Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.
2012-01-01
This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.
Surface materials map of Afghanistan: iron-bearing minerals and other materials
King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.
2012-01-01
This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.
AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces
2016-01-01
Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450
Improved disparity map analysis through the fusion of monocular image segmentations
NASA Technical Reports Server (NTRS)
Perlant, Frederic P.; Mckeown, David M.
1991-01-01
The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.
NASA Astrophysics Data System (ADS)
Dunbar, John A.; Cook, Richard W.
2003-07-01
Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map. For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily complex ways.
Reddy, James E.; Kappel, William M.
2010-01-01
Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.
The AR Sandbox: Augmented Reality in Geoscience Education
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.; Reed, S.; Hsi, S.; Yikilmaz, M. B.; Schladow, G.; Segale, H.; Chan, L.
2016-12-01
The AR Sandbox is a combination of a physical box full of sand, a 3D (depth) camera such as a Microsoft Kinect, a data projector, and a computer running open-source software, creating a responsive and interactive system to teach geoscience concepts in formal or informal contexts. As one or more users shape the sand surface to create planes, hills, or valleys, the 3D camera scans the surface in real-time, the software creates a dynamic topographic map including elevation color maps and contour lines, and the projector projects that map back onto the sand surface such that real and projected features match exactly. In addition, users can add virtual water to the sandbox, which realistically flows over the real surface driven by a real-time fluid flow simulation. The AR Sandbox can teach basic geographic and hydrologic skills and concepts such as reading topographic maps, interpreting contour lines, formation of watersheds, flooding, or surface wave propagation in a hands-on and explorative manner. AR Sandbox installations in more than 150 institutions have shown high audience engagement and long dwell times of often 20 minutes and more. In a more formal context, the AR Sandbox can be used in field trip preparation, and can teach advanced geoscience skills such as extrapolating 3D sub-surface shapes from surface expression, via advanced software features such as the ability to load digital models of real landscapes and guiding users towards recreating them in the sandbox. Blueprints, installation instructions, and the open-source AR Sandbox software package are available at http://arsandbox.org .
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Catania, Kenneth C
2002-01-01
In the last decade improvements in the histological processing of cortical tissue in conjunction with the investigation of additional mammalian species in comparative brain studies has expanded the information available to guide theories of cortical organization. Here I review some of these recent findings in the somatosensory system with an emphasis on modules related to specializations of the peripheral sensory surface. The diversity of modular representations, or cortical "isomorphs" suggest that information from the sensory sheet guides many of the features of cortical maps and suggest that cortex is not constrained to form circular units in the form of a traditional cortical column.
The Tetracorder user guide: version 4.4
Livo, Keith Eric; Clark, Roger N.
2014-01-01
Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.
Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data
NASA Astrophysics Data System (ADS)
Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.
2016-12-01
Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.
Landsat analysis for uranium exploration in Northeast Turkey
Lee, Keenan
1983-01-01
No uranium deposits are known in the Trabzon, Turkey region, and consequently, exploration criteria have not been defined. Nonetheless, by analogy with uranium deposits studied elsewhere, exploration guides are suggested to include dense concentrations of linear features, lineaments -- especially with northwest trend, acidic plutonic rocks, and alteration indicated by limonite. A suite of digitally processed images of a single Landsat scene served as the image base for mapping 3,376 linear features. Analysis of the linear feature data yielded two statistically significant trends, which in turn defined two sets of strong lineaments. Color composite images were used to map acidic plutonic rocks and areas of surficial limonitic materials. The Landsat interpretation yielded a map of these exploration guides that may be used to evaluate relative uranium potential. One area in particular shows a high coincidence of favorable indicators.
Salient region detection by fusing bottom-up and top-down features extracted from a single image.
Tian, Huawei; Fang, Yuming; Zhao, Yao; Lin, Weisi; Ni, Rongrong; Zhu, Zhenfeng
2014-10-01
Recently, some global contrast-based salient region detection models have been proposed based on only the low-level feature of color. It is necessary to consider both color and orientation features to overcome their limitations, and thus improve the performance of salient region detection for images with low-contrast in color and high-contrast in orientation. In addition, the existing fusion methods for different feature maps, like the simple averaging method and the selective method, are not effective sufficiently. To overcome these limitations of existing salient region detection models, we propose a novel salient region model based on the bottom-up and top-down mechanisms: the color contrast and orientation contrast are adopted to calculate the bottom-up feature maps, while the top-down cue of depth-from-focus from the same single image is used to guide the generation of final salient regions, since depth-from-focus reflects the photographer's preference and knowledge of the task. A more general and effective fusion method is designed to combine the bottom-up feature maps. According to the degree-of-scattering and eccentricities of feature maps, the proposed fusion method can assign adaptive weights to different feature maps to reflect the confidence level of each feature map. The depth-from-focus of the image as a significant top-down feature for visual attention in the image is used to guide the salient regions during the fusion process; with its aid, the proposed fusion method can filter out the background and highlight salient regions for the image. Experimental results show that the proposed model outperforms the state-of-the-art models on three public available data sets.
Apostolova, Liana G; Thompson, Paul M; Rogers, Steve A; Dinov, Ivo D; Zoumalan, Charleen; Steiner, Calen A; Siu, Erin; Green, Amity E; Small, Gary W; Toga, Arthur W; Cummings, Jeffrey L; Phelps, Michael E; Silverman, Daniel H
2010-04-01
The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4 +/- 0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG)-PET scan (interval 21.7 +/- 3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10-15% decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5-5% similarly distributed decline. ApoE4-positive individuals underwent 5-15% metabolic decline in the posterior association cortices. Using 3-D surface-based MR-guided FDG-PET mapping, significant metabolic changes were seen in five posterior and the left lateral frontal regions. The changes were more pronounced for the declining relative to the cognitively stable group.
The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu
NASA Astrophysics Data System (ADS)
Reuter, D. C.; Simon, A. A.; Hair, J.; Lunsford, A.; Manthripragada, S.; Bly, V.; Bos, B.; Brambora, C.; Caldwell, E.; Casto, G.; Dolch, Z.; Finneran, P.; Jennings, D.; Jhabvala, M.; Matson, E.; McLelland, M.; Roher, W.; Sullivan, T.; Weigle, E.; Wen, Y.; Wilson, D.; Lauretta, D. S.
2018-03-01
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.
Mapping Surface Features Produced by an Active Landslide
NASA Astrophysics Data System (ADS)
Parise, Mario; Gueguen, Erwan; Vennari, Carmela
2016-10-01
A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.
Vatovec, Christine
2013-01-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919
Severtson, Dolores J; Vatovec, Christine
2012-08-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.
Grasso, Dennis N.
2003-01-01
Surface effects maps were produced for 72 of 89 underground detonations conducted at the Frenchman Flat, Rainier Mesa and Aqueduct Mesa, Climax Stock, Shoshone Mountain, Buckboard Mesa, and Dome Mountain testing areas of the Nevada Test Site between August 10, 1957 (Saturn detonation, Area 12) and September 18, 1992 (Hunters Trophy detonation, Area 12). The ?Other Areas? Surface Effects Map Database, which was used to construct the maps shown in this report, contains digital reproductions of these original maps. The database is provided in both ArcGIS (v. 8.2) geodatabase format and ArcView (v. 3.2) shapefile format. This database contains sinks, cracks, faults, and other surface effects having a combined (cumulative) length of 136.38 km (84.74 mi). In GIS digital format, the user can view all surface effects maps simultaneously, select and view the surface effects of one or more sites of interest, or view specific surface effects by area or site. Three map layers comprise the database. They are: (1) the surface effects maps layer (oase_n27f), (2) the bar symbols layer (oase_bar_n27f), and (3) the ball symbols layer (oase_ball_n27f). Additionally, an annotation layer, named 'Ball_and_Bar_Labels,' and a polygon features layer, named 'Area12_features_poly_n27f,' are contained in the geodatabase version of the database. The annotation layer automatically labels all 295 ball-and-bar symbols shown on these maps. The polygon features layer displays areas of ground disturbances, such as rock spall and disturbed ground caused by the detonations. Shapefile versions of the polygon features layer in Nevada State Plane and Universal Transverse Mercator projections, named 'area12_features_poly_n27f.shp' and 'area12_features_poly_u83m.shp,' are also provided in the archive.
The Magellan Venus explorer's guide
NASA Technical Reports Server (NTRS)
Young, Carolynn (Editor)
1990-01-01
The Magellan radar-mapping mission to the planet Venus is described. Scientific highlights include the history of U.S. and Soviet missions, as well as ground-based radar observations, that have provided the current knowledge about the surface of Venus. Descriptions of the major Venusian surface features include controversial theories about the origin of some of the features. The organization of the Magellan science investigators into discipline-related task groups for data-analysis purposes is presented. The design of the Magellan spacecraft and the ability of its radar sensor to conduct radar imaging, altimetry, and radiometry measurements are discussed. Other topics report on the May 1989 launch, the interplanetary cruise, the Venus orbit-insertion maneuver, and the in-orbit mapping strategy. The objectives of a possible extended mission emphasize the gravity experiment and explain why high-resolution gravity data cannot be acquired during the primary mission. A focus on the people of Magellan reveals how they fly the spacecraft and prepare for major mission events. Special items of interest associated with the Magellan mission are contained in windows interspersed throughout the text. Finally, short summaries describe the major objectives and schedules for several exciting space missions planned to take us into the 21st century.
Windblown Features on Venus and Geological Mapping
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The objectives of this study were to: 1) develop a global data base of aeolian features by searching Magellan coverage for possible time-variable wind streaks, 2) analyze the data base to characterize aeolian features and processes on Venus, 3) apply the analysis to assessments of wind patterns near the surface and for comparisons with atmospheric circulation models, 4) analyze shuttle radar data acquired for aeolian features on Earth to determine their radar characteristics, and 5) conduct geological mapping of two quadrangles. Wind, or aeolian, features are observed on Venus and aeolian processes play a role in modifying its surface. Analysis of features resulting from aeolian processes provides insight into characteristics of both the atmosphere and the surface. Wind related features identified on Venus include erosional landforms (yardangs), depositional dune fields, and features resulting from the interaction of the atmosphere and crater ejecta at the time of impact. The most abundant aeolian features are various wind streaks. Their discovery on Venus afforded the opportunity to learn about the interaction of the atmosphere and surface, both for the identification of sediments and in mapping near-surface winds.
Operation Ward's Island, A Guide to the Trees and Other Features of Ward's Island.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.
This guide for teachers, students, and adults illustrates how it is possible to use Ward's Island as an outdoor laboratory. It contains a guide to 30 kinds of trees on the island, along with clearly drawn maps and illustrations. The guide helps the user to locate these trees along two nature trails. A section called "Ward's Island…
Geologic guide to the island of Hawaii: A field guide for comparative planetary geology
NASA Technical Reports Server (NTRS)
Greeley, R. (Editor)
1974-01-01
With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.
Valentine, Page C.; Gallea, Leslie B.
2015-11-10
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.
Baum, R.L.; Messerich, J.; Fleming, R.W.
1998-01-01
Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.
Vicksburg National Military Park: Art/Music Educator's Guide.
ERIC Educational Resources Information Center
National Park Service (Dept. of Interior), Washington, DC. National Register of Historic Places.
This guide seeks to help bring to life the human struggle that was endured in the Campaign for Vicksburg (Mississippi). The guide notes that the Campaign for Vicksburg, which took place from May to July of 1863, was considered the most strategic battle of the Civil War, but more than generals and maps, it featured the common soldier, sailor, and…
Vicksburg National Military Park: Social Studies Educator's Guide.
ERIC Educational Resources Information Center
National Register of Historic Places, Washington, DC. Interagency Resources Div.
This guide seeks to help bring to life the human struggle that was endured in the Campaign for Vicksburg (Mississippi). The guide notes that the Campaign for Vicksburg, which took place between May and July of 1863, was considered the most strategic battle of the Civil War, but it was more than generals and maps, it featured the common soldier,…
Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.
2016-01-01
The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032
NASA Astrophysics Data System (ADS)
Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.
2017-12-01
Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
NASA Astrophysics Data System (ADS)
Mobasher, K.; Turk, H. J.; Witherspoon, W.; Tate, L.; Hoynes, J.
2015-12-01
A GIS geology geodatabase of Georgia was developed using ArcGIS 10.2. The geodatabase for each physiographic provinces of Georgia contains fields designed to store information regarding geologic features. Using ArcGIS online, the virtual field guide is created which provides an interactive learning experience for students to allow in real time photography, description, mapping and sharing their observations with the instructor and peers. Gigapan© facilitates visualizing geologic features at different scales with high resolutions and in their larger surrounding context. The classroom applications of the Gigapan© are limitless when teaching students the entire range of geologic structures from showcasing crystalline structures of minerals to understanding the geological processes responsible for formation of an entire mountain range. The addition of the Story Map enhances the virtual experience when you want to present a geo-located story point narrative featuring images or videos. The virtual field component and supplementary Gigapan© imagery coupled with Story Map added significantly to the detailed realism of virtual field guide further allowing students to more fully understand geological concepts at various scales. These technologies peaked students interest and facilitated their learning and preparation to function more effectively in the geosciences by developing better observations and new skills. These technologies facilitated increased student engagement in the geosciences by sharing, enhancing and transferring lecture information to actual field knowledge and experiences. This enhanced interactive learning experience not only begins to allow students to understand and recognize geologic features in the field but also increased their collaboration, enthusiasm and interest in the discipline. The increased interest and collaboration occurred as students assisted in populating a geologic geodatabase of Georgia.
Identification of underground mine workings with the use of global positioning system technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canty, G.A.; Everett, J.W.; Sharp, M.
1998-12-31
Identification of underground mine workings for well drilling is a difficult task given the limited resources available and lack of reliable information. Relic mine maps of questionable accuracy and difficulty in correlating the subsurface to the surface, make the process of locating wells arduous. With the development of global positioning system (GPS), specific locations on the earth can be identified with the aid of satellites. This technology can be applied to mine workings identification given a few necessary, precursory details. For an abandoned mine treatment project conducted by the University of Oklahoma, in conjunction with the Oklahoma Conservation Commission, amore » Trimble ProXL 8 channel GPS receiver was employed to locate specific points on the surface with respect to a mine map. A 1925 mine map was digitized into AutoCAD version 13 software. Surface features identified on the map, such as mine adits, were located and marked in the field using the GPS receiver. These features were than imported into AutoCAD and referenced with the same points drawn on the map. A rubber sheeting program, Multric, was used to tweak the points so the map features correlated with the surface points. The correlation of these features allowed the map to be geo-referenced with the surface. Specific drilling points were located on the digitized map and assigned a latitude and longitude. The GPS receiver, using real time differential correction, was used to locate these points in the field. This method was assumed to be relatively accurate, to within 5 to 15 feet.« less
Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys
Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,
2007-01-01
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.
Titan's surface from the Cassini RADAR radiometry data during SAR mode
Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.
2008-01-01
We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.
On Feature Extraction from Large Scale Linear LiDAR Data
NASA Astrophysics Data System (ADS)
Acharjee, Partha Pratim
Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are presented. Significant power demand is located in urban areas, where, theoretically, a large amount of building surface area is also available for solar panel installation. Therefore, property owners and power generation companies can benefit from a citywide solar potential map, which can provide available estimated annual solar energy at a given location. An efficient solar potential measurement is a prerequisite for an effective solar energy system in an urban area. In addition, the solar potential calculation from rooftops and building facades could open up a wide variety of options for solar panel installations. However, complex urban scenes make it hard to estimate the solar potential, partly because of shadows cast by the buildings. LiDAR-based 3D city models could possibly be the right technology for solar potential mapping. Although, most of the current LiDAR-based local solar potential assessment algorithms mainly address rooftop potential calculation, whereas building facades can contribute a significant amount of viable surface area for solar panel installation. In this paper, we introduce a new algorithm to calculate solar potential of both rooftop and building facades. Solar potential received by the rooftops and facades over the year are also investigated in the test area.
Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.
2016-05-01
In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more complexity than has been suggested by previous investigations. Our procedure is largely data-driven with an adaptable degree of expert user input that provides a clear protocol for incorporating different types of geophysical data into the bedrock mapping procedure.
Guided filter-based fusion method for multiexposure images
NASA Astrophysics Data System (ADS)
Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei
2016-11-01
It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.
Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido
2017-01-01
Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.
A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images
Maxwell, S.K.; Schmidt, Gail L.; Storey, James C.
2007-01-01
On 31 May 2003, the Landsat Enhanced Thematic Plus (ETM+) Scan Line Corrector (SLC) failed, causing the scanning pattern to exhibit wedge-shaped scan-to-scan gaps. We developed a method that uses coincident spectral data to fill the image gaps. This method uses a multi-scale segment model, derived from a previous Landsat SLC-on image (image acquired prior to the SLC failure), to guide the spectral interpolation across the gaps in SLC-off images (images acquired after the SLC failure). This paper describes the process used to generate the segment model, provides details of the gap-fill algorithm used in deriving the segment-based gap-fill product, and presents the results of the gap-fill process applied to grassland, cropland, and forest landscapes. Our results indicate this product will be useful for a wide variety of applications, including regional-scale studies, general land cover mapping (e.g. forest, urban, and grass), crop-specific mapping and monitoring, and visual assessments. Applications that need to be cautious when using pixels in the gap areas include any applications that require per-pixel accuracy, such as urban characterization or impervious surface mapping, applications that use texture to characterize landscape features, and applications that require accurate measurements of small or narrow landscape features such as roads, farmsteads, and riparian areas.
Guide to Magellan image interpretation
NASA Technical Reports Server (NTRS)
Ford, John P.; Plaut, Jeffrey J.; Weitz, Catherine M.; Farr, Tom G.; Senske, David A.; Stofan, Ellen R.; Michaels, Gregory; Parker, Timothy J.; Fulton, D. (Editor)
1993-01-01
An overview of Magellan Mission requirements, radar system characteristics, and methods of data collection is followed by a description of the image data, mosaic formats, areal coverage, resolution, and pixel DN-to-dB conversion. The availability and sources of image data are outlined. Applications of the altimeter data to estimate relief, Fresnel reflectivity, and surface slope, and the radiometer data to derive microwave emissivity are summarized and illustrated in conjunction with corresponding SAR image data. Same-side and opposite-side stereo images provide examples of parallax differences from which to measure relief with a lateral resolution many times greater than that of the altimeter. Basic radar interactions with geologic surfaces are discussed with respect to radar-imaging geometry, surface roughness, backscatter modeling, and dielectric constant. Techniques are described for interpreting the geomorphology and surface properties of surficial features, impact craters, tectonically deformed terrain, and volcanic landforms. The morphologic characteristics that distinguish impact craters from volcanic craters are defined. Criteria for discriminating extensional and compressional origins of tectonic features are discussed. Volcanic edifices, constructs, and lava channels are readily identified from their radar outlines in images. Geologic map units are identified on the basis of surface texture, image brightness, pattern, and morphology. Superposition, cross-cutting relations, and areal distribution of the units serve to elucidate the geologic history.
A topographic feature taxonomy for a U.S. national topographic mapping ontology
Varanka, Dalia E.
2013-01-01
Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.
It's Everyone's Sea: Or Is It? Student Guide and Teacher Guide. OEAGLS Investigation 18.
ERIC Educational Resources Information Center
Mayer, Victor J.; Ihle, Stephanie
This secondary school unit focuses upon international disagreements regarding rights to marine resources. Students study maps of the Atlantic Ocean to describe continental shelves, ocean basins, coastal features, and areas rich in natural resources. They then participate in a simulation to learn how conflicts arise over resources of the sea.…
Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays
NASA Astrophysics Data System (ADS)
Shemeta, J. E.
2011-12-01
The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during an injection and used to assist the operators in the avoidance of geohazards (such as a karst feature or fault) or fracture height growth into undesirable formations such as water-bearing zones (that could ruin the well). An important objective for hydraulic fracture mapping is to map the effective fracture geometry: the specific volume of rock that is contributing to hydrocarbon flow in to the well. This, however, still remains an elusive goal that has yet to be completely understood with the current mapping technology.
Mapping urban geology of the city of Girona, Catalonia
NASA Astrophysics Data System (ADS)
Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona
2016-04-01
A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.
Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California
Muffler, L. J. Patrick; Clynne, Michael A.
2015-07-22
This geologic field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park in northern California. The guide begins with a comprehensive overview of the geologic framework and the stratigraphic terminology of the Lassen region, based primarily on the “Geologic map of Lassen Volcanic National Park and vicinity” (Clynne and Muffler, 2010). The geologic overview is then followed by detailed road logs describing the volcanic features that can readily be seen in the park and its periphery. Twenty-one designated stops provide detailed explanations of important volcanic features. The guide also includes mileage logs along the highways leading into the park from the major nearby communities. The field-trip guide is intended to be a flexible document that can be adapted to the needs of a visitor approaching the park from any direction.
Mapping Self-Guided Learners' Searches for Video Tutorials on YouTube
ERIC Educational Resources Information Center
Garrett, Nathan
2016-01-01
While YouTube has a wealth of educational videos, how self-guided learners use these resources has not been fully described. An analysis of search engine queries for help with the use of Microsoft Excel shows that few users search for specific features or functions but instead use very general terms. Because the same videos are returned in…
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
Activities in planetary geology for the physical and earth sciences
NASA Technical Reports Server (NTRS)
Dalli, R.; Greeley, R.
1982-01-01
A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.
Preliminary geological mapping of Io
NASA Technical Reports Server (NTRS)
Masursky, H.; Schaber, G. G.; Soderblom, L. A.; Strom, R. G.
1979-01-01
A preliminary summary of information gained by Voyager 1 on the colored, terrain and landform surface units of Io and their global distribution is presented. Colored units are classified as white to bluish-white regions which may be sulfur or sulfur dioxide deposits, red, orange, or yellow regions thought to contain various sublimates or alterations of sulfur, brownish regions limited to the polar areas and dark brown areas surrounding some vents. Terrain features observed include plains broken by scarps, isolated mountainous regions and volcanic vents resembling terrestrial caldera or pit craters. Maps of the distribution of these features, compiled by photogeological mapping techniques developed for terrestrial volcanic mapping, are presented, and the implications of the surface unit distributions for the volcanology, crustal composition, internal convection patterns and surface age of Io are discussed.
Mapping soil features from multispectral scanner data
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Zachary, A. L.
1974-01-01
In being able to identify quickly gross variations in soil features, the computer-aided classification of multispectral scanner data can be an effective aid to soil surveying. Variations in soil tone are easily seen as well as variations in features related to soil tone, e.g., drainage patterns and organic matter content. Changes in surface texture also affect the reflectance properties of soils. Inasmuch as conventional soil classes are based on both surface and subsurface soil characteristics, the technique described here can be expected only to augment and not replace traditional soil mapping.
Alemán González, Wilma B.
2010-01-01
This map is a digital compilation, combining the mapping of earlier geologists. Their work, cited on the map, contains more detailed descriptions of karst areas and landforms in Puerto Rico. This map is the basis for the Puerto Rico part of a new national karst map currently being compiled by the U.S. Geological Survey. In addition, this product is a standalone, citable source of digital karst data for Puerto Rico. Nearly 25 percent of the United States is underlain by karst terrain, and a large part of that area is undergoing urban and industrial development. Accurate delineations of karstic rocks are needed at scales suitable for national, State, and local maps. The data on this map contribute to a better understanding of subsidence hazards, groundwater contamination potential, and cave resources as well as serve as a guide to topical research on karst. Because the karst data were digitized from maps having a different scale and projection from those on the base map used for this publication, some karst features may not coincide perfectly with physiographic features portrayed on the base map.
Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…
NASA Technical Reports Server (NTRS)
Tendam, I. M. (Editor); Morrison, D. B.
1979-01-01
Papers are presented on techniques and applications for the machine processing of remotely sensed data. Specific topics include the Landsat-D mission and thematic mapper, data preprocessing to account for atmospheric and solar illumination effects, sampling in crop area estimation, the LACIE program, the assessment of revegetation on surface mine land using color infrared aerial photography, the identification of surface-disturbed features through a nonparametric analysis of Landsat MSS data, the extraction of soil data in vegetated areas, and the transfer of remote sensing computer technology to developing nations. Attention is also given to the classification of multispectral remote sensing data using context, the use of guided clustering techniques for Landsat data analysis in forest land cover mapping, crop classification using an interactive color display, and future trends in image processing software and hardware.
Spot distribution and fast surface evolution on Vega
NASA Astrophysics Data System (ADS)
Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.
2017-11-01
Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.
NASA Technical Reports Server (NTRS)
Rzhiga, O. N.; Tyuflin, Y. S.; Belenkiy, Y. G.; Rodionova, Z. F.; Dekhtyareva, K. I.
1986-01-01
The physographic curves of the moon and terrestrial planets, drawn both for the entire surface as a whole and for individual hemispheres, were compared to discover the common consistencies and individual features in the distribution of hypsometric levels. In 1983 to 1984 the automated interplanetary stations (AMS) Venera 15 and 16 made radar maps of the planet Venus. The synthesized images are the basic initial material for photogrammetric and catrographic processing to create maps of the Venus surface. These principles are discussed.
Assessment of a User Guide for One Semi-Automated Forces (OneSAF) Version 2.0
2009-09-01
OneSAF uses a two-dimensional feature named a Plan View Display ( PVD ) as the primary graphical interface. The PVD replicates a map with a series...primary interface, the PVD is how the user watches the scenario unfold and requires the most interaction with the user. As seen in Table 3, all...participant indicated never using these seven map-related functions. Graphic control measures. Graphic control measures are applied to the PVD map to
A scene-analysis approach to remote sensing. [San Francisco, California
NASA Technical Reports Server (NTRS)
Tenenbaum, J. M. (Principal Investigator); Fischler, M. A.; Wolf, H. C.
1978-01-01
The author has identified the following significant results. Geometric correspondance between a sensed image and a symbolic map is established in an initial stage of processing by adjusting parameters of a sensed model so that the image features predicted from the map optimally match corresponding features extracted from the sensed image. Information in the map is then used to constrain where to look in an image, what to look for, and how to interpret what is seen. For simple monitoring tasks involving multispectral classification, these constraints significantly reduce computation, simplify interpretation, and improve the utility of the resulting information. Previously intractable tasks requiring spatial and textural analysis may become straightforward in the context established by the map knowledge. The use of map-guided image analysis in monitoring the volume of water in a reservoir, the number of boxcars in a railyard, and the number of ships in a harbor is demonstrated.
NASA Astrophysics Data System (ADS)
Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan
2017-10-01
This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.
NASA Technical Reports Server (NTRS)
Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)
2010-01-01
A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.
US Topo: Topographic Maps for the Nation
Hytes, Patricia L.
2009-01-01
US Topo is the next generation of topographic maps from the U.S. Geological Survey (USGS). Arranged in the familiar 7.5-minute quadrangle format, digital US Topo maps are designed to look and feel (and perform) like the traditional paper topographic maps for which the USGS is so well known. In contrast to paper-based maps, US Topo maps provide modern technical advantages that support faster, wider public distribution and enable basic, on-screen geographic analysis for all users. US Topo maps are available free on the Web. Each map quadrangle is constructed in GeoPDF? format from key layers of geographic data (orthoimagery, roads, geographic names, topographic contours, and hydrographic features) found in The National Map. US Topo quadrangles can be printed from personal computers or plotters as complete, full-sized, maps or in customized sections, in a user-desired specific format. Paper copies of the maps can also be purchased from the USGS Store. Download links and a users guide are featured on the US Topo Web site. US Topo users can turn geographic data layers on and off as needed; they can zoom in and out to highlight specific features or see a broader area. File size for each digital 7.5-minute quadrangle, about 15-20 megabytes, is suitable for most users. Associated electronic tools for geographic analysis are available free for download.
U.S. Army Environmental Restoration Programs Guidance Manual
1998-04-01
without delay. In addition to sampling, the SI usually includes a reconnaissance of the site’s layout, surrounding topographical features , and the...chemical monitoring of some, but not necessarily all, of the following: 2.1.1 Surface Features (topographic mapping, etc.) (natural and manmade features ...include some, but not necessarily all, of the following: 3.1.1 Surface Features 3.1.2 Meteorology 3.1.3 Surface-Water Hydrology 3.1.4 Geology 3.1.5
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
Surface-Constrained Volumetric Brain Registration Using Harmonic Mappings
Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.
2015-01-01
In order to compare anatomical and functional brain imaging data across subjects, the images must first be registered to a common coordinate system in which anatomical features are aligned. Intensity-based volume registration methods can align subcortical structures well, but the variability in sulcal folding patterns typically results in misalignment of the cortical surface. Conversely, surface-based registration using sulcal features can produce excellent cortical alignment but the mapping between brains is restricted to the cortical surface. Here we describe a method for volumetric registration that also produces an accurate one-to-one point correspondence between cortical surfaces. This is achieved by first parameterizing and aligning the cortical surfaces using sulcal landmarks. We then use a constrained harmonic mapping to extend this surface correspondence to the entire cortical volume. Finally, this mapping is refined using an intensity-based warp. We demonstrate the utility of the method by applying it to T1-weighted magnetic resonance images (MRI). We evaluate the performance of our proposed method relative to existing methods that use only intensity information; for this comparison we compute the inter-subject alignment of expert-labeled sub-cortical structures after registration. PMID:18092736
Utilization of satellite data for inventorying prairie ponds and lakes
NASA Technical Reports Server (NTRS)
Work, E. A., Jr.; Gilmer, D. S.
1976-01-01
ERTS-1 data were used in mapping open surface water features in the glaciated prairies. Emphasis was placed on the recognition of these features based upon water's uniquely low radiance in a single near-infrared waveband. On the basis of these results, thematic maps and statistics relating to open surface water were obtained. In a related effort, the added information content of multiple spectral wavebands was used for discriminating surface water at a level of detail finer than the virtual resolution of the data. The basic theory of this technique and some preliminary results are described.
Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska
Wilson, Frederic H.
2015-09-28
I used the Platt and Muller 1950s-era aerial photographic interpretation map as the starting point for the surficial geology; their unpublished data were produced using a reconnaissance quality topographic base map. In addition to transferring their data to a modern base to use as a guide, all of the photographs were re-examined. As result, in a number of areas, the features have been reinterpreted and the linework revised. A major difference between the maps is the recognition of much more extensive glacially dammed lake deposits and reassignment of some glacial deposits to different glacial events.
Matti, J.C.; Morton, D.M.; Langenheim, V.E.
2015-01-01
Geologic information contained in the El Casco database is general-purpose data applicable to land-related investigations in the earth and biological sciences. The term “general-purpose” means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.
A campus-based course in field geology
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hanson, G. N.
2009-12-01
GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.
Key features of an EU health information system: a concept mapping study.
Rosenkötter, Nicole; Achterberg, Peter W; van Bon-Martens, Marja J H; Michelsen, Kai; van Oers, Hans A M; Brand, Helmut
2016-02-01
Despite the acknowledged value of an EU health information system (EU-HISys) and the many achievements in this field, the landscape is still heavily fragmented and incomplete. Through a systematic analysis of the opinions and valuations of public health stakeholders, this study aims to conceptualize key features of an EU-HISys. Public health professionals and policymakers were invited to participate in a concept mapping procedure. First, participants (N = 34) formulated statements that reflected their vision of an EU-HISys. Second, participants (N = 28) rated the relative importance of each statement and grouped conceptually similar ones. Principal Component and cluster analyses were used to condense these results to EU-HISys key features in a concept map. The number of key features and the labelling of the concept map were determined by expert consensus. The concept map contains 10 key features that summarize 93 statements. The map consists of a horizontal axis that represents the relevance of an 'organizational strategy', which deals with the 'efforts' to design and develop an EU-HISys and the 'achievements' gained by a functioning EU-HISys. The vertical axis represents the 'professional orientation' of the EU-HISys, ranging from the 'scientific' through to the 'policy' perspective. The top ranking statement expressed the need to establish a system that is permanent and sustainable. The top ranking key feature focuses on data and information quality. This study provides insights into key features of an EU-HISys. The results can be used to guide future planning and to support the development of a health information system for Europe. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Condit, C. D.; Mninch, M.
2012-12-01
The Dynamic Digital Map (DDM) is an ideal vehicle for the professional geologist to use to describe the geologic setting of key sites to the public in a format that integrates and presents maps and associated analytical data and multimedia without the need for an ArcGIS interface. Maps with field trip guide stops that include photographs, movies and figures and animations, showing, for example, how the features seen in the field formed, or how data might be best visualized in "time-frame" sequences are ideally included in DDMs. DDMs distribute geologic maps, images, movies, analytical data, and text such as field guides, in an integrated cross-platform, web enabled format that are intuitive to use, easily and quickly searchable, and require no additional proprietary software to operate. Maps, photos, movies and animations are stored outside the program, which acts as an organizational framework and index to present these data. Once created, the DDM can be downloaded from the web site hosting it in the flavor matching the user's operating system (e.g. Linux, Windows and Macintosh) as zip, dmg or tar files (and soon as iOS and Android tablet apps). When decompressed, the DDM can then access its associated data directly from that site with no browser needed. Alternatively, the entire package can be distributed and used from CD, DVD, or flash-memory storage. The intent of this presentation is to introduce the variety of geology that can be accessed from the over 25 DDMs created to date, concentrating on the DDM of the Springerville Volcanic Field. We will highlight selected features of some of them, introduce a simplified interface to the original DDM (that we renamed DDMC for Classic) and give a brief look at a the recently (2010-2011) completed geologic maps of the Springerville Volcanic field to see examples of each of the features discussed above, and a display of the integrated analytical data set. We will also highlight the differences between the classic or DDMCs and the new Dynamic Digital Map Extended (DDME) designed from the ground up to take advantage of the expanded connectedness this redesigned program will accommodate.
Semi-automated surface mapping via unsupervised classification
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-09-01
Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.
Spaceborne radar observations: A guide for Magellan radar-image analysis
NASA Technical Reports Server (NTRS)
Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.
1989-01-01
Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described.
Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe
2017-01-01
The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.
Informal Names for Features on Pluto
2015-07-29
This image contains the initial, informal names being used by NASA's New Horizons team for the features and regions on the surface of Pluto. Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19863
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea
1992-01-01
The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Evaluation of Mapping Methodologies at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Schultz-Fellenz, E. S.; Roback, R. C.; Kelley, R. E.; Drellack, S.; Reed, D.; Miller, E.; Cooper, D. I.; Sandoval, M.; Wang, R.
2013-12-01
On June 12th, 1985, a nuclear test with an announced yield between 20-150kt was detonated in rhyolitic lava in a vertical emplacement borehole at a depth of 608m below the surface. This test did not collapse to the surface and form a crater, but rather resulted in a subsurface collapse with more subtle surface expressions of deformation, providing an opportunity to evaluate the site using a number of surface mapping methodologies. The site was investigated over a two-year time span by several mapping teams. In order to determine the most time efficient and accurate approach for mapping post-shot surface features at a legacy test site, a number of different techniques were employed. The site was initially divided into four quarters, with teams applying various methodologies, techniques, and instrumentations to each quarter. Early methods included transect lines and site gridding with a Brunton pocket transit, flagging tape, measuring tape, and stakes; surveying using a hand-held personal GPS to locate observed features with an accuracy of × 5-10m; and extensive photo-documentation. More recent methods have incorporated the use of near survey grade GPS devices to allow careful location and mapping of surface features. Initially, gridding was employed along with the high resolution GPS surveys, but this was found to be time consuming and of little observational value. Raw visual observation (VOB) data included GPS coordinates for artifacts or features of interest, field notes, and photographs. A categorization system was used to organize the myriad of items, in order to aid in database searches and for visual presentation of findings. The collected data set was imported into a geographic information system (GIS) as points, lines, or polygons and overlain onto a digital color orthophoto map of the test site. Once these data were mapped, spectral data were collected using a high resolution field spectrometer. In addition to geo-locating the field observations with 10cm resolution GPS, LiDAR and hyperspectral imagery were also acquired. The LiDAR and hyperspectral data are being processed and will be added to the existing geo-referenced database as separate information layers for remote sensing analysis of surface features associated with the legacy test. By consolidating the various components of a VOB data point (coordinates, photo and item description) into a standalone database, searching or querying for other components or collects such as subsurface geophysical and/or airborne imagery is made much easier. Work by Los Alamos National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy.
Iceberg Ahead: The Effect of Bands and Ridges During Chaos Formation on Europa.
NASA Astrophysics Data System (ADS)
Hedgepeth, J. E.; Schmidt, B. E.
2016-12-01
Europa presents a dynamic and varied surface, but the most enticing component is arguably its chaos structures. With it, the surface and subsurface can interact, but in order to fully understand if this is occurring we have to properly parameterize the surface structural integrity. We consider the Schmidt et al. (2011) method of classifying icebergs by feature type to study what features remained intact in the chaos matrix. In this work we expand on this idea. We hypothesize that the ice that forms ridges and bands exhibit higher structural strengths than plains. Subsequently, this ice is more likely to remain during chaos formation in the form of icebergs. We begin by mapping the surface around Murias chaos and other prominent chaos features. Maps are used to infer what paleo-topographic features existed before chaos formation by using the features surrounding the chaos regions as blueprints for what existed before. We perform a multivariate regression to correlate the amount of icebergs present to the amount of surface that was covered by either bands, plains, or ridges. We find ridges play the biggest role in the production of icebergs with a weighted value of 40%. Bands may play a smaller role (13%), but plains show little to no correlation (5%). Further mapping will better reveal if this trend holds true in other regions. This statistical analysis supports our hypothesis, and further work will better quantify what is occurring. We will address the energy expended in the chaos regions via movement and rotation of icebergs during the formation event and through ice-melt.
NASA Technical Reports Server (NTRS)
Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.
1972-01-01
Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.
US Topo: topographic maps for the nation
Carswell, William J.
2013-01-01
US Topo is the next generation of topographic maps from the U.S. Geological Survey (USGS). Arranged in the familiar 7.5-minute quadrangle format, digital US Topo maps are designed to look and feel (and perform) like the traditional paper topographic maps for which the USGS is so well known. In contrast to paper-based maps, US Topo maps provide modern technical advantages that support faster, wider public distribution and enable basic, on-screen geographic analysis for all users. The US Topo quadrangle map has been redesigned so that map elements are visually distinguishable with the imagery turned on and off, while keeping the file size as small as possible. The US Topo map redesign includes improvements to various display factors, including symbol definitions (color, line thickness, line symbology, area fills), layer order, and annotation fonts. New features for 2013 include the following: a raster shaded relief layer, military boundaries, cemeteries and post offices, and a US Topo cartographic symbols legend as an attachment. US Topo quadrangle maps are available free on the Web. Each map quadrangle is constructed in GeoPDF® format using key layers of geographic data (orthoimagery, roads, geographic names, topographic contours, and hydrographic features) from The National Map databases. US Topo quadrangle maps can be printed from personal computers or plotters as complete, full-sized, maps or in customized sections, in a user-desired specific format. Paper copies of the maps can also be purchased from the USGS Store. Download links and a users guide are featured on the US Topo Web site. US Topo users can turn geographic data layers on and off as needed; they can zoom in and out to highlight specific features or see a broader area. File size for each digital 7.5-minute quadrangle, about 30 megabytes. Associated electronic tools for geographic analysis are available free for download. The US Topo provides the Nation with a topographic product that users can quickly incorporate into decisionmaking, operational or recreational activities.
Geoscientific Mapping of Vesta by the Dawn Mission
NASA Technical Reports Server (NTRS)
Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.;
2011-01-01
The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.
Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta
NASA Technical Reports Server (NTRS)
Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Capaccioni, F.; Palomba, E.; Zambon, F.; Ammannito, E.; Blewett, D. T.; Combe, J.-Ph.; Denevi, B. W.;
2013-01-01
At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.
NASA Astrophysics Data System (ADS)
Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan
2018-04-01
Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
NASA Astrophysics Data System (ADS)
Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai
2017-04-01
Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.
NASA Astrophysics Data System (ADS)
Liu, Zhanwen; Feng, Yan; Chen, Hang; Jiao, Licheng
2017-10-01
A novel and effective image fusion method is proposed for creating a highly informative and smooth surface of fused image through merging visible and infrared images. Firstly, a two-scale non-subsampled shearlet transform (NSST) is employed to decompose the visible and infrared images into detail layers and one base layer. Then, phase congruency is adopted to extract the saliency maps from the detail layers and a guided filtering is proposed to compute the filtering output of base layer and saliency maps. Next, a novel weighted average technique is used to make full use of scene consistency for fusion and obtaining coefficients map. Finally the fusion image was acquired by taking inverse NSST of the fused coefficients map. Experiments show that the proposed approach can achieve better performance than other methods in terms of subjective visual effect and objective assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rossi, P; Jani, A
Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less
Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.
2013-01-01
This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.
Adhesion design maps for bio-inspired attachment systems.
Spolenak, Ralph; Gorb, Stanislav; Arzt, Eduard
2005-01-01
Fibrous surface structures can improve the adhesion of objects to other surfaces. Animals, such as flies and geckos, take advantage of this principle by developing "hairy" contact structures which ensure controlled and repeatable adhesion and detachment. Mathematical models for fiber adhesion predict pronounced dependencies of contact performance on the geometry and the elastic properties of the fibers. In this paper the limits of such contacts imposed by fiber strength, fiber condensation, compliance, and ideal contact strength are modeled for spherical contact tips. Based on this, we introduce the concept of "adhesion design maps" which visualize the predicted mechanical behavior. The maps are useful for understanding biological systems and for guiding experimentation to achieve optimum artificial contacts.
Mapping products of Titan's surface
Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre
2009-01-01
Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.
Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William
2018-06-04
The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
Cassini observations of flow-like features in western Tui Regio, Titan
Barnes, J.W.; Brown, R.H.; Radebaugh, J.; Buratti, B.J.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Turtle, E.P.; Perry, J.; Clark, R.; Baines, K.H.; Nicholson, P.D.
2006-01-01
A large (>3 ?? 104 km2), lobate, 5-??m-bright region seen by Cassini on Titan's leading equatorial region is best explained as a flow field. We discuss observations from the Visual and Infrared Mapping Spectrometer and Imaging Science Subsystem of the feature and present a map of the field. We establish relative ages of flow features and discuss possible formation mechanisms and the implications of this finding for the evolution of Titan's surface. Copyright 2006 by the American Geophysical Union.
A generalized geologic map of Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.
Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements
NASA Astrophysics Data System (ADS)
Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.
2008-12-01
Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.
Modelling of Singapore's topographic transformation based on DEMs
NASA Astrophysics Data System (ADS)
Wang, Tao; Belle, Iris; Hassler, Uta
2015-02-01
Singapore's topography has been heavily transformed by industrialization and urbanization processes. To investigate topographic changes and evaluate soil mass flows, historical topographic maps of 1924 and 2012 were employed, and basic topographic features were vectorized. Digital elevation models (DEMs) for the two years were reconstructed based on vector features. Corresponding slope maps, a surface difference map and a scatter plot of elevation changes were generated and used to quantify and categorize the nature of the topographic transformation. The surface difference map is aggregated into five main categories of changes: (1) areas without significant height changes, (2) lowered-down areas where hill ranges were cut down, (3) raised-up areas where valleys and swamps were filled in, (4) reclaimed areas from the sea, and (5) new water-covered areas. Considering spatial proximity and configurations of different types of changes, topographic transformation can be differentiated as either creating inland flat areas or reclaiming new land from the sea. Typical topographic changes are discussed in the context of Singapore's urbanization processes. The two slope maps and elevation histograms show that generally, the topographic surface of Singapore has become flatter and lower since 1924. More than 89% of height changes have happened within a range of 20 m and 95% have been below 40 m. Because of differences in land surveying and map drawing methods, uncertainties and inaccuracies inherent in the 1924 topographic maps are discussed in detail. In this work, a modified version of a traditional scatter plot is used to present height transformation patterns intuitively. This method of deriving categorical maps of topographical changes from a surface difference map can be used in similar studies to qualitatively interpret transformation. Slope maps and histograms were also used jointly to reveal additional patterns of topographic change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Yao, Tiankai
Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominatemore » the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images.« less
Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
Kwon, Oh-Hun; Park, Hyunjin; Seo, Sang-Won; Na, Duk L.; Lee, Jong-Min
2015-01-01
The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors. PMID:26236180
LAMMR world data base documentation support and demonstrations
NASA Technical Reports Server (NTRS)
Chin, R.; Beaudet, P.
1980-01-01
The primary purpose of the World Surface Map is to provide the LAMMR subsystem with world surface type classifications that are used to set up LAMMR LEVEL II process control. This data base will be accessed solely by the LAMMR subsystem. The SCATT and ALT subsystems will access the data base indirectly through the T sub b (Brightness Temperature) Data Bank, where the surface types were updated from a priori to current classification, and where the surface types were organized on an orbital subtrack basis. The single most important factor in the design of the World Surface Maps is the ease of access to the information while the complexity of generating these maps is of lesser importance because their generation is a one-time, off-line process. The World Surface Map provides storage of information with a resolution of 7 km necessary to set flags concerning the earth's features with a different set of maps for each month of the year.
Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min
2012-04-30
Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.;
2014-01-01
We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.
Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL
2011-05-17
The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake
NASA Astrophysics Data System (ADS)
Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.
2014-12-01
A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic displacements of about -30 to 30 cm, along the main surface rupture, using multiple aperture interferometry and SAR pixel offset calculation. We also processed the European Space Agency's Sentinel-1A data on Sep. 3 and compared the result with the CSK interferogram, finding a general agreement between the two observations of surface deformation.
Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.
Galactic and zodiacal light surface brightness measurements with the Atmosphere Explorer satellites
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Hays, P. B.; Yee, J. H.
1982-01-01
Galactic and zodiacal light surface maps based on the Atmosphere Explorer-C, -D, and -E satellite data are presented at 7320, 6300, 5577, 5200, and 4278 A. A procedure used to generate these maps, which involves separation of the individual stars and diffuse starlight from the zodiacal light, is described in detail. The maps can be used in atmospheric emission studies to correct for galactic emissions which contaminate satellite as well as ground-based photometric observations. The zodiacal light maps show enhanced features which are important for understanding the nature of interplanetary dust.
The Importance of Chaos and Lenticulae on Europa for the JIMO Mission
NASA Technical Reports Server (NTRS)
Spaun, Nicole A.
2003-01-01
The Galileo Solid State Imaging (SSI) experiment provided high-resolution images of Europa's surface allowing identification of surface features barely distinguishable at Voyager's resolution. SSI revealed the visible pitting on Europa's surface to be due to large disrupted features, chaos, and smaller sub-circular patches, lenticulae. Chaos features contain a hummocky matrix material and commonly contain dislocated blocks of ridged plains. Lenticulae are morphologically interrelated and can be divided into three classes: domes, spots, and micro-chaos. Domes are broad, upwarped features that generally do not disrupt the texture of the ridged plains. Spots are areas of low albedo that are generally smooth in texture compared to other units. Micro-chaos are disrupted features with a hummocky matrix material, resembling that observed within chaos regions. Chaos and lenticulae are ubiquitous in the SSI regional map observations, which average approximately 200 meters per pixel (m/pxl) in resolution, and appear in several of the ultra-high resolution, i.e., better than 50 m/pxl, images of Europa as well. SSI also provided a number of multi-spectral observations of chaos and lenticulae. Using this dataset we have undertaken a thorough study of the morphology, size, spacing, stratigraphy, and color of chaos and lenticulae to determine their properties and evaluate models of their formation. Geological mapping indicates that chaos and micro-chaos have a similar internal morphology of in-situ degradation suggesting that a similar process was operating during their formation. The size distribution denotes a dominant size of 4-8 km in diameter for features containing hummocky material (i.e., chaos and micro-chaos). Results indicate a dominant spacing of 15 - 36 km apart. Chaos and lenticulae are generally among the youngest features stratigraphically observed on the surface, suggesting a recent change in resurfacing style. Also, the reddish non-icy materials on Europa's surface have high concentrations in many chaos and lenticulae features. Nonetheless, a complete global map of the distribution of chaos and lenticulae is not possible with the SSI dataset. Only <20% of the surface has been imaged at 200 m/pxl or better resolution, mostly of the near-equatorial regions. Color and ultra-high-res images have much less surface coverage. Thus we suggest that full global imaging of Europa at 200 m/pxl or better resolution, preferably in multi-spectral wavelengths, should be a high priority for the JIMO mission.
Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta
NASA Technical Reports Server (NTRS)
Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.;
2012-01-01
The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Panditrao, Satej N.; Luis, Alvarinho J.
2016-05-01
Cryospheric surface feature classification is one of the widely used applications in the field of polar remote sensing. Precise surface feature maps derived from remotely sensed imageries are the major requirement for many geoscientific applications in polar regions. The present study explores the capabilities of C-band dual polarimetric (HH & HV) SAR imagery from Indian Radar Imaging Satellite (RISAT-1) for land cryospheric surface feature mapping. The study areas selected for the present task were Larsemann Hills and Schirmacher Oasis, East Antarctica. RISAT-1 Fine Resolution STRIPMAP (FRS-1) mode data with 3-m spatial resolution was used in the present research attempt. In order to provide additional context to the amount of information in dual polarized RISAT-1 SAR data, a band HH+HV was introduced to make use of the original two polarizations. In addition to the data calibration, transformed divergence (TD) procedure was performed for class separability analysis to evaluate the quality of the statistics before image classification. For most of the class pairs the TD values were comparable, which indicated that the classes have good separability. Fuzzy and Artificial Neural Network classifiers were implemented and accuracy was checked. Nonparametric classifier Support Vector Machine (SVM) was also used to classify RISAT-1 data with an optimized polarization combination into three land-cover classes consisting of sea ice/snow/ice, rocks/landmass, and lakes/waterbodies. This study demonstrates that C-band FRS1 image mode data from the RISAT-1 mission can be exploited to identify, map and monitor land cover features in the polar regions, even during dark winter period. For better landcover classification and analysis, hybrid polarimetric data (cFRS-1 mode) from RISAT-1, which incorporates phase information, unlike the dual-pol linear (HH, HV) can be used for obtaining better polarization signatures.
Terrain-Moisture Classification Using GPS Surface-Reflected Signals
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.
2006-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
NASA Astrophysics Data System (ADS)
Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.
2007-12-01
The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.
Mapping products of Titan's surface: Chapter 19
Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter
2010-01-01
Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.
NASA Astrophysics Data System (ADS)
Abdelazeem, Maha; El-Sawy, El-Sawy K.; Gobashy, Mohamed M.
2013-06-01
Ar Rika fault zone constitutes one of the two major parts of the NW-SE Najd fault system (NFS), which is one of the most prominent structural features located in the east of the center of the Arabian Shield, Saudi Arabia. By using Enhancement Thematic Mapper data (ETM+) and Principle Component Analysis (PCA), surface geological characteristics, distribution of rock types, and the different trends of linear features and faults are determined in the study area. First and second order magnetic gradients of the geomagnetic field at the North East of Wadi Ar Rika have been calculated in the frequency domain to map both surface and subsurface lineaments and faults. Lineaments as deduced from previous studies, suggest an extension of the NFS beneath the cover rocks in the study area. In the present study, integration of magnetic gradients and remote sensing analysis that resulted in different valuable derivative maps confirm the subsurface extension of some of the surface features. The 3D Euler deconvolution, the total gradient, and the tilt angle maps have been utilized to determine accurately the distribution of shear zones, the tectonic implications, and the internal structures of the terranes in the Ar Rika quadrangle in three dimensions.
Gahm, Jin Kyu; Shi, Yonggang
2018-01-01
Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer’s disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. PMID:29574399
Fast algorithm for probabilistic bone edge detection (FAPBED)
NASA Astrophysics Data System (ADS)
Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.
2005-04-01
The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean value of 0.38 indicating clear identification of surface points on average. The segmentation was also sufficiently crisp, with a full width at half maximum (FWHM) value of 1.51 voxels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Arimura, H; Toyofuku, F
Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less
Identifying Populace Susceptible to Flooding Using ArcGIS and Remote Sensing Datasets
NASA Astrophysics Data System (ADS)
Fernandez, Sim Joseph; Milano, Alan
2016-07-01
Remote sensing technologies are growing vastly as with its various applications. The Department of Science and Technology (DOST), Republic of the Philippines, has made projects exploiting LiDAR datasets from remote sensing technologies. The Phil-LiDAR 1 project of DOST is a flood hazard mapping project. Among the project's objectives is the identification of building features which can be associated to the flood-exposed population. The extraction of building features from the LiDAR dataset is arduous as it requires manual identification of building features on an elevation map. The mapping of building footprints is made meticulous in order to compensate the accuracy between building floor area and building height both of which are crucial in flood decision making. A building identification method was developed to generate a LiDAR derivative which will serve as a guide in mapping building footprints. The method utilizes several tools of a Geographic Information System (GIS) software called ArcGIS which can operate on physical attributes of buildings such as roofing curvature, slope and blueprint area in order to obtain the LiDAR derivative from LiDAR dataset. The method also uses an intermediary process called building removal process wherein buildings and other features lying below the defined minimum building height - 2 meters in the case of Phil-LiDAR 1 project - are removed. The building identification method was developed in the hope to hasten the identification of building features especially when orthophotographs and/or satellite imageries are not made available.
Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space
Lai, Rongjie; Wang, Danny J.J.; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W.
2014-01-01
In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects. PMID:24686245
Spaceborne imaging radar - Geologic and oceanographic applications
NASA Technical Reports Server (NTRS)
Elachi, C.
1980-01-01
Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.
Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne
2012-01-01
We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.
The Philosophical Underpinnings and Key Features of the Dynamic Learning Maps Alternate Assessment
ERIC Educational Resources Information Center
Kingston, Neal M.; Karvonen, Meagan; Bechard, Sue; Erickson, Karen A.
2016-01-01
The Dynamic Learning Maps™ Alternate Assessment is based on a different set of guiding principles than other assessments. In this article we describe characteristics of the alternate assessment population and we look at the history of alternate assessment and the problems that have been faced in implementing useful assessment programs for students…
UMAP Modules-Units 203-211, 215-216, 231-232.
ERIC Educational Resources Information Center
Schoenfeld, Alan H.; And Others
One module is presented in units 203, 204, and 205, as a guide for students, and presents a general strategy for solving integrals effectively. With this material is a solutions manual to exercises. This document set also includes a unit featuring applications of calculus to geography: 206-Mercator's World Map and the Calculus. Unit 207-Management…
Invitation to Discover and to Understand=Invitation a Decouvrir et a Comprendre.
ERIC Educational Resources Information Center
Parks Canada (Quebec). La Mauricie National Park.
This four-part guide provides suggestions to help teachers and students get the maximum benefit from a visit to the La Mauricie National Park in Quebec Province, Canada. The first part contains introductory comments, program objectives, an overall view of the park (including its features and services available), use of an appended exploration map,…
The Unique Geomorphology and Physical Properties of the Vestalia Terra Plateau
NASA Technical Reports Server (NTRS)
Buczkowski, D.L.; Wyrick, D.Y.; Toplis, M.; Yingst, R. A.; Williams, D. A.; Garry, W. B.; Mest, S.; Kneissl, T.; Scully, J. E. C.; Nathues, A.;
2014-01-01
We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual "dark ribbon" material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.
Ahn, Chi-Yeong; Jang, Segeun; Cho, Yong-Hun; Choi, Jiwoo; Kim, Sungjun; Kim, Sang Moon; Sung, Yung-Eun; Choi, Mansoo
2018-01-19
Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.
A new method for automated discontinuity trace mapping on rock mass 3D surface model
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Chen, Jianqin; Zhu, Hehua
2016-04-01
This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.
Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Knocke, Philip C.
2007-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
NASA Astrophysics Data System (ADS)
Duffy, Alan; Yates, Brian; Takacs, Peter
2012-09-01
The Optical Metrology Facility at the Canadian Light Source (CLS) has recently purchased MountainsMap surface analysis software from Digital Surf and we report here our experiences with this package and its usefulness as a tool for examining metrology data of synchrotron x-ray mirrors. The package has a number of operators that are useful for determining surface roughness and slope error including compliance with ISO standards (viz. ISO 4287 and ISO 25178). The software is extensible with MATLAB scripts either by loading an m-file or by a user written script. This makes it possible to apply a custom operator to measurement data sets. Using this feature we have applied the simple six-line MATLAB code for the direct least square fitting of ellipses developed by Fitzgibbon et. al. to investigate the residual slope error of elliptical mirrors upon the removal of the best-fit-ellipse. The software includes support for many instruments (e.g. Zygo, MicroMap, etc...) and can import ASCII data (e.g. LTP data). The stitching module allows the user to assemble overlapping images and we report on our experiences with this feature applied to MicroMap surface roughness data. The power spectral density function was determined for the stitched and unstitched data and compared.
Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders
Shin; Rose
1999-06-01
Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.
Finding Your Way with Map and Compass
,
2001-01-01
A topographic map tells you where things are and how to get to them, whether you're hiking, biking, hunting, fishing, or just interested in the world around you. These maps describe the shape of the land. They define and locate natural and manmade features like woodlands, waterways, important buildings, and bridges. They show the distance between any two places, and they also show the direction from one point to another. Distances and directions take a bit of figuring, but the topography and features of the land are easy to determine. The topography is shown by contours. These are imaginary lines that follow the ground surface at a constant elevation; they are usually printed in brown, in two thicknesses. The heavier lines are called index contours, and they are usually marked with numbers that give the height in feet or meters. The contour interval, a set difference in elevation between the brown lines, varies from map to map; its value is given in the margin of each map. Contour lines that are close together represent steep slopes. Natural and manmade features are represented by colored areas and by a set of standard symbols on all U.S. Geological Survey (USGS) topographic maps. Woodlands, for instance, are shown in a green tint; waterways, in blue. Buildings may be shown on the map as black squares or outlines. Recent changes in an area may be shown by a purple overprint. A road may be printed in red or black solid or dashed lines, depending on its size and surface. A list of symbols is available from the Earth Science Information Center (ESIC).
Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example
NASA Technical Reports Server (NTRS)
Wu, Shih-Tseng
1989-01-01
Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.
Probabilistic registration of an unbiased statistical shape model to ultrasound images of the spine
NASA Astrophysics Data System (ADS)
Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang
2012-02-01
The placement of an epidural needle is among the most difficult regional anesthetic techniques. Ultrasound has been proposed to improve success of placement. However, it has not become the standard-of-care because of limitations in the depictions and interpretation of the key anatomical features. We propose to augment the ultrasound images with a registered statistical shape model of the spine to aid interpretation. The model is created with a novel deformable group-wise registration method which utilizes a probabilistic approach to register groups of point sets. The method is compared to a volume-based model building technique and it demonstrates better generalization and compactness. We instantiate and register the shape model to a spine surface probability map extracted from the ultrasound images. Validation is performed on human subjects. The achieved registration accuracy (2-4 mm) is sufficient to guide the choice of puncture site and trajectory of an epidural needle.
NASA Astrophysics Data System (ADS)
Steiner, G.; Sablinskas, V.; Savchuk, O.; Bariseviciute, R.; Jähne, E.; Adler, H. J.; Salzer, R.
2003-12-01
Self assembly layers were studied by a polarization modulation FT-spectroscopy mapping technique. The optical lay out is based on polarization modulation FT infrared reflection absorption spectroscopy (PM-FT-IRRAS). Here we report for the first time on a PM-FT-IRRAS mapping instrument. Octadecanephosphonic acid adsorbed on a patterned aluminum/gold surface was investigated. The nature of chemical bonding at particular surface areas was evaluated by principal component analysis. The most prominent features of the PM-FT-IRRA spectra are the P-O and PO stretching vibrations. It is shown that octadecanephosphonic acid is adsorbed both on Al 2O 3 and on Au. Moreover, PM-FT-IRRAS maps reveal areas of non-equivalent structural features. Lateral dimensions of these areas are in the micrometer range. Such non-equivalencies may control the inhibition potential of SAMs on ignoble metals, hence become crucial to the quality of products as biosensors or microelectronic components.
Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.
2016-12-01
Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.
Brown, Robert D.; Wolfe, Edward W.
1970-01-01
This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simkin, T.; Tilling, R.I.; Taggart, J.N.
The Earth's physiographic features overlain by its volcanoes, earthquake epicenters, and the movement of its major tectonic plates are shown in this map. This computer-generated map of the world provides a base that shows the topography of the land surface and the sea floor; the additions of color and shaded relief help to distinguish significant features. From the Volcano Reference file of the Smithsonian Institution, nearly 1,450 volcanoes active during the past 10,000 yr are plotted on the map in four categories. From the files of the National Earthquake Information Center (US Geological Survey), epicenters selected from 1,300 large eventsmore » (magnitude {>=} 7.0) from 1987 onward and from 140,000 instrumentally recorded earthquakes (magnitude {>=} 4.0) from 1960 to the present are plotted on this map according to two magnitude categories and two depth categories. This special map is intended as a teaching aid for classroom use and as a general reference for research. It is designed to show prominent global features when viewed from a distance; more detailed features are visible on closer inspection.« less
NASA Astrophysics Data System (ADS)
Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.
2015-12-01
Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.
NASA Astrophysics Data System (ADS)
Farrand, W. H.
2017-12-01
An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.
Integrated terrain mapping with digital Landsat images in Queensland, Australia
Robinove, Charles Joseph
1979-01-01
Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and to areally smaller, but readily recognizable, 'land units.' Many land systems appeared as distinct spectral classes or as acceptably homogeneous combinations of several spectral classes. The digitally classified map corresponded to the general geographic patterns of many of the land systems. Statistical correlation of the digitally classified map and the published map was not possible because the published map showed only land systems whereas the digitally classified map showed some land units as well as systems. The general correspondence of spectral classes to the integrated terrain units means that the digital mapping of the units may precede fieldwork and act as a guide to field sampling and detailed terrain unit description as well as measuring of the location, area, and extent of each unit. Extension of the Landsat mapping and classification technique to other arid and semi-arid regions of the world may be feasible.
Gahm, Jin Kyu; Shi, Yonggang
2018-05-01
Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.
2011-01-01
The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.
1992-01-01
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
ERIC Educational Resources Information Center
Pirnay-Dummer, Pablo; Ifenthaler, Dirk
2011-01-01
Our study integrates automated natural language-oriented assessment and analysis methodologies into feasible reading comprehension tasks. With the newly developed T-MITOCAR toolset, prose text can be automatically converted into an association net which has similarities to a concept map. The "text to graph" feature of the software is based on…
Federal research natural areas in Oregon and Washington: a guidebook for scientists and educators.
Jerry F. Franklin; Fredrick C. Hall; C. T. Dyrness; Chris Maser
1972-01-01
A guide to the use of natural scientific preserves, Research Natural Areas, on Federal lands in Oregon and Washington. Detailed descriptions of physical and biological features, maps and photographs are provided for each of the 45 tracts presently reserved. Indices to Research Natural Areas by vegetation type and plant and mammalian species are included.
Semantic guidance of eye movements in real-world scenes
Hwang, Alex D.; Wang, Hsueh-Cheng; Pomplun, Marc
2011-01-01
The perception of objects in our visual world is influenced by not only their low-level visual features such as shape and color, but also their high-level features such as meaning and semantic relations among them. While it has been shown that low-level features in real-world scenes guide eye movements during scene inspection and search, the influence of semantic similarity among scene objects on eye movements in such situations has not been investigated. Here we study guidance of eye movements by semantic similarity among objects during real-world scene inspection and search. By selecting scenes from the LabelMe object-annotated image database and applying Latent Semantic Analysis (LSA) to the object labels, we generated semantic saliency maps of real-world scenes based on the semantic similarity of scene objects to the currently fixated object or the search target. An ROC analysis of these maps as predictors of subjects’ gaze transitions between objects during scene inspection revealed a preference for transitions to objects that were semantically similar to the currently inspected one. Furthermore, during the course of a scene search, subjects’ eye movements were progressively guided toward objects that were semantically similar to the search target. These findings demonstrate substantial semantic guidance of eye movements in real-world scenes and show its importance for understanding real-world attentional control. PMID:21426914
Semantic guidance of eye movements in real-world scenes.
Hwang, Alex D; Wang, Hsueh-Cheng; Pomplun, Marc
2011-05-25
The perception of objects in our visual world is influenced by not only their low-level visual features such as shape and color, but also their high-level features such as meaning and semantic relations among them. While it has been shown that low-level features in real-world scenes guide eye movements during scene inspection and search, the influence of semantic similarity among scene objects on eye movements in such situations has not been investigated. Here we study guidance of eye movements by semantic similarity among objects during real-world scene inspection and search. By selecting scenes from the LabelMe object-annotated image database and applying latent semantic analysis (LSA) to the object labels, we generated semantic saliency maps of real-world scenes based on the semantic similarity of scene objects to the currently fixated object or the search target. An ROC analysis of these maps as predictors of subjects' gaze transitions between objects during scene inspection revealed a preference for transitions to objects that were semantically similar to the currently inspected one. Furthermore, during the course of a scene search, subjects' eye movements were progressively guided toward objects that were semantically similar to the search target. These findings demonstrate substantial semantic guidance of eye movements in real-world scenes and show its importance for understanding real-world attentional control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Novel views of the lithospheric magnetic field for hazard mitigation, tectonics, and geology
NASA Astrophysics Data System (ADS)
Purucker, M. E.; Blakely, R. J.; Nelson, J. B.; Bracken, R.; White, T.
2016-12-01
The altitude of magnetic field observations is critical for high-resolution mapping. We advocate two views of the lithospheric magnetic field, at altitudes of 20 and 90 km. Magnetic surveys are most sensitive to sources with wavelengths comparable to the altitude of the survey. Thus, low-altitude satellite surveys emphasize wavelengths greater than 300 km, such as subduction zones and the continent-ocean contrast. Magnetic sources elongated along satellite tracks are subdued, however, and lithospheric features are obscured in the auroral ovals around the magnetic poles. Near-surface surveys (0.1 to 5 km altitudes) are sensitive to tectonic and upper-crustal geologic sources. There are many under-explored regions, even in this near-surface realm, notably the Antarctic and the southern oceans. Few magnetic surveys are available between airborne ( 5 km) and orbital altitudes ( 300 km), and this lack of information reduces knowledge of geologic and tectonic features in this spectral band; e.g., sources associated with the lower crust or that encompass the whole crust are strongly suppressed because the average thickness of continental crust is 30 km. Technologies are being developed to acquire magnetic field information at suborbital altitudes with UAVs at altitudes of 20 km, and with a laser guide star technique for remote sensing at an altitude averaging 90 km. Use of the laser guide star technique on a polar-orbiting satellite with in-situ magnetometers would greatly facilitate separating ionospheric from lithospheric fields. Laser guide stars can be produced in Na-rich layers where micro-meteorite breakup occurs in a planetary or satellite system, and they are ubiquitous in the Solar System. The ideal observation platform at 20 km has small and well-characterized EM fields, can execute maneuvers that permit flying of tie lines, and can fly for long periods so as to survey large areas. A main limitation of surveying remote areas concerns the need for a local base station for resolving temporal-spatial aliasing. The traditional approach of siting temporary base stations in the survey area is often not feasible, and we discuss possible alternatives.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
Anthropogenic impervious surfaces are leading contributors to non-point-source water pollution in urban watersheds. These human-created surfaces include such features as roads, parking lots, rooftops, sideways, and driveways. Aerial photography provides a historical vehicle for...
Impervious surfaces are a leading contributor to non-point-source water pollution in urban watersheds. These surfaces include such features as roads, parking lots, rooftops and driveways. Arcview GIS and the Image Analysis extension have been utilized to geo-register and map imp...
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Topographic Ceres Map With Crater Names
2015-07-28
This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606
NASA Astrophysics Data System (ADS)
Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying
2017-12-01
Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Visualizing Mars data and imagery with Google Earth
NASA Astrophysics Data System (ADS)
Beyer, R. A.; Broxton, M.; Gorelick, N.; Hancher, M.; Lundy, M.; Kolb, E.; Moratto, Z.; Nefian, A.; Scharff, T.; Weiss-Malik, M.
2009-12-01
There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Mars Web site allowed users to view base maps of Mars via the Web, but it did not have the full features of the 3D Google Earth client. We have previously demonstrated the use of Google Earth to display Mars imagery, but now with the launch of Mars in Google Earth, there is a base set of Mars data available for anyone to work from and add to. There are a variety of global maps to choose from and display. The Terrain layer has the MOLA gridded data topography, and where available, HRSC terrain models are mosaicked into the topography. In some locations there is also meter-scale terrain derived from HiRISE stereo imagery. There is rich information in the form of the IAU nomenclature database, data for the rovers and landers on the surface, and a Spacecraft Imagery layer which contains the image outlines for all HiRISE, CTX, CRISM, HRSC, and MOC image data released to the PDS and links back to their science data. There are also features like the Traveler's Guide to Mars, Historic Maps, Guided Tours, as well as the 'Live from Mars' feature, which shows the orbital tracks of both the Mars Odyssey and Mars Reconnaissance Orbiter for a few days in the recent past. It shows where they have acquired imagery, and also some preview image data. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections—in geological context and within a single user interface—are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers.
Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.
2015-01-01
ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog. Using a homology model as a guide, we found that TP_0326 displays unique features which presumably relate to its function(s) in the biogenesis of T. pallidum's unorthodox OM. The model also enabled us to identify an immunodominant epitope in a large extracellular loop that is both an opsonic target and subject to immune pressure in a human population. Ours is the first study to follow a structure-to-pathogenesis approach to map the surface topology of a T. pallidum rare OMP within the context of syphilitic infection. PMID:25825429
Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J
2018-06-01
Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.
Diaz, Roberto Jose; McVeigh, Patrick Z; O'Reilly, Meaghan A; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold B; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C; Rutka, James T
2014-07-01
Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50nm or 120nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. This study demonstrates the use of magnetic resonance image-guided transcranial focused ultrasound to open the BBB and enable spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS)-based molecular imaging for experimental tumor tracking. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.
2013-12-01
Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.
NASA Astrophysics Data System (ADS)
Kang, S. L.; Chun, J.; Kumar, A.
2015-12-01
We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.
NASA Technical Reports Server (NTRS)
Campos-Marquetti, Raul, Jr.; Rockwell, Barnaby
1990-01-01
The nature of spectral lithologic mapping is studied utilizing ratios centered around the wavelength means of TM imagery. Laboratory-derived spectra are analyzed to determine the two-dimensional relationships and distributions visible in spectral ratio feature space. The spectral distributions of various rocks and minerals in ratio feature space are found to be controlled by several spectrally dominant molecules. Three study areas were examined: Rawhide Mining District, Nevada; Manzano Mountains, New Mexico; and the Sevilleta Long Term Ecological Research site in New Mexico. It is shown that, in the comparison of two ratio plots of laboratory reflectance spectra, i.e., 0.66/0.485 micron versus 1.65/2.22 microns with those derived from TM data, several molecules spectrally dominate the reflectance characteristic of surface lithologic units. Utilizing the above ratio combination, two areas are successfully mapped based on their distribution in spectral ratio feature space.
NASA Technical Reports Server (NTRS)
Weaver, K. N. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Underflight photography has been used in the Baltimore County mined land inventory to determine areas of disturbed land where surface mining of sand and ground clay, or stone has taken place. Both active and abandoned pits and quarries were located. Aircraft data has been used to update cultural features of Calvert, Caroline, St. Mary's, Somerset, Talbot, and Wicomico Counties. Islands have been located and catalogued for comparison with older film and map data for erosion data. Strip mined areas are being mapped to obtain total area disturbed to aid in future mining and reclamation problems. Coastal estuarine and Atlantic Coast features are being studied to determine nearshore bedforms, sedimentary, and erosional patterns, and manmade influence on natural systems.
Rule-guided human classification of Volunteered Geographic Information
NASA Astrophysics Data System (ADS)
Ali, Ahmed Loai; Falomir, Zoe; Schmid, Falko; Freksa, Christian
2017-05-01
During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants' local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach.
NASA Technical Reports Server (NTRS)
Guan, Chun (Inventor); Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor)
2008-01-01
A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.
Mapping Environmental Suitability for Malaria Transmission, Greece
Sudre, Bertrand; Rossi, Massimiliano; Van Bortel, Wim; Danis, Kostas; Baka, Agoritsa; Vakalis, Nikos
2013-01-01
During 2009–2012, Greece experienced a resurgence of domestic malaria transmission. To help guide malaria response efforts, we used spatial modeling to characterize environmental signatures of areas suitable for transmission. Nonlinear discriminant analysis indicated that sea-level altitude and land-surface temperature parameters are predictive in this regard. PMID:23697370
High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites
Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Coradini, A.; Capaccioni, F.; Filacchione, G.; Cerroni, P.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Soderbloom, L.A.; Griffith, C.; Matz, K.-D.; Roatsch, Th.; Scholten, F.; Porco, C.C.
2006-01-01
The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 ??m, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands. As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features. The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Houston, R. S.; Marrs, R. W.; Breckenridge, R. M.; Blackstone, D. L., Jr.
1974-01-01
Many potential users of ERTS data products and other aircraft and satellite imagery are limited to visual methods of analyses of these products. Illustrations are presented from Wyoming studies that have employed these standard data products for a variety of geologic and related studies. Possible economic applications of these studies are summarized. Studies include regional geologic mapping for updating and correcting existing maps and to supplement incomplete regional mapping; illustrations of the value of seasonal images in geologic mapping; specialized mapping of such features as sand dunes, playa lakes, lineaments, glacial features, regional facies changes, and their possible economic value; and multilevel sensing as an aid in mineral exploration. Examples of cooperative studies involving botanists, plant scientists, and geologists for the preparation of maps of surface resources that can be used by planners and for environmental impact studies are given.
Jain, Anil K; Feng, Jianjiang
2011-01-01
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.
2016-01-01
Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.
McCord, T.B.; Hansen, G.B.; Clark, R.N.; Martin, P.D.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.C.; Segura, M.; Matson, D.L.; Johnson, T.V.; Carlson, R.W.; Smythe, W.D.; Danielson, G.E.
1998-01-01
We present evidence for several non-ice constituents in the surface material of the icy Galilean satellites, using the reflectance spectra returned by the Galileo near infrared mapping spectrometer (NIMS) experiment. Five new absorption features are described at 3.4, 3.88, 4.05, 4.25, and 4.57 ??m for Callisto and Ganymede, and some seem to exist for Europa as well. The four absorption bands strong enough to be mapped on Callisto and Ganymede are each spatially distributed in different ways, indicating different materials are responsible for each absorption. The spatial distributions are correlated at the local level in complex ways with surface features and in some cases show global patterns. Suggested candidate spectrally active groups, perhaps within larger molecules, producing the five absorptions include C-H, S-H, SO2, CO2, and C???N. Organic material like tholins are candidates for the 4.57- and 3.4-??m features. We suggest, based on spectroscopic evidence, that CO2 is present as a form which does not allow rotational modes and that SO2 is present neither as a frost nor a free gas. The CO2, SO2, and perhaps cyanogen (4.57 ??m) may be present as very small collections of molecules within the crystal structure, perhaps following models for radiation damage and/or for comet and interstellar grain formation at low temperatures. Some of the dark material on these surfaces may be created by radiation damage of the CO2 and other carbon-bearing species and the formation of graphite. These spectra suggest a complex chemistry within the surface materials and an important role for non-ice materials in the evolution of the satellite surfaces. Copyright 1998 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Discovering the Ancient Maya from Space
NASA Technical Reports Server (NTRS)
Sever, T. L.
2008-01-01
The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.
Discovering the Ancient Maya From Space
NASA Technical Reports Server (NTRS)
Sever, T. L.
2007-01-01
The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.
Terrain following of arbitrary surfaces using a high intensity LED proximity sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
1992-01-01
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Television experiment for Mariner Mars 1971
Masursky, H.; Batson, R.; Borgeson, W.; Carr, M.; McCauley, J.; Milton, D.; Wildey, R.; Wilhelms, D.; Murray, B.; Horowitz, N.; Leighton, R.; Sharp, R.; Thompson, W.; Briggs, G.; Chandeysson, P.; Shipley, E.; Sagan, C.; Pollack, J.; Lederberg, J.; Levinthal, E.; Hartmann, W.; McCord, T.; Smith, B.; Davies, M.; De Vaucouleurs, G.; Leovy, C.
1970-01-01
The Television Experiment objectives are to provide imaging data which will complement previously gathered data and extend our knowledge of Mars. The two types of investigations will be fixed-feature (for mapping) and variable-feature (for surface and atmospheric changes). Two cameras with a factor-of-ten difference in resolution will be used on each spacecraft for medium- and high-resolution imagery. Mapping of 70% of the planet's surface will be provided by medium-resolution imagery. Spot coverage of about 5% of the surface will be possible with the high-resolution imagery. The experiment's 5 Principal Investigators and 21 Co-Investigators are organized into a team. Scientific disciplines and technical task groups have been formed to provide the formulation of experiment requirements for mission planning and instrument development. It is expected that the team concept will continue through the operational and reporting phases of the Mariner Mars 1971 Project. ?? 1970.
Utilization of satellite data for inventorying prairie ponds and lakes
Work, E.A.; Gilmer, D.S.
1976-01-01
By using data acquired by LANDSAT-1 (formerly ERTS- 1), studies were conducted in extracting information necessary for formulating management decisions relating to migratory waterfowl. Management decisions are based in part on an assessment ofhabitat characteristics, specifically numbers, distribution, and quality of ponds and lakes in the prime breeding range. This paper reports on a study concerned with mapping open surface water features in the glaciated prairies. Emphasis was placed on the recognition of these features based upon water's uniquely low radiance in a single nearinfrared waveband. The results of this recognition were thematic maps and statistics relating to open surface water. In a related effort, the added information content of multiple spectral wavebands was used for discriminating surface water at a level of detail finer than the virtual resolution of the data. The basic theory of this technique and some preliminary results are described.
Terrain intelligence Chita Oblast (U.S.S.R.)
,
1943-01-01
The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast. Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology. These maps and data were complied by the United States Geological Survey.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
NASA Astrophysics Data System (ADS)
Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah
2017-12-01
Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of paleo-fresh water lagoon at the northwestern corner of the study area, which might have been the discharge lagoon of the revealed hidden stream.
Aquarius and Remote Sensing of Sea Surface Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.
2012-01-01
Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.
Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow
DeLong, Stephen B.; Prentice, Carol S.; Hilley, George E.; Ebert, Yael
2012-01-01
Remote mapping and measurement of surface processes at high spatial resolution is among the frontiers in Earth surface process research. Remote measurements that allow meter-scale mapping of landforms and quantification of landscape change can revolutionize the study of landscape evolution on human timescales. At Mill Gulch in northern California, USA, an active earthflow was surveyed in 2003 and 2007 by airborne laser swath mapping (ALSM), enabling meter-scale quantification of landscape change. We calculate four-year volumetric flux from the earthflow and compare it to long-term catchment average erosion rates from cosmogenic radionuclide inventories from adjacent watersheds. We also present detailed maps of changing features on the earthflow, from which we can derive velocity estimates and infer dominant process. These measurements rely on proper digital elevation model (DEM) generation and a simple surface-matching technique to align the multitemporal data in a manner that eliminates systematic error in either dataset. The mean surface elevation of the earthflow and an opposite slope that was directly influenced by the earthflow decreased 14 ± 1 mm/yr from 2003 to 2007. By making the conservative assumption that these features were the dominant contributor of sediment flux from the entire Mill Gulch drainage basin during this time interval, we calculate a minimum catchment-averaged erosion rate of 0·30 ± 0·02 mm/yr. Analysis of beryllium-10 (10Be) concentrations in fluvial sand from nearby Russian Gulch and the South Fork Gualala River provide catchment averaged erosion rates of 0·21 ± 0·04 and 0·23 ± 0·03 mm/yr respectively. From translated landscape features, we can infer surface velocities ranging from 0·5 m/yr in the wide upper ‘source’ portion of the flow to 5 m/yr in the narrow middle ‘transport’ portion of the flow. This study re-affirms the importance of mass wasting processes in the sediment budgets of uplifting weak lithologies.
Inland area contingency plan and maps for Pennsylvania (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
Inland area contingency plan and maps for Virginia (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
NASA Astrophysics Data System (ADS)
Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai
2008-04-01
Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.
GRAIL Gravity Map of Orientale Basin
2016-10-27
This color-coded map shows the strength of surface gravity around Orientale basin on Earth's moon, derived from data obtained by NASA's GRAIL mission. The GRAIL mission produced a very high-resolution map of gravity over the surface of the entire moon. This plot is zoomed in on the part of that map that features Orientale basin, where the two GRAIL spacecraft flew extremely low near the end of their mission. Their close proximity to the basin made the probes' measurements particularly sensitive to the gravitational acceleration there (due to the inverse squared law). The color scale plots the gravitational acceleration in units of "gals," where 1 gal is one centimeter per second squared, or about 1/1000th of the gravitational acceleration at Earth's surface. (The unit was devised in honor of the astronomer Galileo). Labels on the x and y axes represent latitude and longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21050
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Grant, John A., III; Nedell, Susan S.
1987-01-01
The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.
Global Environmental Data for Mapping Infectious Disease Distribution
Hay, S.I.; Tatem, A.J.; Graham, A.J.; Goetz, S.J.; Rogers, D.J.
2011-01-01
This contribution documents the satellite data archives, data processing methods and temporal Fourier analysis (TFA) techniques used to create the remotely sensed datasets on the DVD distributed with this volume. The aim is to provide a detailed reference guide to the genesis of the data, rather than a standard review. These remotely sensed data cover the entire globe at either 1 × 1 or 8 × 8 km spatial resolution. We briefly evaluate the relationships between the 1 × 1 and 8 × 8 km global TFA products to explore their inter-compatibility. The 8 × 8 km TFA surfaces are used in the mapping procedures detailed in the subsequent disease mapping reviews, since the 1 × 1 km products have been validated less widely. Details are also provided on additional, current and planned sensors that should be able to provide continuity with these environmental variable surfaces, as well as other sources of global data that may be used for mapping infectious disease. PMID:16647967
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
NASA Astrophysics Data System (ADS)
Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.
2017-09-01
We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.
NOAA Office of Exploration and Research > About OER > Organization > Map of
About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Overview Website & Social Media News Room OER Symposium Guiding Documents Organizational Structure Map About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate
2006-10-01
Hierarchy of Pre-Processing Techniques 3. NLP (Natural Language Processing) Utilities 3.1 Named-Entity Recognition 3.1.1 Example for Named-Entity... Recognition 3.2 Symbol RemovalN-Gram Identification: Bi-Grams 4. Stemming 4.1 Stemming Example 5. Delete List 5.1 Open a Delete List 5.1.1 Small...iterative and involves several key processes: • Named-Entity Recognition Named-Entity Recognition is an Automap feature that allows you to
Structural health monitoring of plates with surface features using guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, P.
2009-03-01
Distributed array systems for guided ultrasonic waves offer an efficient way for the long-term monitoring of the structural integrity of large plate-like structures. The measurement concept involving baseline subtraction has been demonstrated under laboratory conditions. For the application to real technical structures it needs to be shown that the methodology works equally well in the presence of structural and surface features. Problems employing this structural health monitoring concept can occur due to the presence of additional changes in the signal reflected at undamaged parts of the structure. The influence of the signal processing parameters and transducer placement on the damage detection and localization accuracy is discussed. The use of permanently attached, distributed sensors for the A0 Lamb wave mode has been investigated. Results are presented using experimental data obtained from laboratory measurements and Finite Element simulated signals for a large steel plate with a welded stiffener.
Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon
NASA Astrophysics Data System (ADS)
Wiley, T. J.; McClaughry, J. D.
2012-12-01
Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.
NASA Technical Reports Server (NTRS)
Kuzmin, R. O.; Mitrofanov, I. G.; Litvak, M. L.; Boynton, M. V.; Saunders, R. S.
2003-01-01
The first results from global mapping of the neutron albedo from Mars by HEND instrument have shown the noticeable deficit of both the epithermal (EN) and the fast (FN) neutrons counts rate in the high latitudes regions of both hemispheres of the planet. The deficit is indicative for high enriching of the surface regolith by hydrogen, which may correspond to amount of any water phases and forms. The objectives of our study are the spatial and temporal variations of the free water (ice) signature in the Martian surface layer on the base of HEND/ODYSSEY data and their correlation with spatial spreading of some permafrost features, mapped on the base of MOC images. For the study we used the results of the global mapping (pixel 5 x5 ) of EN and FN albedo, realized by HEND/ODYSSEY in the period from 17 February to 10 December 2002 year.
Aircraft and satellite remote sensing of desert soils and landscapes
NASA Technical Reports Server (NTRS)
Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.
1987-01-01
Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.
Ceres Topographic Globe Animation
2015-07-28
This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
Surface compositional variation on the comet 67P/Churyumov-Gerasimenko by OSIRIS data
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Fornasier, S.; Feller, C.; Perna, D.; Hasselmann, H.; Deshapriya, J. D. P.; Fulchignoni, M.; Besse, S.; Sierks, H.; Forgia, F.; Lazzarin, M.; Pommerol, A.; Oklay, N.; Lara, L.; Scholten, F.; Preusker, F.; Leyrat, C.; Pajola, M.; Osiris-Rosetta Team
2015-10-01
Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on July 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System, [1]) NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) acquiring a huge quantity of surface's images at different wavelength bands, under variable illumination conditions and spatial resolution, and producing the most detailed maps at the highest spatial resolution of a comet nucleus surface.67/P C-G's nucleus shows an irregular bi-lobed shape of complex morphology with terrains showing intricate features [2, 3] and a heterogeneity surface at different scales.
Capturing Students' Abstraction While Solving Organic Reaction Mechanism Problems across a Semester
ERIC Educational Resources Information Center
Weinrich, M. L.; Sevian, H.
2017-01-01
Students often struggle with solving mechanism problems in organic chemistry courses. They frequently focus on surface features, have difficulty attributing meaning to symbols, and do not recognize tasks that are different from the exact tasks practiced. To be more successful, students need to be able to extract salient features, map similarities…
NASA Technical Reports Server (NTRS)
Bandfield, J. L.; Wyatt, M. B.; Christensen, P.; McSween, H. Y., Jr.
2001-01-01
Basalt and andesite surface compositions are identified within individual low albedo intracrater features and adjacent dark wind streaks. High resolution mapping of compositional heterogeneities may help constrain origin hypotheses for these features. Additional information is contained in the original extended abstract.
Martian Resource Locations - Identification and Optimization
NASA Astrophysics Data System (ADS)
Chamitoff, G.; James, G.; Barker, D.; Dershowitz, A.
2002-01-01
Many physical constituents of the Martian environment can be considered as possible material resources. The identification and utilization of these in-situ Martian natural resources is the key to enabling cost- effective long-duration missions and permanent human settlements on Mars. Also, access to local resources provides an essential safety net for the initial missions. The incident solar radiation, atmosphere, regolith, subsurface materials, polar deposits, and frozen volatiles represent planetary resources that can provide breathable air, water, energy, organic growth media, and building materials. Hence, the characterization and localization of these resources can be viewed as a component of the process of landing/outpost site selection. The locations of early permanent settlements will likely be near the imported and in-situ resources of the initial outposts. Therefore, the initial site selections can have significant long- term ramifications. Although the current information on the location, extent, purity, and ease of extraction of the in-situ resources is limited; this knowledge improves with each electronic bit of information returned from the planet. This paper presents a powerful software tool for the combined organization and analysis of Martian data from all sources. This program, called PROMT (Planetary Resource Optimization and Mapping Tool), is designed to provide a wide range of analysis and display functions that can be applied to raw data or photo- imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that the user can use to process data. Individual maps can then be created to identify surface regions on Mars that meet specific criteria. For example, regions with possible subsurface ice can be identified and shown graphically by combining and analyzing various gamma ray and neutron emission data sets. Other examples might include regions with high atmospheric pressure, steep slopes, evidence of geothermal activity, surface albedo variations in a certain spectral range, similar average temperatures, surface flow features, high gravitational anomalies, etc. Surface maps can similarly be created to highlight regions of interest based on virtually any mathematical or remote sensing criteria. These maps can then be combined into composite maps for the purpose of collocating resources, surface features, and other scientific qualities of interest. Finally, PROMT has the capability to optimize the selection of potential landing/outpost sites based on a weighted combination of selected intermediate maps and data sets. This is done by searching the Martian surface for the point that maximizes accessibility to collocated features within a given radius. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mariner, Viking, Hubble, Mars Global Surveyor, and the Odyssey spacecraft. The process of site selection is demonstrated through the combination of analyses performed to identify local resources for producing breathable air, water, and energy. However, any number of site selection objectives could be studied using PROMT. Some examples might be the search for life, water on Mars, geological features, weather observation, survivability of a human base, and so on. In this paper, a mission design objective of outpost self-sufficiency based on the accessibility of useful local materials is presented. Future studies can address a broad range of overall mission design objectives and can incorporate additional planetary data sets as they become available. These studies can be used to drive technology developments, mission planning, analog simulations, as well as precursor missions.
Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy
Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.
2016-01-01
We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.
Surface features of central North America: a synoptic view from computer graphics
Pike, R.J.
1991-01-01
A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author
Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.
2008-01-01
The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.
PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection
O’Halloran, Damien M.
2016-01-01
Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558
Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry
NASA Astrophysics Data System (ADS)
White, O. L.; Schenk, P.
2011-12-01
O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface geology. To date we have obtained diameter and depth measurements for ten calderas using these DEMs, and we look forward to studying regional and latitudinal variation in caldera depth. References Schenk, P.M., et al. (2001) J. Geophys. Res., 106, pp. 33,201-33,222. Schenk, P.M., et al. (2004) Icarus, 169, pp. 98-110. Tackley, P.J., et al. (2001) Icarus, 149, pp. 79-93. Thomas, P., et al. (1998) Icarus, 135, pp. 175-180. The authors acknowledge the support of the NASA Outer Planet Research and the Planetary Geology and Geophysics research programs.
Field trip to Nevada test site
,
1976-01-01
Two road logs guide the reader through the geologic scene from Las Vegas to Mercury and from Mercury through eight stops on the Nevada Test Site. Maps and cross sections depict the geology and hydrology of the area. Included among the tables is one showing the stratigraphic units in the southwestern Nevada volcanic field and another that lists the geologic maps covering the Nevada Test Site and vicinity. The relation of the geologic environment to nuclear-explosion effects is alluded to in brief discussions of collapse, surface subsidence, and cratering resulting from underground nuclear explosions.
Solenoid valve design minimizes vibration and sliding wear problem
NASA Technical Reports Server (NTRS)
Gillon, W. A., Jr.
1968-01-01
Two-way cryogenic solenoid valve resists damage from vibration and metallic interfacial sliding. The new system features a flat-faced armature guided by a flexure disk which eliminates sliding surfaces and is less subject to contamination and wear.
Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
NASA Astrophysics Data System (ADS)
Laakso, K.; Middleton, M.; Heinig, T.; Bärs, R.; Lintinen, P.
2018-07-01
Phosphorus (P) is fundamental to manufacturing fertilizers. Phosphorus is predominantly extracted from phosphate rocks which are a finite resource expected to potentially last only a few decades. To investigate the means of using the hyperspectral imaging (HSI) technology to detect the phosphate-bearing mineral apatite in carbonate mineral -rich rocks we analyzed hyperspectral laboratory imagery obtained in the visible-near infrared (VNIR; 400-1000 nm) and short-wave infrared (SWIR; 1000-2500 nm) wavelength regions. These data were analyzed using the Spectral Angle Mapper (SAM) and by focusing on the characteristic absorption features of the minerals. The potential of using the Mineral Liberation Analyzer (MLA) data to guide the HSI data analysis was explored. The results were validated by means of the electron probe microanalyzer (EPMA) and MLA data. The results suggest that the VNIR wavelength region is applicable to map the rare earth element -rich fluorapatite which is featureless in the SWIR wavelength range. As suggested by previous studies, data obtained in the SWIR wavelength region can be successfully used to distinguish the carbonate minerals calcite and dolomite. Despite the benefits of having MLA data to map the mineralogy of the samples, the ability to use these data suffered from the polishing of the rock samples after the HSI data were acquired. Also, the MLA data were only available from the rock surfaces from which the SWIR data were acquired, and thus its applicability to validate the results obtained in the VNIR wavelength region was limited. Despite the non-optimal data acquisition setup, the MLA data were useful in guiding the analysis of the HSI data, and in validating the results thus obtained.
Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.
Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.
2011-01-01
The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.
Electronic structure in high temperature superconducting oxides
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.
1991-08-01
We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.
Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California
NASA Astrophysics Data System (ADS)
Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.
2015-12-01
Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.
Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.
2015-01-01
Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225
Meltwater channel scars and the extent of Mid-Pleistocene glaciation in central Pennsylvania
NASA Astrophysics Data System (ADS)
Marsh, Ben
2017-10-01
High-resolution digital topographic data permit morphological analyses of glacial processes in detail that was previously infeasible. High-level glaciofluvial erosional scars in central Pennsylvania, identified and delimited using LiDAR data, define the approximate ice depth during a pre-Wisconsin advance, > 770,000 BP, on a landscape unaffected by Wisconsin glaciation. Distinctive scars on the prows of anticlinal ridges at 175-350 m above the valley floor locate the levels of subice meltwater channels. A two-component planar GIS model of the ice surface is derived using these features and intersected with a digital model of contemporary topography to create a glacial limit map. The map is compared to published maps, demonstrating the limits of conventional sediment-based mapping. Additional distinctive meltwater features that were cut during deglaciation are modeled in a similar fashion.
BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks.
Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano; Scott, David; Schneider, Martin W; Kallas, Tomasz; Custodio, Joaquin; Wernersson, Erik; Li, Yinqing; Gao, Linyi; Federova, Yana; Zetsche, Bernd; Zhang, Feng; Bienko, Magda; Crosetto, Nicola
2017-05-12
Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.
Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander
2010-01-01
NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.
Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander
2010-01-01
NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel
2015-02-01
Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.
Pluto Topography and Composition Map
2017-09-28
These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036
You are lost without a map: Navigating the sea of protein structures.
Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R
2015-04-01
X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-08-04
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
NASA Astrophysics Data System (ADS)
Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.
2015-12-01
We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching
Guo, Yanrong; Gao, Yaozong
2016-01-01
Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods. PMID:26685226
Kupas, Katrin; Ultsch, Alfred; Klebe, Gerhard
2008-05-15
A new method to discover similar substructures in protein binding pockets, independently of sequence and folding patterns or secondary structure elements, is introduced. The solvent-accessible surface of a binding pocket, automatically detected as a depression on the protein surface, is divided into a set of surface patches. Each surface patch is characterized by its shape as well as by its physicochemical characteristics. Wavelets defined on surfaces are used for the description of the shape, as they have the great advantage of allowing a comparison at different resolutions. The number of coefficients to describe the wavelets can be chosen with respect to the size of the considered data set. The physicochemical characteristics of the patches are described by the assignment of the exposed amino acid residues to one or more of five different properties determinant for molecular recognition. A self-organizing neural network is used to project the high-dimensional feature vectors onto a two-dimensional layer of neurons, called a map. To find similarities between the binding pockets, in both geometrical and physicochemical features, a clustering of the projected feature vector is performed using an automatic distance- and density-based clustering algorithm. The method was validated with a small training data set of 109 binding cavities originating from a set of enzymes covering 12 different EC numbers. A second test data set of 1378 binding cavities, extracted from enzymes of 13 different EC numbers, was then used to prove the discriminating power of the algorithm and to demonstrate its applicability to large scale analyses. In all cases, members of the data set with the same EC number were placed into coherent regions on the map, with small distances between them. Different EC numbers are separated by large distances between the feature vectors. A third data set comprising three subfamilies of endopeptidases is used to demonstrate the ability of the algorithm to detect similar substructures between functionally related active sites. The algorithm can also be used to predict the function of novel proteins not considered in training data set. 2007 Wiley-Liss, Inc.
Continuous Mapping of Tunnel Walls in a Gnss-Denied Environment
NASA Astrophysics Data System (ADS)
Chapman, Michael A.; Min, Cao; Zhang, Deijin
2016-06-01
The need for reliable systems for capturing precise detail in tunnels has increased as the number of tunnels (e.g., for cars and trucks, trains, subways, mining and other infrastructure) has increased and the age of these structures and, subsequent, deterioration has introduced structural degradations and eventual failures. Due to the hostile environments encountered in tunnels, mobile mapping systems are plagued with various problems such as loss of GNSS signals, drift of inertial measurements systems, low lighting conditions, dust and poor surface textures for feature identification and extraction. A tunnel mapping system using alternate sensors and algorithms that can deliver precise coordinates and feature attributes from surfaces along the entire tunnel path is presented. This system employs image bridging or visual odometry to estimate precise sensor positions and orientations. The fundamental concept is the use of image sequences to geometrically extend the control information in the absence of absolute positioning data sources. This is a non-trivial problem due to changes in scale, perceived resolution, image contrast and lack of salient features. The sensors employed include forward-looking high resolution digital frame cameras coupled with auxiliary light sources. In addition, a high frequency lidar system and a thermal imager are included to offer three dimensional point clouds of the tunnel walls along with thermal images for moisture detection. The mobile mapping system is equipped with an array of 16 cameras and light sources to capture the tunnel walls. Continuous images are produced using a semi-automated mosaicking process. Results of preliminary experimentation are presented to demonstrate the effectiveness of the system for the generation of seamless precise tunnel maps.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
Heliport Noise Model (HNM). Version 1. (User’s Guide)
1988-02-01
Examples of acoustically hard surfaces include concrete or asphalt paving, water or baked clay surfaces. Mote that if the site does not meet the...neighbor should be characterized as either Hard (H) or Soft (S). From an acoustic point of view, "hard" ground is either pavement or water . All other...GROUND DISraNCE 10 - MAP - SEIUP 11 - HELIPADS 3 - HELIPADS 12- rAKEOI tRACKS 4 - HELICOPrERS 13 - APPROACH IRACKS 5 - IAKt-OFFS 14- rAxx fRACKS C6
Protein Interactome of Muscle Invasive Bladder Cancer
Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera
2015-01-01
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276
Messina, P.; Stoffer, P.; Smith, W.C.
2005-01-01
Panamint and Eureka playas, both located within Death Valley National Park, exhibit a host of surficial features including fissures, pits, mounds, and plant-covered ridges, representing topographic highs and lows that vary up to 2 m of relief from the playa surface. Aerial photographs reveal that these linear strands often converge to form polygons, ranging in length from several meters to nearly a kilometer. These features stand out in generally dark contrast to the brighter intervening expanse of flat, plant-free, desiccated mud of the typical playa surface. Ground-truth mapping of playa features with differential GPS (Global Positioning System) was conducted in 1999 (North Panamint Valley) and 2002 (Eureka Valley). High-resolution digital maps reveal that both playas possess macropolygons of similar scale and geometry, and that fissures may be categorized into one of two genetic groups: (1) shore-parallel or playa-interior desiccation and shrinkage; and (2) tectonic-induced cracks. Early investigations of these features in Eureka Valley concluded that their origin may have been related to agricultural activity by paleo-Indian communities. Although human artifacts are abundant at each locale, there is no evidence to support the inference that surface features reported on Eureka Playa are anthropogenic in origin. Our assumptions into the genesis of polygons on playas is based on our fortuitous experience of witnessing a fissure in the process of formation on Panamint Playa after a flash flood (May 1999); our observations revealed a paradox that saturation of the upper playa crusts contributes to the establishment of some desiccation features. Follow-up visits to the same feature over 2 yrs' time are a foundation for insight into the evolution and possible longevity of these features. ?? 2005 Elsevier B.V. All rights reserved.
A novel workflow for computer guided implant surgery matching digital dental casts and CBCT scan
DE VICO, G.; FERRARIS, F.; ARCURI, L.; GUZZO, F.; SPINELLI, D.
2016-01-01
SUMMARY Nowadays computer-guided “flap-less” surgery for implant placement using stereolithographic tem-plates is gaining popularity among clinicians and patients. The advantages of this surgical protocol are its minimally invasive nature, accuracy of implant placement, predictability, less post-surgical discomfort and reduced time required for definitive rehabilitation. Aim of this work is to describe a new protocol (Smart Fusion by Nobel Biocare), thanks to which is now possible to do a mini-invasive static guided implant surgery, in partially edentulous patients with at least 6 remaining teeth, without the use of a radiographic guide. This is possible thanks to a procedure named surface mapping based on the matching between numerous points on the surface of patient’s dental casts and the corresponding anatomical surface points in the CBCT data. The full protocol is examined focusing the attention on the clinical and laboratory procedures. Conclusions Also with some critical points and needing an adequate learning curve, this protocol allows to select the ideal implant position in depth, inclination and mesio-distal distance between natural teeth and or other implants enabling a very safe and predictable rehabilitation compared with conventional surgery. It represents a good tool for the best compromise between anatomy, function and aesthetic, able to guarantee better results in all clinical situations. PMID:28042429
Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany
2016-01-01
The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.
NASA Astrophysics Data System (ADS)
Daffara, C.; Parisotto, S.; Mariotti, P. I.
2015-06-01
Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.
A study of the utilization of ERTS-1 data from the Wabash River Basin
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Nine projects are defined, five ERTS data applications experiments and four supporting technology tasks. The most significant applications results were achieved in the soil association mapping, earth surface feature identification, and urban land use mapping efforts. Four soil association boundaries were accurately delineated from ERTS-1 imagery. A data bank has been developed to test surface feature classifications obtained from ERTS-1 data. Preliminary forest cover classifications indicated that the number of acres estimated tended to be greater than actually existed by 25%. Urban land use analysis of ERTS-1 data indicated highly accurate classification could be obtained for many urban catagories. The wooded residential category tended to be misclassified as woods or agricultural land. Further statistical analysis revealed that these classes could be separated using sample variance.
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-12-01
Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.
A global cloud map of the nearest known brown dwarf.
Crossfield, I J M; Biller, B; Schlieder, J E; Deacon, N R; Bonnefoy, M; Homeier, D; Allard, F; Buenzli, E; Henning, Th; Brandner, W; Goldman, B; Kopytova, T
2014-01-30
Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.
Configuration of Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.
2015-11-01
We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.
Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
A tutorial in displaying mass spectrometry-based proteomic data using heat maps.
Key, Melissa
2012-01-01
Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.
Ice sheet topography by satellite altimetry
Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.
1978-01-01
The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.
NASA Technical Reports Server (NTRS)
Bourke, M. C.
2003-01-01
MOC images indicate that aeolian ridges may mask and even obliterate primary depositional surfaces on Mars. This modification increases the difficulty in mapping the recent geological history of the planet. An analogue study in central Australia demonstrates how patterns in aeolian dunes, formed over abandoned fluvial surfaces, can be used to detect buried fluvial features.
Analogical processes in children's understanding of spatial representations.
Yuan, Lei; Uttal, David; Gentner, Dedre
2017-06-01
We propose that map reading can be construed as a form of analogical mapping. We tested 2 predictions that follow from this claim: First, young children's patterns of performance in map reading tasks should parallel those found in analogical mapping tasks; and, second, children will benefit from guided alignment instructions that help them see the relational correspondences between the map and the space. In 4 experiments, 3-year-olds completed a map reading task in which they were asked to find hidden objects in a miniature room, using a corresponding map. We manipulated the availability of guided alignment (showing children the analogical mapping between maps and spaces; Experiments 1, 2, and 3a), the format of guided alignment (gesture or relational language; Experiment 2), and the iconicity of maps (Experiments 3a and 3b). We found that (a) young children's difficulties in map reading follow from known patterns of analogical development-for example, focusing on object similarity over relational similarity; and (b) guided alignment based on analogical reasoning led to substantially better performance. Results also indicated that children's map reading performance was affected by the format of guided alignment, the iconicity of the maps, and the order of tasks. The results bear on the developmental mechanisms underlying young children's learning of spatial representations and also suggest ways to support this learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Sea-Ice Feature Mapping using JERS-1 Imagery
NASA Technical Reports Server (NTRS)
Maslanik, James; Heinrichs, John
1994-01-01
JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Metje, Nicole; Tuckwell, George
2017-11-01
Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.
Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid
York, Royce L.; Yousefi, Payam A.; Bogdanoff, Walter; Haile, Sara; Tripathi, Sarvind
2015-01-01
ABSTRACT Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus capsid proteins. Fitting these structures into previously determined low-resolution maps of astrovirus allowed us to characterize the molecular surfaces of immature and mature astroviruses. Our studies provide the first evidence that astroviruses undergo viral RNA-dependent assembly. We also provide new insight into the molecular mechanisms that lead to astrovirus maturation and infectivity. Finally, we show that both capsid proteins contribute to the adaptive immune response against astrovirus. Together, these studies will help to guide the development of vaccines and antiviral drugs targeting astrovirus. PMID:26656707
NASA Astrophysics Data System (ADS)
Ironi, Liliana; Tentoni, Stefania
2009-08-01
The last decade has witnessed major advancements in the direct application of functional imaging techniques to several clinical contexts. Unfortunately, this is not the case of Electrocardiology. As a matter of fact, epicardial maps, which can hit electrical conduction pathologies that routine surface ECG's analysis may miss, can be obtained non invasively from body surface data through mathematical model-based reconstruction methods. But, their interpretation still requires highly specialized skills that belong to few experts. The automated detection of salient patterns in the map, grounded on the existing interpretation rationale, would therefore represent a major contribution towards the clinical use of such valuable tools, whose diagnostic potential is still largely unexploited. We focus on epicardial activation isochronal maps, which convey information about the heart electric function in terms of the depolarization wavefront kinematics. An approach grounded on the integration of a Spatial Aggregation (SA) method with concepts borrowed from Computational Geometry provides a computational framework to extract, from the given activation data, a few basic features that characterize the wavefront propagation, as well as a more specific set of features that identify an important class of heart rhythm pathologies, namely reentry arrhythmias due to block of conduction.
NASA Astrophysics Data System (ADS)
Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.
2017-12-01
A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a statistical method, using the distribution of nearest neighbor distances, to quantify the degree of clustering and to determine the typical spatial separation among and between microfeature types. We will create density maps of microfeatures in several regions of Europa, and determine the likelihood that a lander will be within 30 km of a sill, assuming an arbitrary landing site.
Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system
NASA Astrophysics Data System (ADS)
Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David
2007-03-01
In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.
Mapping gray-scale image to 3D surface scanning data by ray tracing
NASA Astrophysics Data System (ADS)
Li, Peng; Jones, Peter R. M.
1997-03-01
The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.
Three-dimensional radar imaging of structures and craters in the Martian polar caps.
Putzig, Nathaniel E; Smith, Isaac B; Perry, Matthew R; Foss, Frederick J; Campbell, Bruce A; Phillips, Roger J; Seu, Roberto
2018-07-01
Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (2017) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km 3 , 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.
Three-dimensional radar imaging of structures and craters in the Martian polar caps
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Smith, Isaac B.; Perry, Matthew R.; Foss, Frederick J.; Campbell, Bruce A.; Phillips, Roger J.; Seu, Roberto
2018-07-01
Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (The Leading Edge 36, 43-57, 2017, https://doi.org/10.1190/tle36010043.1) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km3, 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.
Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico
Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.
2009-01-01
This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near the western boundary of the map area.
Guided wave phased array sensor tuning for improved defect detection and characterization
NASA Astrophysics Data System (ADS)
Philtron, Jason H.; Rose, Joseph L.
2014-03-01
Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.
NOAA Office of Exploration and Research > About OER > Strategic Plan
Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Strategic Plan Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff
NOAA Office of Exploration and Research > About OER > Overview
Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Overview Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and
NOAA Office of Exploration and Research > About OER > Contact Us
Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Contact Us Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff
NOAA Office of Exploration and Research > About OER > Program Review
Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Program Review Home About OER Overview Organization Guiding Documents Organizational Structure Map of
NASA Astrophysics Data System (ADS)
Zhang, W.; Hu, B.; Brown, G.
2018-04-01
The black duck population has decreased significantly due to loss of its breeding habitat. Wetlands are an important feature that relates to habitat management and requires monitoring. Synthetic Aperture Radar (SAR) systems are helpful to map the wetland as the microwave signals are sensitive to water content and can be used to map surface water extent, saturated soils, and flooded vegetation. In this study, RadarSat 2 Polarimetric data is employed to map surface water and track changes in extent over the years through image thresholding and reviewed different approaches of Polarimetric decompositions for detecting flooded vegetation. Also, object-based analysis associated with beaver activity is conducted with combined multispectral SPOT satellite imagery. Results show SAR data has proven ability to improve mapping open water areas and locate flooded vegetation areas.
NASA Technical Reports Server (NTRS)
Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.
1994-01-01
We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.
2015-12-01
The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.
Need for new sensors to map lithologic units
Rowan, Lawrence C.; Barringer, Anthony R.
1980-01-01
One of the most important contributions that remote sensing can make to mineral energy explorations to provide data from satellites to augment regional geological mapping. Geologic maps, which show information on the subsurface, are the main basis for formulating models of resource genesis that guide exploration. However, conventional compilation procedures are time-consuming and therefore often slow the pace of exploration, especially in large, inaccessible areas. Landsat Multispectral Scanner (MSS) images have been applied to a wide variety of specific geological problems, including discrimination of lithologic and delineation of previously unrecognized tectonic features. However, these lithologic distinctions are based on brightness, spectral reflectance, and, less commonly, the morphology of the unit, which in the wavelength region of MSS images are only rarely diagnostic of specific mineralogical content. Limonite is the only lithological material that can be identified be analyzing MSS spectral radiance.
Petrological Mapping of the Crater Boguslawsky
NASA Astrophysics Data System (ADS)
Wöhler, C.; Evdokimova, N. A.; Feoktistova, E. A.; Grumpe, A.; Kapoor, K.; Berezhnoy, A. A.; Shevchenko, V. V.
2015-10-01
An analysis of orbital spectral data of the crater Boguslawsky, the intended target region of the Russian Luna-Glob mission, is performed. We have constructed a high- resolution DEM of the crater Boguslawsky, based on which the temperature regime on the surface is investigated. The depth of the OH absorption feature is analysed.The content of the main elements is estimated, and a petrologic map is constructed accordingly.
Multiscale infrared and visible image fusion using gradient domain guided image filtering
NASA Astrophysics Data System (ADS)
Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia
2018-03-01
For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.
Lineaments of Texas - possible surface expressions of deep-seated phenomena. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, C.M. Jr.; Caran, S.C.
1984-04-01
Lineaments were identified on 51 Landsat images covering Texas and parts of adjacent states in Mexico and the United States. A method of identifying lineaments was designed so that the findings would be consistent, uncomplicated, objective, and reproducible. Lineaments denoted on the Landsat images were traced onto 1:250,000-scale work maps and then rendered cartographically on maps representing each of the 51 Landsat images at a scale of 1:500,000. At this stage more than 31,000 lineaments were identified. It included significant areas outside of Texas. In preparing the final lineament map of Texas at 1:1,000,000-scale from the 1:500,000-scale maps, all featuresmore » that lay outside Texas and repetition among features perceived by individual workers were eliminated. Cultural features were checked for before reducing and cartographically fitting the mosaic of 51 individual map sheets to a single map base. Lineaments that were partly colinear but with different end points were modified into a single lineament trace with the combined length of the two or more colinear lineaments. Each lineament was checked to determine its validity according to our definition. The features were edited again to eliminate processing artifacts within the image itself, as well as representations of cultural features (fencelines, roads, and the like) and geomorphic patterns unrelated to bedrock structure. Thus the more than 31,000 lineaments originally perceived were reduced to the approximately 15,000 presented on the 1:1,000,000 map. Interpretations of the lineaments are presented.« less
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.
2011-12-01
NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.
NASA Technical Reports Server (NTRS)
Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.
1980-01-01
Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.
Hale, Lindsay B.
2007-01-01
INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite head may differ from the potentiometric-surface altitude, particularly beneath hilltops and valleys where vertical hydraulic gradients are significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rossi, P; Ogunleye, T
2014-06-15
Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquiredmore » under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior. Successful integration of multi-parametric MR and TRUS prostate images provides a prostate-cancer map for treatment planning, enables accurate dose planning and delivery, and potentially enhances prostate HDR treatment outcome.« less
Venusian tectonics: Convective coupling to the lithosphere?
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1987-01-01
The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.
a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization
NASA Astrophysics Data System (ADS)
Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.
2017-07-01
Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.
Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8
NASA Astrophysics Data System (ADS)
Hudson, A.; Hansen, M.
2015-12-01
Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.
NASA Technical Reports Server (NTRS)
Degnan, John J. (Inventor)
2007-01-01
This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing
2017-11-01
The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Role of remote sensing in Bay measurements
NASA Technical Reports Server (NTRS)
Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.
1978-01-01
Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.
Lowe, Aaron M.; Bertics, Paul J.; Abbott, Nicholas L.
2009-01-01
We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethyleneglycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 µm. When combined, the results described in this paper suggest non-destructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies. PMID:18355089
A field guide to pedoderm and pattern classes
USDA-ARS?s Scientific Manuscript database
Pedoderm and Pattern Classes (PPCs) describe the soil pedoderm (i.e., the air-soil interface), the spatial arrangement (pattern) of plants potentially influencing the soil pedoderm, and evidence of soil redistribution. PPCs provide a record of soil surface features and plant patterns that influence ...
Automated segmentation of dental CBCT image with prior-guided sequential random forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less
Cha, Kenny H.; Hadjiiski, Lubomir; Samala, Ravi K.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.
2016-01-01
Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. PMID:27036584
Tracking the Polar Front south of New Zealand using penguin dive data
NASA Astrophysics Data System (ADS)
Sokolov, Serguei; Rintoul, Stephen R.; Wienecke, Barbara
2006-04-01
Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south.
Mapping Vesta: First Results from Dawn's Survey Orbit
NASA Technical Reports Server (NTRS)
Jaumann, R.; Yingst, A. R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Neukum, G.; Mottola, S.; Keller, H. U.; Nathues, A.; Sierks, H.;
2011-01-01
The geologic objectives of the Dawn Mission [1] are to derive Vesta s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase - the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of approx.3000 km with a beta angle of 10deg-15deg.
Surface registration technique for close-range mapping applications
NASA Astrophysics Data System (ADS)
Habib, Ayman F.; Cheng, Rita W. T.
2006-08-01
Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.
Sajisevi, Mirabelle; Rigual, Nestor R; Bellnier, David A.; Seshadri, Mukund
2014-01-01
Objective Photodynamic therapy (PDT) is a clinically approved minimally invasive treatment for cancer. In this preclinical study, using an imaging-guided approach, we examined the potential utility of PDT in the management of bulky squamous cell carcinomas (SCCs). Methods To mimic bulky oropharyngeal cancers seen in the clinical setting, intramuscular SCCs were established in six-to-eight week old female C3H mice. Animals were injected with the photosensitizer, 2-[hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH; 0.4 μmol/kg, i.v.) and tumors were illuminated 24 hours post injection with 665 nm light. PDT as a single treatment modality was administered by surface illumination or by interstitial placement of fibers (iPDT). Magnetic resonance imaging was used to guide treatment and assess tumor response to PDT along with correlative histopathologic assessment. Results Interstitial HPPH-PDT resulted in a marked change on T2 maps 24 hours post treatment compared to untreated controls or transcutaneous illumination. Corresponding apparent diffusion coefficient maps also showed hyperintense areas in tumors following iPDT suggestive of effective photodynamic cell kill. Histologic sections (H&E) confirmed presence of extensive tumor necrosis following iPDT. Conclusions These results highlight the potential utility of PDT in the treatment of bulky oropharyngeal cancers. The findings of our study also demonstrate the utility of MRI as a non-invasive tool for mapping of early tissue response to PDT. PMID:25750858
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-01-01
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-11-19
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.
NASA Astrophysics Data System (ADS)
Li, Jun; Xia, Qing; Wang, Xiaofa
2017-10-01
Based on the extended spin-flip model, the all-optical flip-flop stability maps of the 1550nm vertical-cavity surface-emitting laser have been studied. Theoretical results show that excellent agreement is found between theoretical and the reported experimental results in polarization switching point current which is equal to 1.95 times threshold. Furthermore, the polarization bistable region is wide which is from 1.05 to 1.95 times threshold. A new method is presented that uses power difference between two linear polarization modes as the judging criterion of trigger degree and stability maps of all-optical flip-flop operation under different injection parameters are obtained. By alternately injecting set and reset pulse with appropriate parameters, the mutual conversion switching between two polarization modes is realized, the feasibility of all-optical flip-flop operation is checked theoretically. The results show certain guiding significance on the experimental study on all optical buffer technology.
NASA Astrophysics Data System (ADS)
Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu
2018-04-01
A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.
Objects and mappings: incompatible principles of display design - a critique of Marino and Mahan.
Bennett, Kevin B
2005-01-01
Representation aiding (and similar approaches that share the general orientation) has a great deal of utility, predictive ability, and explanatory power. Marino and Mahan (2005) discuss principles that are critical to the RA approach (configurality, emergent features, and mappings) in a reasonable fashion. However, the application of these principles is far from reasonable. The authors explicitly realize the potential for interactions between nutrients: "The nutritional quality of a food product is a multidimensional concept, and higher order interactions between nutrients may exist" (p. 126). However, they made no effort to discover the nature of these interactions: "No attempt was made to identify contingent interactions between nutrients" (p. 126). Despite not knowing the nature of the interactions between nutrients, they purposely chose a highly configural display that produced numerous emergent features dependent upon these interactions: "A radial spoke display was selected because of the strong configural properties of such display formats (Bennett & Flach, 1992)" (p. 124). Finally, the authors show apparent disdain for the specific mappings among domain, agent, and display that are fundamental to the RA approach: "[O]ther configural display formats could have been used" (p. 124). It is impossible to reconcile these statements and the RA approach to display design. However, these statements make perfect sense if a perceptual object is a guiding principle in one's approach to display design. Marino and Mahan (2005) draw heavily upon the principle of a perceptual object in their design justifications, experimental predictions, and interpretations of results. As we have indicated here and elsewhere (Bennett & Flach, 1992), we believe that these two sets of organizing principles for display design (i.e., objects and mappings) are incompatible. Display design will never be an exact science; there will always be elements of art and creativity. However, the guiding principles have moved well beyond the simple strategy of throwing variables into a geometric object format and relying upon the human agent's powerful perceptual systems to carry the design.
Dart, R.L.; Swolfs, H.S.
1998-01-01
A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.
Cimino, James J; Lancaster, William J; Wyatt, Mathew C
2017-01-01
One of the challenges to using electronic health record (EHR) repositories for research is the difficulty mapping study subject eligibility criteria to the query capabilities of the repository. We sought to characterize criteria as "easy" (searchable in a typical repository), "hard" (requiring manual review of the record data), and "impossible" (not typically available in EHR repositories). We obtained 292 criteria from 20 studies available from Clinical Trials.gov and rated them according to our three types, plus a fourth "mixed" type. We had good agreement among three independent reviewers and chose 274 criteria that were characterized by single types for further analysis. The resulting analysis showed typical features of criteria that do and don't map to repositories. We propose that these features be used to guide researchers in specifying eligibility criteria to improve development of enrollment workflow, including the definition of EHR repository queries for self-service or analyst-mediated retrievals.
Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S
2015-07-14
A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.
Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Ohara, T.
1981-01-01
The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. In soil association mapping, computerized analysis of ERTS-1 MSS data has yielded images which will prove useful in the ongoing Cooperative Soil Survey program, involving the Soil Conservation Service of USDA and other state and local agencies. In the present mode of operation, a soil survey for a county may take up to 5 years to be completed. Results indicate that a great deal of soils information can be extracted from ERTS-1 data by computer analysis. This information is expected to be very valuable in the premapping conference phase of a soil survey, resulting in more efficient field operations during the actual mapping. In the earth surface features mapping effort it was found that temporal data improved the classification accuracy of forest classification in Tippecanoe County, Indiana. In water resources study a severe scanner look angle effect was observed in the aircraft scanner data of a test lake which was not present in ERTS-1 data of the same site. This effect was greatly accentuated by surface roughness caused by strong winds. Quantitative evaluation of urban features classification in ERTS-1 data was obtained. An 87.1% test accuracy was obtained for eight categories in Marion County, Indiana.
Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen
2016-06-01
High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.
Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.
2003-01-01
We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.
Geomorphology of coal seam fires
NASA Astrophysics Data System (ADS)
Kuenzer, Claudia; Stracher, Glenn B.
2012-02-01
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.
Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina
2017-10-12
The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mladinich, C.
2010-01-01
Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.
Quality and rigor of the concept mapping methodology: a pooled study analysis.
Rosas, Scott R; Kane, Mary
2012-05-01
The use of concept mapping in research and evaluation has expanded dramatically over the past 20 years. Researchers in academic, organizational, and community-based settings have applied concept mapping successfully without the benefit of systematic analyses across studies to identify the features of a methodologically sound study. Quantitative characteristics and estimates of quality and rigor that may guide for future studies are lacking. To address this gap, we conducted a pooled analysis of 69 concept mapping studies to describe characteristics across study phases, generate specific indicators of validity and reliability, and examine the relationship between select study characteristics and quality indicators. Individual study characteristics and estimates were pooled and quantitatively summarized, describing the distribution, variation and parameters for each. In addition, variation in the concept mapping data collection in relation to characteristics and estimates was examined. Overall, results suggest concept mapping yields strong internal representational validity and very strong sorting and rating reliability estimates. Validity and reliability were consistently high despite variation in participation and task completion percentages across data collection modes. The implications of these findings as a practical reference to assess the quality and rigor for future concept mapping studies are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark
2015-01-01
This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.
Hiker preferences for trail features and maps
Roger E. McCay
1978-01-01
Hikers at a Pennsylvania state park were asked what items were essential to their trail experience. From a list of 18 items, an overwhelming majority of hikers wanted to see trail names and directional signs along a natural surfaced trail.
Investigations of Volcanic and Volatile-Driven Processes Northeast of Hellas Basin, Mars
NASA Astrophysics Data System (ADS)
Mest, S. C.; Crown, D. A.; Michalski, J.; Chuang, F. C.; Price Blount, K.; Bleamaster, L. F.
2018-06-01
We are mapping the geologic units and features in three MTM quadrangles northeast of Hellas basin at 1:1M scale. The area displays evidence for volcanism and widespread volatile-related modification of the surface.
The application of automatic recognition techniques in the Apollo 9 SO-65 experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1970-01-01
A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.
USDA-ARS?s Scientific Manuscript database
Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...
NASA Technical Reports Server (NTRS)
Miller, D. A.; Petersen, G. W.; Kahle, A. B.
1986-01-01
Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.
NASA Astrophysics Data System (ADS)
Liu, Jinxiu; Heiskanen, Janne; Aynekuly, Ermias; Pellikka, Petri
2016-04-01
Tree crown cover (CC) is an important vegetation attribute for land cover characterization, and for mapping and monitoring forest cover. Free data from Landsat and Sentinel-2 allow construction of fine resolution satellite image time series and extraction of seasonal features for predicting vegetation attributes. In the savannas, surface reflectance vary distinctively according to the rainy and dry seasons, and seasonal features are useful information for CC mapping. However, it is unclear if it is better to use spectral bands or vegetation indices (VI) for computation of seasonal features, and how feasible different VI are for CC prediction in the savanna woodlands and agroforestry parklands of West Africa. In this study, the objective was to compare seasonal features based on spectral bands and VI for CC mapping in southern Burkina Faso. A total of 35 Landsat images from November 2013 to October 2014 were processed. Seasonal features were computed using a harmonic model with three parameters (mean, amplitude and phase), and spectral bands, normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), normalized difference water index (NDWI), tasseled cap (TC) indices (brightness, greenness, wetness) as input data. The seasonal features were employed to predict field estimated CC (n = 160) using Random Forest algorithm. The most accurate results were achieved when using seasonal features based on TC indices (R2: 0.65; RMSE: 10.7%) and spectral bands (R2: 0.64; RMSE: 10.8%). GNDVI performed better than NDVI or NDWI, and NDWI resulted in the poorest results (R2: 0.56; RMSE: 11.9%). The results indicate that spectral features should be carefully selected for CC prediction as shown by relatively poor performance of commonly used NDVI. The seasonal features based on three TC indices and all the spectral bands provided superior accuracy in comparison to single VI. The method presented in this study provides a feasible method to map CC based on seasonal features with possibility to integrate medium resolution satellite observation from several sensors (e.g. Landsat and Sentinel-2) in the future.
Spectroscopic remote sensing for material identification, vegetation characterization, and mapping
Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.
2012-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.
ERIC Educational Resources Information Center
Won, Mihye; Krabbe, Heiko; Ley, Siv Ling; Treagust, David F.; Fischer, Hans E.
2017-01-01
In this study, we investigated the value of a concept map marking guide as an alternative formative assessment tool for science teachers to adopt for the topic of energy. Eight high school science teachers marked students' concept maps using an itemized holistic marking guide. Their marking was compared with the researchers' marking and the scores…
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:
Smart Cameras for Remote Science Survey
NASA Technical Reports Server (NTRS)
Thompson, David R.; Abbey, William; Allwood, Abigail; Bekker, Dmitriy; Bornstein, Benjamin; Cabrol, Nathalie A.; Castano, Rebecca; Estlin, Tara; Fuchs, Thomas; Wagstaff, Kiri L.
2012-01-01
Communication with remote exploration spacecraft is often intermittent and bandwidth is highly constrained. Future missions could use onboard science data understanding to prioritize downlink of critical features [1], draft summary maps of visited terrain [2], or identify targets of opportunity for followup measurements [3]. We describe a generic approach to classify geologic surfaces for autonomous science operations, suitable for parallelized implementations in FPGA hardware. We map these surfaces with texture channels - distinctive numerical signatures that differentiate properties such as roughness, pavement coatings, regolith characteristics, sedimentary fabrics and differential outcrop weathering. This work describes our basic image analysis approach and reports an initial performance evaluation using surface images from the Mars Exploration Rovers. Future work will incorporate these methods into camera hardware for real-time processing.
The Monthly Sky Guide: Sixth Edition
NASA Astrophysics Data System (ADS)
Ridpath, Ian; Tirion, Wil
2003-06-01
The latest edition of Ian Ridpath and Wil Tirion's popular guide to the night sky is updated for planet positions and forthcoming eclipses up to the end of the year 2007. With one chapter for each month of the year, this is an easy-to-use handbook for anyone wanting to identify constellations, star clusters, nebulae, to plot the movement of planets, or witness solar and lunar eclipses. Most of the features discussed are visible to the naked eye and all can be seen with a small telescope or binoculars. Ian Ridpath has been a full-time writer, broadcaster and lecturer on astronomy and space for more than twenty-five years. He has written and edited more than 40 books, including A Comet Called Haley (Cambridge, 1985). Wil Tirion made his first star map in 1977. It showed stars to the magnitude of 6.5 and was issued as a set of maps by the British Astronomical Association in 1981. He has illustrated numerous books and magazines, including The Cambridge Star Atlas (Cambridge, 2001). Previous Edition Pb (1999): 0-521-66771-2
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-01-01
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. DOI: http://dx.doi.org/10.7554/eLife.13764.001 PMID:27490481
Brown, Philip Monroe; Miller, James A.; Swain, Frederick Morrill
1972-01-01
This report describes and interprets the results of a detailed subsurface mapping program undertaken in that part of the Atlantic Coastal Plain which extends from the South Carolina and North Carolina border through Long Island, N.Y. Data obtained from more than 2,200 wells are analyzed. Seventeen chronostratigraphic units are mapped in the subsurface. They range in age from Jurassic(?) to post-Miocene. The purpose of the mapping program was to determine the external and internal geometry of mappable chronostratigraphic units and to derive and construct a permeability-distribution network for each unit based upon contrasts in the textures and compositions of its contained sediments. The report contains a structure map and a combined isopach, lithofacies, and permeability-distribution map for each of the chronostratigraphic units delineated in the subsurface. In addition, it contains a map of the top of the basement surface. These maps, together with 36 stratigraphic cross sections, present a three-dimensional view of the regional subsurface hydrogeology. They provide focal points of reference for a discussion of regional tectonics, structure, stratigraphy, and permeability distribution. Taken together and in chronologic sequence, the maps constitute a detailed sedimentary model, the first such model to be constructed for the middle Atlantic Coastal Plain. The chronostratigraphic units mapped record a structural history dominated by lateral and vertical movement along a system of intersecting hinge zones. Taphrogeny, related to transcurrent faulting, is the dominant type of deformation that controlled the geometry of the sedimentary model. Twelve of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are independent of the present-day configuration of the underlying basement surface. These 12 units, classified as genetically unrooted units, are assigned to a first-order tectonic stage. A structural model is proposed whose alinements of positive and negative structural features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant features of the structural model are northeast-plunging half grabens arranged en echelon and bordered by northeast-plunging fault-block anticlines. Tension-type hinge zones that strike north lie athwart the half grabens. Five of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are accordant with the present-day configuration of the underlying basement surface. These five units, classified as genetically rooted units, are assigned to a second-order tectonic stage. A structural model is proposed whose alinements of positive and negative features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant feature of this model is a graben that stands tangential to southeast-plunging asymmetrical anticlines. Tension-type hinge zones that strike northeast lie athwart the graben. To account for the semiperiodic realinement of structural features that has characterized the history of the region and as a working hypothesis, we propose that the dominant tectonic element, which is present in the area between north Florida and Long Island, N.Y., is a unit-structural block, a ?basement? block, bounded by wrench-fault zones. We propose that forces derived principally from the rotation and precession of the earth act on the unit-structural block and deform it. Two tectonic models are proposed. One model is compatible with the structural and sedimentary geometries that are associated with chronostratigraphic units assigned to a first-order tectonic stage. It features tension-type hinge zones that strike north and shear-type hinge zones that strike northeast. The other model is compatible with the structural and sedimentary geometries associated with chronostratigraphi
Computer-aided teniae coli detection using height maps from computed tomographic colonography images
NASA Astrophysics Data System (ADS)
Wei, Zhuoshi; Yao, Jianhua; Wang, Shijun; Summers, Ronald M.
2011-03-01
Computed tomographic colonography (CTC) is a minimally invasive technique for colonic polyps and cancer screening. Teniae coli are three bands of longitudinal smooth muscle on the colon surface. They are parallel, equally distributed on the colon wall, and form a triple helix structure from the appendix to the sigmoid colon. Because of their characteristics, teniae coli are important anatomical meaningful landmarks on human colon. This paper proposes a novel method for teniae coli detection on CT colonography. We first unfold the three-dimensional (3D) colon using a reversible projection technique and compute the two-dimensional (2D) height map of the unfolded colon. The height map records the elevation of colon surface relative to the unfolding plane, where haustral folds corresponding to high elevation points and teniae to low elevation points. The teniae coli are detected on the height map and then projected back to the 3D colon. Since teniae are located where the haustral folds meet, we break down the problem by first detecting haustral folds. We apply 2D Gabor filter banks to extract fold features. The maximum response of the filter banks is then selected as the feature image. The fold centers are then identified based on piecewise thresholding on the feature image. Connecting the fold centers yields a path of the folds. Teniae coli are finally extracted as lines running between the fold paths. Experiments were carried out on 7 cases. The proposed method yielded a promising result with an average normalized RMSE of 5.66% and standard deviation of 4.79% of the circumference of the colon.
2017-12-08
This dramatic image features Hokusai in the foreground, famous for its extensive set of rays, some of which extend for over a thousand kilometers across Mercury's surface. The extensive, bright rays indicate that Hokusai is one of the youngest large craters on Mercury. Check out previously featured images to see high-resolution details of its central peaks, rim and ejecta blanket, and impact melt on its floor. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mapping Urban Ecosystem Services Using High Resolution Aerial Photography
NASA Astrophysics Data System (ADS)
Pilant, A. N.; Neale, A.; Wilhelm, D.
2010-12-01
Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil
Copernicus: Lunar surface mapper
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Anderson, Shaun D.
1992-01-01
The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.
In Situ Guided Wave Structural Health Monitoring System
NASA Technical Reports Server (NTRS)
Zhao, George; Tittmann, Bernhard R.
2011-01-01
Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.
A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features
NASA Technical Reports Server (NTRS)
Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.
2012-01-01
Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.
Map showing scenic features and recreation facilities of the Salina quadrangle, Utah
Williams, Paul L.; Covington, Harry R.
1973-01-01
This map is intended as a guide for those who enjoy outdoor recreation in magnificent scenic settings.The Salina quadrangle lies in the heart of the Colorado Plateau, a sparsely populated land of unique and outstanding scenic beauty. The eastern half of the quadrangle is a great desert, partly blanketed by sand dunes, but mostly an area of badlands multicolored cliffs and benches of virtually barren rock, and deeply incised canyons. In the west half of the quadrangle, rugged tree-covered foothills flank high forested plateaus rimmed by cliffs. On these High Plateaus, dense coniferous forest is interspersed with wide grassy parks, grazed in summer by sheep and cattle. Valleys between the plateaus contain irrigated crop lands.
An RBF-based reparameterization method for constrained texture mapping.
Yu, Hongchuan; Lee, Tong-Yee; Yeh, I-Cheng; Yang, Xiaosong; Li, Wenxi; Zhang, Jian J
2012-07-01
Texture mapping has long been used in computer graphics to enhance the realism of virtual scenes. However, to match the 3D model feature points with the corresponding pixels in a texture image, surface parameterization must satisfy specific positional constraints. However, despite numerous research efforts, the construction of a mathematically robust, foldover-free parameterization that is subject to positional constraints continues to be a challenge. In the present paper, this foldover problem is addressed by developing radial basis function (RBF)-based reparameterization. Given initial 2D embedding of a 3D surface, the proposed method can reparameterize 2D embedding into a foldover-free 2D mesh, satisfying a set of user-specified constraint points. In addition, this approach is mesh free. Therefore, generating smooth texture mapping results is possible without extra smoothing optimization.
Development of a Mapped Diabetes Community Program Guide for a Safety Net Population
Zallman, Leah; Ibekwe, Lynn; Thompson, Jennifer W.; Ross-Degnan, Dennis; Oken, Emily
2014-01-01
Purpose Enhancing linkages between patients and community programs is increasingly recognized as a method for improving physical activity, nutrition and weight management. Although interactive mapped community program guides may be beneficial, there remains a dearth of articles that describe the processes and practicalities of creating such guides. This article describes the development of an interactive, web-based mapped community program guide at a safety net institution and the lessons learned from that process. Conclusions This project demonstrated the feasibility of creating two maps – a program guide and a population health map. It also revealed some key challenges and lessons for future work in this area, particularly within safety-net institutions. Our work underscores the need for developing partnerships outside of the health care system and the importance of employing community-based participatory methods. In addition to facilitating improvements in individual wellness, mapping community programs also has the potential to improve population health management by healthcare delivery systems such as hospitals, health centers, or public health systems, including city and state departments of health. PMID:24752180
Venus - Three-Dimensional Perspective View of Alpha Regio
NASA Technical Reports Server (NTRS)
1992-01-01
A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus. Alpha Regio, a topographic upland approximately 1300 kilometers across, is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar. The radar-bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs, and flat-floored fault valleys that, together, form a polygonal outline. Directly south of the complex ridged terrain is a large ovoid-shaped feature named Eve. The radar-bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Ray tracing is used to generate a perspective view from this map. The vertical scale is exaggerated approximately 23 times. Simulated color and a digital elevation map developed by the U. S. Geological Survey are used to enhance small scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall, and Myche McAuley, and is a single frame from the movie released at the March 5, 1991, press conference.
Godoy, Eduardo J.; Lozano, Miguel; Martínez-Mateu, Laura; Atienza, Felipe; Saiz, Javier; Sebastian, Rafael
2017-01-01
Non-invasive localization of continuous atrial ectopic beats remains a cornerstone for the treatment of atrial arrhythmias. The lack of accurate tools to guide electrophysiologists leads to an increase in the recurrence rate of ablation procedures. Existing approaches are based on the analysis of the P-waves main characteristics and the forward body surface potential maps (BSPMs) or on the inverse estimation of the electric activity of the heart from those BSPMs. These methods have not provided an efficient and systematic tool to localize ectopic triggers. In this work, we propose the use of machine learning techniques to spatially cluster and classify ectopic atrial foci into clearly differentiated atrial regions by using the body surface P-wave integral map (BSPiM) as a biomarker. Our simulated results show that ectopic foci with similar BSPiM naturally cluster into differentiated non-intersected atrial regions and that new patterns could be correctly classified with an accuracy of 97% when considering 2 clusters and 96% for 4 clusters. Our results also suggest that an increase in the number of clusters is feasible at the cost of decreasing accuracy. PMID:28704537
Comparative study of icy patches on comet nuclei
NASA Astrophysics Data System (ADS)
Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio
2016-07-01
Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Stone, Byron D.; DiGiacomo-Cohen, Mary L.
2006-01-01
The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (555 mi2 total) in southeast Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. On Cape Cod and adjacent islands, these materials completely cover the bedrock surface. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relations, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Cartography of irregularly shaped satellites
NASA Technical Reports Server (NTRS)
Batson, R. M.; Edwards, Kathleen
1987-01-01
Irregularly shaped satellites, such as Phobos and Amalthea, do not lend themselves to mapping by conventional methods because mathematical projections of their surfaces fail to convey an accurate visual impression of the landforms, and because large and irregular scale changes make their features difficult to measure on maps. A digital mapping technique has therefore been developed by which maps are compiled from digital topographic and spacecraft image files. The digital file is geometrically transformed as desired for human viewing, either on video screens or on hard copy. Digital files of this kind consist of digital images superimposed on another digital file representing the three-dimensional form of a body.
Wildland resource information system: user's guide
Robert M. Russell; David A. Sharpnack; Elliot L. Amidon
1975-01-01
This user's guide provides detailed information about how to use the computer programs of WRIS, a computer system for storing and manipulating data about land areas. Instructions explain how to prepare maps, digitize by automatic scanners or by hand, produce polygon maps, and combine map layers. Support programs plot maps, store them on tapes, produce summaries,...
First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging
NASA Astrophysics Data System (ADS)
Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.
2012-05-01
Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.
Geological Mapping of Pluto and Charon Using New Horizons Data
NASA Astrophysics Data System (ADS)
Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Schenk, P. M.; Beyer, R. A.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team
2016-06-01
Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Systematic mapping has revealed that much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many mapped valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident in the mapping of Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.
Method for identifying anomalous terrestrial heat flows
Del Grande, Nancy Kerr
1977-01-25
A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.
NASA Astrophysics Data System (ADS)
Mackay, D. Scott; Band, Lawrence E.
1998-04-01
This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.
Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface
NASA Astrophysics Data System (ADS)
Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping
2011-12-01
Mineral maps derived from remotes sensing data can be used to address geological questions about mineral systems important for exploration and mining. This paper focuses on the application of geoscience-tuned multi- and hyperspectral sensors (e.g. ASTER, HyMap) and the methods to routinely create meaningful higher level geoscience products from these data sets. The vision is a 3D mineral map of the earth's surface and subsurface. Understanding the physicochemistry of rock forming minerals and the related diagnostic absorption features in the visible, near, mid and far infrared is a key for mineral mapping. For this, reflectance spectra obtained with lab based visible and infrared spectroscopic (VIRS) instruments (e.g. Bruker Hemisphere Vertex 70) are compared to various remote and proximal sensing techniques. Calibration of the various sensor types is a major challenge with any such comparisons. The spectral resolution of the respective instruments and the band positions are two of the main factors governing the ability to identify mineral groups or mineral species and compositions of those. The routine processing method employed by the Western Australian Centre of Excellence for 3D Mineral Mapping (http://c3dmm.csiro.au) is a multiple feature extraction method (MFEM). This method targets mineral specific absorption features rather than relying on spectral libraries or the need to find pure endmembers. The principle behind MFEM allows us to easily compare hyperspectral surface and subsurface data, laying the foundation for a seamless and accurate 3-dimensional mineral map. The advantage of VIRS techniques for geoscientific applications is the ability to deliver quantitative mineral information over multiple scales. For example, C3DMM is working towards a suite of ASTER-derived maps covering the Australian continent, scheduled for publication in 2012. A suite of higher level geoscience products of Western Australia (e.g. AlOH group abundance and composition) are now available. The multispectral satellite data can be integrated with hyperspectral airborne and drill core data (e.g. HyLogging), which is demonstrated by various case studies ranging from Channel Iron Deposits in the Hamersley Basin (WA) to various Australian orogenic Au deposits. Comparison with airborne and field hyperspectral or lab-based VIRS, as well as independent analyses such as XRD and geochemistry, enables us to deliver cross-calibrated geoscience products derived from the whole suite of geoscience tuned multi- and hyperspectral technologies. Kaolin crystallinity and hematite-goethite ratio for characterization of regolith, and Tschermak substitution in white micas for mapping of chemical gradients associated with hydrothermal ore deposits are a few of the multiple examples where 3D mineral maps can help to resolve geological questions.
Generation of 3-D surface maps in waste storage silos using a structured light source
NASA Technical Reports Server (NTRS)
Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.
1992-01-01
Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.
Jiang, L.; Liao, M.; Lin, H.; Yang, L.
2009-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
NASA Astrophysics Data System (ADS)
Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.
2006-03-01
Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.
Mobile laser scanning applied to the earth sciences
Brooks, Benjamin A.; Glennie, Craig; Hudnut, Kenneth W.; Ericksen, Todd; Hauser, Darren
2013-01-01
Lidar (light detection and ranging), a method by which the precise time of flight of emitted pulses of laser energy is measured and converted to distance for reflective targets, has helped scientists make topographic maps of Earth's surface at scales as fine as centimeters. These maps have allowed the discovery and analysis of myriad otherwise unstudied features, such as fault scarps, river channels, and even ancient ruins [Glennie et al., 2013b].
Preverbal and verbal counting and computation.
Gallistel, C R; Gelman, R
1992-08-01
We describe the preverbal system of counting and arithmetic reasoning revealed by experiments on numerical representations in animals. In this system, numerosities are represented by magnitudes, which are rapidly but inaccurately generated by the Meck and Church (1983) preverbal counting mechanism. We suggest the following. (1) The preverbal counting mechanism is the source of the implicit principles that guide the acquisition of verbal counting. (2) The preverbal system of arithmetic computation provides the framework for the assimilation of the verbal system. (3) Learning to count involves, in part, learning a mapping from the preverbal numerical magnitudes to the verbal and written number symbols and the inverse mappings from these symbols to the preverbal magnitudes. (4) Subitizing is the use of the preverbal counting process and the mapping from the resulting magnitudes to number words in order to generate rapidly the number words for small numerosities. (5) The retrieval of the number facts, which plays a central role in verbal computation, is mediated via the inverse mappings from verbal and written numbers to the preverbal magnitudes and the use of these magnitudes to find the appropriate cells in tabular arrangements of the answers. (6) This model of the fact retrieval process accounts for the salient features of the reaction time differences and error patterns revealed by experiments on mental arithmetic. (7) The application of verbal and written computational algorithms goes on in parallel with, and is to some extent guided by, preverbal computations, both in the child and in the adult.
Barau, Inuwa; Zubairu, Mahmud; Mwanza, Michael N; Seaman, Vincent Y
2014-11-01
Historically, microplanning for polio vaccination campaigns in Nigeria relied on inaccurate and incomplete hand-drawn maps, resulting in the exclusion of entire settlements and missed children. The goal of this work was to create accurate, coordinate-based maps for 8 polio-endemic states in northern Nigeria to improve microplanning and support tracking of vaccination teams, thereby enhancing coverage, supervision, and accountability. Settlement features were identified in the target states, using high-resolution satellite imagery. Field teams collected names and geocoordinates for each settlement feature, with the help of local guides. Global position system (GPS) tracking of vaccination teams was conducted in selected areas and daily feedback provided to supervisors. Geographic information system (GIS)-based maps were created for 2238 wards in the 8 target states. The resulting microplans included all settlements and more-efficient team assignments, owing to the improved spatial reference. GPS tracking was conducted in 111 high-risk local government areas, resulting in improved team performance and the identification of missed/poorly covered settlements. Accurate and complete maps are a necessary part of an effective polio microplan, and tracking vaccinators gives supervisors a tool to ensure that all settlements are visited. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Electron and ion distribution functions in magnetopause reconnection
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.
2015-12-01
We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.
Grabens on Io: Evidence for Extensional Tectonics
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Schenk, P.
2012-12-01
Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture (as also occurs extensively on neighboring Europa). The record can be confused if the features formed at different times or if the stress pattern shifts due to nonsynchronous rotation of the lithosphere (Milazzo et al., 2001). Alternatively, curvilinear or concentric extensional fractures (graben) could be related to local loading of planetary lithospheres. On Io, this could be the result of construction of volcanic edifices or global convection patterns forming localized sites of upwelling and downwelling (e.g., Tackley et al., 2001). However, constructional volcanic edifices are quite rare on Io (Schenk et al., 2004a) and convective stresses on Io are likely to be quite small (Kirchoff and McKinnon, 2009). An obvious caveat to stress analyses is the possibility of resurfacing locally erasing tectonic signatures of graben, in part or entirely. Despite resurfacing, erosional and tectonic scarps, lineaments and grabens are relatively abundant at all latitudes and longitudes on Io, given the limited global mapping. Grabens are typically not found on the younger units, suggesting that tectonic forces on Io were of greater magnitude in the past, that much of the surface is very young and has not yet undergone deformation, or that only with age do the surface materials become strong enough to deform by brittle failure rather than ductile flow (Whitford-Stark et al., 1990).
Landslides in the western Columbia Gorge, Skamania County, Washington
Pierson, Thomas C.; Evarts, Russell C.; Bard, Joseph A.
2016-11-04
SummaryRecent light detection and ranging (lidar) imagery has allowed us to identify and map a large number of previously unrecognized landslides, or slides, in heavily forested terrain in the western Columbia Gorge, Skamania County, Washington, and it has revealed that the few previously recognized areas of instability are actually composites of multiple smaller landslides. The high resolution of the imagery further reveals that landslides in the map area have complex movement histories and span a wide range of relative ages. Movement histories are inferred from relative landslide locations and crosscutting relations of surface features. Estimated age ranges are based on (1) limited absolute dating; (2) relative fineness of landscape surface textures, calibrated by comparison with surfaces of currently active and dated landslides as interpreted from interferometric synthetic aperture radar (InSAR), global positioning system (GPS), and historical records; (3) sharpness and steepness of larger-scale surface morphologic features, calibrated by comparison with similar dated features in other regions; (4) degree of surface erosion; and (5) evidence of erosion or deposition by late Pleistocene (15–22 ka) Missoula floods at or below 200 m altitude. The relative age categories are recent (0 to ~1,000 years old), intermediate-age (~1,000 to ~15,000 years old), and old (>~15,000 years old). Within the 221.5 km2 map area, we identified 215 discrete landslides, covering 140.9 km2 (64 percent of the map area). At least 12 of the recent landslides are currently moving or have moved within the last two decades. Mapping for this study expanded the area of previously recognized unstable terrain by 56 percent. Landslide geometries suggest that more than half (62 percent) of these slope failures are translational landslides or composite landslides with translational elements, with failure occurring along gently sloping bedding planes in zones of deeply weathered, locally clay rich volcaniclastic sedimentary units. Approximately two-thirds of the mapped landslide area comprises landslides that have remobilized parts of older slides, and 37 percent of these reactivated slides have involved reactivation of material from two or more older slides. The largest two recent landslides have volumes ≈1 km3 and runouts ≈6 km. One of these, the Bonneville landslide, temporarily dammed the Columbia River almost 600 years ago, and subsequent dam-break flooding inundated downstream areas. The other, the Red Bluffs landslide, slid into the river adjacent to the Bonneville landslide but apparently did not form a landslide dam. Another such landslide rapidly sliding into the Columbia River today could have a catastrophic impact on downstream communities and on the transportation and energy-distribution infrastructure of the Pacific Northwest.
Faciotopy—A face-feature map with face-like topology in the human occipital face area
Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus
2015-01-01
The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for “faciotopy”, a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. PMID:26235800
Faciotopy-A face-feature map with face-like topology in the human occipital face area.
Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus
2015-11-01
The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for "faciotopy", a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska
Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.
2014-01-01
On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents, and small-scale maps, as well as links to slideshows of additional photographs and Google Street View™ scenes. Buildings in Anchorage that were severely damaged, sites of major landslides, and locations of post-earthquake engineering responses are highlighted. The web map can be used online as a virtual tour or in a physical self-guided tour using a web-enabled Global Positioning System (GPS) device. This publication serves the purpose of committing most of the content of the web map to a single distributable document. As such, some of the content differs from the online version.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Optical fluorescence-guided imaging is increasingly used to guide surgery and endoscopic procedures. Sprayable enzyme-activatable probes are particularly useful because of high target-to-background ratios that increase sensitivity for tiny cancer foci. However, green fluorescent activatable probes suffers from interference from autofluorescence found in biological tissue. Dynamic imaging followed by the kinetic analysis could be detected local enzyme activity and used to differentiate specific fluorescence arising from an activated probe in a tumor from autofluorescence in background tissues especially when low concentrations of the dye are applied to detect tiny cancer foci. Serial fluorescence imaging was performed using various concentrations of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) which was sprayed on the peritoneal surface with tiny implants of SHIN3-dsRed ovarian cancer tumors. Temporal differences in signal between specific green fluorescence in cancer foci and non-specific autofluorescence in background tissue was measured and processed into three kinetic maps reflecting maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC), respectively. Especially at lower concentrations, kinetic maps derived from dynamic fluorescence imaging were clearly superior to unprocessed images for detection small cancer foci.
Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies
NASA Astrophysics Data System (ADS)
Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.
2014-12-01
Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar, J.; Andres, J. de; Lucas, J. M.
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less
Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac
2018-01-01
The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including neuronal cell bodies, axons, and chemoarchitecture; to generate data-constrained hypotheses difficult to formulate otherwise. The alignment strategies provided in this study constitute a basic starting point for first-order, user-guided data migration between PW and S reference spaces along three dimensions that is potentially extensible to other spatial reference systems for the rat brain. PMID:29765309
Overview of Vesta Mineralogy Diversity
NASA Technical Reports Server (NTRS)
DeSanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.;
2012-01-01
4 Vesta is known to have a surface of basaltic material through visible/near-infrared reflectance spectroscopy (1). Vesta s spectrum has strong absorption features centered near 0.9 and 1.9 m, indicative of Fe-bearing pyroxenes. The spectra of HED (howardite, eucrite and diogenite) meteorites have similar features (1). This led to the hypothesis that Vesta was the parent body of the HED clan (2,3) and the discovery of a dynamical Vesta family of asteroids (Vestoids) provides a further link between Vesta and HEDs (4). Data from the Dawn VIR (Visible InfraRed mapping Spectrometer) (5) characterize and map the mineral distribution on Vesta, strengthen the Vesta - HED linkage and provide new insights into Vesta s formation and evolution.
The Influence of Parameters on the Generatrix of the Helicoid Form Guide of Geokhod Bar Working Body
NASA Astrophysics Data System (ADS)
Aksenov, Vladimir; Sadovets, Vladimir; Pashkov, Dmitriy
2017-11-01
Influence of geometrical parameters of generatrix of helicoid on a guide of geokhod bar working body is proved in article. The relevance of the conducted research is considered and proved. General characteristics of the geokhod are presented. Features of geokhod working body, in particular formation of irregular shape of a surface of a face and working body are formulated and also it is told that at screw movement of geokhod working body of a face, points of working body will be formed a helicoid (screw) surface of a face. For establishing of die goals and objectives of research general geometrical parameters of generatrix is marked and justified which treat length of generatrix, width of generatrix of helicoid. pitch of hehcoid and it's form. Forms of guides of geokhod bar working body based on basis parameters of geokhod and accepted general geometrical parameters of geokhod working body are received and presented. In virtue of the conducted research the dependence of a form of a guide of bar on general geometrical parameters of helicoid is defined and also basis parameters of hehcoid in influencing a form of guide of working body.
Photonic guiding structures in lithium niobate crystals produced by energetic ion beams
NASA Astrophysics Data System (ADS)
Chen, Feng
2009-10-01
A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.
Vesta Mineralogy after Dawn Global Observations
NASA Technical Reports Server (NTRS)
ChristinaDeSanctis, Maria; Ammannito, E.; Capaccioni, F.; Cparia, M. T.; Carraro, F.; Fonte, S.; Frigeri, A.; Longobardo, A.; Marchi, S.; Palomba, E.;
2012-01-01
The Dawn mission has completed its mapping phases at Vesta and millions of spectra have been acquired by the Visible and InfraRed Mapping Spectrometer, VIR(1). VIR characterizes and maps the mineral distribution on Vesta -strengthening the Vesta HED linkage- and provides new insights into Vesta s formation and evolution(2,3). VIR spectra are dominated by pyroxene absorptions near 0.9 and 2.0 m and large thermal emission beyond 3.5 m. Although almost all surface materials exhibit howardite-like spectra, some large regions can be interpreted to be richer in eucritic (basaltic) material and others richer in diogenititic (Mg-orthopyroxenitic) material. The Rheasilvia basin contains Mg-pyroxene-rich terrains for example. Vesta' s surface shows considerable diversity at local scales. Many bright and dark areas(3,4) are associated with various geological features and show remarkably different morphology. Moreover, VIR detected statistically significant, but weak, variations at 2.8 m that have been interpreted as indicating the presence of OH-bearing phases on the surface(5). The OH distribution is uneven with large regions lacking this absorption feature. Associations of 2.8 m band with morphological structures indicate complex process responsible for OH. Vesta exhibits large spectral variations that often correlate with geological structures, indicating a complex geological and evolutionary history, more similar to that of the terrestrial planets than to other asteroids visited by spacecrafts.
Oita, Azusa; Tsuboi, Yuuri; Date, Yasuhiro; Oshima, Takahiro; Sakata, Kenji; Yokoyama, Akiko; Moriya, Shigeharu; Kikuchi, Jun
2018-04-24
There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water. Copyright © 2018. Published by Elsevier B.V.
Case-based fracture image retrieval.
Zhou, Xin; Stern, Richard; Müller, Henning
2012-05-01
Case-based fracture image retrieval can assist surgeons in decisions regarding new cases by supplying visually similar past cases. This tool may guide fracture fixation and management through comparison of long-term outcomes in similar cases. A fracture image database collected over 10 years at the orthopedic service of the University Hospitals of Geneva was used. This database contains 2,690 fracture cases associated with 43 classes (based on the AO/OTA classification). A case-based retrieval engine was developed and evaluated using retrieval precision as a performance metric. Only cases in the same class as the query case are considered as relevant. The scale-invariant feature transform (SIFT) is used for image analysis. Performance evaluation was computed in terms of mean average precision (MAP) and early precision (P10, P30). Retrieval results produced with the GNU image finding tool (GIFT) were used as a baseline. Two sampling strategies were evaluated. One used a dense 40 × 40 pixel grid sampling, and the second one used the standard SIFT features. Based on dense pixel grid sampling, three unsupervised feature selection strategies were introduced to further improve retrieval performance. With dense pixel grid sampling, the image is divided into 1,600 (40 × 40) square blocks. The goal is to emphasize the salient regions (blocks) and ignore irrelevant regions. Regions are considered as important when a high variance of the visual features is found. The first strategy is to calculate the variance of all descriptors on the global database. The second strategy is to calculate the variance of all descriptors for each case. A third strategy is to perform a thumbnail image clustering in a first step and then to calculate the variance for each cluster. Finally, a fusion between a SIFT-based system and GIFT is performed. A first comparison on the selection of sampling strategies using SIFT features shows that dense sampling using a pixel grid (MAP = 0.18) outperformed the SIFT detector-based sampling approach (MAP = 0.10). In a second step, three unsupervised feature selection strategies were evaluated. A grid parameter search is applied to optimize parameters for feature selection and clustering. Results show that using half of the regions (700 or 800) obtains the best performance for all three strategies. Increasing the number of clusters in clustering can also improve the retrieval performance. The SIFT descriptor variance in each case gave the best indication of saliency for the regions (MAP = 0.23), better than the other two strategies (MAP = 0.20 and 0.21). Combining GIFT (MAP = 0.23) and the best SIFT strategy (MAP = 0.23) produced significantly better results (MAP = 0.27) than each system alone. A case-based fracture retrieval engine was developed and is available for online demonstration. SIFT is used to extract local features, and three feature selection strategies were introduced and evaluated. A baseline using the GIFT system was used to evaluate the salient point-based approaches. Without supervised learning, SIFT-based systems with optimized parameters slightly outperformed the GIFT system. A fusion of the two approaches shows that the information contained in the two approaches is complementary. Supervised learning on the feature space is foreseen as the next step of this study.
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1975-01-01
Recent investigations of the moon are reported. Topics discussed include the Apollo 17 site, selenography, craters, remote sensing, selenophysics, lunar surface fields and particles, magnetic properties of lunar samples, physical property measurements, surface-correlated properties, micrometeoroids, solar-system regoliths, and cosmic rays. Lunar orbital data maps are presented, and the evolution of lunar features is examined.
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users
Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward
2008-01-01
Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.
Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram
NASA Astrophysics Data System (ADS)
Ji, Yuanjin; Ren, Lihui; Zhou, Jinsong
2017-09-01
Translohr tram has steel wheels, in V-like arrangements, as guide wheels. These operate over the guide rails in inverted-V arrangements. However, the horizontal and vertical coordinates of the guide wheels and guide rails are not always mapped one-to-one. In this study, a simplified elastic method is proposed in order to calculate the contact points between the wheels and the rails. By transforming the coordinates, the non-mapping geometric relationship between wheel and rail is converted into a mapping relationship. Considering the Translohr tram's multi-point contact between the guide wheel and the guide rail, the elastic-contact hypothesis take into account the existence of contact patches between the bodies, and the location of the contact points is calculated using a simplified elastic method. In order to speed up the calculation, a multi-dimensional contact table is generated, enabling the use of simulation for Translohr tram running on curvatures with different radii.
NASA Astrophysics Data System (ADS)
Greenhagen, B.; Paige, D. A.
2007-12-01
It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.
NASA Astrophysics Data System (ADS)
Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.
2013-12-01
Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.
Environmental information acquisition and maintenance techniques: reference guide. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggins, R.E.; Young, V.T.; Goran, W.D.
1980-08-01
This report provides a guide to techniques for collecting, using and maintaining data about each of the 13 environmental technical specialties in the Environmental Impact Computer System (EICS). The technical specialties are: (1) ecology, (2) environmental health, (3) air, (4) surface water, (5) ground water, (6) sociology, (7) economics, (8) earth science, (9) land use, (10) noise, (11) transportation, (12) aesthetics, and (13) energy and resource conservation. Acquisition techniques are classified by the following general categories: (1) secondary data, (2) remote sensing, (3) mathematical modeling, (4) field work, (5) mapping/maps and (6) expert opinion. A matrix identifies the most appropriatemore » techniques for collecting information on the EICS technical specialties. After selecting a method, the user may read an abstract of the report explaining that technique, and may also wish to obtain the original document for detailed information about applying the technique. Finally, this report offers guidelines on storing environmental information for future use, and on presenting that information effectively in environmental documents.« less
A study on the prenatal zone of ultrasonic guided waves in plates
NASA Astrophysics Data System (ADS)
Thomas, Tibin; Balasubramaniam, Krishnan
2017-02-01
Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.
Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.
2008-01-01
The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer generally flows to the west in the study area, and to surface features (lakes, rivers, and springs) particularly in the south and east of the study area where the Springfield Plateau aquifer is closest to land surface. The potentiometric-surface map of the Ozark aquifer indicates a maximum measured water-level altitude of 1,303 feet in the study area at a well in Washington County, Arkansas, and a minimum measured water-level altitude of 390 feet in Ottawa County, Oklahoma. The water in the Ozark aquifer generally flows to the northwest in the northern part of the study area and to the west in the remaining study area. Cones of depression occur in Barry, Barton, Cedar, Jasper, Lawrence, McDonald, Newton, and Vernon Counties in Missouri, Cherokee and Crawford Counties in Kansas, and Craig and Ottawa Counties in Oklahoma. These cones of depression are associated with municipal supply wells. The flow directions, based on both potentiometric-surface maps, generally agree with flow directions indicated by previous studies.
Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico; D'Aversa, Emiliano; Capaccioni, Fabrizio; Clark, Roger N.; Cruikshank, Dale P.; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H.; Buratti, Bonnie J.; Nicholson, Phillip D.; Jaumann, Ralf; McCord, Thomas B.; Sotin, Christophe; Stephan, Katrin; Dalle Ore, Cristina M.
2016-06-01
The spectral position of the 3.6 μm continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 μm peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 μm at T=123 K to about 3.55 μm at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione, G., Ciarniello, M., Capaccioni, F., et al., 2014. Icarus, 241, 45-65). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types: (a) a sample of 240 disk-integrated I/F observations of Saturn's regular satellites collected by VIMS during years 2004-2011 with solar phase in the 20°-40° range, corresponding to late morning-early afternoon local times. This dataset is suitable to exploit the temperature variations at hemispherical scale, resulting in average temperature T <88 K for Mimas, T ≪88 K for Enceladus, T <88 K for Tethys, T=98-118 K for Dione, T=108-128 K for Rhea, T=118-128 K for Hyperion, T=128-148 and T > 168 K for Iapetus' trailing and leading hemispheres, respectively. A typical ±5 K uncertainty is associated to the temperature retrieval. On Tethys and Dione, for which observations on both leading and trailing hemispheres are available, in average daytime temperatures higher of about 10 K on the trailing than on the leading hemisphere are inferred. (b) Satellites disk-resolved observations taken at 20-40 km pixel-1 resolution are suitable to map daytime temperature variations across surfaces' features, such as Enceladus' tiger stripes and Tethys' equatorial dark lens. These datasets allow to disentangle solar illumination conditions from temperature distribution when observing surface's features with strong thermal contrast. (c) Daytime average maps covering large regions of the surfaces are used to compare the inferred temperature with geomorphological features (impact craters, chasmatae, equatorial radiation lenses and active areas) and albedo variations. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km pixel-1 resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys. A temperature T > 115K is measured above Enceladus' Damascus and Alexandria sulci in the south pole region. VIMS has the sensitivity to follow seasonal temperature changes: on Tethys, Dione and Rhea higher temperature are measured above the south hemisphere during pre-equinox and above the north hemisphere during post-equinox epochs. The measured temperature distribution appears correlated with surface albedo features: in fact temperature increases on low albedo units located on Tethys, Dione and Rhea trailing hemispheres. The thermal anomaly region on Rhea's Inktomi crater detected by CIRS (Howett, C. J. A., Spencer, J. R., Hurford, T., et al., 2014. Icarus, 241, 239-247) is confirmed by VIMS: this area appears colder with respect to surrounding terrains when observed at the same local solar time.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
Gazetteer of planetary nomenclature 1994
Batson, Raymond M.; Russell, Joel F.
1995-01-01
Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Mckim, H. L.; Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Physiognomic landscape features were used as geologic and vegetative indicators in preparation of a surficial geology, vegetation, and permafrost map at a scale of 1:1 million using ERTS-1 band 7 imagery. The detail from this map compared favorably with USGS maps at 1:250,000 scale. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. ERTS-1 imagery provides for the first time, a means of monitoring the following regional estuarine processes: daily and periodic surface water circulation patterns; changes in the relative sediment load of rivers discharging into the inlet; and, several local patterns not recognized before, such as a clockwise back eddy offshore from Clam Gulch and a counterclockwise current north of the Forelands. Comparison of ERTS-1 and Mariner imagery has revealed that the thermokarst depressions found on the Alaskan North Slope and polygonal patterns on the Yukon River Delta are possible analogs to some Martian terrain features.
Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data
Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric
2003-01-01
Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).
One perspective on spatial variability in geologic mapping
Markewich, H.W.; Cooper, S.C.
1991-01-01
This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.
A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho
2015-03-31
Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less
Stone, Byron D.; Stone, Janet R.
2007-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of eleven 7.5-minute quadrangles (total 505 mi2) in northeast-central Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Stone, Byron D.; Stone, Janet Radway; DiGiacomo-Cohen, Mary L.
2006-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 16 7.5-minute quadrangles (total 658 mi2) in northeast Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (grain size, sedimentary structures, mineral and rock-particle composition), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).
Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo
2015-01-27
A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.
Under trees and water at Crater Lake National Park, Oregon
Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris
2012-01-01
Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.
Evidence for Buried "Pre-Noachian" Crust Pre-Dating the Oldest Observed Surface Units on Mars
NASA Technical Reports Server (NTRS)
Frey, H. V.; Frey, E. L.; Hartmann, W. K.; Tanaka, K. L. T.
2003-01-01
Even though the Early Noachian (EN) used in geologic mapping is undefined at the early end, it is often assumed in absolute chronologies to extend back to 4.6 BYA. We explored this assumption by searching for evidence of buried impact basins, in the largest occurrences of Early Noachian terrain. The hypothesis is that if such basins exist, they indicate crust which must predate the surface units mapped as the oldest on Mars, and those units must then be less than 4.6 BY old. Alternatively, if no such buried features are seen, then the surface units may represent crust of the same age below, which could in principle be as old as Mars. Here we show the former alternative is true. There must be crust older than the oldest mapped surface units. We also show that a number of Noachian terrains on Mars appear to have a common total (visible + buried) crater retention age. This might be either the age of the original (planet-wide?) crust of Mars, or may indicate crater saturation.
Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide
NASA Technical Reports Server (NTRS)
Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)
1987-01-01
This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.
NASA Astrophysics Data System (ADS)
Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.
2008-10-01
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.
Remote Sensing of Salinity and Overview of Results from Aquarius
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Dinnat, E. P.; Meissner, T.; Wentz, F.; Yueh, S. H.; Lagerloef, G. S. E.
2015-01-01
Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 psu
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2010-01-01
Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will provide a regional context and evaluate the distribution, stratigraphic position, and potential lateral continuity of compositionally distinct outcrops identified by spectral instruments currently in orbit (i.e., CRISM and OMEGA). Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleoenvironments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes, including hydrothermal alteration, across the region.
NASA Astrophysics Data System (ADS)
Hughson, K.; Russell, C.; Williams, D. A.; Buczkowski, D.; Mest, S. C.; Scully, J. E. C.; Hiesinger, H.; Platz, T.; Ruesch, O.; Schenk, P.; Frigeri, A.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Park, R. S.; Marchi, S.; De Sanctis, M. C.; Raymond, C. A.
2015-12-01
In order to enable methodical geologic mapping of the surface of Ceres the Dawn Science Team divided its surface into fifteen quadrangles. A preliminary map of the Fejokoo quadrangle is presented here. This region, located between 21˚-66˚N and 270-0˚E, hosts four primary features: (1) the centrally located, 90 km diameter, distinctly hexagonal impact crater Fejokoo; (2) a small unnamed crater midway up the eastern boundary of the quadrangle which contains and is surrounded by bright material; (3) an unnamed degraded crater NW of Fejokoo that contains lobate material deposits on both sides of the crater's S rim; and (4) a heavily cratered unit in the NW portion of the quadrangle. Key objectives for the ongoing mapping of this quadrangle are to assess the types of processes that may be responsible for the creation of the hexagonal Fejokoo crater, identifying the source and nature of the bright material on the eastern boundary, establishing possible mechanisms for the emplacement of lobate material deposits in Fejokoo and the unnamed crater to its NW, and establishing a detailed geological history of the quadrangle. The Fejokoo region is not associated with any major albedo feature identified by the Hubble Space Telescope (Li et al., 2006). At the time of this writing geologic mapping was performed using Framing Camera (FC) mosaics from the Approach (1.3 km/px) and Survey (415 m/px) orbits, including grayscale and color images and digital terrain models derived from stereo images. Future images from the High Altitude Mapping Orbit (140 m/px) and Low Altitude Mapping Orbit (35 m/px) will be used to refine the maps. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, and from the German and Italian Space Agencies.
Hints at Ceres Composition from Color
2015-09-30
This map-projected view of Ceres was created from images taken by NASA's Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015. Images taken using infrared (920 nanometers), red (750 nanometers) and blue (440 nanometers) spectral filters were combined to create this false-color view. Redder colors indicate places on Ceres' surface that reflect light strongly in the infrared, while bluish colors indicate enhanced reflectivity at short (bluer) wavelengths; green indicates places where albedo, or overall brightness, is strongly enhanced. Scientists use this technique in order to highlight subtle color differences across Ceres, which would appear fairly uniform in natural color. This can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features. http://photojournal.jpl.nasa.gov/catalog/PIA19977
Luther, Vishal; Linton, Nick W F; Jamil-Copley, Shahnaz; Koa-Wing, Michael; Lim, Phang Boon; Qureshi, Norman; Ng, Fu Siong; Hayat, Sajad; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa
2016-06-01
Post-infarct ventricular tachycardia is associated with channels of surviving myocardium within scar characterized by fractionated and low-amplitude signals usually occurring late during sinus rhythm. Conventional automated algorithms for 3-dimensional electro-anatomic mapping cannot differentiate the delayed local signal of conduction within the scar from the initial far-field signal generated by surrounding healthy tissue. Ripple mapping displays every deflection of an electrogram, thereby providing fully informative activation sequences. We prospectively used CARTO-based ripple maps to identify conducting channels as a target for ablation. High-density bipolar left ventricular endocardial electrograms were collected using CARTO3v4 in sinus rhythm or ventricular pacing and reviewed for ripple mapping conducting channel identification. Fifteen consecutive patients (median age 68 years, left ventricular ejection fraction 30%) were studied (6 month preprocedural implantable cardioverter defibrillator therapies: median 19 ATP events [Q1-Q3=4-93] and 1 shock [Q1-Q3=0-3]). Scar (<1.5 mV) occupied a median 29% of the total surface area (median 540 points collected within scar). A median of 2 ripple mapping conducting channels were seen within each scar (length 60 mm; initial component 0.44 mV; delayed component 0.20 mV; conduction 55 cm/s). Ablation was performed along all identified ripple mapping conducting channels (median 18 lesions) and any presumed interconnected late-activating sites (median 6 lesions; Q1-Q3=2-12). The diastolic isthmus in ventricular tachycardia was mapped in 3 patients and colocated within the ripple mapping conducting channels identified. Ventricular tachycardia was noninducible in 85% of patients post ablation, and 71% remain free of ventricular tachycardia recurrence at 6-month median follow-up. Ripple mapping can be used to identify conduction channels within scar to guide functional substrate ablation. © 2016 American Heart Association, Inc.
The GIS weasel - An interface for the development of spatial information in modeling
Viger, R.J.; Markstrom, S.M.; Leavesley, G.H.; ,
2005-01-01
The GIS Weasel is a map and Graphical User Interface (GUI) driven tool that has been developed as an aid to modelers in the delineation, characterization of geographic features, and their parameterization for use in distributed or lumped parameter physical process models. The interface does not require user expertise in geographic information systems (GIS). The user does need knowledge of how the model will use the output from the GIS Weasel. The GIS Weasel uses Workstation ArcInfo and its the Grid extension. The GIS Weasel will run on all platforms that Workstation ArcInfo runs (i.e. numerous flavors of Unix and Microsoft Windows).The GIS Weasel requires an input ArcInfo grid of some topographical description of the Area of Interest (AOI). This is normally a digital elevation model, but can be the surface of a ground water table or any other data that flow direction can be resolved from. The user may define the AOI as a custom drainage area based on an interactively specified watershed outlet point, or use a previously created map. The user is then able to use any combination of the GIS Weasel's tool set to create one or more maps for depicting different kinds of geographic features. Once the spatial feature maps have been prepared, then the GIS Weasel s many parameterization routines can be used to create descriptions of each element in each of the user s created maps. Over 200 parameterization routines currently exist, generating information about shape, area, and topological association with other features of the same or different maps, as well many types of information based on ancillary data layers such as soil and vegetation properties. These tools easily integrate other similarly formatted data sets.
Software model of a machine vision system based on the common house fly.
Madsen, Robert; Barrett, Steven; Wilcox, Michael
2005-01-01
The vision system of the common house fly has many properties, such as hyperacuity and parallel structure, which would be advantageous in a machine vision system. A software model has been developed which is ultimately intended to be a tool to guide the design of an analog real time vision system. The model starts by laying out cartridges over an image. The cartridges are analogous to the ommatidium of the fly's eye and contain seven photoreceptors each with a Gaussian profile. The spacing between photoreceptors is variable providing for more or less detail as needed. The cartridges provide information on what type of features they see and neighboring cartridges share information to construct a feature map.
NASA Technical Reports Server (NTRS)
Lathram, E. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A pattern of very old geostructures was recognized, reflecting structures in the crust. This pattern is not peculiar to Alaska, but can be recognized throughout the northern cordillera. A new metallogenic hypothesis for Alaska was developed, based on the relationship of space image linears to known mineral deposits. Using image linear analysis, regional geologic features were also recognized; these features may be used to guide in the location of undiscovered oil and/or gas accumulations in northern Alaska. The effectiveness of ERTS data in enhancing medium and small scale mapping was demonstrated. ERTS data were also used to recognize and monitor the state of large scale vehicular scars on Arctic tundra.
Nokleberg, Warren J.; Price, Raymond A.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.
2017-01-01
The Geologic Road Guides for the Southern Canadian Cordillera provide a layperson’s understanding of the major geologic units and their tectonic origins along portions of two sets of major highways corridors, herein termed the Southern Road Guide and the Northern Road Guide. The two routes are shown on the Southern Canadian Cordillera Geologic Map. The first page of each Road Guide is this map that has Hot Spots for each site.
Karst geomorphology and hydrology of the Shenandoah Valley near Harrisonburg, Virginia
Doctor, Daniel H.; Orndorff, Wil; Maynard, Joel; Heller, Matthew J.; Casile, Gerolamo C.
2014-01-01
The karst of the central Shenandoah Valley has characteristics of both shallow and deep phreatic formation. This field guide focuses on the region around Harrisonburg, Virginia, where a number of these karst features and their associated geologic context can be examined. Ancient, widespread alluvial deposits cover much of the carbonate bedrock on the western side of the valley, where shallow karstification has resulted in classical fluviokarst development. However, in upland exposures of carbonate rock, isolated caves exist atop hills not affected by surface processes other than exposure during denudation. The upland caves contain phreatic deposits of calcite and fine-grained sediments. They lack any evidence of having been invaded by surface streams. Recent geologic mapping and LIDAR (light detection and ranging) elevation data have enabled interpretive association between bedrock structure, igneous intrusions, silicification and brecciation of host carbonate bedrock, and the location of several caves and karst springs. Geochemistry, water quality, and water temperature data support the broad categorization of springs into those affected primarily by shallow near-surface recharge, and those sourced deeper in the karst aquifer. The deep-seated karst formation occurred in the distant past where subvertical fracture and fault zones intersect thrust faults and/or cross-strike faults, enabling upwelling of deep-circulating meteoric groundwater. Most caves formed in such settings have been overprinted by later circulation of shallow groundwater, thus removing evidence of the history of earliest inception; however, several caves do preserve evidence of an earlier formation.
A Novel Approach to Mapping Intertidal Areas Using Shore-Based X-band Marine Radar
NASA Astrophysics Data System (ADS)
Bird, Cai; Bell, Paul
2014-05-01
Monitoring the morphology of coastal zones in response to high energy weather events and changing patterns of erosion and deposition over time is vital in enabling effective decision-making at the coast. Common methods of mapping intertidal bathymetry currently include vessel-based sonar and airborne LiDAR surveys, which are expensive and thus not routinely collected on a continuous basis. Marine radar is a ubiquitous technology in the marine industry and many ports operate a system to guide ships into port, this work aims to utilise this already existing infrastructure to determine bathymetry over large intertidal areas, currently up to 4 km from the radar. Standard X-band navigational radar has been used in the marine industry to measure hydrodynamics and derive bathymetry using empirical techniques for several decades. Methods of depth mapping thus far have relied on the electromagnetic backscattering from wind-roughened water surface, which allows a radar to gather sea surface image data but requires the waves to be clearly defined. The work presented here does not rely on identifying and measuring these spatial wave features, which increases the robustness of the method. Image data collected by a 9.4Ghz Kelvin Hughes radar from a weather station on Hilbre Island at the mouth of the River Dee estuary, UK were used in the development of this method. Image intensity at each pixel is a function of returned electromagnetic energy, which in turn can be related to the roughness of the sea surface. Images collected over time periods of 30 minutes show general patterns of wave breaking and mark the advance and retreat of the waterline in accordance with the tidal cycle and intertidal morphology. Each pixel value can be extracted from these mean images and analysed over the course of several days, giving a fluctuating time series of pixel intensity, the gradient of which gives a series of pulses representing transitions between wet and dry at each location. A tidal elevation record collected from a gauge at the Island is used to generate a similar series of pulses for each elevation above chart datum. A matching algorithm compares these pulse sequences at each tide level and determines a bed elevation value for each pixel location. Values derived have a maximum error of 1 m when compared to a LiDAR survey of the area during the same time period. Refinements of this technique could form the basis of a long-term automated monitoring system for the morphology of intertidal coastal areas allowing varying scales of sedimentary features to be tracked. This may allow the optimisation of maintenance dredging and quantify the effects of beach nourishment and capital dredging along a shoreline.
Surface acoustic waves voltage controlled directional coupler
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.
1988-10-01
An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
NASA Astrophysics Data System (ADS)
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
Tiled vector data model for the geographical features of symbolized maps.
Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang
2017-01-01
Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.
NASA Technical Reports Server (NTRS)
Polcyn, F. C. (Principal Investigator); Rebel, D. L.; Colwell, J. E.
1976-01-01
The author has identified the following significant results. S190A and S190B photography proved to be useful for mapping large scale geomorophological features, and for assessing water depth and water quality. Available S192 data were affected by low frequency noise caused by diode light. Hydrological features were classified, and upland green herbaceous vegetation was separated into several classes based on percent vegetation cover. A model for estimating surface soil moisture based on red and near infrared reflectance data was developed and subsequently implemented.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
Computations on metric maps in mammals: getting oriented and choosing a multi-destination route.
Gallistel, C R; Cramer, A E
1996-01-01
The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.
NASA Astrophysics Data System (ADS)
Chow, Candace; Twele, André; Martinis, Sandro
2016-10-01
Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.
Total Ozone Mapping Spectrometer (TOMS) Level-3 Data Products User's Guide
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Wellemeyer, Charles G.; Seftor, Colin J.; Byerly, William; Celarier, Edward A.
2000-01-01
Data from the TOMS series of instruments span the time period from November 1978, through the present with about a one and a-half year gap from January 1994 through July 1996. A set of four parameters derived from the TOMS measurements have been archived in the form of daily global maps or Level-3 data products. These products are total column ozone, effective surface reflectivity, aerosol index, and erythermal ultraviolet estimated at the Earth surface. A common fixed grid of I degree latitude by 1.25 degree longitude cells over the entire globe is provided daily for each parameter. These data are archived at the Goddard Space Flight Center Distributed Active Archive Center (DAAQ in Hierarchical Data Format (HDF). They are also available in a character format through the TOMS web site at http://toms.gsfc.nasa.gov. The derivations of the parameters, the mapping algorithm, and the data formats are described. The trend uncertainty for individual TOMS instruments is about 1% decade, but additional uncertainty exists in the combined data record due to uncertainty in the relative calibrations of the various TOMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, P. H. H.; Cash, W.
2009-08-01
The orbital light curve of a terrestrial exoplanet will likely contain valuable information about the surface and atmospheric features of the planet, both in its overall shape and hourly variations. We have constructed an empirically based code capable of simulating observations of the Earth from any orientation, at any time of year with continuously updated cloud and snow coverage with a New Worlds Observatory. By simulating these observations over a full orbital revolution at a distance of 10 pc we determine that the detection of an obliquity or seasonal terrain change is possible at low inclinations. In agreement with othermore » studies, a 4 m New Worlds Observer can accurately determine the rotation rate of the planet at a success rate from {approx}30% to 80% with only 5 days of observations depending on the signal to noise of the observations. We also attempt simple inversions of these diurnal light curves to sketch a map of the reflecting planet's surface features. This mapping technique is only successful with highly favorable systems and in particular requires that the cloud coverage must be lower than the Earth's average. Our test case of a 2 M {sub +} planet at 7 pc distance with low exo-zodiacal light and 25% cloud coverage produced crude, but successful results. Additionally, with these highly favorable systems NWO may be able to discern the presence of liquid surface water (or other smooth surfaces) though it requires a complex detection available only at crescent phases in high inclination systems.« less
Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping
NASA Astrophysics Data System (ADS)
Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.
2014-12-01
In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.
Applying manifold learning techniques to the CAESAR database
NASA Astrophysics Data System (ADS)
Mendoza-Schrock, Olga; Patrick, James; Arnold, Gregory; Ferrara, Matthew
2010-04-01
Understanding and organizing data is the first step toward exploiting sensor phenomenology for dismount tracking. What image features are good for distinguishing people and what measurements, or combination of measurements, can be used to classify the dataset by demographics including gender, age, and race? A particular technique, Diffusion Maps, has demonstrated the potential to extract features that intuitively make sense [1]. We want to develop an understanding of this tool by validating existing results on the Civilian American and European Surface Anthropometry Resource (CAESAR) database. This database, provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International, is a rich dataset which includes 40 traditional, anthropometric measurements of 4400 human subjects. If we could specifically measure the defining features for classification, from this database, then the future question will then be to determine a subset of these features that can be measured from imagery. This paper briefly describes the Diffusion Map technique, shows potential for dimension reduction of the CAESAR database, and describes interesting problems to be further explored.
Naming the newly found landforms on Venus
NASA Technical Reports Server (NTRS)
Batson, R. M.; Russell, J. F.
1991-01-01
The mapping of Venus is unique in the history of cartigraphy; never has so much territory been discovered and mapped in so short a period of time. Therefore, in the interest of international scientific communication, there is a unique urgency to the development of a system of names for surface features on Venus. The process began with the naming of features seen on radar images taken from Earth and continued through mapping expeditions of the U.S. and U.S.S.R. However, the Magellan Mission resolves features twenty-five times smaller than those mapped previously, and its radar data will cover an area nearly equivalent to that of the continents and the sea-floors of the Earth combined. The International Astronomical Union (IAU) was charged with the formal endorsement of names of features on the planets. Proposed names are collected, approved, and applied through the IAU Working Group for Planetary System Nomenclature (WGPSN) and its task groups, prior to IAU approval by the IAU General Assembly. Names approved by the WGPSN and its task groups, prior to final approval may be used on published maps and articles, provided that their provisional nature is stipulated. The IAU has established themes for the names to be used on each of the planets; names of historical and mythological women are used on Venus. Names of political entities and those identified with active religions are not acceptable, and a person must have been deceased for three years or more to be considered. Any interested person may propose a name for consideration by the IAU.
LUNAR SITE MAP (APOLLO XV) - MSC
1971-07-16
S71-40085 (July 1971) --- An enlarged Lunar Orbiter photograph of the Apollo 15 landing area in the Hadley-Apennine region on the nearside of the moon. The overlay indicates the location of the numerous informally-named surface features. These names will facilitate understanding the verbal descriptions from the astronauts during their lunar surface extravehicular activity (EVA). This is an August 1967, Lunar Orbiter V photograph of Site 26.1.
Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi
2016-04-07
Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.
Three-dimensional digital mapping of the optic nerve head cupping in glaucoma
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Ramirez, Manuel; Morales, Jose
1992-08-01
Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.
A polyalanine peptide derived from polar fish with anti-infectious activities
NASA Astrophysics Data System (ADS)
Cardoso, Marlon H.; Ribeiro, Suzana M.; Nolasco, Diego O.; de La Fuente-Núñez, César; Felício, Mário R.; Gonçalves, Sónia; Matos, Carolina O.; Liao, Luciano M.; Santos, Nuno C.; Hancock, Robert E. W.; Franco, Octávio L.; Migliolo, Ludovico
2016-02-01
Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.
NASA Astrophysics Data System (ADS)
Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.
2015-03-01
Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.
Building the Traffic, Navigation, and Situation Awareness System (T-NASA) for Surface Operations
NASA Technical Reports Server (NTRS)
McCann, Robert S.
1996-01-01
We report the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four commercial airline pilots carried out a series of 28 gate-to-runway taxi trials at Chicago O'Hare. Half of the trials were conducted under moderate visibility (RVR 1400 ft), and half under low visibility (RVR 700 ft). In the baseline condition, where navigation support was limited to surface features and a Jeppesen paper map, navigation errors were committed on almost half of the trials. These errors were virtually abolished when the electronic moving map or the HUD symbology was available; in addition, compare, the baseline condition, both forms of navigation aid yielded an increase in forward taxi speed. The speed increase was greater for HUD than the electronic moving map, and greater under low visibility than under moderate visibility. These results suggest that combination of electronic moving map and HUD symbology has the potential to greatly increase the efficiency of ground operations, particularly under low-visibility conditions.
NASA Astrophysics Data System (ADS)
Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John
2018-01-01
In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.
SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.
Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.
1984-01-01
Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
A Statistical Analysis of Corona Topography: New Insights into Corona Formation and Evolution
NASA Technical Reports Server (NTRS)
Stofan, E. R.; Glaze, L. S.; Smrekar, S. E.; Baloga, S. M.
2003-01-01
Extensive mapping of the surface of Venus and continued analysis of Magellan data have allowed a more comprehensive survey of coronae to be conducted. Our updated corona database contains 514 features, an increase from the 326 coronae of the previous survey. We include a new set of 106 Type 2 or stealth coronae, which have a topographic rather than a fracture annulus. The large increase in the number of coronae over the 1992 survey results from several factors, including the use of the full Magellan data set and the addition of features identified as part of the systematic geologic mapping of Venus. Parameters of the population that we have analyzed to date include size and topography.
NASA Technical Reports Server (NTRS)
Thompson, David R.; Bornstein, Benjamin; Bue, Brian D.; Tran, Daniel Q.; Chien, Steve A.; Castano, Rebecca
2012-01-01
We present a demonstration of onboard hyperspectral image processing with the potential to reduce mission downlink requirements. The system detects spectral endmembers and then uses them to map units of surface material. This summarizes the content of the scene, reveals spectral anomalies warranting fast response, and reduces data volume by two orders of magnitude. We have integrated this system into the Autonomous Science craft Experiment for operational use onboard the Earth Observing One (EO-1) Spacecraft. The system does not require prior knowledge about spectra of interest. We report on a series of trial overflights in which identical spacecraft commands are effective for autonomous spectral discovery and mapping for varied target features, scenes and imaging conditions.
Geophysical Technologies to Image Old Mine Works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaan Hanna; Jim Pfeiffer
2007-01-15
ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned minesmore » are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.« less
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
Güçlü, Umut; van Gerven, Marcel A J
2015-07-08
Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.
Dynamic patterns of cortical expansion during folding of the preterm human brain.
Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V
2018-03-20
During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.
Karst of the Mid-Atlantic region in Maryland, West Virginia, and Virginia
Doctor, Daniel H.; Weary, David J.; Brezinski, David K.; Orndorff, Randall C.; Spangler, Lawrence E.; Brezinski, David K.; Halka, Jeffrey; Ortt, Richard A.
2015-01-01
The Mid-Atlantic region hosts some of the most mature karst landscapes in North America, developed in highly deformed rocks within the Piedmont and Valley and Ridge physiographic provinces. This guide describes a three-day excursion to examine karst development in various carbonate rocks by following Interstate 70 west from Baltimore across the eastern Piedmont, across the Frederick Valley, and into the Great Valley proper. The localities were chosen in order to examine the structural and lithological controls on karst feature development in marble, limestone, and dolostone rocks with an eye toward the implications for ancient landscape evolution, as well as for modern subsidence hazards. A number of caves will be visited, including two commercial caverns that reveal strikingly different histories of speleogenesis. Links between karst landscape development, hydrologic dynamics, and water resource sustainability will also be emphasized through visits to locally important springs. Recent work on quantitative dye tracing, spring water geochemistry, and groundwater modeling reveal the interaction between shallow and deep circulation of groundwater that has given rise to the modern karst landscape. Geologic and karst feature mapping conducted with the benefit of lidar data help reveal the strong bedrock structural controls on karst feature development, and illustrate the utility of geologic maps for assessment of sinkhole susceptibility.
NASA Astrophysics Data System (ADS)
Zheng, Y.
2015-08-01
Peng Xi county, Sichuan province, the Bao Fan temple mural digitization survey mapping project: we use three-dimensional laserscanning, multi-baseline definition digital photography, multi-spectral digital image acquisition and other technologies for digital survey mapping. The purpose of this project is to use modern mathematical reconnaissance mapping means to obtain accurate mural shape, color, quality and other data. Combined with field investigation and laboratory analysis results, and based on a comprehensive survey and study, a comprehensive analysis of the historical Bao Fan Temple mural artistic and scientific value was conducted. A study of the mural's many qualities (structural, material, technique, preservation environment, degradation, etc.) reveal all aspects of the information carried by the Bao Fan Temple mural. From multiple angles (archeology, architecture, surveying, conservation science and other disciplines) an assessment for the Bao Fan Temple mural provides basic data and recommendations for conservation of the mural. In order to achieve the conservation of cultural relics in the Bao Fan Temple mural digitization survey mapping process, we try to apply the advantages of three-dimensional laser scanning equipment. For wall murals this means obtaining three-dimensional scale data from the scan of the building and through the analysis of these data to help determine the overall condition of the settlement as well as the deformation of the wall structure. Survey analysis provides an effective set of conclusions and suggestions for appropriate mural conservation. But before data collection, analysis and research need to first to select the appropriate scanning equipment, set the appropriate scanning accuracy and layout position of stations necessary to determine the scope of required data. We use the fine features of the three-dimensional laser scanning measuring arm to scan the mural surface deformation degradation to reflect the actual state of the mural surface patch model. For the degradation of the surface of the pigment layer, we use the patch model to simulate the scan obtained from an analysis. Statistics calculated relatively objective mural surface area from volume data, providing more accurate quantitative data for the mural conservation, especially, providing a viable technology for accurate monitoring of continued degradation. We believe, in order to make use of the three-dimensional laser scanning technology in a digital heritage conservation application, the technology should not only be used to record the object geometry and play a role in record keeping aspects, but, rather, should be used during the investigation to protect against targeted degradation and a more meaningful interpretation function. Like the development of the medical application of X-ray technology not only retains a picture, but more importantly, through this technical interpretation of patient pathology, guides doctors in carrying out the treatment work. Therefore, in the process of digitization of cultural heritage research, the focus should shift to the use of digital technology in the analysis of heritage object degradation and degradation monitoring surveys can promote the application of digital technology in the conservation of cultural heritage.
Map and Data for Quaternary Faults and Fault Systems on the Island of Hawai`i
Cannon, Eric C.; Burgmann, Roland; Crone, Anthony J.; Machette, Michael N.; Dart, Richard L.
2007-01-01
Introduction This report and digitally prepared, GIS-based map is one of a series of similar products covering individual states or regions of United States that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. It is part of a continuing the effort to compile a comprehensive Quaternary fault and fold map and database for the United States, which is supported by the U.S. Geological Survey's (USGS) Earthquake Hazards Program. Guidelines for the compilation of the Quaternary fault and fold maps for the United States were published by Haller and others (1993) at the onset of this project. This compilation of Quaternary surface faulting and folding in Hawai`i is one of several similar state and regional compilations that were planned for the United States. Reports published to date include West Texas (Collins and others, 1996), New Mexico (Machette and others, 1998), Arizona (Pearthree, 1998), Colorado (Widmann and others, 1998), Montana (Stickney and others, 2000), Idaho (Haller and others, 2005), and Washington (Lidke and others, 2003). Reports for other states such as California and Alaska are still in preparation. The primary intention of this compilation is to aid in seismic-hazard evaluations. The report contains detailed information on the location and style of faulting, the time of most recent movement, and assigns each feature to a slip-rate category (as a proxy for fault activity). It also contains the name and affiliation of the compiler, date of compilation, geographic and other paleoseismologic parameters, as well as an extensive set of references for each feature. The map (plate 1) shows faults, volcanic rift zones, and lineaments that show evidence of Quaternary surface movement related to faulting, including data on the time of most recent movement, sense of movement, slip rate, and continuity of surface expression. This compilation is presented as a digitally prepared map product and catalog of data, both in Adobe Acrobat PDF format. The senior authors (Eric C. Cannon and Roland Burgmann) compiled the fault data as part of ongoing studies of active faulting on the Island of Hawai`i. The USGS is responsible for organizing and integrating the State or regional products under their National Seismic Hazard Mapping project, including the coordination and oversight of contributions from individuals and groups (Michael N. Machette and Anthony J. Crone), database design and management (Kathleen M. Haller), and digitization and analysis of map data (Richard L. Dart). After being released an Open-File Report, the data in this report will be available online at http://earthquake.usgs.gov/regional/qfaults/, the USGS Quaternary Fault and Fold Database of the United States.
Viking orbiter stereo imaging catalog
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.
1982-01-01
The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.
Sivaraman, Arjun; Sanchez-Salas, Rafael; Ahmed, Hashim U; Barret, Eric; Cathala, Nathalie; Mombet, Annick; Uriburu Pizarro, Facundo; Carneiro, Arie; Doizi, Steeve; Galiano, Marc; Rozet, Francois; Prapotnich, Dominique; Cathelineau, Xavier
2015-07-01
We evaluated the prostate cancer detection with transperineal template-guided mapping biopsy in patients with elevated prostate-specific antigen and negative magnetic resonance imaging (MRI)-guided biopsy. Totally 75 patients underwent transperineal template-guided mapping biopsy for prior negative MRI-guided (cognitive registration) biopsy during April 2013 to August 2014. Primary objective was to report clinically significant cancer detection in this cohort of patients. Significant cancer was defined using varying thresholds of MCL or Gleason grade 3+4 or greater or both. Cancers with more than 80% of positive core length anterior to the level of urethra were termed anterior zone cancer. Secondary objective was to evaluate the potential clinical and radiological predictors for significant cancer detection. The mean age was 61.6 ± 6.5 years and median prostate-specific antigen was 10.4 ng/dl (7.9-18) with a mean MRI target size of 7.2mm (4-11). Transperineal template-guided mapping biopsy identified cancer in 36% (27/75) patients and 66.6% (18/27) of them were anterior zone cancers. The rates of detection of clinically significant and insignificant cancer according to the several definitions used range from 22.7% to 30.7% and 5.3% to 13.3%, respectively. Multivariate analysis did not identify any predictors for finding clinically significant and anterior cancers in this group of patients. Transperineal template-guided mapping biopsy appears to be an excellent biopsy protocol for downstream management following negative MRI-guided biopsy. Most of the cancers detected were predominantly anterior tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
Towards fast and accurate temperature mapping with proton resonance frequency-based MR thermometry
Yuan, Jing; Mei, Chang-Sheng; Panych, Lawrence P.; McDannold, Nathan J.; Madore, Bruno
2012-01-01
The capability to image temperature is a very attractive feature of MRI and has been actively exploited for guiding minimally-invasive thermal therapies. Among many MR-based temperature-sensitive approaches, proton resonance frequency (PRF) thermometry provides the advantage of excellent linearity of signal with temperature over a large temperature range. Furthermore, the PRF shift has been shown to be fairly independent of tissue type and thermal history. For these reasons, PRF method has evolved into the most widely used MR-based thermometry method. In the present paper, the basic principles of PRF-based temperature mapping will be reviewed, along with associated pulse sequence designs. Technical advancements aimed at increasing the imaging speed and/or temperature accuracy of PRF-based thermometry sequences, such as image acceleration, fat suppression, reduced field-of-view imaging, as well as motion tracking and correction, will be discussed. The development of accurate MR thermometry methods applicable to moving organs with non-negligible fat content represents a very challenging goal, but recent developments suggest that this goal may be achieved. If so, MR-guided thermal therapies may be expected to play an increasingly-important therapeutic and palliative role, as a minimally-invasive alternative to surgery. PMID:22773966
Predicting axillary lymph node metastasis from kinetic statistics of DCE-MRI breast images
NASA Astrophysics Data System (ADS)
Ashraf, Ahmed B.; Lin, Lilie; Gavenonis, Sara C.; Mies, Carolyn; Xanthopoulos, Eric; Kontos, Despina
2012-03-01
The presence of axillary lymph node metastases is the most important prognostic factor in breast cancer and can influence the selection of adjuvant therapy, both chemotherapy and radiotherapy. In this work we present a set of kinetic statistics derived from DCE-MRI for predicting axillary node status. Breast DCE-MRI images from 69 women with known nodal status were analyzed retrospectively under HIPAA and IRB approval. Axillary lymph nodes were positive in 12 patients while 57 patients had no axillary lymph node involvement. Kinetic curves for each pixel were computed and a pixel-wise map of time-to-peak (TTP) was obtained. Pixels were first partitioned according to the similarity of their kinetic behavior, based on TTP values. For every kinetic curve, the following pixel-wise features were computed: peak enhancement (PE), wash-in-slope (WIS), wash-out-slope (WOS). Partition-wise statistics for every feature map were calculated, resulting in a total of 21 kinetic statistic features. ANOVA analysis was done to select features that differ significantly between node positive and node negative women. Using the computed kinetic statistic features a leave-one-out SVM classifier was learned that performs with AUC=0.77 under the ROC curve, outperforming the conventional kinetic measures, including maximum peak enhancement (MPE) and signal enhancement ratio (SER), (AUCs of 0.61 and 0.57 respectively). These findings suggest that our DCE-MRI kinetic statistic features can be used to improve the prediction of axillary node status in breast cancer patients. Such features could ultimately be used as imaging biomarkers to guide personalized treatment choices for women diagnosed with breast cancer.
NASA Astrophysics Data System (ADS)
Khuller, A. R.; Kerber, L.
2017-12-01
The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water during the history of the MFF. The preservation of fluvial activity, through inversion and negative relief as well as the `protection' provided by the layers of friable MFF deposits indicates that some of the most well-preserved stratigraphy could perhaps be accessed by future Martian surface exploration missions within the MFF.
Map and data for Quaternary faults and folds in New Mexico
Machette, M.N.; Personius, S.F.; Kelson, K.I.; Haller, K.M.; Dart, R.L.
1998-01-01
The "World Map of Major Active Faults" Task Group is compiling a series of digital maps for the United States and other countries in the Western Hemisphere that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds; the companion database includes published information on these seismogenic features. The Western Hemisphere effort is sponsored by International Lithosphere Program (ILP) Task Group H-2, whereas the effort to compile a new map and database for the United States is funded by the Earthquake Reduction Program (ERP) through the U.S. Geological Survey. The maps and accompanying databases represent a key contribution to the new Global Seismic Hazards Assessment Program (ILP Task Group II-O) for the International Decade for Natural Disaster Reduction. This compilation, which describes evidence for surface faulting and folding in New Mexico, is the third of many similar State and regional compilations that are planned for the U.S. The compilation for West Texas is available as U.S. Geological Survey Open-File Report 96-002 (Collins and others, 1996 #993) and the compilation for Montana will be released as a Montana Bureau of Mines product (Haller and others, in press #1750).
Rocks and geology in the San Francisco Bay region
Stoffer, Philip W.
2002-01-01
The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.
Atrial Fibrillation Ablation Guided by a Novel Nonfluoroscopic Navigation System.
Ballesteros, Gabriel; Ramos, Pablo; Neglia, Renzo; Menéndez, Diego; García-Bolao, Ignacio
2017-09-01
Rhythmia is a new nonfluoroscopic navigation system that is able to create high-density electroanatomic maps. The aim of this study was to describe the acute outcomes of atrial fibrillation (AF) ablation guided by this system, to analyze the volume provided by its electroanatomic map, and to describe its ability to locate pulmonary vein (PV) reconnection gaps in redo procedures. This observational study included 62 patients who underwent AF ablation with Rhythmia compared with a retrospective cohort who underwent AF ablation with a conventional nonfluoroscopic navigation system (Ensite Velocity). The number of surface electrograms per map was significantly higher in Rhythmia procedures (12 125 ± 2826 vs 133 ± 21 with Velocity; P < .001), with no significant differences in the total procedure time. The Orion catheter was placed for mapping in 99.5% of PV (95.61% in the control group with a conventional circular mapping catheter; P = .04). There were no significant differences in the percentage of PV isolation between the 2 groups. In redo procedures, an ablation gap could be identified on the activation map in 67% of the reconnected PV (40% in the control group; P = .042). The measured left atrial volume was lower than that calculated by computed tomography (109.3 v 15.2 and 129.9 ± 13.2 mL, respectively; P < .001). There were no significant differences in the number of complications. The Rhythmia system is effective for AF ablation procedures, with procedure times and safety profiles similar to conventional nonfluoroscopic navigation systems. In redo procedures, it appears to be more effective in identifying reconnected PV conduction gaps. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Europa: Characterization and interpretation of global spectral surface units
Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.
1986-01-01
The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.
Temperate Lakes Discovered on Titan
NASA Astrophysics Data System (ADS)
Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul
2012-04-01
We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a lake.
Lunar surface chemistry: A new imaging technique
Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.
1977-01-01
Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.
Lunar surface chemistry - A new imaging technique
NASA Technical Reports Server (NTRS)
Andre, C. G.; Adler, I.; Bielefeld, M. J.; Eliason, E.; Soderblom, L. A.; Philpotts, J. A.
1977-01-01
Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 X-ray fluorescence data. The data quality improvement is amply demonstrated by (1) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering, and (2) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.
NASA Astrophysics Data System (ADS)
Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin
2013-06-01
As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.
Assessment of a visually guided autonomous exploration robot
NASA Astrophysics Data System (ADS)
Harris, C.; Evans, R.; Tidey, E.
2008-10-01
A system has been developed to enable a robot vehicle to autonomously explore and map an indoor environment using only visual sensors. The vehicle is equipped with a single camera, whose output is wirelessly transmitted to an off-board standard PC for processing. Visual features within the camera imagery are extracted and tracked, and their 3D positions are calculated using a Structure from Motion algorithm. As the vehicle travels, obstacles in its surroundings are identified and a map of the explored region is generated. This paper discusses suitable criteria for assessing the performance of the system by computer-based simulation and practical experiments with a real vehicle. Performance measures identified include the positional accuracy of the 3D map and the vehicle's location, the efficiency and completeness of the exploration and the system reliability. Selected results are presented and the effect of key system parameters and algorithms on performance is assessed. This work was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2008-01-01
Geologic mapping studies at the 1:1M-scale will be used to characterize geologic processes that have shaped the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary will provide the ability to: 1) further test original dichotomy formation hypotheses, 2) constrain ancient paleoenvironments and climate conditions, and 3) evaluate various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The result will be two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).
Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2009-01-01
Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleo-environments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The results of this work will include two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).