System [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording teaches students about the key characteristics of each planet, the differences between inner and outer planets, and which planets have their own moons. Students look at how remote-control rovers are designed to explore other surfaces in the solar system. A hands-on activity demonstrates how gravity keeps all the members of…

  10. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  11. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  12. Mars Exploration Rover Flight Operations Technical Consultation

    NASA Technical Reports Server (NTRS)

    Leckrone, Dave S.; Null, Cynthia H.; Caldwell, John; Graves, Claude; Konitinos, Dean A.

    2009-01-01

    The Mars Exploration Rover (MER) Project at the Jet Propulsion Laboratory developed two golf-cart size robotic vehicles, Spirit and Opportunity, for geological exploration of designated target areas on the surface of Mars. The primary scientific objective of these missions was the search for evidence of the presence of water on or near the surface of the planet during its history. Spirit and Opportunity were launched on June 10 and July 7, 2003, with their respective landings scheduled for January 4 and January 25, 2004 (UTC). NASA views the MER missions as particularly critical because of their scientific importance in the ongoing search for conditions under which life might have existed elsewhere in the solar system, because of their high level of public interest and because more than half of all prior missions launched to Mars internationally have failed. This report summarizes the findings and recommendations of the NASA Engineering and Safety Center review of the project.

  13. Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime

    NASA Astrophysics Data System (ADS)

    Liang, Jinghua; Cheng, Long; Zhang, Jie; Liu, Huijun; Zhang, Zhenyu

    2016-04-01

    Using first-principles calculations and the Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2.0 under physically realistic conditions. We also reveal the appealing potential of bridging the long-standing ZT asymmetry of p- and n-type Bi2Te3 systems.Using first-principles calculations and the Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2.0 under physically realistic conditions. We also reveal the appealing potential of bridging the long-standing ZT asymmetry of p- and n-type Bi2Te3 systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00724d

  14. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  15. Surface Movement Incidents Reported to the NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Hubener, Simone

    1997-01-01

    Increasing numbers of aircraft are operating on the surface of airports throughout the world. Airport operations are forecast to grow by more that 50%, by the year 2005. Airport surface movement traffic would therefore be expected to become increasingly congested. Safety of these surface operations will become a focus as airport capacity planning efforts proceed toward the future. Several past events highlight the prevailing risks experienced while moving aircraft during ground operations on runways, taxiways, and other areas at terminal, gates, and ramps. The 1994 St. Louis accident between a taxiing Cessna crossing an active runway and colliding with a landing MD-80 emphasizes the importance of a fail-safe system for airport operations. The following study explores reports of incidents occurring on an airport surface that did not escalate to an accident event. The Aviation Safety Reporting System has collected data on surface movement incidents since 1976. This study sampled the reporting data from June, 1993 through June, 1994. The coding of the data was accomplished in several categories. The categories include location of airport, phase of ground operation, weather /lighting conditions, ground conflicts, flight crew characteristics, human factor considerations, and airport environment. These comparisons and distributions of variables contributing to surface movement incidents can be invaluable to future airport planning, accident prevention efforts, and system-wide improvements.

  16. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratihar, Subha; Barnes, George L.; Laskin, Julia

    In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both themore » experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.« less

  17. Combustion-based power source for Venus surface missions

    NASA Astrophysics Data System (ADS)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  18. Method Evaluations for Adsorption Free Energy Calculations at the Solid/Water Interface through Metadynamics, Umbrella Sampling, and Jarzynski's Equality.

    PubMed

    Wei, Qichao; Zhao, Weilong; Yang, Yang; Cui, Beiliang; Xu, Zhijun; Yang, Xiaoning

    2018-03-19

    Considerable interest in characterizing protein/peptide-surface interactions has prompted extensive computational studies on calculations of adsorption free energy. However, in many cases, each individual study has focused on the application of free energy calculations to a specific system; therefore, it is difficult to combine the results into a general picture for choosing an appropriate strategy for the system of interest. Herein, three well-established computational algorithms are systemically compared and evaluated to compute the adsorption free energy of small molecules on two representative surfaces. The results clearly demonstrate that the characteristics of studied interfacial systems have crucial effects on the accuracy and efficiency of the adsorption free energy calculations. For the hydrophobic surface, steered molecular dynamics exhibits the highest efficiency, which appears to be a favorable method of choice for enhanced sampling simulations. However, for the charged surface, only the umbrella sampling method has the ability to accurately explore the adsorption free energy surface. The affinity of the water layer to the surface significantly affects the performance of free energy calculation methods, especially at the region close to the surface. Therefore, a general principle of how to discriminate between methodological and sampling issues based on the interfacial characteristics of the system under investigation is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.

  20. 30 CFR 780.38 - Support facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.38... description, plans, and drawings for each support facility to be constructed, used, or maintained within the...

  1. The Performance and Registration Information Systems Management (PRISM) pilot demonstration project

    DOT National Transportation Integrated Search

    1999-12-01

    The Intermodal Surface Transportation Efficiency Act of 1991 mandated a study to explore the potential of the commercial motor vehicle (CMV) registration process as a safety enforcement tool for reducing CMV accidents. The project sought to establish...

  2. Time-resolved spectroscopy at surfaces and adsorbate dynamics: Insights from a model-system approach

    NASA Astrophysics Data System (ADS)

    Boström, Emil; Mikkelsen, Anders; Verdozzi, Claudio

    2016-05-01

    We introduce a model description of femtosecond laser induced desorption at surfaces. The substrate part of the system is taken into account as a (possibly semi-infinite) linear chain. Here, being especially interested in the early stages of dissociation, we consider a finite-size implementation of the model (i.e., a finite substrate), for which an exact numerical solution is possible. By time-evolving the many-body wave function, and also using results from a time-dependent density functional theory description for electron-nuclear systems, we analyze the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols can impact desorption in a variety of prototypical experiments.

  3. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  4. Enhanced methane emissions from oil and gas exploration areas to the atmosphere--the central Bohai Sea.

    PubMed

    Zhang, Yong; Zhao, Hua-de; Zhai, Wei-dong; Zang, Kun-peng; Wang, Ju-ying

    2014-04-15

    The distributions of dissolved methane in the central Bohai Sea were investigated in November 2011, May 2012, July 2012, and August 2012. Methane concentration in surface seawater, determined using an underway measurement system combined with wavelength-scanned cavity ring-down spectroscopy, showed marked spatiotemporal variations with saturation ratio from 107% to 1193%. The central Bohai Sea was thus a source of atmospheric methane during the survey periods. Several episodic oil and gas spill events increased surface methane concentration by up to 4.7 times and raised the local methane outgassing rate by up to 14.6 times. This study demonstrated a method to detect seafloor CH4 leakages at the sea surface, which may have applicability in many shallow sea areas with oil and gas exploration activities around the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Human Mars Surface Mission Nuclear Power Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  6. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic echo-chamber, and interaction of a phonon pulse with the photonic nanocavity was investigated. Third, an effort was made to address a major limitation of the surface acoustic wave based optomechanical system - loss of acoustic energy into the oxidized silicon substrate. To circumvent this problem, the optomechanical system was implemented in a suspended aluminum nitride membrane. The system confined the optical and acoustic wave within the thickness of the membrane and led to a stronger optomechanical coupling. At the end a summary is given that highlights important features of the optmechanical system and its prospects in future fundamental research and application.

  7. Investigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Cadu, Alexandre; Mimoun, David; Karatekin, Ozgur; Garcia, Raphael; Carrasco, José; Garcia de Quiros, Javier; Vasseur, Hugues; Ritter, Birgit; Eubanks, Marshall; Radley, Charles; Dehant, Veronique

    2016-04-01

    Despite the successes of recent space missions (e.g., Cheng et al., 1997; Fujiwara et al., 2006), there is still no clear understanding of the asteroid internal structure(s). Depending on their size, evolution and physical properties, many different asteroid internal structure models have been suggested from completely cohesive bodies, through to rubble pile objects. The Asteroid Geophysical Explorer (AGEX), a COPINS payload selected by ESA*, will land geophysical instrument packages on the surface of Didymoon; the secondary object in the (65803) Didymos (1996 GT) binary system (Karatekin et al 2016). The instruments will characterize the asteroid surface mechanical properties and probe, for the first time, the sub-surface structure of an asteroid. AGEX will be deployed from AIM on a ballistic transfer to the asteroid surface, several days before the MASCOT-2 package. We expect that AGEX will bounce multiple times before coming to rest on the surface of the asteroid thus providing a unique opportunity to study the asteroid surface properties, perhaps at several locations, using accelerometers. Once stationary, the seismological surface-monitoring phase, using a three-axis set of geophones, can begin. The high speed DART impact will be a major seismic source on Didymoon. However, the seismic payload may also be able to perform seismological investigations using natural seismic sources such as micrometeoroid impacts (e.g., Garcia et al., 2015), thermal cracks (e.g., Delbo et al., 2014), internal quakes due to tidal forces (e.g., Richardson et al. 1998) and other geophysical processes (see Murdoch et al., 2015). We will present the expected signal characteristics of the landing and also of the natural seismic sources that may occur on Didymoon. An understanding of the amplitude and frequency content of such signals is necessary in order to design the optimal geophysical payload for small body exploration using a CubeSat platform. [1.] Cheng, A. et al., Journal of Geophysical Research, 102, E10 (1997) [2.] Delbo, M., et al., Nature, 508, 233-236 (2014) [3.] Fujiwara, A. et al., Science 312, 1330 (2006) [4.] Garcia, R. F. et al., Icarus, 253, 159-168 (2015) [5.] Murdoch, N. et al., ASTEROIDS IV, University of Arizona Press Space Science Series, edited by P. Michel, F. DeMeo and W. Bottke, (2015) [6.] Richardson, D.C. et al., Icarus, 134, 47-79 (1998) [7.] Karatekin et al., The Asteroid Geophysical Explorer (AGEX); Proposal to explore the Didymos System using Cubesats, EGU (2016) *http://www.esa.int/Our_Activities/Space_Engineering_Technology/Asteroid_Impact_Mission/ CubeSat_companions_for_ESA_s_asteroid_mission

  8. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  9. NASA Exploration Launch Projects Systems Engineering Approach for Astronaut Missions to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.

  10. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  11. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects

  12. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  13. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  14. Lunar vertical-shaft mining system

    NASA Technical Reports Server (NTRS)

    Introne, Steven D. (Editor); Krause, Roy; Williams, Erik; Baskette, Keith; Martich, Frederick; Weaver, Brad; Meve, Jeff; Alexander, Kyle; Dailey, Ron; White, Matt

    1994-01-01

    This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure.

  15. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  16. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  17. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  18. Collaborative Research: Fundamental studies of plasma control using surface embedded electronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Laxminarayan L.; PanneerChelvam, PremKumar; Levko, Dimtry

    2016-02-26

    The proposed study will investigate the effect of active electron injection of from electrode surfaces To the best of our knowledge, no such a study has ever been attempted even though it could lead to the formation of whole new classes of plasma based devices and systems. We are motivated by recent articles and simple theory which gives strong reason to believe that embedded electronic devices can be used to exert control over the SEE coefficient of semiconductor surfaces (and maybe other surface types as well). Furthermore, the research will explore how such sub-surface electronic devices can best be usedmore » to exert control over an associated plasma.« less

  19. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    NASA Astrophysics Data System (ADS)

    Ehlers, T. A.; von Blanckenburg, F.; Übernickel, K.; Paulino, L.

    2016-12-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in the Chilean Coastal Cordillera. This region was selected because of its north-south orientation such that it captures a large ecological and climate gradient ranging from hyper-arid to temperate to humid conditions. The sites comprise granitic, previously unglaciated mountain ranges. EarthShape involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, and hydrogeologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines.

  20. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  1. Constellation Architecture Team-Lunar: Lunar Habitat Concepts

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Kennedy, Kriss J.

    2008-01-01

    This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port core habitat, and the third investigated leveraging commonality of the lander ascent module and airlock pressure vessel hard shell. The paper will describe an overview of the various habitat concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suit-port airlock function such as redundant airlock(s), suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as closed loop life support systems hardware, consumable stowage, spares stowage, interconnection to the other Hab units, and a common interface mechanism for future growth and mating to a pressurized rover. The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, and medical operations.

  2. Cislunar space infrastructure: Lunar technologies

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Continuing its emphasis on the creation of a cisluar infrastructure as an appropriate and cost-effective method of space exploration and development, the University of Colorado explores the technologies necessary for the creation of such an infrastructure, namely (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologes. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by automation and robotics (LOARS). Under direction from the NASA Office of Exploration, automation and robotics have been extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a 'buddy system', these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of lunar resources and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar Environmentally Controlled Life Support System. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the lunar surface. Physiochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ lunar resources will be both tested and used within this bio-volume. Second phase development on the lunar surface calls for manned operations. Repairs and reconfiguration of the initial framework will ensue. An autonomously initiated, manned Lunar Oasis can become an essential component of the United States space program. The Lunar Oasis will provide support to science, technology, and commerce. It will enable more cost-effective space exploration to the planets and beyond.

  3. Exploration of Venus' Deep Atmosphere and Surface Environment

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  4. Simulation Based Studies of Low Latency Teleoperations for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Crues, Edwin Z.; Bielski, Paul; Dexter, Dan; Litaker, Harry L.; Chappell, Steven P.; Beaton, Kara H.; Bekdash, Omar S.

    2017-01-01

    Human exploration of Mars will involve both crewed and robotic systems. Many mission concepts involve the deployment and assembly of mission support assets prior to crew arrival on the surface. Some of these deployment and assembly activities will be performed autonomously while others will be performed using teleoperations. However, significant communications latencies between the Earth and Mars make teleoperations challenging. Alternatively, low latency teleoperations are possible from locations in Mars orbit like Mars' moons Phobos and Deimos. To explore these latency opportunities, NASA is conducting a series of studies to investigate the effects of latency on telerobotic deployment and assembly activities. These studies are being conducted in laboratory environments at NASA's Johnson Space Center (JSC), the Human Exploration Research Analog (HERA) at JSC and the NASA Extreme Environment Mission Operations (NEEMO) underwater habitat off the coast of Florida. The studies involve two human-in-the-loop interactive simulations developed by the NASA Exploration Systems Simulations (NExSyS) team at JSC. The first simulation investigates manipulation related activities while the second simulation investigates mobility related activities. The first simulation provides a simple real-time operator interface with displays and controls for a simulated 6 degree of freedom end effector. The initial version of the simulation uses a simple control mode to decouple the robotic kinematic constraints and a communications delay to model latency effects. This provides the basis for early testing with more detailed manipulation simulations planned for the future. Subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. Subject performance is measured and correlated with three distance-to-target zones of interest. Each zone represents a target distance ranging from beyond 10m in Zone 1, through 1 cm to contact in Zone 5 with a step size factor of 10. Collected data consists of both objective simulation data (time, distance, hand controller inputs, velocity) and subjective questionnaire data. The second simulation provides a simple real-time operator interface with displays and control of a simulated surface rover. The rover traverses a synthetic Mars-like terrain and must be maneuvered to avoid obstacles while progressing to its destination. Like the manipulator simulation, subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. The rover is also operated at three different traverse speeds to assess the correlation between latency and speed. Collected data consisted of both objective simulation data (time, distance, hand controller inputs, braking) and subjective questionnaire data. These studies are exploring relationships between task complexity, operating speeds, operator efficiencies, and communications latencies for low latency teleoperations in support of human planetary exploration. This paper presents early results from these studies along with the current observations and conclusions. These and planned future studies will help to inform NASA on the potential for low latency teleoperations to support human exploration of Mars and inform the design of robotic systems and exploration missions.

  5. THE EVOLUTION OF SYNTHETICALLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    The objective of this study was to explore the effect of water quality, particularly chloride and sulfate, on copper mineral formation. Copper-sulfate and chloride compounds are often found on the surface of copper pipes in drinking water distribution systems. When attempting to ...

  6. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  7. Analysis of a spacecraft life support system for a Mars mission.

    PubMed

    Czupalla, M; Aponte, V; Chappell, S; Klaus, D

    2004-01-01

    This report summarizes a trade study conducted as part of the Fall 2002 semester Spacecraft Life Support System Design course (ASEN 5116) in the Aerospace Engineering Sciences Department at the University of Colorado. It presents an analysis of current life support system technologies and a preliminary design of an integrated system for supporting humans during transit to and on the surface of the planet Mars. This effort was based on the NASA Design Reference Mission (DRM) for the human exploration of Mars [NASA Design Reference Mission (DRM) for Mars, Addendum 3.0, from the world wide web: http://exploration.jsc.nasa.gov/marsref/contents.html.]. The integrated design was broken into four subsystems: Water Management, Atmosphere Management, Waste Processing, and Food Supply. The process started with the derivation of top-level requirements from the DRM. Additional system and subsystem level assumptions were added where clarification was needed. Candidate technologies were identified and characterized based on performance factors. Trade studies were then conducted for each subsystem. The resulting technologies were integrated into an overall design solution using mass flow relationships. The system level trade study yielded two different configurations--one for the transit to Mars and another for the surface habitat, which included in situ resource utilization. Equivalent System Mass analyses were used to compare each design against an open-loop (non-regenerable) baseline system. c2003 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

  8. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  9. High-Temperature, Thin-Film Ceramic Thermocouples Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2005-01-01

    To enable long-duration, more distant human and robotic missions for the Vision for Space Exploration, as well as safer, lighter, quieter, and more fuel efficient vehicles for aeronautics and space transportation, NASA is developing instrumentation and material technologies. The high-temperature capabilities of thin-film ceramic thermocouples are being explored at the NASA Glenn Research Center by the Sensors and Electronics Branch and the Ceramics Branch in partnership with Case Western Reserve University (CWRU). Glenn s Sensors and Electronics Branch is developing thin-film sensors for surface measurement of strain, temperature, heat flux, and surface flow in propulsion system research. Glenn s Ceramics Branch, in conjunction with CWRU, is developing structural and functional ceramic technology for aeropropulsion and space propulsion.

  10. Titan exploration with advanced systems. A study of future mission concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.

  11. Conservation of myeloid surface antigens on primate granulocytes.

    PubMed

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  12. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  13. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  14. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  15. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  16. 3D Additive Construction with Regolith for Surface Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  17. TALARIS project update: Overview of flight testing and development of a prototype planetary surface exploration hopper

    NASA Astrophysics Data System (ADS)

    Rossi, Christopher; Cunio, Phillip M.; Alibay, Farah; Morrow, Joe; Nothnagel, Sarah L.; Steiner, Ted; Han, Christopher J.; Lanford, Ephraim; Hoffman, Jeffrey A.

    2012-12-01

    The TALARIS (Terrestrial Artificial Lunar And Reduced GravIty Simulator) project is intended to test GNC (Guidance, Navigation, and Control) algorithms on a prototype planetary surface exploration hopper in a dynamic environment with simulated reduced gravity. The vehicle is being developed by the Charles Stark Draper Laboratory and Massachusetts Institute of Technology in support of efforts in the Google Lunar X-Prize contest. This paper presents progress achieved since September 2010 in vehicle development and flight testing. Upgrades to the vehicle are described, including a redesign of the power train for the gravity-offset propulsion system and a redesign of key elements of the spacecraft emulator propulsion system. The integration of flight algorithms into modular flight software is also discussed. Results are reported for restricted degree of freedom (DOF) tests used to tune GNC algorithms on the path to a full 6-DOF hover-hop flight profile. These tests include 3-DOF tests on flat surfaces restricted to horizontal motion, and 2-DOF vertical tests restricted to vertical motion and 1-DOF attitude control. The results of tests leading up to full flight operations are described, as are lessons learned and future test plans.

  18. Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force Method

    PubMed Central

    2016-01-01

    We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters. PMID:27959559

  19. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  20. Strategies for Ground Testing of Manned Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Beyer, Jeff; Gill, Tracy; Peacock, Mike

    2009-01-01

    One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.

  1. Study on stair-step liquid triggered capillary valve for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  2. Lightweight Multifunctional Planetary Probe for Extreme Environment Exploration and Locomotion

    NASA Technical Reports Server (NTRS)

    Bayandor, Javid (Principal Investigator); Schroeder, Kevin; Samareh, Jamshid

    2017-01-01

    The demand to explore new worlds requires the development of advanced technologies that enable landed science on uncertain terrains or in hard to reach locations. As a result, contemporary Entry, Descent, Landing, (EDL) and additional locomotion (EDLL) profiles are becoming increasingly more complex, with the introduction of lifting/guided entries, hazard avoidance on descent, and a plethora of landing techniques including airbags and the skycrane maneuver. The inclusion of each of these subsystems into a mission profile is associated with a substantial mass penalty. This report explores the new all-in-one entry vehicle concept, TANDEM, a new combined EDLL concept, and compares it to the current state of the art EDL systems. The explored system is lightweight and collapsible and provides the capacity for lifting/guided entry, guided descent, hazard avoidance, omnidirectional impact protection and surface locomotion without the aid of any additional subsystems. This Phase I study explored: 1. The capabilities and feasibility of the TANDEM concept as an EDLL vehicle. 2. Extensive impact analysis to ensure mission success in unfavorable landing conditions, and safe landing in Tessera regions. 3. Development of a detailed design for a conceptual mission to Venus. As a result of our work it was shown that: 1. TANDEM provides additional benefits over the Adaptive, Deployable Entry Placement Technology (ADEPT) including guided descent and surface locomotion, while reducing the mass by 38% compared to the ADEPT-VITaL mission. 2. Demonstrated that the design of tensegrity structures, and TANDEM specifically, grows linearly with an increase in velocity, which was previously unknown. 3. Investigation of surface impact revealed a promising results that suggest a properly configured TANDEM vehicle can safely land and preform science in the Tessera regions, which was previously labeled by the Decadal Survey as, largely inaccessible despite its high scientific interest. This work has already resulted in a NASA TM and will be submitted to the Journal of Spacecraft and Rockets.

  3. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851

  4. Desert Research and Technology Studies (DRATS) Traverse Planning

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich

    2012-01-01

    Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse region, locating specific sites for more detailed exploration by Chariot and its crew. [Lower right] This earth-moving equipment (provided by NASA KSC) can be attached to Chariot and is envisioned to, for example, level an outpost site or to mine lunar soi

  5. Study of advanced atmospheric entry systems for Mars

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.

  6. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  7. Developing an Automated Science Analysis System for Mars Surface Exploration for MSL and Beyond

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Hart, S. D.; Shi, X.; Siegel, V. L.

    2004-01-01

    We are developing an automated science analysis system that could be utilized by robotic or human explorers on Mars (or even in remote locations on Earth) to improve the quality and quantity of science data returned. Three components of this system (our rock, layer, and horizon detectors) [1] have been incorporated into the JPL CLARITY system for possible use by MSL and future Mars robotic missions. Two other components include a multi-spectral image compression (SPEC) algorithm for pancam-type images with multiple filters and image fusion algorithms that identify the in focus regions of individual images in an image focal series [2]. Recently, we have been working to combine image and spectral data, and other knowledge to identify both rocks and minerals. Here we present our progress on developing an igneous rock detection system.

  8. The challenges and benefits of lunar exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  9. Office of Exploration: Exploration studies technical report. Volume 2: Studies approach and results

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The NASA Office of Exploration has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report describes the process that has been developed in a case study approach. The four case studies that were developed in FY88 include: (1) human expedition to Phobos; (2) human expeditions to Mars; (3) lunar observatory; and (4) lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work. Volume 2 describes the case study process, the technical results of each of the case studies, and opportunities for additional study. Included in the discussion of each case study is a description of the mission key features and profile. Mission definition and manifesting are detailed, followed by a description of the mission architecture and infrastructure. Systems concepts for the required orbital nodes, transportation systems, and planetary surface systems are discussed. Prerequisite implementation plans resulting from the synthesized case studies are described and in-depth assessments are presented.

  10. System Concept for Remote Measurement of Asteroid Molecular Composition

    NASA Astrophysics Data System (ADS)

    Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.

    2016-12-01

    We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.

  11. Geometries in Soft Matter From Geometric Frustration, Liquid Droplets to Electrostatics in Solution

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    This thesis explores geometric aspects of soft matter systems. The topics covered fall into three categories: (i) geometric frustrations, including the interplay of geometry and topological defects in two dimensional systems, and the frustration of a planar sheet attached to a curved surface; (ii) geometries of liquid droplets, including the curvature driven instabilities of toroidal liquid droplets and the self-propulsion of droplets on a spatially varying surface topography; (iii) the study of the electric double layer structure around charged spherical interfaces by a geometric method. In (i), we study the crystalline order on capillary bridges with varying Gaussian curvature. Energy requires the appearance of topological defects on the surface, which are natural spots for biological activity and chemical functionalization. We further study how liquid crystalline order deforms flexible structured vesicles. In particular we find faceted tetrahedral vesicle as the ground state, which may lead to the design of supra-molecular structures with tetrahedral symmetry and new classes of nano-carriers. Furthermore, by a simple paper model we explore the geometric frustration on a planar sheet when brought to a negative curvature surface in a designed elasto-capillary system. In (ii), motivated by the idea of realizing crystalline order on a stable toroidal droplet and a beautiful experiment on toroidal droplets, we study the Rayleigh instability and the shrinking instability of thin and fat toroidal droplets, where the toroidal geometry plays an essential role. In (iii), by a geometric mapping we construct an approximate analytic spherical solution to the nonlinear Poisson-Boltzmann equation, and identify the applicability regime of the solution. The derived geometric solution enables further analytical study of spherical electrostatic systems such as colloidal suspensions.

  12. Development of a robust space power system decision model

    NASA Astrophysics Data System (ADS)

    Chew, Gilbert; Pelaccio, Dennis G.; Jacobs, Mark; Stancati, Michael; Cataldo, Robert

    2001-02-01

    NASA continues to evaluate power systems to support human exploration of the Moon and Mars. The system(s) would address all power needs of surface bases and on-board power for space transfer vehicles. Prior studies have examined both solar and nuclear-based alternatives with respect to individual issues such as sizing or cost. What has not been addressed is a comprehensive look at the risks and benefits of the options that could serve as the analytical framework to support a system choice that best serves the needs of the exploration program. This paper describes the SAIC developed Space Power System Decision Model, which uses a formal Two-step Analytical Hierarchy Process (TAHP) methodology that is used in the decision-making process to clearly distinguish candidate power systems in terms of benefits, safety, and risk. TAHP is a decision making process based on the Analytical Hierarchy Process, which employs a hierarchic approach of structuring decision factors by weights, and relatively ranks system design options on a consistent basis. This decision process also includes a level of data gathering and organization that produces a consistent, well-documented assessment, from which the capability of each power system option to meet top-level goals can be prioritized. The model defined on this effort focuses on the comparative assessment candidate power system options for Mars surface application(s). This paper describes the principles of this approach, the assessment criteria and weighting procedures, and the tools to capture and assess the expert knowledge associated with space power system evaluation. .

  13. Converting a Manned LCU into an Unmanned Surface Vehicle (USV): An Open Systems Architecture (OSA) Case Study

    DTIC Science & Technology

    2014-09-01

    pdf. Musk , Elon . 2014. Statement Of Elon Musk , Ceo & Chief Designer, Space Exploration Technologies Corp. (Spacex), Before The Committee On...every year moving forward ( Musk 2014)? These questions build the framework for executing OSA throughout an SE program. The OSA framework includes a...systems must be well maintained to the current legal environment. Maintaining this doctrine requires a continuous feedback loop from unmanned systems

  14. TSSM: An International Mission to Titan and the Saturn System

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Lebreton, J. P.; Coustenis, A.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    A mission to return to Titan after Cassini- Huygens is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, the ESA Cosmic Visions competition, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, contains a vast subsurface ocean of liquid water, surface repositories of methane, ethane and other organic compounds, and has the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. One of the mission concepts would consist of a NASA-provided 1600 kg orbiter with ESA-provided 180 kg Mare Explorer and 588 kg Montgolfière Balloon. The mission would launch on an Atlas 551 in the 2018-2020 timeframe, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn approximately 8.5 years later. The SEP stage would be released approximately 5.8 years after launch well in advance of Saturn approach. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting approximately 2 years. During the first Titan flyby (~100 days after SOI), the orbiter would release the lander (Mare Explorer) to target one of the two large northern polar seas, probably Kraken Mare, and the Montgolfiere balloon system to target the mid latitude region. During the tour phase, TSSM would accomplish Saturn system and Enceladus science (at least 4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit around Titan. The next phase would utilize concurrent aerosampling and aerobraking (to depths as low as 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit plane. Instruments aboard the orbiter would map Titan's surface at 50 meter resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface to identify layers and porous (possibly liquid-filled) reservoirs, sample high molecular weight organics, provide detailed observations of the atmosphere at all levels, and quantify the interaction of Titan with the Saturn magnetospheric environment. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The Mare Explorer would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.

  15. Towards an acoustical platform for many-body spin emulation: Transmon qubits patterned on a piezoelectric material

    NASA Astrophysics Data System (ADS)

    Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.

    Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.

  16. Final Technical Report: Metal—Organic Surface Catalyst for Low-temperature Methane Oxidation: Bi-functional Union of Metal—Organic Complex and Chemically Complementary Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Steven L.

    Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less

  17. Recommendations relative to the scientific missions of a Mars Automated Roving Vehicle (MARV)

    NASA Technical Reports Server (NTRS)

    Spencer, R. L. (Editor)

    1973-01-01

    Scientific objectives of the MARV mission are outlined and specific science systems requirements and experimental payloads defined. All aspects of the Martian surface relative to biotic and geologic elements and those relating to geophysical and geochemical properties are explored.

  18. Exploration of Drone and Remote Sensing Technologies in Highway Embankment Monitoring and Management (Phase I) : research project capsule.

    DOT National Transportation Integrated Search

    2017-09-01

    Over time, many Louisiana highway embankments have experienced surface sliding failures, a safety issue causing traffic disruptions. Since no advance-warning system is available for these highway embankment failures, the Louisiana Department of Trans...

  19. Exploring the Integration of Field Portable Instrumentation into Real-Time Surface Science Operations with the RIS4E SSERVI Team

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).

  20. Interlocking Mechanism between Molecular Gears Attached to Surfaces.

    PubMed

    Zhao, Rundong; Zhao, Yan-Ling; Qi, Fei; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-03-27

    While molecular machines play an increasingly significant role in nanoscience research and applications, there remains a shortage of investigations and understanding of the molecular gear (cogwheel), which is an indispensable and fundamental component to drive a larger correlated molecular machine system. Employing ab initio calculations, we investigate model systems consisting of molecules adsorbed on metal or graphene surfaces, ranging from very simple triple-arm gears such as PF 3 and NH 3 to larger multiarm gears based on carbon rings. We explore in detail the transmission of slow rotational motion from one gear to the next by these relatively simple molecules, so as to isolate and reveal the mechanisms of the relevant intermolecular interactions. Several characteristics of molecular gears are discussed, in particular the flexibility of the arms and the slipping and skipping between interlocking arms of adjacent gears, which differ from familiar macroscopic rigid gears. The underlying theoretical concepts suggest strongly that other analogous structures may also exhibit similar behavior which may inspire future exploration in designing large correlated molecular machines.

  1. Human-rating Automated and Robotic Systems - (How HAL Can Work Safely with Astronauts)

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn; Dischinger, Charlie; Fitts, David

    2009-01-01

    Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine housekeeping for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work - but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program. We will explain our proposed standard structure for automation and robotic systems, and the process by which we will develop and implement that standard as an addition to NASA s Human Rating requirements. Our work here is based on real experience with both human system and robotic system designs; for surface operations as well as for in-flight monitoring and control; and on the necessities we have discovered for human-systems integration in NASA's Constellation program. We hope this will be an invitation to dialog and to consideration of a new issue facing new generations of explorers and their outfitters.

  2. Rationale and Roadmap for Moon Exploration

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; ILEWG Team

    We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.

  3. Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.

    PubMed

    Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh

    2009-01-01

    This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.

  4. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    NASA Technical Reports Server (NTRS)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  5. Structural Concepts and Materials for Lunar Exploration Habitats

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.

    2006-01-01

    A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.

  6. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  7. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    PubMed

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  8. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    PubMed Central

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe

    2017-01-01

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface. PMID:28767059

  9. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.

  10. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  11. Routing the asteroid surface vehicle with detailed mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Baoyin, He-Xi

    2014-06-01

    The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.

  12. Microwave Sinterator Freeform Additive Construction System (MS-FACS)

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Wilcox, Brian H.; Barmatz, Martin B.; Mercury, Michael B.; Siebert, Michael A.; Rieber, Richard R.

    2013-01-01

    The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure.

  13. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  14. Application of automation and robotics to lunar surface human exploration operations

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Sherwood, Brent; Buddington, Patricia A.; Bares, Leona C.; Folsom, Rolfe; Mah, Robert; Lousma, Jack

    1990-01-01

    Major results of a study applying automation and robotics to lunar surface base buildup and operations concepts are reported. The study developed a reference base scenario with specific goals, equipment concepts, robot concepts, activity schedules and buildup manifests. It examined crew roles, contingency cases and system reliability, and proposed a set of technologies appropriate and necessary for effective lunar operations. This paper refers readers to four companion papers for quantitative details where appropriate.

  15. Characterizing the Physical and Thermal Properties of Planetary Regolith at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Swanger, Adam; Townsend, Ivan I., III; Sibille, Laurent; Galloway, Gregory

    2014-01-01

    The success or failure of in-situ resource utilization for planetary surface exploration-whether for science, colonization, or commercialization-relies heavily on the design and implementation of systems that can effectively process planetary regolith and exploit its potential benefits. In most cases, this challenge necessarily includes the characterization of regolith properties at low temperatures (cryogenic). None of the nearby solar system destinations of interest, such as the moon, Mars and asteroids, possess a sufficient atmosphere to sustain the consistently "high" surface temperatures found on Earth. Therefore, they can experience permanent cryogenic temperatures or dramatic cyclical changes in surface temperature. Characterization of physical properties (e.g., specific heat, thermal and electrical conductivity) over the entire temperature profile is important when planning a mission to a planetary surface; however, the impact on mechanical properties due to the introduction of icy deposits must also be explored in order to devise effective and robust excavation technologies. The Granular Mechanics and Regolith Operations Laboratory and the Cryogenics Test Laboratory at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and to aid in the characterization of the physical and mechanical properties of regolith at cryogenic temperatures. This paper will review the current state of knowledge concerning planetary regolith at low temperature, including that of icy regolith, and describe efforts to manipulate icy regolith through novel penetration and excavation techniques.

  16. NASA's MERBoard: An Interactive Collaborative Workspace Platform. Chapter 4

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Wales, Roxana; Gossweiler, Rich

    2003-01-01

    This chapter describes the ongoing process by which a multidisciplinary group at NASA's Ames Research Center is designing and implementing a large interactive work surface called the MERBoard Collaborative Workspace. A MERBoard system involves several distributed, large, touch-enabled, plasma display systems with custom MERBoard software. A centralized server and database back the system. We are continually tuning MERBoard to support over two hundred scientists and engineers during the surface operations of the Mars Exploration Rover Missions. These scientists and engineers come from various disciplines and are working both in small and large groups over a span of space and time. We describe the multidisciplinary, human-centered process by which this h4ERBoard system is being designed, the usage patterns and social interactions that we have observed, and issues we are currently facing.

  17. Scientific Packages on Small Bodies, a Deployment Strategy for New Missions

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Scheeres, D. J.; Michel, P.

    2013-10-01

    The exploration of asteroids is currently a topic of high priority for the space agencies. JAXA will launch its second asteroid explorer, aimed at 1999 JU3, in the second half of 2014. NASA has selected OSIRIS-REx to go to asteroid Bennu, and it will launch in 2016. ESA is currently performing the assessment study of the MarcoPolo-R space mission, in the framework of the M3 (medium) competition of its Cosmic Vision Program, whose objective is now 2008 EV5. In the continuity of these missions, landing for an extended period of time on the ground to perform measurements seems a logical next step to asteroid exploration. Yet, the surface behavior of an asteroid is not well known and landing the whole spacecraft on it could be hazardous, and pose other mission operations problems such as ensuring communication with Earth. Hence, we propose a new approach to asteroid surface exploration. Using a mothership spacecraft, we will present how multiple landers could be deployed to the surface of an asteroid using ballistic trajectories. Combining a detailed simulation of the bouncing and contact dynamics on the surface with numerical and mathematical analysis of the flight dynamics near an asteroid, we show how landing pods could be distributed at the surface of a body. The strategy has the advantages that the mothership always maintains a safe distance from the surface and the landers do not need any GNC (guidance, navigation and control system) or landing apparatus. Thus, it allows for simple operations and for the design of lightweight landers with minimum platform overhead and maximum payload. These pods could then be used as a single measurement apparatus (e.g. seismometers) or as independent and different instruments, using their widespread distribution to gain both global and local knowledge on the asteroid.

  18. Introduction to Japanese exploration study to the moon

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otake, H.; Otsuki, M.; Wakabayashi, S.; Morimoto, H.; Masuda, K.

    2014-11-01

    The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.

  19. Haughton-Mars Project/NASA 2006 Lunar Medical Contingency Simulation: Equipment and Methods for Medical Evacuation of an Injured Crewmember

    NASA Technical Reports Server (NTRS)

    Chappell, S. P.; Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chase, T.; Gernhardt M.; Wilkinson, N.

    2007-01-01

    Introduction: Achieving NASA's Space Exploration Vision scientific objectives will require human access into cratered and uneven terrain for the purpose of sample acquisition to assess geological, and perhaps even biological features and experiments. Operational risk management is critical to safely conduct the anticipated tasks. This strategy, along with associated contingency plans, will be a driver of EVA system requirements. Therefore, a medical contingency EVA scenario was performed with the Haughton-Mars Project/NASA to develop belay and medical evacuation techniques for exploration and rescue respectively. Methods: A rescue system to allow two rescuer astronauts to evacuate one in incapacitated astronaut was evaluated. The systems main components were a hard-bottomed rescue litter, hand-operated winch, rope, ground picket anchors, and a rover-winch attachment adapter. Evaluation was performed on 15-25deg slopes of dirt with embedded rock. The winch was anchored either by adapter to the rover or by pickets hammered into the ground. The litter was pulled over the surface by rope attached to the winch. Results: The rescue system was utilized effectively to extract the injured astronaut up a slope and to a waiting rover for transport to a simulated habitat for advanced medical care, although several challenges to implementation were identified and overcome. Rotational stabilization of the winch was found to be important to get maximize mechanical advantage from the extraction system. Discussion: Further research and testing needs to be performed to be able to fully consider synergies with the other Exploration surface systems, in conducting contingency operations. Structural attachment points on the surface EVA suits may be critical to assist in incapacitated evacuation. Such attach points could be helpful in microgravity incapacitated crewmember transport as well. Wheeled utility carts or wheels that may be attachable to a litter may also aid in extraction and transport. Utilizing parts of the rover (e.g. seats) to deploy as a litter may be considered. Testing in simulated 1/6-g to determine feasibility of winch operation and anchor establishment will further reduce implementation uncertainties.

  20. Improving MRI surface coil decoupling to reduce B1 distortion

    NASA Astrophysics Data System (ADS)

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  1. Wake Cycle Robustness of the Mars Science Laboratory Flight Software

    NASA Technical Reports Server (NTRS)

    Whitehill, Robert

    2011-01-01

    The Mars Science Laboratory (MSL) is a spacecraft being developed by the Jet Propulsion Laboratory (JPL) for the purpose of in-situ exploration on the surface of Mars. The objective of MSL is to explore and quantitatively assess a local region on the Martian surface as a habitat for microbial life, past or present. This objective will be accomplished through the assessment of the biological potential of at least one target environment, the characterization of the geology and geochemistry of the landing region, an investigation of the planetary process relevant to past habitability, and a characterization of surface radiation. For this purpose, MSL incorporates a total of ten scientific instruments for which functions are to include, among others, atmospheric and descent imaging, chemical composition analysis, and radiation measurement. The Flight Software (FSW) system is responsible for all mission phases, including launch, cruise, entry-descent-landing, and surface operation of the rover. Because of the essential nature of flight software to project success, each of the software modules is undergoing extensive testing to identify and correct errors.

  2. ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.

    2003-01-01

    The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra Vehicular Activity (EVA), applications will also be presented.

  3. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  4. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  5. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  6. 30 CFR 780.11 - Operation plan: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 780.11... PLAN § 780.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  7. 30 CFR 784.11 - Operation plan: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 784.11... PLAN § 784.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  8. Cyclops: single-pixel imaging lidar system based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Correia, M. V.; Farahi, F.; Pereira do Carmo, J.; Araújo, F. M.

    2017-11-01

    Mars and the Moon are envisaged as major destinations of future space exploration missions in the upcoming decades. Imaging LIDARs are seen as a key enabling technology in the support of autonomous guidance, navigation and control operations, as they can provide very accurate, wide range, high-resolution distance measurements as required for the exploration missions. Imaging LIDARs can be used at critical stages of these exploration missions, such as descent and selection of safe landing sites, rendezvous and docking manoeuvres, or robotic surface navigation and exploration. Despite these devices have been commercially available and used for long in diverse metrology and ranging applications, their size, mass and power consumption are still far from being suitable and attractive for space exploratory missions. Here, we describe a compact Single-Pixel Imaging LIDAR System that is based on a compressive sensing technique. The application of the compressive codes to a DMD array enables compression of the spatial information, while the collection of timing histograms correlated to the pulsed laser source ensures image reconstruction at the ranged distances. Single-pixel cameras have been compared with raster scanning and array based counterparts in terms of noise performance, and proved to be superior. Since a single photodetector is used, a better SNR and higher reliability is expected in contrast with systems using large format photodetector arrays. Furthermore, the event of failure of one or more micromirror elements in the DMD does not prevent full reconstruction of the images. This brings additional robustness to the proposed 3D imaging LIDAR. The prototype that was implemented has three modes of operation. Range Finder: outputs the average distance between the system and the area of the target under illumination; Attitude Meter: provides the slope of the target surface based on distance measurements in three areas of the target; 3D Imager: produces 3D ranged images of the target surface. The implemented prototype demonstrated a frame rate of 30 mHz for 16x16 pixels images, a transversal (xy) resolution of 2 cm at 10 m for images with 64x64 pixels and the range (z) resolution proved to be better than 1 cm. The experimental results obtained for the "3D imaging" mode of operation demonstrated that it was possible to reconstruct spherical smooth surfaces. The proposed solution demonstrates a great potential for: miniaturization; increase spatial resolution without using large format detector arrays; eliminate the need for scanning mechanisms; implementing simple and robust configurations.

  9. Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment

    NASA Astrophysics Data System (ADS)

    Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.

    2017-12-01

    All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.

  10. The space shuttle at work

    NASA Technical Reports Server (NTRS)

    Allaway, H.

    1979-01-01

    The concept of the orbital flight of the space shuttle and the development of the space transportation system are addressed. How the system came to be, why it is designed the way it is, what is expected of it, and how it may grow are among the questions considered. Emphasis is placed on the effect of the space transportation system on U.S. space exploration in the next decade, including plans to make space an extension of life on the Earth's surface.

  11. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  12. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  13. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  14. Geophysical techniques for low enthalpy geothermal exploration in New Zealand

    NASA Astrophysics Data System (ADS)

    Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan

    2013-05-01

    Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific manner.

  15. KSC-2014-4196

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  16. KSC-2014-4195

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  17. KSC-2014-4192

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to lift and move the launch abort system for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  18. KSC-2014-4193

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to move the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  19. KSC-2014-4194

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to lower the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  20. Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack

    2009-01-01

    A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.

Top