Preparation research of Nano-SiC/Ni-P composite coating under a compound field
NASA Astrophysics Data System (ADS)
Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.
2016-07-01
In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.
Modelling hazardous surface hoar layers in the mountain snowpack over space and time
NASA Astrophysics Data System (ADS)
Horton, Simon Earl
Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Magnetic field-related heating instabilities in the surface layers of the sun and stars
NASA Technical Reports Server (NTRS)
Ferrari, A.; Rosner, R.; Vaiana, G. S.
1982-01-01
The stability of a magnetized low-density plasma to current-driven filamentation instabilities is investigated and the results are applied to the surface layers of stars. Unlike previous studies, the initial (i.e., precoronal) state of the stellar surface atmosphere is taken to be a low-density, optically thin magnetized plasma in radiative equilibrium. The linear analysis shows that the surface layers of main-sequence stars (including the sun) which are threaded by magnetic fields are unstable; the instabilities considered lead to structuring perpendicular to the ambient magnetic fields. These results suggest that relatively modest surface motions, in conjunction with the presence of magnetic fields, suffice to account for the presence of inhomogeneous chromospheric and coronal plasma overlying a star's surface.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo
2009-03-01
Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.
Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation
NASA Astrophysics Data System (ADS)
Wang, Q.
2015-12-01
An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
Method for improving performance of high temperature superconductors within a magnetic field
Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo
2010-01-05
The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.
AIRBORNE BACTERIA IN THE ATMOSPHERIC SURFACE LAYER: TEMPORAL DISTRIBUTION ABOVE A GRASS SEED FIELD
Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oregon, in the summer of 1993. he report describes the changes in the atmospheric surface layer over a grass seed field ...
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Fuel cell with interdigitated porous flow-field
Wilson, M.S.
1997-06-24
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.
Potentiometric Detection of Pathogens
2012-01-01
nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally
Method for formation of high quality back contact with screen-printed local back surface field
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-11-30
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
NASA Astrophysics Data System (ADS)
Wilson, S. K.
1993-05-01
Analytical and numerical techniques are used to analyze the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform vertical temperature gradient. Marangoni numbers for the onset of steady convection are found to be critically dependent on the nondimensional Crispation and Bond numbers. Two different asymptotic limits of strong surface tension and strong magnetic field are analyzed. Data obtained indicate that the presence of the magnetic field always has a stabilizing effect on the layer. Assuming that the Marangoni number is a critical parameter, it is shown that, if the free surface is nondeformable, then any particular disturbance can be stabilized with a sufficiently strong magnetic field. If the free surface is deformable and gravity waves are excluded, then the layer is always unstable to infinitely long wavelength disturbances with or without a magnetic field.
Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces
NASA Astrophysics Data System (ADS)
Tang, Huiying; Dong, Huimin; Liu, Zhanwei
2017-11-01
Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.
Self-Assembled Layering of Magnetic Nanoparticles in a Ferrofluid on Silicon Surfaces.
Theis-Bröhl, Katharina; Vreeland, Erika C; Gomez, Andrew; Huber, Dale L; Saini, Apurve; Wolff, Max; Maranville, Brian B; Brok, Erik; Krycka, Kathryn L; Dura, Joseph A; Borchers, Julie A
2018-02-07
This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.
Enhanced magneto-optical imaging of internal stresses in the removed surface layer
NASA Astrophysics Data System (ADS)
Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy
2015-10-01
The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.
Hole-to-surface resistivity measurements.
Daniels, J.J.
1983-01-01
Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author
Effect of Induced Charge Electroosmosis on the Dielectrophoretic Motion of Particles
NASA Astrophysics Data System (ADS)
Swaminathan, T.; Hu, Howard
2006-11-01
Most suspensions involve the formation of ionic double layers next to the surface of particles due to the induced-charge on the surface. These double layers affect the motion of the particle even under AC electric fields. They modify the net dipole moment of the particle and at the same time produce slip velocities on the surfaces of these particles. A method to numerically evaluate the effect of the double layer on the dielectrophoretic motion of particles has been previously developed to study these two effects. The technique involves a matched asymptotic expansion of the electric field near the particle surface, where the double layer is formed, and is written as a jump-boundary-condition for the electric potential when the thickness of the double layer is small compared to the size of the particle. The developed jump-boundary-condition is then used to calculate an effective zeta potential on the particle surface. Unlike classical electroosmosis, this zeta potential is no longer constant on every part of the surface and is dependent on the applied electric field. The effect of the induced-charge electroosmotic slip velocity on the dielectrophoretic motion of particles has been observed using this technique.
New insight in the nature of surface magnetic anisotropy in iron borate
NASA Astrophysics Data System (ADS)
Strugatsky, M.; Seleznyova, K.; Zubov, V.; Kliava, J.
2018-02-01
The theory of surface magnetism of iron borate, FeBO3, has been extended by taking into consideration a crystal field contribution to the surface magnetic anisotropy energy. For this purpose, a model of distortion of the six-fold oxygen environment of iron ions in the near-surface layer of iron borate has been put forward. The spin Hamiltonian parameters for isolated Fe3+ ions in the distorted environment of the near-surface layer have been calculated using the Newman's superposition model. The crystal field contribution to the surface magnetic anisotropy energy has been calculated in the framework of the perturbation theory. The model developed allows concluding that the distortions of the iron environment produce a significant crystal field contribution to the surface magnetic anisotropy constant. The results of experimental studies of the surface magnetic anisotropy in iron borate can be described assuming the existence of relative contractions in the near-surface layer of the order of 1 %.
Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models
NASA Technical Reports Server (NTRS)
Xu, L.
1994-01-01
A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1982-01-01
The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.
NASA Astrophysics Data System (ADS)
Gunko, Yuri F.; Gunko, Natalia A.
2018-05-01
In this paper we consider the problem of determining the structure of the electric field near the surface of a flat insulated body under conditions of a deep vacuum. It is assumed that the emitted particles are electrons leaving the body surface under the influence of ionizing radiation whose velocities distribution near the surface is isotropic. It is estimated the thickness of the screening layer under conditions of stationary emission from a flat surface. The solutio of the problem of determining a stationary self-consistent electric field near the surface is found in a simple analytical form. The thickness of the screening layer is calculated from this formula.
Magnetomechanical effect in silicon (Cz-Si) surface layers
NASA Astrophysics Data System (ADS)
Koplak, O. V.; Dmitriev, A. I.; Morgunov, R. B.
2012-07-01
The mechanical properties of near-surface layers of Czochralski-grown silicon crystals Cz- n-Si(111) have been found to undergo changes in response to an external constant magnetic field ( B ˜ 0.1 T). A magnetically induced variation in the microhardness, Young's modulus, and coefficient of plasticity of silicon crystals correlates with the change in the lattice parameter and internal stresses of the sample. The growth of an oxide film under exposure to a magnetic field plays the principal role in the magnetomechanical effect due to a decrease in the concentration of oxygen complexes in the near-surface layers of the sample. In microstructured silicon, where the surface is considerably more developed, the magnetic field induces more profound changes in the internal stresses as compared to single crystals.
Cover-layer with High Refractive Index for Near-Field Recording Media
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok
2007-06-01
TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.
Cover-Layer with High Refractive Index for Near-Field Recording Media
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok
2007-06-01
TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.
Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.
Lin, K W; Wei, M R; Guo, J Y
2009-03-01
The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.
van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin
2016-06-01
Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.
2018-03-01
Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.
Photo-stimulated low electron temperature high current diamond film field emission cathode
Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM
2012-07-24
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
Method for cleaning a solar cell surface opening made with a solar etch paste
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-06-22
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-10-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1999-01-01
A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1999-08-10
A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).
van Groen, T; Ruardy, L; da Silva, F H
1986-07-01
Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.
NASA Astrophysics Data System (ADS)
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jimenez Cortes, M. A.; Jonassen, M.; van den Kroonenberg, A.; Lenschow, D. H.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-04-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.
Multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1998-01-01
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.
NASA Astrophysics Data System (ADS)
Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.
2017-08-01
The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polemi, A.; Shuford, K. L.
We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.
2010-02-01
CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.
Theory of back-surface-field solar cells
NASA Technical Reports Server (NTRS)
Vonroos, O.
1979-01-01
Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.
Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage
NASA Technical Reports Server (NTRS)
Ristic, D.; Lakshminarayana, B.
1997-01-01
The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.
Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors
Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...
2017-07-07
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.
2018-01-01
Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.
Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions
NASA Astrophysics Data System (ADS)
Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi
2018-06-01
We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.
Displacement field for an edge dislocation in a layered half-space
Savage, J.C.
1998-01-01
The displacement field for an edge dislocation in an Earth model consisting of a layer welded to a half-space of different material is found in the form of a Fourier integral following the method given by Weeks et al. [1968]. There are four elementary solutions to be considered: the dislocation is either in the half-space or the layer and the Burgers vector is either parallel or perpendicular to the layer. A general two-dimensional solution for a dip-slip faulting or dike injection (arbitrary dip) can be constructed from a superposition of these elementary solutions. Surface deformations have been calculated for an edge dislocation located at the interface with Burgers vector inclined 0??, 30??, 60??, and 90?? to the interface for the case where the rigidity of the layer is half of that of the half-space and the Poisson ratios are the same. Those displacement fields have been compared to the displacement fields generated by similarly situated edge dislocations in a uniform half-space. The surface displacement field produced by the edge dislocation in the layered half-space is very similar to that produced by an edge dislocation at a different depth in a uniform half-space. In general, a low-modulus (high-modulus) layer causes the half-space equivalent dislocation to appear shallower (deeper) than the actual dislocation in the layered half-space.
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Carter, L. D.
1975-01-01
Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.
NASA Technical Reports Server (NTRS)
Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.
1994-01-01
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.
Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.
2017-12-01
We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.
Layering of inertial confinement fusion targets in microgravity environments
NASA Astrophysics Data System (ADS)
Parks, P. B.; Fagaly, R. L.
1995-02-01
A critical concern in the fabrication of targets for inertial confinement fusion is ensuring that the hydrogenic (D2 or DT) fuel layer maintains spherical symmetry. Because of gravitationally induced sagging of the liquid prior to freezing, only relatively thin (less than 10 micrometers) layers of solid fuel can be produced by fast refreeze methods. One method to reduce the effective gravitational field environment is free-fall insertion into the target chamber. Another method to counterbalance the gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force (F(sub m)) on the liquid fuel layer. For liquid deuterium, the required B dot product del(vector differential operator) B product to counterbalance the gravitational force (F(sub g)) is approximately 10 T(exp 2)/cm. In this paper, we examine the time-dependent dynamics of the liquid fuel layer in a reduced gravitational field environment. We employ an energy method which takes into account the sum of the free energy associated with the surface tension forces, net vertical force (F = F(sub m) - F(sub g) (in the case of magnetic field-assisted microgravity) or F(sub D) (the drag force in the case of free fall)), London-van der Waals forces, the kinetic energy of motion and viscous dissipation. By assuming that the motions are incompressible and irrotational, the volume integrals of the free energies over the deformed liquid fuel layer may be converted to surface integrals. With the surface expressed as the sum of Legendre polynomials, r(sub surface) = a + Sigma a(sub l)(t)P(sub l)(mu), the perturbed amplitude of the individual modes, a(sub l)(t) can be obtained. We show that the l = 1 vertical shift mode takes the longest to damp out, and may be problematic for free-fall insertion even for thin approximately 1 micrometer overfilled foam targets. For a given liquid fuel layer thickness delta, the equilibrium value of a(sub 1)/a (the concentricity of the inner fuel layer) is shown to be dependent on the net vertical force F and layer thickness, i.e., a(sub 1) approximately F delta(exp 5), but independent of the surface tension.
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang
1992-01-01
Effect of flow field properties on the heating distribution over a 140 deg blunt cone was determined for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL), and reacting boundary layer (BLIMPK) equations. The effect of gas kinetics on the flow field and the surface heating distribution were investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.
Multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1998-10-13
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure
NASA Astrophysics Data System (ADS)
Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa
2017-12-01
We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.
Self assembly of magnetic nanoparticles at silicon surfaces.
Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A
2015-06-21
Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.
[A review on research of land surface water and heat fluxes].
Sun, Rui; Liu, Changming
2003-03-01
Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.
Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles
Polemi, A.; Shuford, K. L.
2012-01-01
We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less
Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE
NASA Technical Reports Server (NTRS)
Stewart, David A.; Henline, William D.; Chen, Yih-Kanq
1991-01-01
The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.
NASA Astrophysics Data System (ADS)
Reznikov, Mitya; Lopatina, Lena M.; O'Callaghan, Michael J.; Bos, Philip J.
2011-03-01
The effect of surface alignment on the achievement of analog ("V"-shaped) electric field control of director rotation in SmC* liquid crystal devices is investigated experimentally and through numerical modeling. Ferroelectric SmC* liquid crystals are intrinsically analog and thresholdless, i.e. the director can be rotated freely around the tilt cone. Whether or not a SmC* liquid crystal cell exhibits thresholdless switching depends strongly on the influence of the cell's alignment layers, on the magnitude of the liquid crystal's spontaneous polarization, and on whether smectic layers adopt a bookshelf or chevron configuration. To study the effect of the surface alignment layers, we have exploited a technique for the vertical (bookshelf) alignment of the smectic layers that does not depend on surface anisotropy. The alignment technique allows an experimental study of the influence of surfaces spanning a wide range of pretilt angles, azimuthal and zenithal anchoring energies. This technique is used to study the effect of surfaces on the threshold behavior of director rotation in SmC* materials under the influence of an electric field. The alignment technique also allowed us to use a high-PS liquid crystal material having an I-A-C phase sequence and reduced layer shrinkage thought to be well suited to thresholdless switching. We show that the alignment layer has a strong effect, and that excellent analog response can be achieved for the case of alignment layers which promote homeotropic director orientation. We further model and discuss the potential effect of a thin layer of nematic at the surface and the possibility of gliding of the easy axis during switching.
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon
2017-11-15
Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.
Dust transportation in bounday layers on complex areas
NASA Astrophysics Data System (ADS)
Karelsky, Kirill; Petrosyan, Arakel
2017-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high field gradients with the aid of scheme viscosity of numerical algorithm used to model near-surface phenomena. This idea is implemented in the model of ideal gas equations with variable equation of state describing particulates transportation within boundary layer with obstacles.
Atomic hydrogen storage. [cryotrapping and magnetic field strength
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Diffusion length measurement using the scanning electron microscope. [for silicon solar cell
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1975-01-01
The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.
NASA Astrophysics Data System (ADS)
Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo
2017-06-01
It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.
NASA Technical Reports Server (NTRS)
Golovin, Y. M.; Moshkin, B. Y.; Ekonomov, A. P. E.
1979-01-01
The characteristics of the field of radiation in the near surface layer of the atmosphere and on the surface of Venus are reported. Optical measurements made during the landing of the descent vehicles are described. The relief of the surface and the amount of dust on it are examined. The spectral relationship of the albedo of the soil and the light flux incident on the surface is discussed.
NASA Technical Reports Server (NTRS)
Call, R. L.
1973-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.
Instabilities of thin layers of conducting fluids produced by time dependent magnetic fields
NASA Astrophysics Data System (ADS)
Burguete, Javier
2011-11-01
We present the recent results of an experiment where thin layers of conducting fluids are forced by time-dependent magnetic fields perpendicular to their surface. We use as conducting fluid an In-Ga-Sn alloy, immersed in a 5% hydrocloric acid solution to prevent oxidation. The conducting layers have a circular shape, and are placed inside a set-up that produces the vertical magnetic field. Due to MHD effects, the competition between the Lorentz force and gravity triggers an instability of the free surface. The shape of this surface can adopt many different configurations, with a very rich dynamics, presenting azimuthal wave numbers between 3 and 8 for the explored parameters. The magnetic field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects and with a magnitude up to 0.1 T. Different resonant regions have been observed, for narrow windows of the forcing frequency. We have analysed the existence of thresholds for these instabilities, depending on the wave number and experimental parameters. These results are compared with others present in the literature.
Uniform hydrogen fuel layers for inertial fusion targets by microgravity
NASA Technical Reports Server (NTRS)
Parks, P. B.; Fagaly, Robert L.
1994-01-01
A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.
Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy
NASA Astrophysics Data System (ADS)
Marangos, Orestes; Misra, Anil
2018-02-01
Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.
The role of surface vorticity during unsteady separation
NASA Astrophysics Data System (ADS)
Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán
2018-04-01
Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
NASA Astrophysics Data System (ADS)
Castellví, F.; Snyder, R. L.
2009-09-01
SummaryHigh-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north-northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy-architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.
Effect of the seed layer on the Y0.5Gd0.5Ba2Cu3O7-σ film fabricated by PLD
NASA Astrophysics Data System (ADS)
Yao, Yanjie; Wang, Wei; Liu, Linfei; Lu, Saidan; Wu, Xiang; Zheng, Tong; Liu, Shunfan; Li, Yijie
2018-06-01
The surface morphology and internal residual stress have influence on the critical current density (Jc) of REBa2Cu3O7-σ (REBCO) coated conductor. In order to modulate them, a series of Y0.5Gd0.5Ba2Cu3O7-σ (YGBCO) films were prepared by pulsed laser deposition (PLD) through introducing a seed layer in this paper. The thicknesses of seed layer changes from about 2 nm to 30 nm. For comparison, a standard sample without seed layer was fabricated at the same deposition condition. The surface morphology was illustrated by Scanning electron microscopy (SEM). The surface roughness was scanned by Atomic force microscopy (AFM). The microstructure and internal strain were measured by X-ray Diffraction (XRD). DC four-probe method was used to measure the critical current of the samples at 77 K and self-field. As a result, all samples have high Jc of about 4 MA/cm2, while the self-field Jc of the YGBCO films can be promoted by the seed layer. The results of our research work are as follows. First of all, seed layer makes the deposition of the YGBCO layer much easier to control. By this way, we can decrease the surface roughness of the samples. Furthermore, the internal residual stress of the YGBCO films with seed layer decrease. Finally, the best thickness of the seed layer was found by summarizing and analyzing the conditions of seed layer.
NASA Astrophysics Data System (ADS)
Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.
2006-09-01
Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.
Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.
2006-01-01
Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.
Nanoscopy reveals surface-metallic black phosphorus
Abate, Yohannes; Gamage, Sampath; Li, Zhen; ...
2016-10-21
Black phosphorus (BP) is an emerging two-dimensional material with intriguing physical properties. It is highly anisotropic and highly tunable by means of both the number of monolayers and surface doping. Here, we experimentally investigate and theoretically interpret the near-field properties of a-few-atomic-monolayer nanoflakes of BP. We discover near-field patterns of bright outside fringes and a high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared frequencies <1176 cm -1. We conclude that these fringes are caused by the formation of a highly polarizable layer at the BP surface. This layer has a thickness of ~1 nmmore » and exhibits plasmonic behavior. We estimate that it contains free carriers in a concentration of n≈1.1 × 10 20 cm -3. Surface plasmonic behavior is observed for 10–40 nm BP thicknesses but absent for a 4-nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics, plasmonics and optoelectronics.« less
On the sensitivity of mesoscale models to surface-layer parameterization constants
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.
1989-09-01
The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.
Ultrasound assisted deposition of silica coatings on titanium
NASA Astrophysics Data System (ADS)
Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür
2012-10-01
We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.
Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru; Potekaev, A. I., E-mail: potekaev@spti.tsu.ru
2016-01-15
This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.
NASA Astrophysics Data System (ADS)
Xu, Hui Fang; Sun, Wen; Han, Xin Feng
2018-06-01
An analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors (HS-TFETs) is presented for the first time, where hetero stacked materials are composed of two different bandgaps. The bandgap of the underlying layer is smaller than that of the upper layer. Under different device parameters (upper layer thickness, underlying layer thickness, and hetero stacked materials) and temperature, the validity of the model is demonstrated by the agreement of its results with the simulation results. Moreover, the results show that the HS-TFETs can obtain predominant performance with relatively slow changes of subthreshold swing (SS) over a wide drain current range, steep average subthreshold swing, high on-state current, and large on–off state current ratio.
User's manual for three dimensional boundary layer (BL3-D) code
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Caplin, B.
1985-01-01
An assessment has been made of the applicability of a 3-D boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surface of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary 3-D surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the 3-D boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.
NASA Astrophysics Data System (ADS)
Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian
2016-11-01
Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.
Design, construction and calibration of a portable boundary layer wind tunnel for field use
USDA-ARS?s Scientific Manuscript database
Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2010-10-01
The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.
NASA Technical Reports Server (NTRS)
Iyer, V.; Harris, J. E.
1987-01-01
The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.
Effect of dielectric layers on device stability of pentacene-based field-effect transistors.
Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben
2009-09-07
We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
NASA Astrophysics Data System (ADS)
Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger
2014-06-01
A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
NASA Astrophysics Data System (ADS)
Gorskii, P. V.
2011-03-01
It is demonstrated that the dependence of Fermi's energy on the magnetic field causes a set of the Shubnikov - de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi's surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.
Flow field predictions for a slab delta wing at incidence
NASA Technical Reports Server (NTRS)
Conti, R. J.; Thomas, P. D.; Chou, Y. S.
1972-01-01
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.
Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite
NASA Astrophysics Data System (ADS)
Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei
2018-04-01
The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.
Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.
Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei
2018-04-27
The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.
Pustovit, Vitaliy N; Shahbazyan, Tigran V
2006-06-01
We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.
The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1985-01-01
A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.
The electric field standing wave effect in infrared transflection spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
pH-sensitive ion-selective field-effect transistor with zirconium dioxide film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.
1988-09-20
Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.
FANNING OUT OF THE SOLAR f-MODE IN THE PRESENCE OF NON-UNIFORM MAGNETIC FIELDS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nishant K.; Brandenburg, Axel; Rheinhardt, Matthias, E-mail: nishant@nordita.org
2014-11-01
We show that in the presence of a magnetic field that is varying harmonically in space, the fundamental mode, or f-mode, in a stratified layer is altered in such a way that it fans out in the diagnostic kω diagram, with mode power also within the fan. In our simulations, the surface is defined by a temperature and density jump in a piecewise isothermal layer. Unlike our previous work (Singh et al. 2014), where a uniform magnetic field was considered, here we employ a non-uniform magnetic field together with hydromagnetic turbulence at length scales much smaller than those of themore » magnetic field. The expansion of the f-mode is stronger for fields confined to the layer below the surface. In some of those cases, the kω diagram also reveals a new class of low-frequency vertical stripes at multiples of twice the horizontal wavenumber of the background magnetic field. We argue that the study of the f-mode expansion might be a new and sensitive tool to determine subsurface magnetic fields with azimuthal or other horizontal periodicity.« less
Observations of near-surface fresh layers during SPURS-2
NASA Astrophysics Data System (ADS)
Drushka, Kyla; E Asher, William; Thompson, Elizabeth; Jessup, Andrew T.; Clark, Dan
2017-04-01
One of the primary objectives of the ongoing SPURS-2 program is to understand the fate of rainfall deposited on the sea surface. Rain produces stable near-surface fresh layers that persist for O(1-10) hours. The depth, strength, and lifetime of surface fresh layers are known to be related to the local rain and wind conditions, but available observational data are too sparse to allow definitive quantification of cause-and-effect relationships. In this paper, the formation and evolution of rain-formed fresh layers are examined using observations of near-surface salinity made during the 2016 SPURS-2 field experiment, which took place in the Intertropical Convergence Zone of the eastern tropical Pacific Ocean in August-September 2016. During 2016 SPURS-2, over 30 rain events were captured with the Surface Salinity Profiler (SSP), a towed platform that measures salinity and temperature at five discrete depths in the upper meter of the ocean. Differences in salinity measured by the SSP at depths of 0.02 m and at 1 m are correlated with local meteorological conditions. The field results show that the salinity difference increases linearly with rain rate, a result that is consistent with calculations done with a one-dimensional ocean turbulence model. The field data also demonstrate that there is an inverse correlation between wind speed and the vertical salinity difference, which is also consistent with numerical models. The implications of these results are discussed in the context of satellite salinity observations and the representation of rainfall events in climate models.
Photovoltaic cell and production thereof
Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN
2008-07-22
An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.
Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G
2017-01-25
Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.
Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2016-07-20
A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors.
Evolution of vortex-surface fields in transitional boundary layers
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhao, Yaomin; Xiong, Shiying
2016-11-01
We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-23
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell's equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
NASA Astrophysics Data System (ADS)
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-01
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
Ujaczki, Éva; Feigl, Viktória; Molnár, Mónika; Vaszita, Emese; Uzinger, Nikolett; Erdélyi, Attila; Gruiz, Katalin
2016-06-01
Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill, an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture (RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil (LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS+RMSM mixtures compared to the subsoil (LQS) and the RMSM were determined by physical-chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil (LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil (LQS) after 10months. According to our results the RMSM mixed into subsoil (LQS) at 20% w/w dose may be applied as surface layer of landfill cover systems. Copyright © 2016. Published by Elsevier B.V.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
The 5'×5' global geoid model GGM2016
NASA Astrophysics Data System (ADS)
Shen, WenBin; Han, Jiancheng
2016-04-01
We provide an updated 5'×5' global geoid model GGM2016, which is determined based on the shallow layer method (Shen 2006). We choose an inner surface S below the EGM2008 geoid, and the layer bounded by the inner surface S and the Earth's geographical surface E is referred to as the shallow layer. The Earth's geographical surface E is determined by the digital topographic model DTM2006.0 combining with the DNSC2008 mean sea surface. We determine the 3D shallow layer model (SLM) using the refined crust density model CRUST1.0-5min, which is an improved 5'×5' density model of the CRUST1.0 with taking into account the corrections of the areas covered by ice sheets and the land-ocean crossing regions. Based on the SLM and the gravity field EGM2008 defined outside the Earth's geographical surface E, we determine the gravity field EGM2008S defined in the region outside the inner surface S, extending the gravity field's definition domain from the domain outside E to the domain outside S. Based on the geodetic equation W(P)=W0, where W0 is the geopotential constant on the geoid, we determine a 5'×5' global geoid model GGM2016, which provides both the 5'×5' grid values and spherical harmonic coefficient expressions. Comparisons show that the GGM2016 fits the globally available GPS/leveling points better than the EGM2008 geoid. This study is supported by National 973 Project China (grant Nos. 2013CB733301 and 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41429401, 41128003, 41021061).
Mechanisms and Methods for Selective Wavelength Filtering
NASA Technical Reports Server (NTRS)
Tuma, Margaret (Inventor); Brown, Thomas G. (Inventor); Gruhlke, Russell (Inventor)
2007-01-01
An optical filter includes a dielectric waveguide layer, supporting waveguide modes at specific wavelengths and receiving incident light, a corrugated film layer, composed of one of a metal and a semiconductor and positioned adjacent to a second surface of the waveguide layer and a sensor layer, wherein the sensor layer is capable of absorbing optical energy and generating a corresponding electrical signal. The metal film layer supports a plurality of plasmons, the plurality of plasmons producing a first field and is excited by a transverse mode of the waveguide modes at a wavelength interval. The first field penetrates the sensor layer and the sensor layer generates an electrical signal corresponding to an intensity of received incident light within the wavelength interval.
FIBER AND INTEGRATED OPTICS: Bandgap modes in a coupled waveguide array
NASA Astrophysics Data System (ADS)
Usievich, B. A.; Nurligareev, D. Kh; Svetikov, V. V.; Sychugov, V. A.
2009-08-01
This work examines a waveguide array that consists of ten Nb2O5/SiO2 double layers and supports a 0.63-μm surface wave. The deposition of a Nb2O5 capping layer on top of the waveguide array enables a marked increase in the wave field intensity on its surface. The efficiency of surface-wave excitation in the Kretschmann configuration can be optimised by adjusting the number of double layers. We analyse the behaviour of the Bragg mode in relation to the thickness of the layer exposed to air and the transition of this mode from the second allowed band to the first through the bandgap of the system. In addition, the conventional leaky mode converts to a surface mode and then to a guided mode.
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
Collective Surfing of Chemically Active Particles
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Shelley, Michael J.
2014-03-01
We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.
Using Profiles of Water Vapor Flux to Characterize Turbulence in the Convective Boundary Layer
NASA Astrophysics Data System (ADS)
Weber, Kristy Jane
The 2015 Plains Elevated Convection at Night (PECAN) field campaign sought to increase understanding of mechanisms for nocturnal severe weather in the Great Plains of the United States. A collection of instruments from this field campaign, including a water vapor Differential LiDAR (Light Detection Imaging And Ranging) (DIAL) and 449 MHz radar wind profiler were used to measure water vapor flux in regions between 300 m and the convective boundary layer. Methods to properly sample eddies using eddy-covariance were established, where analysis showed that a 90-minute Reynold's averaging period was optimal to sample most eddies. Additionally, a case study was used to demonstrate the additional atmospheric parameters which can be calculated from profiles of water vapor flux, such as the water vapor flux convergence/divergence. Flux footprints calculated at multiple heights within the convective boundary layer also show how a surface based instrument is sampling a completely different source than one taking measurements above 300 m. This result is important, as it shows how measurements above the surface layer will not be expected to match with those taken within a few meters of the surface, especially if average surface features such as land use type and roughness length are significantly different. These calculated water vapor flux profile measurements provide a new tool to analyze boundary layer dynamics during the PECAN field campaign, and their relationships to PECAN's study areas such as mesoscale convective systems (MCSs), nocturnal low-level jets (NLLJs), elevated convective initiation, and the propagation of bores or wavelike features from nocturnal convective systems.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
Elastic layer under axisymmetric indentation and surface energy effects
NASA Astrophysics Data System (ADS)
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Experimental visualization of the cathode layer in AC surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun
2018-06-01
A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
NASA Astrophysics Data System (ADS)
Chee, Kuan W. A.; Hu, Yuning
2018-07-01
There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.
NASA Astrophysics Data System (ADS)
Lewis, J. R.; Banks, R. F.; Berkoff, T.; Welton, E. J.; Joseph, E.; Thompson, A. M.; Decola, P.; Hegarty, J. D.
2015-12-01
Accurate characterization of the planetary boundary layer height is crucial for numerical weather prediction, estimating pollution emissions and modeling air quality. More so, given the increasing trend in global urban populations, there is a growing need to improve our understanding of the urban boundary layer structure and development. The Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality (DISCOVER-AQ) 2011 field campaign, which took place in the Baltimore-Washington DC region, offered a unique opportunity to study boundary layer processes in an urban area using a geographically dense collection of surface-based lidar systems (see figure). Lidars use aerosols as tracers for atmospheric boundary layer dynamics with high vertical and temporal resolutions. In this study, we use data from two permanent Micropulse Lidar Network (MPLNET) sites and five field deployed Micropulse lidar (MPL) systems in order to observe spatiotemporal variations in the daytime mixed layer height. We present and compare lidar-derived retrievals of the mixed layer height using two different methods. The first method uses the wavelet covariance transform and a "fuzzy logic" attribution scheme in order to determine the mixed layer height. The second method uses an objective approach utilizing a time-adaptive extended Kalman filter. Independent measurements of the boundary layer height are obtained using profiles from ozonesonde launches at the Beltsville and Edgewood sites for comparison with lidar observations.
Electric field numerical simulation of disc type electrostatic spinning spinneret
NASA Astrophysics Data System (ADS)
Wei, L.; Deng, ZL; Qin, XH; Liang, ZY
2018-01-01
Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.
NASA Astrophysics Data System (ADS)
Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José
2017-12-01
Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1978-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Solar cells having integral collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.
Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio
2015-10-27
In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.
Surface Flashover of Semiconductors: A Fundamental Study
1993-06-16
surface electric fields for a number of samples with aluminum and gold contacts. Effects of processing varia- tions such as anneal method (rapid thermal...more uniform pre- breakdown surface fields. 3. Various contact materials and processing methods were used to determine effects on flashover...diffusion depths determined by this method were generally consistent with the estimated depths. 2-4 In order to characterize better the diffused layers
A novel SOI LDMOS with substrate field plate and variable-k dielectric buried layer
NASA Astrophysics Data System (ADS)
Li, Qi; Wen, Yi; Zhang, Fabi; Li, Haiou; Xiao, Gongli; Chen, Yonghe; Fu, Tao
2018-09-01
A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer (VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is decreased from 7.15 mΩ·cm2 to 3.81 mΩ·cm2, the peak value of surface temperature is declined by 38 K.
Fabiano, Simone; Crispin, Xavier; Berggren, Magnus
2014-01-08
The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.
Forward and inverse models of electromagnetic scattering from layered media with rough interfaces
NASA Astrophysics Data System (ADS)
Tabatabaeenejad, Seyed Alireza
This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.
Interference patterns of a horizontal electric dipole over layered dielectric media.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.; Simmons, G.
1973-01-01
Interference patterns for electromagnetic fields due to a subsurface reflector below a layered lossy dielectric are calculated with the geometrical optics approximation for use in interpreting data to be collected on the moon by Apollo 17 as well as data currently being obtained on terrestrial glaciers. The radiating antenna lies on the surface. All six field components are calculated and studied. For the endfire solutions, the peak of the first reflected wave is found to be different from that of the broadside ones. To facilitate a physical discussion, we plotted the radiation patterns due to the antenna on the surface.
DOT National Transportation Integrated Search
2013-03-01
This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of : special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The : ultimate goal is to imp...
Method for fabricating solar cells having integrated collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1979-01-01
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman
2017-06-01
Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.
We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...
2015-09-25
We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less
Loosely-bound low-loss surface plasmons in hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Shi, Yu; Kim, Hong Koo
2018-06-01
Surface plasmons (SPs) carry electromagnetic energy in the form of collective oscillation of electrons at metal surface and commonly demonstrate two important features: strong lateral confinement and short propagation lengths. In this work we have investigated the trade-off relationship existing between propagation length and lateral confinement of SP fields in a hyperbolic metamaterial system, and explored loosening of lateral confinement as a means of increasing propagation length. By performing finite-difference time-domain analysis of Ag/SiO2 thin-film stacked structure we demonstrate long range ( 100 mm) propagation of SPs at 1.3 µm wavelength. In designing low-loss loosely-bound SPs, our approach is to maximally deplete electric fields (both tangential and normal components to the interface) inside metal layers and to support SP fields primarily in the dielectric layers part of metamaterial. Such highly-localized field distributions are attained in a hyperbolic metamaterial structure, whose dielectric tensor is designed to be highly anisotropic, that is, low-loss dielectric (Re( ɛ) > 0; Im( ɛ) 0) along the transverse direction (i.e., normal to the interface) and metallic (large negative Re( ɛ)) along the longitudinal direction, and by closely matching external dielectric to the normal component of metamaterial's dielectric tensor. Suppressing the tangential component of electric field is shown to naturally result in weakly-confined SPs with penetration depths in the range of 3-10 µm. An effective-medium approximation method is used in designing the metamaterial waveguide structure, and we have tested its validity in applying to a minimally structured core-layer case (i.e., composed of one or two metal layers). Low-loss loosely-bound SPs may find alternative applications in far-field evanescent-wave sensing and optics.
Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard
2018-03-29
The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.
NASA Astrophysics Data System (ADS)
He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu
2017-01-01
Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.
NASA Astrophysics Data System (ADS)
Boger, A. A.; Ryazhskikh, V. I.; Slyusarev, M. I.
2012-01-01
Based on diffusion concepts of transfer of slightly concentrated polydisperse suspensions in the gravity field, we propose a mathematical model of the kinetics of deposition of such suspensions in a plane layer of a homogeneously mixed medium through the free surface of which Stokesian particles penetrate according to the rectangular pulse law.
Upper Ocean Response to Hurricanes Katrina and Rita (2005) from Multi-sensor Satellites
NASA Astrophysics Data System (ADS)
Gierach, M. M.; Bulusu, S.
2006-12-01
Analysis of satellite observations and model simulations of the mixed layer provided an opportunity to assess the biological and physical effects of hurricanes Katrina and Rita (2005) in the Gulf of Mexico. Oceanic cyclonic circulation was intensified by the hurricanes' wind field, maximizing upwelling, surface cooling, and deepening the mixed layer. Two areas of maximum surface chlorophyll-a concentration and sea surface cooling were detected with peak intensities ranging from 2-3 mg m-3 and 4-6°C, along the tracks of Katrina and Rita. The temperature of the mixed layer cooled approximately 2°C and the depth of the mixed layer deepened by approximately 33-52 m. The forced deepening of the mixed layer injected nutrients into the euphotic zone, generating phytoplankton blooms 3-5 days after the passage of Katrina and Rita (2005).
Metamaterial bricks and quantization of meta-surfaces
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-01-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283
Metamaterial bricks and quantization of meta-surfaces
NASA Astrophysics Data System (ADS)
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-02-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Metamaterial bricks and quantization of meta-surfaces.
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram
2017-02-27
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
NASA Astrophysics Data System (ADS)
Gudmundsson, A.
2005-05-01
Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on the surface deformation on typical stratovolcanoes. The models show, first, that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. Second, the models show that dike-induced stresses and surface deformation depend much on the mechanical properties of the layers between the dike tip and the surface. In particular, the models indicate that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Thus, many dikes may become injected and arrested with little or no surface deformation. Generally, the numerical models suggest that standard analytical surface-deformation models such as point sources (nuclei of strain) for magma-chamber pressure changes and dislocations for dikes should be used with great caution. These models normally assume the volcanoes and rift zones to behave as homogeneous, isotropic half spaces or semi-infinite plates. When applied to stratovolcanoes composed of layers of contrasting mechanical properties and, particularly at shallow depths, weak or open contacts, inversions using these analytical models may yield results that, at best, are unreliable.
Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.
2014-12-01
During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.
Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu
2017-12-01
A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Processing of materials for uniform field emission
Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung
1999-01-01
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
An induced junction photovoltaic cell
NASA Technical Reports Server (NTRS)
Call, R. L.
1974-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
Surface potential barrier in m-plane GaN studied by contactless electroreflectance
NASA Astrophysics Data System (ADS)
Janicki, Lukasz; Misiewicz, Jan; Cywiński, Grzegorz; Sawicka, Marta; Skierbiszewski, Czeslaw; Kudrawiec, Robert
2016-02-01
Contactless electroreflectance (CER) is used to study the surface potential barrier in m-plane GaN UN+ [GaN (d = 20,30,50,70 nm)/GaN:Si] structures grown by using molecular beam epitaxy. Clear bandgap-related transitions followed by Franz-Keldysh oscillations (FKO) have been observed in the CER spectra of all samples at room temperature. The built-in electric fields in the undoped cap layers have been determined from the FKO period. From the built-in electric field and the undoped GaN layer thickness, the Fermi level location at the air-exposed m-plane GaN surface has been estimated as 0.42 ± 0.05 eV below the conduction band.
NASA Technical Reports Server (NTRS)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
NASA Astrophysics Data System (ADS)
Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.
2017-12-01
The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.
Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah
Daniels, J.J.
1984-01-01
Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.
NASA Technical Reports Server (NTRS)
Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.
2004-01-01
This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria
1994-09-01
Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.
Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan
2016-01-01
We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus.
Liu, Jun; Falke, Sven; Drobot, Bjoern; Oberthuer, Dominik; Kikhney, Alexey; Guenther, Tobias; Fahmy, Karim; Svergun, Dmitri; Betzel, Christian; Raff, Johannes
2017-01-01
The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg 2+ and Ca 2+ . Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
Treviso, Felipe; Silveira, Marilia A.; Flores Filho, Aly F.; Dorrell, David G.
2016-01-01
This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1) a double-layered secondary formed by aluminium and ferromagnetic slabs; (2) a single aluminium layer and (3) a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation. PMID:27007377
Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong
2010-05-01
In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.
Superior Field Emission Properties of Layered WS2-RGO Nanocomposites
Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.
2013-01-01
We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
NASA Astrophysics Data System (ADS)
Xi, S. B.; Lu, W. J.; Wu, H. Y.; Tong, P.; Sun, Y. P.
2012-12-01
The surface magnetic behavior of La0.8Ca0.2MnO3 nanoparticles was investigated. We observed irreversibility in high magnetic field. The surface spin-glass behavior as well as the high-field irreversibility is suppressed by increasing particle size while the freezing temperature TF does not change with particle size. The enhanced coercivity has been observed in the particles and we attributed it to the large surface anisotropy. We have disclosed a clear relationship between the particle size, the thickness of the shell, and the saturation magnetization of the particles. The large reduction of the saturation magnetization of the samples is found to be induced by the increase of nonmagnetic surface large since the thickness of the spin-disordered surface layer increases with a decrease in the particle size. Due to the reduction of the magnetization, the magnetocaloric effect (MCE) has been reduced by the decreased particle size since the nonmagnetic surface contributes little to the MCE. Based on the core-shell structure, large relative cooling powers RCP(s) of 180 J/kg and 471 J/kg were predicted for a field change of 2.0 T and 4.5 T, respectively, in the small particles with thin spin-glass layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelzer, Gerald; Meinke, Rainer; Senti, Mark
A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface ofmore » second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.« less
Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong
2017-02-08
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Wu, Y. H.; Nakakita, E.
2017-12-01
Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.
Numerical treatment of free surface problems in ferrohydrodynamics
NASA Astrophysics Data System (ADS)
Lavrova, O.; Matthies, G.; Mitkova, T.; Polevikov, V.; Tobiska, L.
2006-09-01
The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments.
Tailoring the Electromagnetic Near Field with Patterned Surfaces: Near-Field Plates
2014-12-10
single layer processing. 3 Near-field plates can be viewed as metamaterial surfaces ( metasurfaces or metafilms) [20]. They are textured/structured at a...Applied Physics Letters, vol. 103, 041104, July 2013. 3. C. Pfeiffer and A. Grbic, ”Cascaded metasurfaces for complete phase and polarization control...Antennas and Propagation, pp. 1-2, Memphis, TN, July 6-12, 2014. 5. Pfeiffer and A. Grbic, ”Analysis and synthesis of bianisotropic metasurfaces
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Hollingsworth, Kevin E.
2017-01-01
A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.
Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M
2015-06-01
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria
2015-05-19
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. Furthermore, the angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
Ocean haline skin layer and turbulent surface convections
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, X.
2012-04-01
The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.
Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.
Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan
2015-07-29
The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.
Field effect sensors for PCR applications
NASA Astrophysics Data System (ADS)
Taing, Meng-Houit; Sweatman, Denis R.
2004-03-01
The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors that share a common pseudo-reference electrode is used to cancel out this effect. This paper will look at a differential system for multi-arrayed biosensors fabricated on silicon.
Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy.
Krichevtsov, Boris B; Gastev, Sergei V; Suturin, Sergey M; Fedorov, Vladimir V; Korovin, Alexander M; Bursian, Viktor E; Banshchikov, Alexander G; Volkov, Mikhail P; Tabuchi, Masao; Sokolov, Nikolai S
2017-01-01
Thin (4-20 nm) yttrium iron garnet (Y 3 Fe 5 O 12 , YIG) layers have been grown on gadolinium gallium garnet (Gd 3 Ga 5 O 12 , GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe 3+ sublattices were studied by XMCD.
Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Krichevtsov, Boris B.; Gastev, Sergei V.; Suturin, Sergey M.; Fedorov, Vladimir V.; Korovin, Alexander M.; Bursian, Viktor E.; Banshchikov, Alexander G.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.
2017-12-01
Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.
Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy
Krichevtsov, Boris B.; Gastev, Sergei V.; Suturin, Sergey M.; Fedorov, Vladimir V.; Korovin, Alexander M.; Bursian, Viktor E.; Banshchikov, Alexander G.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.
2017-01-01
Abstract Thin (4–20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700–1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner–Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD. PMID:28685003
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2011-03-01
The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.
NASA Astrophysics Data System (ADS)
Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro
2014-03-01
Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.
Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki
2011-01-01
The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven
2009-11-01
Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori
2016-07-18
The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less
The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie
2016-07-01
In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.
Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics
NASA Astrophysics Data System (ADS)
Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.
2014-12-01
Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.
Effect of scrape-off-layer current on reconstructed tokamak equilibrium
King, J. R.; Kruger, S. E.; Groebner, R. J.; ...
2017-01-13
Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer current through extrapolated parametrized and experimental fits. The extrapolation includes both the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-layer current modifies the equilibrium, the χ-squared goodness-of-fit parameter is calculated for cases with and without scrape-off-layer current. The change in χ-squared is found to be minor when scrape-off-layer current is included however flux surfaces are shifted by up to 3 cm. Here the impact on edge modes of these scrape-off-layer modificationsmore » is also found to be small and the importance of these methods to nonlinear computation is discussed.« less
Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J
2015-09-16
Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.
Landau-de Gennes theory of surface-enhanced ordering in smectic films.
Shalaginov, A N; Sullivan, D E
2001-03-01
A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.
NASA Astrophysics Data System (ADS)
Ivanov, O. A.; Kuzikov, S. V.; Vikharev, A. A.; Vikharev, A. L.; Lobaev, M. A.
2017-10-01
We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.
[Analysis of heat transfer in the biological tissue layer with distributed system of blood vessels].
Bogatov, N M; Pelipenko, O N
2005-09-01
Processes of heat transfer in the skin layer with blood vessels were investigated using mathematical modeling. Analysis of influence of a pathological state of blood vessels on heterogeneity of thermal field of the skin surface was carried out. For each site of body surface, there is a certain difference of temperature between normal and pathological sites, being specific for differential diagnosis of diseases of dermal and hypodermic vessels.
Near field detector for integrated surface plasmon resonance biosensor applications.
Bora, Mihail; Celebi, Kemal; Zuniga, Jorge; Watson, Colin; Milaninia, Kaveh M; Baldo, Marc A
2009-01-05
Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.
Maximum screening fields of superconducting multilayer structures
Gurevich, Alex
2015-01-07
Here, it is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields H s of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness ~0.1 μm at the Nb surface could increase H s ≃ 240 mT of a clean Nb up to H s ≃ 290 mT. Optimized multilayers of Nb 3Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surfacemore » of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.
2015-12-28
Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Hsieh, Yu-Lin; Lee, Chien-Chieh; Lu, Chia-Cheng; Fuh, Yiin-Kuen; Chang, Jenq-Yang; Lee, Ju-Yi; Li, Tomi T.
2017-07-01
A symmetrically stacked structure [(a-Si:H(n+)/a-Si:H(i)/CZ wafer (n)/a-Si:H(i)/a-Si:H(n+)] was used to optimize the growth process conditions of the n-type hydrogenated amorphous silicon [a-Si:H(n+)] thin films. Here a-Si:H(n+) film was used as back surface field (BSF) layer for the silicon heterojunction solar cell and all stacked films were prepared by conventional radio-frequency plasma-enhanced chemical vapor deposition. The characterizations of the effective carrier lifetime (τeff), electrical and structural properties, as well as correlation with the hydrogen dilution ratio (R=H2/SiH4) were systematically discussed with the emphasis on the effectiveness of the passivation layer using the lifetime tester, spectroscopic ellipsometry, and hall measurement. High quality of a stacked BSF layer (intrinsic/n-type a-Si:H layer) with effective carrier lifetime of 1.8 ms can be consistently obtained. This improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
Geometrical and Structural Asperities on Fault Surfaces
NASA Astrophysics Data System (ADS)
Sagy, A.; Brodsky, E. E.; van der Elst, N.; Agosta, F.; di Toro, G.; Collettini, C.
2007-12-01
Earthquake dynamics are strongly affected by fault zone structure and geometry. Fault surface irregularities and the nearby structure control the rupture nucleation and propagation, the fault strength, the near-field stress orientations and the hydraulic properties. New field observations demonstrate the existence of asperities in faults as displayed by topographical bumps on the fault surface and hardening of the internal structure near them. Ground-based LIDAR measurements on more than 30 normal and strike slip faults in different lithologies demonstrate that faults are not planar surfaces and roughness is strongly dependent on fault displacement. In addition to the well-understood roughness exemplified by abrasive striations and fracture segmentation, we found semi-elliptical topographical bumps with wavelengths of a few meters. In many faults the bumps are not spread equally on the surface and zones can be bumpier than others. The bumps are most easily identified on faults with total displacement of dozens to hundreds of meters. Smaller scale roughness on these faults is smoothed by abrasive processes. A key site in southern Oregon shows that the topographic bumps are closely tied to the internal structure of the fault zone. At this location, we combine LiDAR data with detailed structural analysis of the fault zone embedded in volcanic rocks. Here the bumps correlate with an abrupt change in the width of the cohesive cataclasite layer that is exposed under a thin ultracataclasite zone. In most of the exposures the cohesive layer thickness is 10-20 cm. However, under protruding bumps the layer is always thickened and the width can locally exceed one meter. Field and microscopic analyses show that the layer contains grains with dimensions ranging from less than 10 μ up to a few centimeters. There is clear evidence of internal flow, rotation and fracturing of the grains in the layer. X-Ray diffraction measurements of samples from the layer show that the bulk mineralogy is identical to that of the host rock, although thin section analysis suggests that some alteration and secondary mineralization of the grains also occurs. We infer that the cohesiveness of the layer is a consequence of repacking and cementation similar to deformation bands in granular material. By comparing the thickness of the cohesive layer on several secondary faults in this fault area we found that the average thickness of the layer increases with total slip. The correlation is nonlinear and the thickening rate decreases with increasing slip. We conclude that granular flow decreasing with increasing slip and thus the deformation is continually localized.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Wai, Mickey M.-K.; Cooper, Harry J.; Rubes, Michael T.; Hsu, Ann
1994-01-01
Surface, aircraft, and satellite observations are analyzed for the 21-day 1989 intensive field campaign of the First ISLSCP Field Experiment (FIFE) to determine the effect of precipitation, vegetation, and soil moisture distributions on the thermal properties of the surface including the heat and moisture fluxes, and the corresponding response in the boundary-layer circulation. Mean and variance properties of the surface variables are first documented at various time and space scales. These calculations are designed to set the stage for Part 2, a modeling study that will focus on how time-space dependent rainfall distribution influences the intensity of the feedback between a vegetated surface and the atmospheric boundary layer. Further analysis shows strongly demarked vegetation and soil moisture gradients extending across the FIFE experimental site that were developed and maintained by the antecedent and ongoing spatial distribution of rainfall over the region. These gradients are shown to have a pronounced influence on the thermodynamic properties of the surface. Furthermore, perturbation surface wind analysis suggests for both short-term steady-state conditions and long-term averaged conditions that the gradient pattern maintained a diurnally oscillating local direct circulation with perturbation vertical velocities of the same order as developing cumulus clouds. Dynamical and scaling considerations suggest that the embedded perturbation circulation is driven by surface heating/cooling gradients and terrain ef fects rather than the manifestation of an inertial oscillation. The implication is that at even relatively small scales (less than 30 km), the differential evolution in vegetation density and soil moisture distribution over a relatively homogenous ecotone can give rise to preferential boundary-layer circulations capable of modifying local-scale horizontal and vertical motions.
Wave breaking induced surface wakes and jets observed during a bora event
NASA Astrophysics Data System (ADS)
Jiang, Qingfang; Doyle, James D.
2005-09-01
An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.
NASA Astrophysics Data System (ADS)
Stauffer, David R.
1990-01-01
The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a significant portion of the vertically integrated moisture convergence often occurs in the PBL. Overall, the best dynamic analyses for the PBL, mass, wind and precipitation fields were obtained by nudging toward analyses of rawinsonde wind, temperature and moisture (the latter uses a weaker nudging coefficient) above the model PBL and toward analyses of surface-layer wind and moisture within the model PBL.
NASA Astrophysics Data System (ADS)
Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida
2017-04-01
The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We also include initial results from nested high-resolution modelling experiments of the 2016 monsoon, at a resolution of 4km in comparison with bespoke regional forecasts run throughout the field campaign.
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; ...
2016-08-15
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
Constraints on Io's interior from auroral spot oscillations
NASA Astrophysics Data System (ADS)
Roth, Lorenz; Saur, Joachim; Retherford, Kurt D.; Blöcker, Aljona; Strobel, Darrell F.; Feldman, Paul D.
2017-02-01
The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness—like a conductive magma ocean—would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 103 S or lower. A magma ocean with conductances of 104 S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.
NASA Astrophysics Data System (ADS)
Duan, Xueyang
The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.
Geosat Data Assimilation with Application to the Eastern North Atlantic
NASA Technical Reports Server (NTRS)
Stammer, Detlef
1997-01-01
An attempt is made to determine the three-dimensional ocean circulation from satellite altimeter measurements by assimilating Geosat sea surface height data into an eddy-resolving QuasiGeostrophic (QG) model of the eastern North Atlantic Ocean. Results are tested against independent information from hydrographic field observations and moored current meter data collected during the Geosat ERM. The comparison supports the concept of inferring aspects of the three-dimensional flow field from sea surface height observations by combining altimetric measurements with the dynamics of ocean circulation models. A Holland-type QG model with open boundaries is set up on a 2000 km X 2000 km domain of the eastern North Atlantic between 25 deg. and 45 deg. N, 32 deg. and 8 deg. W. By using a simple nudging technique, about two years of Geosat altimeter data are assimilated into the model every five days as space-time objective analyses on the model grid. The error information resulting from the analysis is used during the assimilation procedure to account for data uncertainties. Results show an intense eddy field, which in the surface layer interacts with a meandering Azores Front. Compared to Geosat, the model leads to smoothed fields that follow the observations. Model simulations are significantly correlated with hydrographic data from March 1988 and June 1989, both close to the surface and in the subsurface. Good agreement is also found between the model velocity fields and moored current meter data in the top two model layers. The agreement is visually weak in the bottom layer, although a coherence analysis reveals an agreement between the model simulation and current meter data over the full water column at periods exceeding 80 days.
An operational large-scale marine planetary boundary layer model
NASA Technical Reports Server (NTRS)
Brown, R. A.; Liu, W. T.
1982-01-01
A marine planetary boundary layer (PBL) model is presented and compared with data from sea-based experiments. The PBL model comprises two layers, the outer an Ekman-Taylor layer with stratification-dependent secondary flow, and the logarithmic surface layer corrected for stratification and humidity effects and variable surface roughness. Corrections are noted for air much warmer than water in stable conditions and for low wind speeds. The layers are analytically defined along with similarity relations and a resistance law for inclusion in a program. An additional interfacial layer correction is developed and shown to be significant for heat flux calculations. Experimental data from GOASEX were used to predict the windfield in the Gulf of Alaska, and JASIN data was used for windfields SE of Iceland. The JASIN-derived wind field predictions were accurate to within 1 m/sec and 10 deg in a 200 km triangle.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
NASA Astrophysics Data System (ADS)
Singh, David J.; Pickett, Warren E.
1992-12-01
A number of properties identifiable from the electronic bands and one-electron wavefunctions have been obtained from a well converged self-consistent calculation of the electronic structure of Tl 2Ba 2CuO 6. The Fermi surface is found to consist of two sheets: a two-dimensional barrel surface arising from the CuO 2 layer, and a three-dimensional spheroid arising from states with strong TlO character but actually extending throughout all layers of the structure. This feature has important implications for the transport properties, and especially for the degree of anisotropy. We compare with transport data on single crystals of Tl 2Ba 2CuO 6. The calculated Fermi surface of the spheroid is found to be in substantial agreement with the measured period of magnetization oscillations in the de Haas-van Alphen effect by Kido et al. The positron wavefunction engulfs the CuO 2 layers, making this material a promising case for mapping out with positron 2D-ACAR the layer-derived Fermi surface that is believed to be central to high-temperature superconductivity. The electric field gradients are predicted and compared with calculations for other cuprates. The Hall coefficient RHxyz (carrier motion on the a-b plane) is found to be positive and within a factor of 1.5 of that measured on ceramic samples, while the other non-vanishing component of the Hall tensor is predicted to be negative.
Technique for Predicting the RF Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, M.; Reddell, J.
1998-01-01
This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.
NASA Astrophysics Data System (ADS)
Silva, Vinicius N. H.; Babilotte, Philippe; Rivet, Sylvain; Dubreuil, Mathieu; Le Jeune, Bernard; Dupont, Laurent
2012-12-01
We investigated the layer dynamics of a conventional surface-stabilized ferroelectric liquid crystal (SSFLC) using a full-optical snapshot Mueller matrix polarimeter (SMMP) based on wavelength polarization coding. Time-resolved polarimetric measurements were performed with different SSFLC samples, and a strong correlation between the polarimetric parameters and the SSFLC under electric field at different exposure times was found. It has been shown that the SMMP polarimeter is able to determine the evolution of the trajectory of the liquid crystal director between the two addressed states, the reversible motion of the smectic layer while switching, as well as the irreversible transition from chevron to bookshelf texture.
Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise
NASA Technical Reports Server (NTRS)
Zorumski, W. E. (Editor); Weir, D. S. (Editor)
1986-01-01
The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.
Soil moisture sensing with aircraft observations of the diurnal range of surface temperature
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Blanchard, B.; Anderson, A.; Wang, V.
1977-01-01
Aircraft observations of the surface temperature were made by measurements of the thermal emission in the 8-14 micrometers band over agricultural fields around Phoenix, Arizona. The diurnal range of these surface temperature measurements were well correlated with the ground measurement of soil moisture in the 0-2 cm layer. The surface temperature observations for vegetated fields were found to be within 1 or 2 C of the ambient air temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remotely sensed surface temperatures are a reliable indicator of soil moisture conditions and crop status.
Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.
Piscitelli, Alessandra; Cicatiello, Paola; Gravagnuolo, Alfredo Maria; Sorrentino, Ilaria; Pezzella, Cinzia; Giardina, Paola
2017-06-26
Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.
Engineering topological superconductors using surface atomic-layer/molecule hybrid materials
NASA Astrophysics Data System (ADS)
Uchihashi, Takashi
2015-08-01
Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.
NASA Astrophysics Data System (ADS)
Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee
2018-04-01
Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M
2018-05-04
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
NASA Astrophysics Data System (ADS)
Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.
2018-05-01
Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.
Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi
2009-01-01
The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.
NASA Astrophysics Data System (ADS)
Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi
2018-02-01
The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.
NASA Astrophysics Data System (ADS)
Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.
2014-03-01
Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.
Tang, Zhongfeng; Bao, Junjie; Du, Qingxia; Shao, Yu; Gao, Minghao; Zou, Bangkun; Chen, Chunhua
2016-12-21
A complete and ordered layered structure on the surface of LiNi 0.815 Co 0.15 Al 0.035 O 2 (NCA) has been achieved via a facile surface-oxidation method with Na 2 S 2 O 8 . The field-emission transmission electron microscopy images clearly show that preoxidation of the hydroxide precursor can eliminate the crystal defects and convert Ni(OH) 2 into layered β-NiOOH, which leads to a highly ordered crystalline NCA, with its (006) planes perpendicular to the surface in the sintering process. X-ray photoelectron spectroscopy and Raman shift results demonstrate that the contents of Ni 2+ and Co 2+ ions are reduced with preoxidization on the surface of the hydroxide precursor. The level of Li + /Ni 2+ disordering in the modified NCA determined by the peak intensity ratio I (003) /I (104) in X-ray diffraction patterns decreases. Thanks to the complete and ordered layered structure on the surface of secondary particles, lithium ions can easily intercalate/extract in the discharging-charging process, leading to greatly improved electrochemical properties.
2015-09-30
Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field
Charge heterogeneity of surfaces: mapping and effects on surface forces.
Drelich, Jaroslaw; Wang, Yu U
2011-07-11
The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.
2016-09-01
This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.
NASA Astrophysics Data System (ADS)
Salvucci, G.; Rigden, A. J.; Gentine, P.; Lintner, B. R.
2013-12-01
A new method was recently proposed for estimating evapotranspiration (ET) from weather station data without requiring measurements of surface limiting factors (e.g. soil moisture, leaf area, canopy conductance) [Salvucci and Gentine, 2013, PNAS, 110(16): 6287-6291]. Required measurements include diurnal air temperature, specific humidity, wind speed, net shortwave radiation, and either measured or estimated incoming longwave radiation and ground heat flux. The approach is built around the idea that the key, rate-limiting, parameter of typical ET models, the land-surface resistance to water vapor transport, can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. This relation was found to hold over a wide range of climate conditions (arid to humid) and limiting factors (soil moisture, leaf area, energy) at a set of Ameriflux field sites. While the field tests in Salvucci and Gentine (2013) supported the minimum variance hypothesis, the analysis did not reveal the mechanisms responsible for the behavior. Instead the paper suggested, heuristically, that the results were due to an equilibration of the relative humidity between the land surface and the surface layer of the boundary layer. Here we apply this method using surface meteorological fields simulated by a global climate model (GCM), and compare the predicted ET to that simulated by the climate model. Similar to the field tests, the GCM simulated ET is in agreement with that predicted by minimizing the profile relative humidity variance. A reasonable interpretation of these results is that the feedbacks responsible for the minimization of the profile relative humidity variance in nature are represented in the climate model. The climate model components, in particular the land surface model and boundary layer representation, can thus be analyzed in controlled numerical experiments to discern the specific processes leading to the observed behavior. Results of this analysis will be presented.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
NASA Technical Reports Server (NTRS)
Kumar, A.; Graves, R. A., Jr.
1980-01-01
A user's guide is provided for a computer code which calculates the laminar and turbulent hypersonic flows about blunt axisymmetric bodies, such as spherically blunted cones, hyperboloids, etc., at zero and small angles of attack. The code is written in STAR FORTRAN language for the CDC-STAR-100 computer. Time-dependent, viscous-shock-layer-type equations are used to describe the flow field. These equations are solved by an explicit, two-step, time asymptotic, finite-difference method. For the turbulent flow, a two-layer, eddy-viscosity model is used. The code provides complete flow-field properties including shock location, surface pressure distribution, surface heating rates, and skin-friction coefficients. This report contains descriptions of the input and output, the listing of the program, and a sample flow-field solution.
An equivalent layer magnetization model for the United States derived from MAGSAT data
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Galliher, S. C. (Principal Investigator)
1982-01-01
Long wavelength anomalies in the total magnetic field measured field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large-scale tectonic provinces.
Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures
NASA Astrophysics Data System (ADS)
Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.
2018-03-01
Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.
NASA Astrophysics Data System (ADS)
Minagawa, Masahiro; Kim, Yeongin; Claus, Martin; Bao, Zhenan
2017-09-01
Bottom-contact organic field-effect transistors (OFETs) are prepared by inserting an AgO x layer between a pentacene layer and the source-drain electrodes. The contact resistance in the device is ˜8.1 kΩ·cm with an AgO x layer oxidized for 60 s but reaches 116.9 kΩ·cm with a non-oxidized Ag electrode. The drain current and mobility in the OFETs with the AgO x layer increase with the oxidization time and then gradually plateau, and this trend strongly depends on the work function of the Ag surface. Further, the hole injection is enhanced by the presence of Ag2O but inhibited by the presence of AgO.
Direct numerical simulations of mack-mode damping on porous coated cones
NASA Astrophysics Data System (ADS)
Lüdeke, H.; Wartemann, V.
2013-06-01
The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
Electrical properties of double layer dielectric structures for space technology
NASA Astrophysics Data System (ADS)
Lian, Anqing
1993-04-01
Polymeric films such as polyimide (PI) and polyethylene terephthalate (PET) are used in space technology as thermal blankets. Thin SiO2 and SiN coatings plasma deposited onto PI and PET surfaces were proposed to protect the blanket materials against the space environment. The electrical properties of this kind of dual layer dielectric structure were investigated to understand the mechanisms for suppressing charge accumulation and flashover. Bulk and surface electrical conductivities of thin single-layer PI and PET samples and of the dual layer SiO2 and SiN combinations with PI and PET were measured in a range of applied electrical fields. The capacitance voltage (CV) technique was used for analyzing charge transport and distribution in the structures. The electric current in the bulk of the SiO2/PI and SiN/PI samples was found to depend on the polarity of the electric field. Other samples did not exhibit any such polarity effect. The polarity dependence is attributed to charge trapping at the PI/plasma deposit interface. The CV characteristics of the Al-PI-SiO2-Si structure confirm that charges which can modify the local electric field can be trapped near the interface. A model is proposed to interpret the properties of the currents in dual layer structures. This model can semi-quantitatively explain all the observed results.
2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes
Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.
2016-01-01
Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
NASA Astrophysics Data System (ADS)
Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.
2017-03-01
We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.
NASA Technical Reports Server (NTRS)
Kustas, William P.; Choudhury, Bhaskar J.; Kunkel, Kenneth E.
1989-01-01
Surface-air temperature differences are commonly used in a bulk resistance equation for estimating sensible heat flux (H), which is inserted in the one-dimensional energy balance equation to solve for the latent heat flux (LE) as a residual. Serious discrepancies between estimated and measured LE have been observed for partial-canopy-cover conditions, which are mainly attributed to inappropriate estimates of H. To improve the estimates of H over sparse canopies, one- and two-layer resistance models that account for some of the factors causing poor agreement are developed. The utility of the two models is tested with remotely sensed and micrometeorological data for a furrowed cotton field with 20 percent cover and a dry soil surface. It is found that the one-layer model performs better than the two-layer model when a theoretical bluff-body correction for heat transfer is used instead of an empirical adjustment; otherwise, the two-layer model is better.
Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge
NASA Technical Reports Server (NTRS)
Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.
1991-01-01
A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.
Zhang, Jian; Lakowicz, Joseph R.
2013-01-01
It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
Cursory examination of the zeta potential behaviors of two optical materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Oja, T.
1992-01-02
When an oxide surface is placed in water, a difference in potential across the interface occurs due to dipole orientation. Hydroxyl groups or bound oxygen atoms on the oxide surface will orient adjacent water molecules which balance the dipole charge. This occurs over some small distance called the electrical double layer. Trace amounts of high field strength ions present in the vicinity of the double layer can have significant effects on the double layer. When there is movement of the oxide surface with respect to the water, a shearing of the double layer occurs. The electrical potential at this surfacemore » of shear is termed the zeta potential. The impetus for this study was to document the zeta potential behavior in water of two optical materials. (1) a multicomponent phosphate glass; and (2) Zerodur, a silicate glass-ceramic.« less
Quantitative fabrication of functional polymer surfaces
NASA Astrophysics Data System (ADS)
Rengifo, Hernan R.
Polymeric surfaces and films have very broad applications in industry. They have been employed as anticorrosive, abrasive and decorative coatings for many years. More recently, the applications of functional polymer films in microelectronics, optics, nanocomposites, DNA microarrays, and enzyme immobilizations has drawn a lot of attention. There are a number of challenges associated with the implementation of functional polymeric surfaces, and these challenges are especially important in the field of surface modification. In this thesis, three different challenges in the field of polymeric functional surfaces are addressed: first of all, a set of rules for the molecular design are presented in chapters 3 and 4 according to the surface needs. Second, some latent energy source must be incorporated into the material design to quantitative modify a surface. Third, the morphology of the surface, the method use to fabricate the design surface and their new applications are presented in chapters 4 and 5. The new polymeric surface functionalization method described in Chapter 3 is based upon an end-functionalized diblock copolymer design to self-assemble at the surface of both hard and soft surfaces. It is demonstrated that alkyne end-functional diblock copolymers can be used to provide precise control over areal densities of reactive functionality. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The modified surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. In Chapter 4, a simple means is demonstrated to covalently bond DNA to polymer-modified substrates; the method provides quantitative control of the DNA areal density. The approach is based upon synthesis of an alkyne-end-functional diblock copolymer alpha-alkyne-o-Br-poly(tBA- b-MMA). The block copolymer self-assembles to form a bilayer on the substrate and directs alkyne groups to the surface. Azido-functionalized DNA is immobilized on alkyne functionalized substrates by a "click" reaction. The density of immobilized DNA can be quantitatively controlled by varying the parameters used for spin-coating the polymer film or by adjusting the hydrophilicity of the polymer surface underlying the reactive alkyne functional groups. In Chapter 5, Layer by layer (LbL) assembly techniques construct multilayer thin films by sequential deposition of monomolecular layers of organic molecules. One of the drawbacks associated with their use is that monomolecular layers are usually held together by relatively weak forces such as Van der Waals, electrostatic and hydrogen bonding interactions, and can therefore be lacking in mechanical integrity. In this chapter, it is demonstrated that heterobifunctional polymers, functionalized with one azide chain terminus and a protected alkyne group as the other chain terminus, constitute a powerful and versatile means for the covalent layer-by-layer (CLbL) assembly of thin polymer films. Each monomolecular polymer layer is covalently bound to both the preceding and following layers to produce a robust multilayer structure. Because the coupling chemistry used, "click" chemistry, is highly chemoselective, the layering process is virtually independent of the chemical nature of the polymer so that the constitution of each layer can be selected at will. Unlike other layer-by-layer deposition techniques, the layer thickness in CLbL is not equivalent to the diameter of the polymer chain, but is related to the polymer chain length and can be controlled by adjustment of either the polymer molecular weight or the areal density of surface alkyne groups.
Feasibility study of a layer-oriented wavefront sensor for solar telescopes: comment.
Kellerer, Aglaé
2014-11-10
The future generation of telescopes will be equipped with multi-conjugate adaptive-optics (MCAO) systems in order to obtain high angular resolution over large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we suggested a method to implement the layer-oriented approach, and in view of recent concerns by Marino and Wöger [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685APOPAI1559-128X], we now explain the proposed scheme in further detail. We note that in any layer-oriented system one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter, not all the sensing surface is illuminated by the entire field of view. The successful implementation of nighttime layer-oriented systems shows that the field reduction is no crucial limitation. In the solar approach the field reduction is directly noticeable because it causes vignetting of the Shack-Hartmann subaperture images. It can be accounted for by a suitable adjustment of the algorithms to calculate the local wavefront slopes. We discuss a further concern related to the optical layout of a layer-oriented solar system.
Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T
2012-12-06
Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.
NASA Technical Reports Server (NTRS)
1982-01-01
Experiments in Curie depth estimation from long wavelength magnetic anomalies are summarized. The heart of the work is equivalent-layer-type magnetization models derived by inversion of high-elevation, long wavelength magnetic anomaly data. The methodology is described in detail in the above references. A magnetization distribution in a thin equivalent layer at the Earth's surface having maximum detail while retaining physical significance, and giving rise to a synthetic anomaly field which makes a best fit to the observed field in a least squares sense is discussed. The apparent magnetization contrast in the equivalent layer is approximated using an array of dipoles distributed in equal area at the Earth's surface. The dipoles are pointed in the direction of the main magnetic field, which carries the implicit assumption that crustal magnetization is dominantly induced or viscous. The determination of the closest possible dipole spacing giving a stable inversion to a solution having physical significance is accomplished by plotting the standard deviation of the solution parameters against their spatial separation for a series of solutions.
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.
The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less
Technology of Strengthening Steel Details by Surfacing Composite Coatings
NASA Astrophysics Data System (ADS)
Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.
2016-04-01
The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.
Electric field stabilization of viscous liquid layers coating the underside of a surface
NASA Astrophysics Data System (ADS)
Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.
2017-05-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Extended surface parallel coating inspection method
Naulleau, Patrick P.
2006-03-21
Techniques for rapidly characterizing reflective surfaces and especially multi-layer EUV reflective surfaces of optical components involve illuminating the entire reflective surface instantaneously and detecting the image far field. The technique provides a mapping of points on the reflective surface to corresponding points on a detector, e.g., CCD. This obviates the need to scan a probe over the entire surface of the optical component. The reflective surface can be flat, convex, or concave.
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1980-01-01
A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao
2016-01-01
The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods. PMID:27929409
Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao
2016-12-06
The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.
Wetting in a phase separating polymer blend film: quench depth dependence
Geoghegan; Ermer; Jungst; Krausch; Brenn
2000-07-01
We have used 3He nuclear reaction analysis to measure the growth of the wetting layer as a function of immiscibility (quench depth) in blends of deuterated polystyrene and poly(alpha-methylstyrene) undergoing surface-directed spinodal decomposition. We are able to identify three different laws for the surface layer growth with time t. For the deepest quenches, the forces driving phase separation dominate (high thermal noise) and the surface layer grows with a t(1/3) coarsening behavior. For shallower quenches, a logarithmic behavior is observed, indicative of a low noise system. The crossover from logarithmic growth to t(1/3) behavior is close to where a wetting transition should occur. We also discuss the possibility of a "plating transition" extending complete wetting to deeper quenches by comparing the surface field with thermal noise. For the shallowest quench, a critical blend exhibits a t(1/2) behavior. We believe this surface layer growth is driven by the curvature of domains at the surface and shows how the wetting layer forms in the absence of thermal noise. This suggestion is reinforced by a slower growth at later times, indicating that the surface domains have coalesced. Atomic force microscopy measurements in each of the different regimes further support the above. The surface in the region of t(1/3) growth is initially somewhat rougher than that in the regime of logarithmic growth, indicating the existence of droplets at the surface.
Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao
2010-11-01
The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.
NASA Astrophysics Data System (ADS)
Leiss, B.; Gudmundsson, A.; Philipp, S. L.
2005-12-01
By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a homogeneous, isotropic half space. The present numerical results, combined with field studies, indicate that such analytical models may yield results that have little similarity with the actual structure being modeled.
Seasonal variability of atmospheric surface layer characteristics and weather pattern in Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Cheng, Way Lee; Sadr, Reza
2016-11-01
Qatar's economy is based on oil and gas industry, which are mostly located in coastal regions. Therefore, better understanding of coastal weather, characteristics of surface layer and turbulence exchange processes is much needed. However, the turbulent atmospheric layer study in this region is severely limited. To support the broader aim and study long term precise wind information, a micro-meteorological field campaign has been carried out in a coastal location of north Qatar. The site is based on a 9 m tower, installed at Al Ghariya in the northern coast of Qatar, equipped with three sonic anemometers, temperature-humidity sensor, radiometer and a weather station. This study shows results based on the period August 2015 to July 2016. Various surface layer characteristics and modellings coefficients based on Monin Obukhov similarity theory is studied for the year and seasonal change is noted. Along with the seasonal variabilities of different weather parameters also observed. We hope this long term field observational study will be very much helpful for research community especially for modelers. In addition, two beach and shoreline monitoring cameras installed at the site could give first time information on waves and shoreline changes, and wind-wave interaction in Qatar. An Preliminary Analysis of Wind-Wave Interaction in Qatar in the Context of Changing Climate.
A SiC LDMOS with electric field modulation by a step compound drift region
NASA Astrophysics Data System (ADS)
Bao, Meng-tian; Wang, Ying; Yu, Cheng-hao; Cao, Fei
2018-07-01
In this paper, we propose a SiC LDMOS structure with a step compound drift region (SC-LDMOS). The proposed device has a compound drift region which consists of an n-type top layer, a step p-type middle layer and an n-type bottom layer. The step p-type middle layer can introduce two new electric field peaks and uniform the distribution of the electric field in the n-type top layer, which can modulate the surface electric field and improve the breakdown voltage of the proposed structure. In addition, the n-type bottom layer is applied under the heavy doping p-type middle layer,which contributes to realize the charge balance. Furthermore, it can also increase the doping concentration of the n-type top layer, which can decrease the on resistance of the proposed device. As a simulated result, the proposed device obtain a high BV of 976 V and a low Rsp,on of 7.74 mΩ·cm2. Compared with the conventional single REUSRF LDMOS and triple RESURF LDMOS, BV of proposed device is enhanced by 42.5% and 14.7%, respectively and Rsp,on is reduced by 37.3% and 30.9%, respectively. Meanwhile, the switching delays of the proposed device are significantly shorter than the conventional triple RESURF LDMOS.
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
Magnetically Derived Flood Recurrence Rate Estimates from Stalagmites in Southeastern Minnesota
NASA Astrophysics Data System (ADS)
Feinberg, J. M.; Lascu, I.; Andrade Lima, E.; Weiss, B. P.
2012-12-01
The magnetism of speleothems remains an untapped resource of paleoclimatic, hydrogeologic, and geomagnetic information. Similar to other deposits containing magnetic minerals, speleothems chronicle the evolution of local environmental parameters via the concentration, composition and grain size of their magnetic mineral assemblages. Here we report a novel use of scanning SQUID microscopy to calculate flood recurrence rates from an annually laminated ~500 year old stalagmite from Spring Valley Caverns (SVC) in southeastern Minnesota. Mineral and organic detritus adheres to the surface of a speleothem as flood waters recede from a cavern, and are subsequently encapsulated by calcite as drip water conditions are reestablished. Such detritus typically consists of allochthonous grains of quartz, clay, and titanomagnetite with an average grain size of ~10 μm. Larger flood layers occur on polished surfaces as dark bands that delineate stalagmite growth horizons. We use scanning SQUID microscopy (with a nominal sensitivity of 10-16 Am2) to map the presence of these flood layers by measuring the vertical component of the stray magnetic field resulting from a 1 T isothermal remanent magnetization (IRM) imparted perpendicular to a polished surface. A magnetization model of the IRM field was then obtained by inverting the field data measured 210 μm above the sample using an algorithm in the Fourier domain. By integrating the magnetic data parallel to the stalagmite growth axis we produce a time series of IRM peaks, each of which corresponds to a flooding event. We calculate an average flood recurrence rate of 5 per century for the last 500 years. This rate increases to >10 floods per century in the last century, thereby capturing the combined effects of both climate change and agricultural land-use on karst hydrogeology. These results agree with recurrence rate estimates derived from historical records, tree ring studies, and geochemical analyses of speleothems. The presence of flood layers within speleothems may compromise their use as recorders of the geomagnetic field. Empirical examination of stalagmites both with and without flood layers shows that samples containing flood layers generally have NRM and SIRM intensities greater than 10-3 Am-1 and 10-1 Am-1, respectively; an order of magnitude higher than those without. These values provide a convenient, low-tech mechanism for identifying stalagmite samples that are likely to contain flood layers. Thus, the NRMs of stalagmites containing flood layers will be strongly biased towards the field orientation present at the time of flooding, and may not necessarily represent a time averaged field direction for the corresponding duration of speleothem growth. For this reason, we recommend that workers exercise caution when using speleothems for geomagnetic studies that may contain flood layers.
Effects of the PPy layer thickness on Co-PPy composite films
NASA Astrophysics Data System (ADS)
Haciismailoglu, Murside
2015-11-01
Co-PPy composite films were electrodeposited on ITO substrate from two different solutions potentiostatically. Firstly, the PPy layers with the thicknesses changing from 20 to 5000 nm were produced on ITO. Then Co was electrodeposited on these PPy/ITO substrates with a charge density of 1000 mC cm-2. The electrochemical properties were investigated by the current density-time transients and the variation of the elapsed time for the Co deposition depending on the PPy layer thickness. X-ray photoelectron (XPS) spectra indicated the presence of both Co metal and its oxides on the surface. The weak reflections of the Co3O4, CoO and hcp Co were detected by the X-ray diffraction (XRD) technique. According to scanning electron microscopy (SEM) images, the thickness of the PPy layer strongly affects the Co nucleation. The composite films with the PPy layer thinner than 200 nm and thicker than 2000 nm have an isotropic magnetic behavior due to the symmetrical crystal field. The composite films with the PPy layer thicknesses between 200 and 2000 nm have an anisotropic magnetic behavior attributable to the deterioration of this symmetrical crystal field by the PPy bubbles on the surface. All films are hard magnetic material, since the coercivities are larger than 125 Oe.
Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2017-05-01
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, Cecil E.
1990-01-01
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, C.E.
1990-07-31
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
Thin Carbon Layers on Nanostructured Silicon-Properties and Applications
NASA Astrophysics Data System (ADS)
Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia
Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.
NASA Astrophysics Data System (ADS)
Wells, Leonard A.
2007-06-01
The intent of this study is to develop a better understanding of the behavior of late spring through early fall marine layer stratus and fog at Vandenberg Air Force Base, which accounts for a majority of aviation forecasting difficulties. The main objective was to use L
D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility
Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas; ...
2018-01-19
Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less
D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas
Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakih, Ibrahim, E-mail: ibrahim.fakih@mail.mcgill.ca; Sabri, Shadi; Szkopek, Thomas, E-mail: thomas.szkopek@mcgill.ca
2014-08-25
We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55 mV/pH over pH 3 through pH 8. Applying themore » Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 10{sup 14} sites/cm{sup 2}. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.« less
NASA Astrophysics Data System (ADS)
Fakih, Ibrahim; Sabri, Shadi; Mahvash, Farzaneh; Nannini, Matthieu; Siaj, Mohamed; Szkopek, Thomas
2014-08-01
We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55 mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 1014 sites/cm2. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
Modulation of the magnetic domain size induced by an electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ando, F.; Kakizakai, H.; Yamada, K.
2016-07-11
The electric field (EF) effect on the magnetic domain structure of a Pt/Co system was studied, where an EF was applied to the top surface of the Co layer. The width of the maze domain was significantly modified by the application of the EF at a temperature slightly below the Curie temperature. After a detailed analysis, a change in the microscopic exchange stiffness induced by the EF application was suggested to dominate the modulation of the domain width observed in the experiment. The accumulation of electrons at the surface of the Co layer resulted in an increase in the microscopicmore » exchange stiffness and the Curie temperature. The result was consistent with the recent theoretical prediction.« less
NASA Technical Reports Server (NTRS)
Polansky, A. C.
1982-01-01
A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.
Performance of epitaxial back surface field cells
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.; Baraona, C. R.; Swartz, C. K.
1973-01-01
Epitaxial back surface field structures were formed by depositing a 10 micron thick 10 Omega-cm epitaxial silicon layer onto substrates with resistivities of 0.01, 0.1, 1.0 and 10 Omega-cm. A correlation between cell open-circuit voltage and substrate resistivity was observed and was compared to theory. The cells were also irradiated with 1 MeV electrons to a fluence of 5 X 10 to the 15th power e/cm2. The decrease of cell open-circuit voltage was in excellent agreement with theoretical predictions and the measured short circuit currents were within 2% of the prediction. Calculations are presented of optimum cell performance as functions of epitaxial layer thickness, radiation fluence and substrate diffusion length.
Soliton-like defects in nematic liquid crystal thin layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru
The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less
NASA Astrophysics Data System (ADS)
Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.
2014-06-01
Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.
NASA Technical Reports Server (NTRS)
Parsons, B.; Daly, S.
1983-01-01
Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.
NASA Astrophysics Data System (ADS)
Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine
2017-03-01
Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC components. These results show the potential of crop model inversion for estimating the AWC components of two-layered soils and may guide the sampling of representative years and fields to use this technique for mapping soil properties that are relevant for distributed hydrological modelling.
NASA Astrophysics Data System (ADS)
Badorreck, A.; Gerke, H. H.; Weller, U.; Vontobel, P.
2009-04-01
In the Lusatia mining district (NE-Germany) an artificial catchment was constructed to study initial ecosystem development and runoff generation. As a key process in this early stage, we investigate the surface structure dynamics as it strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. The presented work focuses on observations of soil pore structure formation at the surface at five sites in the catchment and in an adjacent "younger" area composed of comparable sediments. Moreover we've conducted infiltration experiments in the lab and field to relate the soil pore structure to the hydraulic properties. The surface soil was sampled in cylindrical rings (10 cm³) down to 2 cm depth from which bulk density profiles were obtained using X-ray computed tomography (CT) (at UFZ- Halle, Germany) with a resolution of 0.084 mm. The influence of structure on infiltration was investigated using neutron radiography (at the NEUTRA facility of the Paul-Scherrer-Institut, Villigen, Switzerland) to visualise two-dimensional (2D) infiltration patterns. The slab-type samples were equilibrated to different initial water contents and then exposed to drip irrigation (to simulate rainfall) while a series of neutron radiographs were taken. In addition, field measurements with a miniature tension infiltrometer were conduced. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The infiltration rates were severely affected by the surface crusts; however, the rates were independent of the vesicular pore layer.
Follow-up field investigation of the effectiveness of antistripping additives in Virginia.
DOT National Transportation Integrated Search
1997-01-01
A previous field study of 12 pavements revealed considerable stripping in the surface layers of mixtures placed in 1991-92. Most of the mixes containing chemical additives showed visual stripping, but the ones containing hydrated lime did not show si...
NASA Astrophysics Data System (ADS)
Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.
2018-05-01
We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.
Premelting, fluctuations, and coarse-graining of water-ice interfaces.
Limmer, David T; Chandler, David
2014-11-14
Using statistical field theory supplemented with molecular dynamics simulations, we consider premelting on the surface of ice as a generic consequence of broken hydrogen bonds at the boundary between the condensed and gaseous phases. A procedure for coarse-graining molecular configurations onto a continuous scalar order parameter field is discussed, which provides a convenient representation of the interface between locally crystal-like and locally liquid-like regions. A number of interfacial properties are straightforwardly evaluated using this procedure such as the average premelting thickness and surface tension. The temperature and system size dependence of the premelting layer thickness calculated in this way confirms the characteristic logarithmic growth expected for the scalar field theory that the system is mapped onto through coarse-graining, though remains finite due to long-ranged interactions. Finally, from explicit simulations the existence of a premelting layer is shown to be insensitive to bulk lattice geometry, exposed crystal face, and curvature.
Premelting, fluctuations, and coarse-graining of water-ice interfaces
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2014-11-01
Using statistical field theory supplemented with molecular dynamics simulations, we consider premelting on the surface of ice as a generic consequence of broken hydrogen bonds at the boundary between the condensed and gaseous phases. A procedure for coarse-graining molecular configurations onto a continuous scalar order parameter field is discussed, which provides a convenient representation of the interface between locally crystal-like and locally liquid-like regions. A number of interfacial properties are straightforwardly evaluated using this procedure such as the average premelting thickness and surface tension. The temperature and system size dependence of the premelting layer thickness calculated in this way confirms the characteristic logarithmic growth expected for the scalar field theory that the system is mapped onto through coarse-graining, though remains finite due to long-ranged interactions. Finally, from explicit simulations the existence of a premelting layer is shown to be insensitive to bulk lattice geometry, exposed crystal face, and curvature.
Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D
2015-12-01
An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
Electrical structure in two thunderstorm anvil clouds
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.
1989-01-01
Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.
NASA Astrophysics Data System (ADS)
Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.
2012-11-01
Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.
Diffusion and surface alloying of gradient nanostructured metals
Lu, Ke
2017-01-01
Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244
Surface spontaneous parametric down-conversion.
Perina, Jan; Luks, Antonín; Haderka, Ondrej; Scalora, Michael
2009-08-07
Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi;{(2)} nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P. J.
2011-09-01
Context. A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. Aims: We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. Methods: We perform numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. Results: We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker tachoclines allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e. those with the largest amplitudes of the initial field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile. Conclusions: The results indicate that buoyancy is a common phenomena when the magnetic field is amplified through dynamo action in a narrow layer. It is, however, very hard for the field to rise up to the surface without losing its initial coherence.
Application of sound and temperature to control boundary-layer transition
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.
1987-01-01
The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2
NASA Astrophysics Data System (ADS)
Kim, Sejoong; Son, Young-Woo
2017-10-01
A quasiparticle band structure of a single layer 2 H -NbSe2 is reported by using first-principles G W calculation. We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static susceptibilities from the band structures obtained by the mean-field calculation as well as G W calculation with and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third nearest neighbor hoppings and is shown to reproduce our G W quasiparticle energy bands and Fermi surface very well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and their implications on recent controversial experimental results on CDW transition temperatures.
Effective slip identities for viscous flow over arbitrary patterned surfaces
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Six, Pierre
2012-11-01
For a variety of applications, most recently microfluidics, the ability to control fluid motions using surface texturing has been an area of ongoing interest. In this talk, we will develop several identities relating to the construction of effective slip boundary conditions for patterned surfaces. The effective slip measures the apparent slip of a fluid layer flowing over a patterned surface when viewing the flow far from the surface. In specific, shear flows of tall fluid layers over periodic surfaces (surfaces perturbed from a planar no-slip boundary by height and/or hydrophobicity fluctuations) are governed by an effective slip matrix that relates the vector of far-field shear stress (applied to the top of the fluid layer) to the effective slip velocity vector that emerges from the flow. Of particular note, we will demonstrate several general rules that describe the effective slip matrix: (1) that the effective slip matrix is always symmetric, (2) that the effective slip over any hydrophobically striped surface implies a family of related results for slip over other striped surfaces, and (3) that when height or hydrophobicity fluctuations are small, the slip matrix can be approximated directly using a simple formula derived from the surface pattern.
Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang
2016-02-01
Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Berland, K.; Einstein, T. L.; Hyldgaard, P.
2012-01-01
The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.
The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Wong, Elizabeth Wing-See
There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Characteristics of secondary flows in rough-wall turbulent boundary layers
NASA Astrophysics Data System (ADS)
Vanderwel, Christina; Ganapathisubramani, Bharathram
2015-11-01
Large-scale secondary motions consisting of counter-rotating vortices and low- and high-momentum pathways can form in boundary layers that develop over rough surfaces. We experimentally investigated the sensitivity of these secondary motions to spanwise arrangement of the roughness by studying the flow over streamwise-aligned rows of elevated roughness with systematically-varied spacing. The roughness is created with LEGO blocks mounted along the floor of the wind tunnel and Stereo-PIV is used to measure the velocity field in a cross-plane. Results show that the secondary flows are strongest when the spanwise spacing of the surface topology is comparable with the boundary layer thickness. We discuss how these results are relevant to flows over arbitrary topologies and how these secondary motions influence the Reynolds stress distribution in the boundary layer.
Electron Scattering at Surfaces of Epitaxial Metal Layers
NASA Astrophysics Data System (ADS)
Chawla, Jasmeet Singh
In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.
D 2 and DT Liquid-Layer Target Shots on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas
Experiments at the National Ignition Facility (NIF) using targets containing a Deuterium-Tritium (DT) fuel layer have, until recently, required that a high-quality layer of solid deuterium-tritium (herein referred to as an "ice-layer") be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of icelayers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam lined capsule, but also changes to the capsule filling process andmore » the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes, and the target's performance during four target shots on NIF will be discussed.« less
Sound field separation with sound pressure and particle velocity measurements.
Fernandez-Grande, Efren; Jacobsen, Finn; Leclère, Quentin
2012-12-01
In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance between the equivalent sources and measurement surfaces and for the difference in magnitude between pressure and velocity. Experimental and numerical studies have been conducted to examine the methods. The double layer velocity method seems to be more robust to noise and flanking sound than the combined pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward.
Wind Characteristics of Coastal and Inland Surface Flows
NASA Astrophysics Data System (ADS)
Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya
2015-11-01
Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.
Importance of solar subsurface heating in ocean general circulation models
NASA Astrophysics Data System (ADS)
Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.
2001-12-01
The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
NASA Astrophysics Data System (ADS)
Yadav, Harekrishna; Agrawal, Amit
2018-03-01
This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanyan, L. L.
1978-01-01
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.
Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor
NASA Astrophysics Data System (ADS)
Kvorning, T.; Hansson, T. H.; Quelle, A.; Smith, C. Morais
2018-05-01
We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral superconductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes.
Microwave remote sensing and radar polarization signatures of natural fields
NASA Technical Reports Server (NTRS)
Mo, Tsan
1989-01-01
Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.
Highly air stable passivation of graphene based field effect devices.
Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich
2015-02-28
The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Huang, Yuan; Sutter, Eli; Wu, Liangmei; Xu, Hong; Bao, Lihong; Gao, Hong-Jun; Zhou, Xingjiang; Sutter, Peter
2018-06-21
Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore de-ionized (DI) water as a solution top gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal sub-threshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels where such control is difficult to realize with conventional back-gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.
Na, Jun-Hee; Park, Seung Chul; Kim, Se-Um; Choi, Yoonseuk; Lee, Sin-Doo
2012-01-16
A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.
Density of Mars' south polar layered deposits.
Zuber, Maria T; Phillips, Roger J; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Plaut, Jeffrey J; Smith, David E; Smrekar, Suzanne E
2007-09-21
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.
Enhanced magnetocaloric effect material
Lewis, Laura J. H.
2006-07-18
A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.
Influence of magnesium fluoride (MgF2) layer on a conventional surface plasmon resonance sensor
NASA Astrophysics Data System (ADS)
Mohapatra, Saswat; Moirangthem, Rakesh S.
2018-05-01
In this work, a numerical study of Surface Plasmon Resonance (SPR) sensor has been done by using Magnesium Fluoride (MgF2) layer on a conventional Kretschmann configuration. The prism was coated with smooth gold thin film of thickness 50 nm followed by MgF2 layer. To obtain the maximum reflection dips in the SPR modes, the thickness of MgF2 layer is optimized by varying it from 200-800 nm. Our calculations also reveal that SPR modes corresponding to gold-MgF2 layer are very sensitive to the changes in the surrounding medium as compared to the traditional SPR device. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such bilayer device (gold-MgF2) is expected to take an important role on the field of chemical and biological sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com
2016-07-06
In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less
Conductive, magnetic and structural properties of multilayer films
NASA Astrophysics Data System (ADS)
Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.
2013-12-01
Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.
Native oxide formation on pentagonal copper nanowires: A TEM study
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian
2018-06-01
Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.
2014-02-01
Relief ripples with sub-diffraction periods (≈λlas/3, λlas/4) were produced on a aluminum surface immersed in water and irradiated in a multi-filamentation regime by focused 744 nm femtosecond laser pulses with highly supercritical, multi-GW peak powers. For the VUV (8.5 eV) surface plasmon resonance on the wet aluminum surface, such small-scale surface nanogratings can be produced by high - second and third - optical harmonics, coming to the surface from the optical filaments in the water layer. Then, the sub-diffraction surface ripples may appear through interference of their transverse electric fields with the longitudinal electric fields of their counterparts, scattered on the surface roughness and appeared as the corresponding high-energy, high-wavenumber surface polaritons.
Skin-layer of the eruptive magnetic flux rope in large solar flares
NASA Astrophysics Data System (ADS)
Kichigin, G. N.; Miroshnichenko, L. I.; Sidorov, V. I.; Yazev, S. A.
2016-07-01
The analysis of observations of large solar flares made it possible to propose a hypothesis on existence of a skin-layer in magnetic flux ropes of coronal mass ejections. On the assumption that the Bohm coefficient determines the diffusion of magnetic field, an estimate of the skin-layer thickness of ~106 cm is obtained. According to the hypothesis, the electric field of ~0.01-0.1 V/cm, having the nonzero component along the magnetic field of flux rope, arises for ~5 min in the surface layer of the eruptive flux rope during its ejection into the upper corona. The particle acceleration by the electric field to the energies of ~100 MeV/nucleon in the skin-layer of the flux rope leads to their precipitation along field lines to footpoints of the flux rope. The skin-layer presence induces helical or oval chromospheric emission at the ends of flare ribbons. The emission may be accompanied by hard X-ray radiation and by the production of gamma-ray line at the energy of 2.223 MeV (neutron capture line in the photosphere). The magnetic reconnection in the corona leads to a shift of the skin-layer of flux rope across the magnetic field. The area of precipitation of accelerated particles at the flux-rope footpoints expands in this case from the inside outward. This effect is traced in the chromosphere and in the transient region as the expanding helical emission structures. If the emission extends to the spot, a certain fraction of accelerated particles may be reflected from the magnetic barrier (in the magnetic field of the spot). In the case of exit into the interplanetary space, these particles may be recorded in the Earth's orbit as solar proton events.
NASA Technical Reports Server (NTRS)
Capotondi, Antonietta; Malanotte-Rizzoli, Paola; Holland, William R.
1995-01-01
The dynamical consequences of constraining a numerical model with sea surface height data have been investigated. The model used for this study is a quasigeostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. The assimilation of the surface data is thus equivalent to the prescription of a surface pressure boundary condition. The authors analyzed the mechanisms of the model adjustment and the characteristics of the resultant equilibrium state when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final equilibrium state, two different experiments have been considered: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean plus eddies) has been used. It is shown that the model behavior in the presence of the surface data constraint can be conveniently described in terms of baroclinic Fofonoff modes. The prescribed mean component of the surface data acts as a 'surface topography' in this problem. Its presence determines a distortion of the geostrophic contours in the subsurface layers, thus constraining the mean circulation in those layers. The intensity of the mean flow is determined by the inflow/outflow conditions at the open boundaries, as well as by eddy forcing and dissipation.
Surface modification of AISI H13 tool steel by laser cladding with NiTi powder
NASA Astrophysics Data System (ADS)
Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.
2016-04-01
This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.
NASA Astrophysics Data System (ADS)
Josset, Damien B.; Hou, Weilin W.; Goode, Wesley; Matt, Silvia C.; Hu, Yongxiang
2017-05-01
Lidar remote sensing based on visible wavelength is one of the only way to penetrate the water surface and to obtain range resolved information of the ocean surface mixed layer at the synoptic scale. Accurate measurement of the mixed layer properties is important for ocean weather forecast and to assist the optimal deployment of military assets. Turbulence within the mixed layer also plays an important role in climate variability as it also influences ocean heat storage and algae photosynthesis (Sverdrup 1953, Behrenfeld 2010). As of today, mixed layer depth changes are represented in the models through various parameterizations constrained mostly by surface properties like wind speed, surface salinity and sea surface temperature. However, cooling by wind and rain can create strong gradients (0.5C) of temperature between the submillimeter surface layer and the subsurface layer (Soloviev and Lukas, 1997) which will manifest itself as a low temperature bias in the observations. Temperature and salinity profiles are typically used to characterize the mixed layer variability (de Boyer Montégut et al. 2004) and are both key components of turbulence characterization (Hou 2009). Recently, several research groups have been investigating ocean temperature profiling with laser remote sensing based either on Brillouin (Fry 2012, Rudolf and Walther 2014) or Raman scattering (Artlett and Pask 2015, Lednev et al. 2016). It is the continuity of promising research that started decades ago (Leonard et al. 1979, Guagliardo and Dufilho 1980, Hirschberg et al. 1984) and can benefit from the current state of laser and detector technology. One aspect of this research that has not been overlooked (Artlett and Pask 2012) but has yet to be revisited is the impact of temperature on vibrational Raman polarization (Chang and Young, 1972). The TURBulence Ocean Lidar is an experimental system, aimed at characterizing underwater turbulence by examining various Stokes parameters. Its multispectral capability in both emission (based on an optical parametric oscillator) and detection (optical filters) provide flexibility to measure the polarization signature of both elastic and inelastic scattering. We will present the characteristics of TURBOL and several results from our laboratory and field experiments with an emphasis on temperature profiling capabilities based on vibrational Raman polarization. We will also present other directions of research related to this activity.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.
2017-12-01
In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.
Electrospark doping of steel with tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com
2016-01-15
The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less
Modification of Soil Temperature and Moisture Budgets by Snow Processes
NASA Astrophysics Data System (ADS)
Feng, X.; Houser, P.
2006-12-01
Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.
NASA Astrophysics Data System (ADS)
Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno
2017-12-01
The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.
Thermal generation of the magnetic field in the surface layers of massive stars
NASA Astrophysics Data System (ADS)
Urpin, V.
2017-11-01
A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.
NASA Astrophysics Data System (ADS)
Stuurman, C. M.; Holt, J.; Levy, J.
2016-12-01
On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.
Phosphorus oxide gate dielectric for black phosphorus field effect transistors
NASA Astrophysics Data System (ADS)
Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.
2018-04-01
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
NASA Astrophysics Data System (ADS)
Teodorescu, Cristian M.; Pintilie, Lucian; Apostol, Nicoleta G.; Costescu, Ruxandra M.; Lungu, George A.; Hrib, LuminiÅ£a.; Trupinǎ, Lucian; Tǎnase, Liviu C.; Bucur, Ioana C.; Bocîrnea, Amelia E.
2017-09-01
The positions of the low energy electron diffraction (LEED) spots from ferroelectric single crystal films depend on its polarization state, due to electric fields generated outside of the sample. One may derive the surface potential energy, yielding the depth where the mobile charge carriers compensating the depolarization field are located (δ ). On ferroelectric Pb (Zr ,Ti ) O3 (001) samples, surface potential energies are between 6.7 and 10.6 eV, and δ values are unusually low, in the range of 1.8 ±0.4 Å . When δ is introduced in the values of the band bending inside the ferroelectric, a considerably lower value of the dielectric constant and/or of the polarization near the surface than their bulk values is obtained, evidencing either that the intrinsic `dielectric constant' of the material has this lower value or the existence of a `dead layer' at the free surface of clean ferroelectric films. The inwards polarization of these films is explained in the framework of the present considerations by the formation of an electron sheet on the surface. Possible explanations are suggested for discrepancies between the values found for surface potential energies from LEED experiments and those derived from the transition between mirror electron microscopy and low energy electron microscopy.
NASA Astrophysics Data System (ADS)
Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.
2018-06-01
The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.
Henning, Alex; Swaminathan, Nandhini; Vaknin, Yonathan; Jurca, Titel; Shimanovich, Klimentiy; Shalev, Gil; Rosenwaks, Yossi
2018-01-26
The ability to control surface-analyte interaction allows tailoring chemical sensor sensitivity to specific target molecules. By adjusting the bias of the shallow p-n junctions in the electrostatically formed nanowire (EFN) chemical sensor, a multiple gate transistor with an exposed top dielectric layer allows tuning of the fringing electric field strength (from 0.5 × 10 7 to 2.5 × 10 7 V/m) above the EFN surface. Herein, we report that the magnitude and distribution of this fringing electric field correlate with the intrinsic sensor response to volatile organic compounds. The local variations of the surface electric field influence the analyte-surface interaction affecting the work function of the sensor surface, assessed by Kelvin probe force microscopy on the nanometer scale. We show that the sensitivity to fixed vapor analyte concentrations can be nullified and even reversed by varying the fringing field strength, and demonstrate selectivity between ethanol and n-butylamine at room temperature using a single transistor without any extrinsic chemical modification of the exposed SiO 2 surface. The results imply an electric-field-controlled analyte reaction with a dielectric surface extremely compelling for sensitivity and selectivity enhancement in chemical sensors.
Field effect transistor with HfO2/Parylene-C bilayer hybrid gate insulator
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Kito, Ai; Inoue, Isao
2015-03-01
We have investigated the electric field control of the carrier density and the mobility at the surface of SrTiO3, a well known transition-metal oxide, in a field effect transistor (FET) geometry. We have used a Parylene-C (8 nm)/HfO2 (20 nm) double-layer gate insulator (GI), which can be a potential candidate for a solid state GI for the future Mott FETs. So far, only examples of the Mott FET used liquid electrolyte or ferroelectric oxides for the GI. However, possible electrochemical reaction at the interface causes damage to the surface of the Mott insulator. Thus, an alternative GI has been highly desired. We observed that even an ultra thin Parylene-C layer is effective for keeping the channel surface clean and free from oxygen vacancies. The 8 nm Parylene-C film has a relatively low resistance and consequentially its capacitance does not dominate the total capacitance of the Parylene-C/HfO2 GI. The breakdown gate voltage at 300 K is usually more than 10 V (~ 3.4 MV/cm). At gate voltage of 3 V the carrier density measured by the Hall effect is about 3 ×1013 cm-2, competent to cause the Mott transition. Moreover, the field effect mobility reaches in the range of 10 cm2/Vs indicating the Parylene-C passivated surface is actually very clean.
Electromagnetic pulse from supernovae. [model for old low-mass stars
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1975-01-01
Upper and lower limits to the radiated electromagnetic pulse from a supernova are calculated assuming that the mass fraction of the matter expanding inside the dipole magnetic field shares energy and maintains the pressure balance in the process. A supernova model is described in which the explosion occurs in old low-mass stars containing less than 10% hydrogen in their ejecta and a remnant neutron star is produced. The analysis indicates that although the surface layer of a star of 1 g/cu thickness may be shock-accelerated to an energy factor of about 100 and may expand into the vacuum with an energy factor approaching 10,000, the equatorial magnetic field will retard this expansion so that the inner, more massive ejecta layers will effectively accelerate the presumed canonical dipole magnetic field to greater velocities than would the surface layer alone. A pulse of 10 to the 46th power ergs in a width of about 150 cm will result which will not be affected by circumstellar matter or electron self-radiation effects. It is shown that interstellar matter will attenuate the pulse, but that charge separation may reduce the attenuation and allow a larger pulse to escape.
Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika
2014-08-22
Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.
Interpreting Lidar Measurements to Better Estimate Surface PM2.S in Study Regions of DISCOVER-AQ
NASA Technical Reports Server (NTRS)
Chu, D. A.; Ferrare, Richard; Welton, Judd; Hostetler, Chris; Hair, John; Szykman, James; Al-Saadi, Jay; Tsai, Tzuchin
2011-01-01
The use of satellite AOD data to estimate surface PM2.5 has been broadly studied in various regions. Some showed good results while some showed relatively poor with the simple relationship between AOD and PM2.5. The key factor is the aerosol vertical distribution. Lidar extinction profiles provide insights into the aerosol mixing not only in the boundary layer but also quantifying residual aerosol abundance above boundary layer with e-folding scale height. The normalizing AOD by hazy layer height is proven better in correlating with PM2.5. In other words, extinction measurements near the surface can be a proxy for surface PM2.5. In this study, we will use NASA airborne HSRL (High Spectral Resolution Lidar) during SJV2007 (San Joaquin Valley, February 2007) and surface MPLNet (Micropulse Lidar Network) at GSFC between 2007 and 2010 to characterize the relationship for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) field experiments; the first over Baltimore-Washington was conducted in July 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polat, Ozgur; Ertugrul, Memhet; Thompson, James R
To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions suchmore » as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.« less
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-01-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-05-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
NASA Astrophysics Data System (ADS)
Tao, Ye; Ding, Wentao; Wang, Zhongqiang; Xu, Haiyang; Zhao, Xiaoning; Li, Xuhong; Liu, Weizhen; Ma, Jiangang; Liu, Yichun
2018-05-01
In this work, we demonstrated an effective method to improve the switching reliability of HfOx based RRAM device by inserting mountain-like surface-graphited carbon (MSGC) layer. The MSGC layer was fabricated through thermal annealing of amorphous carbon (a-C) film with high sp2 proportion (49.7%) under 500 °C on Pt substrate, whose characteristics were validated by XPS and Raman spectrums. The local electric-field (LEF) was enhanced around the nanoscale tips of MSGC layer due to large surface curvature, which leads to simplified CFs and localization of resistive switching region. It takes responsibility to the reduction of high/low resistance states (HRS/LRS) fluctuation from 173.8%/64.9% to 23.6%/6.5%, respectively. In addition, the resulting RRAM devices exhibited fast switching speed (<65 ns), good retention (>104 s at 85 °C) and low cycling degradation. This method could be promising to develop reliable and repeatable high-performance RRAM for practical applications.
Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-01-01
The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.
Tunable surface plasmon instability leading to emission of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumbs, Godfrey; Donostia International Physics Center; Iurov, Andrii, E-mail: aiurov@chtm.unm.edu
2015-08-07
We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wavemore » vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.« less
Tough Adhesives for Diverse Wet Surfaces
Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J.
2018-01-01
Adhesion to wet and dynamic surfaces, including biological tissues, is important in many fields, but has proven extremely challenging. Existing adhesives are either cytotoxic, adhere weakly to tissues, or cannot be utilized in wet environments. We report a bio-inspired design for adhesives consisting of two layers: an adhesive surface and a dissipative matrix. The former adheres to the substrate by electrostatic interactions, covalent bonds, and physical interpenetration. The latter amplifies energy dissipation through hysteresis. The two layers synergistically lead to higher adhesion energy on wet surfaces than existing adhesives. Adhesion occurs within minutes, independent of blood exposure, and compatible with in vivo dynamic movements. This family of adhesives may be useful in many areas of application, including tissue adhesives, wound dressings and tissue repair. PMID:28751604
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
NASA Astrophysics Data System (ADS)
Yuan, Zonghao; Cao, Zhigang; Boström, Anders; Cai, Yuanqiang
2018-04-01
A computationally efficient semi-analytical solution for ground-borne vibrations from underground railways is proposed and used to investigate the influence of hydraulic boundary conditions at the scattering surfaces and the moving ground water table on ground vibrations. The arrangement of a dry soil layer with varying thickness resting on a saturated poroelastic half-space, which includes a circular tunnel subject to a harmonic load at the tunnel invert, creates the scenario of a moving water table for research purposes in this paper. The tunnel is modelled as a hollow cylinder, which is made of viscoelastic material and buried in the half-space below the ground water table. The wave field in the dry soil layer consists of up-going and down-going waves while the wave field in the tunnel wall consists of outgoing and regular cylindrical waves. The complete solution for the saturated half-space with a cylindrical hole is composed of down-going plane waves and outgoing cylindrical waves. By adopting traction-free boundary conditions on the ground surface and continuity conditions at the interfaces of the two soil layers and of the tunnel and the surrounding soil, a set of algebraic equations can be obtained and solved in the transformed domain. Numerical results show that the moving ground water table can cause an uncertainty of up to 20 dB for surface vibrations.
NASA Astrophysics Data System (ADS)
Tezkan, Bülent; Červ, Václav; Pek, Josef
1992-12-01
Anisotropy in magnetotelluric (MT) data has been found very often and has been explained as the result of local structures of different conductivities. In this paper, an observed anisotropy in MT data is not interpreted qualitatively in terms of local structures but is modelled quantitatively by a quasi-anisotropic layer. Besides the MT transfer functions, measurements of the vertical magnetic component are required. The second goal of this paper is to describe a method which permits the resolution of mid-crustal conductive layers in the presence of an additional high-conductivity layer at the surface. This method is possible in a two-dimensional (2-D) situation that limits the spatial extension of the surface structure. Again, vertical magnetic field recordings are necessary, but the phase of the E-polarization with respect to the 2-D structure is the most sensitive parameter. Using two field sites in Southern Germany, it has been possible to give a quantitative explanation of anisotropy and an improved depth resolution, and to derive an integrated conductivity of the highly conductive mid-crustal layers using MT and geomagnetic depth sounding data. The anisotropic highly conductive layer is located 12 km beneath the poorly conductive Black Forest crystalline rocks, whereas it is at a depth of 6 km beneath the highly conductive Rhine Graben sediments.
Rumyantsev, Vladimir V; Shtaerman, Esfir Y
2008-02-01
Peculiarities of scattering of TM-polarized light wave by a diamond-like crystalline nano-layer are studied. They are due to specific dispersion of n-phonon polaritons localized in the layer. The IR polaritons discussed here (relating to diamond and Si crystals which are nonpolar materials) will only appear if some of the vibration modes become polar, e.g., due to the presence of the surface. As a result of mixing of g- and u-modes of ion oscillations along the (111)-direction in the near-surface layer, it is possible to observe additional (with respect to bulk) scattering of coherent electromagnetic waves of the Stokes and anti-Stokes frequencies. beta-particles can be utilized as an independent tool of study of new semiconductors, in particular thin diamond films. The effect associated with response of a quasi-two-dimensional diamond-like layer to the moving electron field is considered. beta-particle field induces phonon excitation modes to arise in the material. Coupled with the beta-particle electromagnetic modes they generate polaritons. Spectral density of the radiation intensity of the flashed phonon polaritons has been estimated as a function of the layer thickness as well as of the scattering angle and the beta-particle velocity.
Multi-layer topological transmissions of spoof surface plasmon polaritons.
Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun
2016-03-04
Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.
Solid state radiative heat pump
Berdahl, P.H.
1984-09-28
A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.
NASA Astrophysics Data System (ADS)
Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian
2018-02-01
An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.
Electric Field-Dependent Photoluminescence in Multilayer Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Stanev, T. K.; Henning, A.; Sangwan, V. K.; Speiser, N.; Stern, N. P.; Lauhon, L. J.; Hersam, M. C.; Wang, K.; Valencia, D.; Charles, J.; Kubis, T. C.
Owing to interlayer coupling, transition metal dichalcogenides (TMDCs) such as MoS2 exhibit strong layer dependence of optical and electronic phenomena such as the band gap and trion and neutral exciton population dynamics. Here, we systematically measure the effect of layer number on the optical response of multilayer MoS2 in an external electric field, observing field and layer number dependent emission energy and photoluminescence intensity. These effects are studied in few (2-6) and bulk (11 +) layered structures at low temperatures. In MoS2\\ the observed layer dependence arises from several mechanisms, including interlayer charge transfer, band structure, Stark Effect, Fermi level changes, screening, and surface effects, so it can be challenging to isolate how these mechanisms impact the observables. Because it behaves like a stack of weakly interacting monolayers rather than multilayer or bulk, ReS2 provides a comparison to traditional TMDCs to help isolate the underlying physical mechanisms dictating the response of multilayers. This work is supported by the National Science Foundation MRSEC program (DMR-1121262), and the 2-DARE Grant (EFRI-1433510). N.P.S. is an Alfred P. Sloan Research Fellow.
Measurements of Photospheric and Chromospheric Magnetic Fields
NASA Astrophysics Data System (ADS)
Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca
2017-09-01
The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.
Surface boundary layer turbulence in the Southern ocean
NASA Astrophysics Data System (ADS)
Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto
2015-04-01
Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
NASA Astrophysics Data System (ADS)
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
The influence of a land-lake surface discontinuity on the convective boundary layer flow
NASA Astrophysics Data System (ADS)
Martinez, Daniel; Bange, Jens; Lang, Andreas
2013-04-01
The current work addresses the effects of surface discontinuities into the atmospheric boundary layer (ABL) with free convection using data collected during the STINHO 2002 and LITFASS 2003 experimental campaigns. These field experiments were performed during two consecutive summers in the area of Branderburg, Germany, over a heterogeneous area located around the Meteorological Observatory Lindenberg (MOL) of the German Weather Service (DWD). The terrain can be considered flat with areas of pine forests and agricultural fields, where lakes and villages are irregularly distributed to form a heterogeneous landscape representative of central Europe. Specific measurements collected by the helicopter-borne turbulence probe Helipod were selected to focus on the water-land surface transition over lake Scharnuetzel, a small-scale lake of 10 km x 2 km length scale. Four flights with a similar pattern were performed, with heights that range from 70 to 900 m above ground level (a.g.l.), in order to characterise the vertical extent of the surface discontinuity influence to the turbulent flow. The concepts of blending height and internal boundary layer (IBL) have been applied to the experimental data as a theoretical background. In general, the presence of the lake is reflected in the statistical second-order moments of the time series collected below 100 m a.g.l., specially for those time series related with the potential temperature. However, none of the parametrizations found in the literature related with the blending height or IBL seem to be appropriate for this special case, where a small-scale lake is the responsible of the surface heterogeneity. An analysis of the downstream propagation of the IBL depth shows that it depends on (i) the air stability downwind of the surface discontinuity and (ii) the wind speed in the surface layer. These preliminary results should be confirmed with the performance of new experiments.
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.;
2014-01-01
Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.
The mean and turbulent flow structure of a weak hydraulic jump
NASA Astrophysics Data System (ADS)
Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.
2008-03-01
The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.
Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement
2011-01-01
Background When a fluorophore is placed in the vicinity of a metal nanoparticle possessing a strong plasmon field, its fluorescence emission may change extensively. Our study is to better understand this phenomenon and predict the extent of quenching and/or enhancement of fluorescence, to beneficially utilize it in molecular sensing/imaging. Results Plasmon field intensities on/around gold nanoparticles (GNPs) with various diameters were theoretically computed with respect to the distance from the GNP surface. The field intensity decreased rapidly with the distance from the surface and the rate of decrease was greater for the particle with a smaller diameter. Using the plasmon field strength obtained, the level of fluorescence alternation by the field was theoretically estimated. For experimental studies, 10 nm GNPs were coated with polymer layer(s) of known thicknesses. Cypate, a near infrared fluorophore, was placed on the outermost layer of the polymer coated GNPs, artificially separated from the GNP at known distances, and its fluorescence levels were observed. The fluorescence of Cypate on the particle surface was quenched almost completely and, at approximately 5 nm from the surface, it was enhanced ~17 times. The level decreased thereafter. Theoretically computed fluorescence levels of the Cypate placed at various distances from a 10 nm GNP were compared with the experimental data. The trend of the resulting fluorescence was similar. The experimental results, however, showed greater enhancement than the theoretical estimates, in general. The distance from the GNP surface that showed the maximum enhancement in the experiment was greater than the one theoretically predicted, probably due to the difference in the two systems. Conclusions Factors affecting the fluorescence of a fluorophore placed near a GNP are the GNP size, coating material on GNP, wavelengths of the incident light and emitted light and intrinsic quantum yield of the fluorophore. Experimentally, we were able to quench and enhance the fluorescence of Cypate, by changing the distance between the fluorophore and GNP. This ability of artificially controlling fluorescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. PMID:21569249
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Rawls, J. W., Jr.
1984-01-01
An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Roos, Frederick W.; Hicks, Raymond M.
1990-01-01
The upper surface boundary layer on a transport wing model was extensively surveyed with miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained at a second transonic test condition, for which a separated region was present at mid-semispan, aft of mid-chord. Significant variation in flow direction with distance from the surface was observed near the trailing edge except at the wing root and tip. The data collected at the transonic cruise condition show boundary layer growth associated with shock wave/boundary layer interaction, followed by recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface pressure and wingtip acceleration were also obtained. The influence of flow field unsteadiness on the boundary layer data is discussed. Comparisons among the data and predictions from a variety of computational methods are presented. The computed predictions are in reasonable agreement with the experimental data in the outboard regions where 3-D effects are moderate and adverse pressure gradients are mild. In the more highly loaded mid-span region near the trailing edge, displacement thickness growth was significantly underpredicted, except when unrealistically severe adverse pressure gradients associated with inviscid calculations were used to perform boundary layer calculations.
NASA Astrophysics Data System (ADS)
Markfort, C. D.
2017-12-01
Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.
Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor.
Kuroda, Chiaki; Nakai, Midori; Fujimaki, Makoto; Ohki, Yoshimichi
2018-03-19
Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO 2 and SiO 2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.
NASA Astrophysics Data System (ADS)
Pak, Jinsu; Min, Misook; Cho, Kyungjune; Lien, Der-Hsien; Ahn, Geun Ho; Jang, Jingon; Yoo, Daekyoung; Chung, Seungjun; Javey, Ali; Lee, Takhee
2016-10-01
Photoswitching response times (rise and decay times) of a vertical organic and inorganic heterostructure with p-type copper phthalocyanine (CuPc) and n-type molybdenum disulfide (MoS2) semiconductors are investigated. By stacking a CuPc layer on MoS2 field effect transistors, better photodetection capability and fast photoswitching rise and decay phenomena are observed. Specifically, with a 2 nm-thick CuPc layer on the MoS2 channel, the photoswitching decay time decreases from 3.57 s to 0.18 s. The p-type CuPc layer, as a passivation layer, prevents the absorption of oxygen on the surface of the MoS2 channel layer, which results in a shortened photoswitching decay time because adsorbed oxygen destroys the balanced ratio of electrons and holes, leading to the interruption of recombination processes. The suggested heterostructure may deliver enhanced photodetection abilities and photoswitching characteristics for realizing ultra-thin and sensitive photodetectors.
Nanosecond Surface Microdischarges in Multilayer Structures
NASA Astrophysics Data System (ADS)
Dubinov, A. E.; Lyubimtseva, V. A.
2018-05-01
Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.
Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium
NASA Astrophysics Data System (ADS)
Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai
2017-09-01
Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.
NASA Astrophysics Data System (ADS)
Sanderson, Robert Steven
The purpose of this thesis is to investigate the dynamics of PM 10 emission from a nickel slag stockpile that closely resembles a desert pavement in physical characteristics. In the field, it was observed that slag surfaces develop by natural processes into a well-armoured surface over some period of time. The surface then consists of two distinct layers; a surficial armour layer containing only non-erodible gravel and cobble-sized clasts, and an underlying dust-laden layer, which contains a wide size range of slag particles, from clay-sized to cobble-sized. This surficial armour layer protects the underlying fines from wind entrainment, at least under typical wind conditions; however, particle emissions still do occur under high wind speeds. The dynamics of particle entrainment from within these surfaces are investigated herein. It is shown that the dynamics of the boundary layer flow over these lag surfaces are influenced by the inherent roughness and permeability of the surficial armour layer, such that the flow resembles those observed over and within vegetation canopies, and those associated with permeable gravel-bed river channels. Restriction of air flow within the permeable surface produces a high-pressure zone within the pore spaces, resulting in a Kelvin-Helmholtz shear instability, which triggers coherent motions in the form of repeating burst-sweep cycles. Using Laser Doppler Anemometry (LDA), it is demonstrated that the lower boundary layer is characterized by both Q4 sweeping motions and Q2 bursting motions, while the upper boundary layer is dominated by Q2 bursts. Pore air motions within the slag material were measured using buried pressure ports. It is shown that the mean pressure gradient which forms within the slag material results in net upward displacement of air, or wind pumping. However, this net upward motion is a result of rapid oscillatory motions which are directly driven by coherent boundary layer motions. It is also demonstrated that these coherent motions are able to penetrate at least 4 cm through the surficial armour layer, thereby transporting turbulent kinetic energy (TKE) downward to the dust-laden sub-surface layer. This represents a mechanism of momentum transfer that is able to reach the erodible material, while the wind pumping effect represents a mechanism for particle exhaustion.
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-01-01
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-04-29
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.
Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2016-10-01
Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.
NASA Astrophysics Data System (ADS)
Yafarov, R. K.
2017-12-01
Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.
Compacted dimensions and singular plasmonic surfaces
NASA Astrophysics Data System (ADS)
Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele
2017-11-01
In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.
NASA Astrophysics Data System (ADS)
Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.
2018-01-01
Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.
Effect of wakes on land-atmosphere fluxes
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.
2011-12-01
Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.
Defect-driven flexochemical coupling in thin ferroelectric films
NASA Astrophysics Data System (ADS)
Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.; Glinchuk, Maya D.; Kalinin, Sergei V.; Genenko, Yuri A.; Morozovska, Anna N.
2018-01-01
Using the Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectrochemical coupling on the size effects in polar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typical case, when defects fill a thin layer below the top film surface with a constant concentration creating an additional gradient of elastic fields. The defective surface of the film is not covered with an electrode, but instead with an ultrathin layer of ambient screening charges, characterized by a surface screening length. Obtained results revealed an unexpectedly strong effect of the joint action of Vegard stresses and flexoelectric effect (shortly flexochemical coupling) on the ferroelectric transition temperature, distribution of the spontaneous polarization and elastic fields, domain wall structure and period in thin PbTi O3 films containing a layer of elastic defects. A nontrivial result is the persistence of ferroelectricity at film thicknesses below 4 nm, temperatures lower than 350 K, and relatively high surface screening length (˜0.1 nm ) . The origin of this phenomenon is the flexoelectric coupling leading to the rebuilding of the domain structure in the film (namely the cross-over from c-domain stripes to a-type closure domains) when its thickness decreases below 4 nm. The ferroelectricity persistence is facilitated by negative Vegard effect. For positive Vegard effect, thicker films exhibit the appearance of pronounced maxima on the thickness dependence of the transition temperature, whose position and height can be controlled by the defect type and concentration. The revealed features may have important implications for miniaturization of ferroelectric-based devices.
NASA Astrophysics Data System (ADS)
Beck, Sophie; Sclauzero, Gabriele; Chopra, Uday; Ederer, Claude
2018-02-01
We use density functional theory plus dynamical mean-field theory (DFT+DMFT) to study multiple control parameters for tuning the metal-insulator transition (MIT) in CaVO3 thin films. We focus on separating the effects resulting from substrate-induced epitaxial strain from those related to the reduced thickness of the film. We show that tensile epitaxial strain of around 3%-4% is sufficient to induce a transition to a paramagnetic Mott-insulating phase. This corresponds to the level of strain that could be achieved on a SrTiO3 substrate. Using free-standing slab models, we then demonstrate that reduced film thickness can also cause a MIT in CaVO3, however, only for thicknesses of less than 4 perovskite units. Our calculations indicate that the MIT in such ultrathin films results mainly from a surface-induced crystal-field splitting between the t2 g orbitals, favoring the formation of an orbitally polarized Mott insulator. This surface-induced crystal-field splitting is of the same type as the one resulting from tensile epitaxial strain, and thus the two effects can also cooperate. Furthermore, our calculations confirm an enhancement of correlation effects at the film surface, resulting in a reduced quasiparticle spectral weight in the outermost layer, whereas bulklike properties are recovered within only a few layers away from the surface.
Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study
NASA Astrophysics Data System (ADS)
Bhattacharyya, Somnath; Majee, Partha Sarathi
2017-04-01
We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.
Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer
NASA Astrophysics Data System (ADS)
Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.
A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model ofmore » a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.« less
Field alignment of bent-core smectic liquid crystals for analog optical phase modulation
NASA Astrophysics Data System (ADS)
Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.
2015-05-01
A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.
An experimental study of airfoil-spoiler aerodynamics
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Karamcheti, K.
1985-01-01
The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.
NASA Astrophysics Data System (ADS)
O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.
2015-12-01
We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.
Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the “salt-and-pepper” patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations, we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak “seed” magnetic fields (e.g., from a 10{sup −6} G) can locally grow above the mean equipartition field to a stronger than 2000 G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find thatmore » the local dynamo action takes place mostly in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and their detection in observations is critical for understanding the local dynamo action on the Sun.« less
NASA Technical Reports Server (NTRS)
McKinzie, Daniel J., Jr.
1996-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.
Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications
Sotiri, Irini; Overton, Jonathan C; Waterhouse, Anna
2016-01-01
Surface fouling and undesired adhesion are nearly ubiquitous problems in the medical field, complicating everything from surgeries to routine daily care of patients. Recently, the concept of immobilized liquid (IL) interfaces has been gaining attention as a highly versatile new approach to antifouling, with a wide variety of promising applications in medicine. Here, we review the general concepts behind IL layers and discuss the fabrication strategies on medically relevant materials developed so far. We also summarize the most important findings to date on applications of potential interest to the medical community, including the use of these surfaces as anti-thrombogenic and anti-bacterial materials, anti-adhesive textiles, high-performance coatings for optics, and as unique platforms for diagnostics. Although the full potential and pitfalls of IL layers in medicine are just beginning to be explored, we believe that this approach to anti-adhesive surfaces will prove broadly useful for medical applications in the future. PMID:27022136
Mechanical writing of n-type conductive layers on the SrTiO3 surface in nanoscale
Wang, Yuhang; Zhao, Kehan; Shi, Xiaolan; Li, Geng; Xie, Guanlin; Lai, Xubo; Ni, Jun; Zhang, Liuwan
2015-01-01
The fabrication and control of the conductive surface and interface on insulating SrTiO3 bulk provide a pathway for oxide electronics. The controllable manipulation of local doping concentration in semiconductors is an important step for nano-electronics. Here we show that conductive patterns can be written on bare SrTiO3 surface by controllable doping in nanoscale using the mechanical interactions of atomic force microscopy tip without applying external electric field. The conductivity of the layer is n-type, oxygen sensitive, and can be effectively tuned by the gate voltage. Hence, our findings have potential applications in oxide nano-circuits and oxygen sensors. PMID:26042679
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
NASA Astrophysics Data System (ADS)
Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu
2018-02-01
To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.
A new method for estimating the turbulent heat flux at the bottom of the daily mixed layer
NASA Technical Reports Server (NTRS)
Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David
1988-01-01
Temperature data in the mixed layer and net solar irradiance data at the sea surface are used to estimate the vertical turbulent heat flux at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent heat flux is much greater during nighttime than daytime.
Phase autowaves in the near-electrode layer in the electrochemical cell with a magnetic fluid
NASA Astrophysics Data System (ADS)
Chekanov, V. V.; Kandaurova, N. V.; Chekanov, V. S.
2017-06-01
A change in color of the thin pellicle when light is reflected from the surface of the magnetic fluid at the interface with the transparent electrode in the electric field was observed. The formation of variable thickness near-electrode layer leads to a change in the spectrum of the reflected light depending on the applied voltage. Autowaves, that were observed in the layer are a unique object for the study of self-organization process.
Drag Reduction On Multiscale Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian
2013-11-01
Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.
Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.; Korotchenkov, A. V.
2016-12-01
A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.
Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon
2015-05-26
Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.
Atmospheric boundary layer modification in the marginal ice zone
NASA Technical Reports Server (NTRS)
Bennett, Theodore J., Jr.; Hunkins, Kenneth
1986-01-01
A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.
NASA Astrophysics Data System (ADS)
Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong
2017-02-01
To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.
NASA Astrophysics Data System (ADS)
Gokhshtein, Aleksandr Ya
2000-07-01
The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.
Modelling study of sea breezes in a complex coastal environment
NASA Astrophysics Data System (ADS)
Cai, X.-M.; Steyn, D. G.
This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.
NASA Technical Reports Server (NTRS)
Tkachenko, O.; Safrankova, J.; Nemecek, Z.; Sibeck, D. G.
2011-01-01
The paper analyses one long-term pass (26 August 2007) of the THEMIS spacecraft across the dayside low-latitude magnetopause. THEMIS B, serving partly as a magnetosheath monitor, observed several changes of the magnetic field that were accompanied by dynamic changes of the magnetopause location and/or the structure of magnetopause layers observed by THEMIS C, D, and E, whereas THEMIS A scanned the inner magnetosphere. We discuss the plasma and the magnetic field data with motivation to identify sources of observed quasiperiodic plasma transients. Such events at the magnetopause are usually attributed to pressure pulses coming from the solar wind, foreshock fluctuations, flux transfer events or surface waves. The presented transient events differ in nature (the magnetopause surface deformation, the low-latitude boundary layer thickening, the crossing of the reconnection site), but we found that all of them are associated with changes of the magnetosheath magnetic field orientation and with enhancements or depressions of the plasma density. Since these features are not observed in the data of upstream monitors, the study emphasizes the role of magnetosheath fluctuations in the solar wind-magnetosphere coupling.
Turbulent dusty boundary layer in an ANFO surface-burst explosion
NASA Astrophysics Data System (ADS)
Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.
1992-01-01
This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
Electrical response of Pt/Ru/PbZr0.52Ti0.48O3/Pt capacitor as function of lead precursor excess
NASA Astrophysics Data System (ADS)
Gueye, Ibrahima; Le Rhun, Gwenael; Renault, Olivier; Defay, Emmanuel; Barrett, Nicholas
2017-11-01
We investigated the influence of the surface microstructure and chemistry of sol-gel grown PbZr0.52Ti0.48O3 (PZT) on the electrical performance of PZT-based metal-insulator-metal (MIM) capacitors as a function of Pb precursor excess. Using surface-sensitive, quantitative X-ray photoelectron spectroscopy and scanning electron microscopy, we confirm the presence of ZrOx surface phase. Low Pb excess gives rise to a discontinuous layer of ZrOx on a (100) textured PZT film with a wide band gap reducing the capacitance of PZT-based MIMs whereas the breakdown field is enhanced. At high Pb excess, the nanostructures disappear while the PZT grain size increases and the film texture becomes (111). Concomitantly, the capacitance density is enhanced by 8.7%, and both the loss tangent and breakdown field are reduced by 20 and 25%, respectively. The role of the low permittivity, dielectric interface layer on capacitance and breakdown is discussed.
Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%
NASA Astrophysics Data System (ADS)
Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun
2017-08-01
We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.
Numerical Investigation of Flow in an Over-Expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Abdol-Hamid, K. S.; Hunter, Craig A.
2005-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow was dominated by shock-induced boundary-layer separation. Porous configurations were capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Numerical Investigation of Flow in an Over-expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Elmilingui, Alaa A.; Hunter, Craig A.
2006-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow is dominated by shock-induced boundary-layer separation. Porous configurations are capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Evanescent fields of laser written waveguides
NASA Astrophysics Data System (ADS)
Jukić, Dario; Pohl, Thomas; Götte, Jörg B.
2015-03-01
We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.
NASA Astrophysics Data System (ADS)
Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.
2017-12-01
In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of the ALOS, ALOS-2, and Sentinel systems for characterizing permafrost dynamics.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.
1998-01-01
First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.
The Correlation between Radon Emission Concentration and Subsurface Geological Condition
NASA Astrophysics Data System (ADS)
Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi
2018-03-01
Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.
Local structural ordering in surface-confined liquid crystals
NASA Astrophysics Data System (ADS)
Śliwa, I.; Jeżewski, W.; Zakharov, A. V.
2017-06-01
The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.
Effect of sputtering condition and heat treatment in Co/Cu/Co/FeMn spin valve
NASA Astrophysics Data System (ADS)
Kim, Hong Jin; Bae, Jun Soo; Lee, Taek Dong; Lee, Hyuck Mo
2002-03-01
The exchange field of Cu(50 Å)/FeMn(50 Å)/Co(50 Å) sputtered on Si substrate was studied in terms of surface roughness and phase formation of γ-FeMn under a variety of Ar pressures and powers in sputtering. It was found that the exchange field is stronger when the surface is smoother and the FeMn layer forms better. The exchange bias field increased by more than three times after heat treatment. The effect of heat treament on magnetoresistance (MR) and resistance of the top spin valve, substrate/Co(30 Å)/Cu(30 Å)/Co(30 Å)/FeMn(150 Å), was studied. It was observed that the MR started to increase with annealing temperature and the effect was significant at 150°C. The heat treatment led to the disappearance of the intermixed layer between Co and Cu, and the concentration profile of Cu became flat and smooth at this temperature.
Numerical simulation of current-free double layers created in a helicon plasma device
NASA Astrophysics Data System (ADS)
Rao, Sathyanarayan; Singh, Nagendra
2012-09-01
Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.
NASA Astrophysics Data System (ADS)
Shishkin, A. V.; Sokol, M. Ya.; Shatrova, A. V.; Fedyaeva, O. N.; Vostrikov, A. A.
2014-12-01
The work has detected an influence of a constant electric field (up to E = 300 kV/m) on the structure of a nanocrystalline layer of zinc oxide, formed on the surface of a planar zinc anode in water under supercritical (673 K and 23 MPa) and near-critical (673 K and 17. 5 MPa) conditions. The effect of an increase of zinc oxidation rate with an increase in E is observed under supercritical conditions and is absent at near-critical ones. Increase in the field strength leads to the formation of a looser structure in the inner part of the zinc oxide layer.
Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing
2011-02-09
We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.
Surface tension and quasi-emulsion of cavitation bubble cloud.
Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun
2017-03-01
A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trowbridge, J. H.; Butman, B.; Limeburner, R.
1994-08-01
Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping
2018-01-01
In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.
NASA Astrophysics Data System (ADS)
Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei
2017-06-01
In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.
Sharp magnetic structures from dynamos with density stratification
NASA Astrophysics Data System (ADS)
Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor
2017-05-01
Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here, we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in non-linear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.
Light-Activated Gigahertz Ferroelectric Domain Dynamics
NASA Astrophysics Data System (ADS)
Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman
2018-03-01
Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.
Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film
NASA Astrophysics Data System (ADS)
Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu
Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
Sum-Frequency Generation from a Thin Cylindrical Layer
NASA Astrophysics Data System (ADS)
Shamyna, A. A.; Kapshai, V. N.
2018-01-01
In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.
NASA Astrophysics Data System (ADS)
Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'Ev, V. I.; Lebovka, N. I.; Soskin, M. S.
2010-03-01
The structural features, as well as the optical and electrophysical properties of a 5CB nematic liquid crystal with additions of multilayer carbon nanotubes, have been investigated in the concentration range C = 0.0025-0.1 wt %. The self-aggregation of nanotubes into clusters with a fractal structure occurs in the liquid crystal. At 0.025 wt %, the clusters are merged, initiating the percolation transition of the composite to a state with a high electric conductivity. The strong interaction of 5CB molecules with the surface of nanotube clusters is responsible for the formation of micron surface liquid crystal layers with an irregular field of elastic stresses and a complex structure of birefringence. They are easily observed in a polarization microscope and visualize directly invisible submicron nanotube aggregates. Their transverse size increases when an electric field is applied to the liquid crystal cell. Two mechanisms of the generation of optical singularities in the passing laser beam have been revealed. Optical vortices appear in the speckle fields of laser radiation scattered at the indented boundaries of the nanotube clusters, whereas the birefringence of the beam in surface liquid-crystal layers is accompanied by the appearance of polarization C points.
Receptivity of the compressible mixing layer
NASA Astrophysics Data System (ADS)
Barone, Matthew F.; Lele, Sanjiva K.
2005-09-01
Receptivity of compressible mixing layers to general source distributions is examined by a combined theoretical/computational approach. The properties of solutions to the adjoint Navier Stokes equations are exploited to derive expressions for receptivity in terms of the local value of the adjoint solution. The result is a description of receptivity for arbitrary small-amplitude mass, momentum, and heat sources in the vicinity of a mixing-layer flow, including the edge-scattering effects due to the presence of a splitter plate of finite width. The adjoint solutions are examined in detail for a Mach 1.2 mixing-layer flow. The near field of the adjoint solution reveals regions of relatively high receptivity to direct forcing within the mixing layer, with receptivity to nearby acoustic sources depending on the source type and position. Receptivity ‘nodes’ are present at certain locations near the splitter plate edge where the flow is not sensitive to forcing. The presence of the nodes is explained by interpretation of the adjoint solution as the superposition of incident and scattered fields. The adjoint solution within the boundary layer upstream of the splitter-plate trailing edge reveals a mechanism for transfer of energy from boundary-layer stability modes to Kelvin Helmholtz modes. Extension of the adjoint solution to the far field using a Kirchhoff surface gives the receptivity of the mixing layer to incident sound from distant sources.
[Changes of soil physical properties during the conversion of cropland to agroforestry system].
Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin
2017-01-01
To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.
Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram
2013-02-14
Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.
Evaluation of multilayered pavement structures from measurements of surface waves
Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.
2006-01-01
A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong
2018-05-01
A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
NASA Astrophysics Data System (ADS)
Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia
2017-03-01
This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.
Experimental study of the free surface velocity field in an asymmetrical confluence
NASA Astrophysics Data System (ADS)
Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom
2017-04-01
The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows disappears quite quickly, because of the severe flow contraction that aids the flow uniformization. This is also accelerated because of a flow redistribution process that starts already upstream of the confluence, resulting in a lower than expected velocity difference over the shear layer between the bulk of the incoming flows. In contrast, the shear layer between the contracted section and the separation zone proves to be of a significantly higher order of magnitude, with large turbulent structures appearing that get transported far downstream. In conclusion, the resulting understanding of this analysis of velocity fields with a larger field of view shows that when analyzing confluence hydrodynamics, one should pay ample attention to analyze data far enough up and downstream to assess all the relevant processes.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Bourassa, Mark
2017-04-01
Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.
NASA Astrophysics Data System (ADS)
Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker
2014-05-01
Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
Electronic structure and Fermi surface topology of WTe2 in a magnetic field
NASA Astrophysics Data System (ADS)
Krishna, Jyoti; Maitra, T.
2018-05-01
Two dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently become the foremost candidate for future electronic device applications overcoming graphene as latter has no bandgap which limits some of the applications. WTe2 is one such TMD whose magnetoresistance (MR) continue to increase with magnetic field without any indication of saturation. Inspired by this, we have theoretically investigated the material using first principle density functional theory (DFT) approach to study the effect of magnetic field on electronic structure of the compound. The magnetic field is seen to enhance the hole pockets' size along Γ-Z direction, which brings in significant change in the Fermi surface topology.
NASA Technical Reports Server (NTRS)
Herrera, B. J.
1976-01-01
Static pressure data and flow field surveys of the boundary layer and shock layer on the lower surface of a 0.0175 scale model of the space shuttle orbiter were obtained in a hypersonic wind tunnel. The tests were conducted at Mach number 7.9 and Reynolds number based on the model length of 1.3 x 1 million to simulate atmospheric entry. Twenty-six stations were surveyed at 30 and 35 degree angles of attack.
Field effect transistor and method of construction thereof
NASA Technical Reports Server (NTRS)
Fletner, W. R. (Inventor)
1978-01-01
A field effect transistor is constructed by placing a semi-conductor layer on an insulating substrate so that the gate region is separated from source and drain regions. The gate electrode and gate region of the layer are of generally reduced length, the gate region being of greatest length on its surface closest to the gate electrode. This is accomplished by initially creating a relatively large gate region of one polarity, and then reversing the polarity of a central portion of this gate region by ion bombardment, thus achieving a narrower final gate region of the stated configuration.
Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing
NASA Astrophysics Data System (ADS)
Bulusu, S.
2014-12-01
Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.
Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid
2009-10-07
We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.
Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film
NASA Astrophysics Data System (ADS)
Burgess, John Matthew
The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~
Mean flow field and surface heating produced by unequal shock interactions at hypersonic speeds
NASA Technical Reports Server (NTRS)
Birch, S. F.; Rudy, D. H.
1975-01-01
Mean velocity profiles were measured in a free shear layer produced by the interaction of two unequal strength shock waves at hypersonic free-stream Mach numbers. Measurements were made over a unit Reynolds number range of 3,770,000 per meter to 17,400,000 per meter based on the flow on the high velocity side of the shear layer. The variation in measured spreading parameters with Mach number for the fully developed flows is consistent with the trend of the available zero velocity ratio data when the Mach numbers for the data given in this study are taken to be characteristic Mach numbers based on the velocity difference across the mixing layer. Surface measurements in the shear-layer attachment region of the blunt-body model indicate peak local heating and static pressure consistent with other published data. Transition Reynolds numbers were found to be significantly lower than those found in previous data.
A double-layer based model of ion confinement in electron cyclotron resonance ion source.
Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G
2014-02-01
The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.
A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD
NASA Astrophysics Data System (ADS)
Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd
2017-12-01
Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.
Electric-field control of magnetic moment in Pd
Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi
2015-01-01
Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306
NASA Technical Reports Server (NTRS)
Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.
1986-01-01
Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.
Electromagnetic field generated in model of human head by simplified telephone transceiver
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1995-01-01
Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less
Habibi, Neda
2014-05-05
Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Wen-Hsi; Wang, Chun-Chieh
2010-02-01
In this study, the effect of surface energy and roughness of the nanocomposite gate dielectric on pentacene morphology and electrical properties of pentacene OTFT are reported. Nanoparticles TiO2 were added in the polyimide matrix to form a nanocomposite which has a significantly different surface characteristic from polyimide, leading to a discrepancy in the structural properties of pentacene growth. A growth mode of pentacene deposited on the nanocomposite is proposed to explain successfully the effect of surface properties of nanocomposite gate dielectric such as surface energy and roughness on the pentacene morphology and electrical properties of OTFT. To obtain the lower surface energy and smoother surface of nanocomposite gate dielectric that is responsible for the desired crystalline, microstructure of pentacene and electrical properties of device, a bottom contact OTFT-pentacene deposited on the double-layer nanocomposite gate dielectric consisting of top smoothing layer of the neat polyimide and bottom layer of (PI+ nano-TiO2 particles) nanocomposite has been successfully demonstrated to exhibit very promising performance including high current on to off ratio of about 6 x 10(5), threshold voltage of -10 V and moderately high filed mobility of 0.15 cm2V(-1)s(-1).
Desert pavement study at Amboy, California
NASA Technical Reports Server (NTRS)
Williams, S.; Greeley, R.
1984-01-01
Desert pavement is a general term describing a surface that typically consists of a thin layer of cm-sized rock fragments set on top of a layer of finer material in which no fragments are found. An understanding of desert pavement is important to planetary geology because they may play a major role in the formation and visibility of various aeolian features such as wind streaks, which are important on Mars and may be important on Venus. A field study was conducted in Amboy, California to determine the formation mechanism of desert pavements. The probable sequence of events for the formation and evolution of a typical desert pavement surface, based on this experiment and the work of others, is as follows. Starting with a layer of surface material consisting of both fine particles and rock fragments, aeolian deflation will rapidly erode the surface until an armored lag is developed, after which aeolian processes become less important. The concentration of fragments then slowly increases as new fragments are brought to the surface from the subsurface and as fragments move downslope by sheet wash. Sheet wash would be responsible for removing very fine particles from the surface and for moving the fragments relative to one another, forming interlocks.
NASA Astrophysics Data System (ADS)
Ponchaiya, Pairin; Rattanasakulthong, Watcharee
2017-09-01
Sputtered Co81Pd19 films with thickness of about 60 nm were deposited on various under-layers (Co, Ni, Cr and Al) and on glass substrate. Structural, morphological and magnetic properties of Co81Pd19 films were investigated. All of prepared Co81Pd19 film showed CoPd-FCC phase in (111) direction on CoO-FCC (111), NiO-FCC (200), Cr-BCC (200) and (201) and AlO-FCC (200) phases of Co, Ni, Cr and Al under-layer, respectively. AFM images revealed that the film on Cr under-layers and glass substrate exhibited the maximum roughness with the highest grain size and the minimum roughness with the continuous grain size, respectively. Both parallel and perpendicular maximum coercive field were found in the film on glass under-layer and the film on Co-under-layer film showed the highest saturation magnetization from both in-plane and out-of-plane measurements. These results confirmed that the structural and magnetic properties of sputtered Co81Pd19 films were affected by under-layer surface roughness and morphology by the virtue of particle size and distribution on the under-layer film surface.
Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C
Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishi, K., E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.
2014-12-08
We demonstrate the operation of GaSb p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on (111)A surfaces with Al{sub 2}O{sub 3} gate dielectrics formed by atomic-layer deposition at 150 °C. The p-MOSFETs on (111)A surfaces exhibit higher drain current and lower subthreshold swing than those on (100) surfaces. We find that the interface-state density (D{sub it}) values at the Al{sub 2}O{sub 3}/GaSb MOS interfaces on the (111)A surfaces are lower than those on the (100) surfaces, which can lead to performance enhancement of the GaSb p-MOSFETs on (111)A surfaces. The mobility of the GaSb p-MOSFETs on (111)A surfaces is 80% higher than that onmore » (100) surfaces.« less
Modelling of particle-laden flow inside nanomaterials.
Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang
2016-08-01
In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.
Modelling of particle-laden flow inside nanomaterials
NASA Astrophysics Data System (ADS)
Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang
2016-08-01
In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.
Sun, Jingqiu; Hu, Chengzhi; Tong, Tiezheng; Zhao, Kai; Qu, Jiuhui; Liu, Huijuan; Elimelech, Menachem
2017-08-01
A novel electrocoagulation membrane reactor (ECMR) was developed, in which ultrafiltration (UF) membrane modules are placed between electrodes to improve effluent water quality and reduce membrane fouling. Experiments with feedwater containing clays (kaolinite) and natural organic matter (humic acid) revealed that the combined effect of coagulation and electric field mitigated membrane fouling in the ECMR, resulting in higher water flux than the conventional combination of electrocoagulation and UF in separate units (EC-UF). Higher current densities and weakly acidic pH in the EMCR favored faster generation of large flocs and effectively reduced membrane pore blocking. The hydraulic resistance of the formed cake layers on the membrane surface in ECMR was reduced due to an increase in cake layer porosity and polarity, induced by both coagulation and the applied electric field. The formation of a polarized cake layer was controlled by the applied current density and voltage, with cake layers formed under higher electric field strengths showing higher porosity and hydrophilicity. Compared to EC-UF, ECMR has a smaller footprint and could achieve significant energy savings due to improved fouling resistance and a more compact reactor design.
The acoustic field of a point source in a uniform boundary layer over an impedance plane
NASA Technical Reports Server (NTRS)
Zorumski, W. E.; Willshire, W. L., Jr.
1986-01-01
The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.
NASA Astrophysics Data System (ADS)
Kukla, D.; Brynk, T.; Pakieła, Z.
2017-08-01
This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.
Lee, Sunwoo; Chung, Keum Jee; Park, In-Sung; Ahn, Jinho
2009-12-01
We report the characteristics of the organic field effect transistor (OFET) after electrical and time stress. Aluminum oxide (Al2O3) was used as a gate dielectric layer. The surface of the gate oxide layer was treated with hydrogen (H2) and nitrogen (N2) mixed gas to minimize the dangling bond at the interface layer of gate oxide. According to the two stress parameters of electrical and time stress, threshold voltage shift was observed. In particular, the mobility and subthreshold swing of OFET were significantly decreased due to hole carrier localization and degradation of the channel layer between gate oxide and pentacene by electrical stress. Electrical stress is a more critical factor in the degradation of mobility than time stress caused by H2O and O2 in the air.
Particles and fields subsatellite program
NASA Technical Reports Server (NTRS)
Horn, H. J.
1972-01-01
The development and characteristics of the Particles and Fields Lunar Subsatellite are discussed. The basic mission is to investigate two problems in space physics: (1) the formation and dynamics of the earth's magnetosphere and (2) the boundary layer of the solar wind as it flows over the lunar surface. Illustrations of the subsatellites and the mission concepts are included.
Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field
NASA Astrophysics Data System (ADS)
Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli
2017-08-01
Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Adjustable Membrane Mirrors Incorporating G-Elastomers
NASA Technical Reports Server (NTRS)
Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok
2008-01-01
Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Apparatus for sensing patterns of electrical field variations across a surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, William L.; Devine, Roderick A. B.
An array of nonvolatile field effect transistors used to sense electric potential variations. The transistors owe their nonvolatility to the movement of protons within the oxide layer that occurs only in response to an externally applied electric potential between the gate on one side of the oxide and the source/drain on the other side. The position of the protons within the oxide layer either creates or destroys a conducting channel in the adjacent source/channel/drain layer below it, the current in the channel being measured as the state of the nonvolatile memory. The protons can also be moved by potentials createdmore » by other instrumentalities, such as charges on fingerprints or styluses above the gates, pressure on a piezoelectric layer above the gates, light shining upon a photoconductive layer above the gates. The invention allows sensing of fingerprints, handwriting, and optical images, which are converted into digitized images thereof in a nonvolatile format.« less
Propagation of propeller tone noise through a fuselage boundary layer
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Magliozzi, B.
1984-01-01
In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this paper a new three-dimensional theory is described that treats the combined effects of refraction and scattering by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The model for the incident waves is a near-field frequency-domain propeller source theory developed previously for free field studies. Calculations for an advanced turboprop (Prop-Fan) model flight test at 0.8 Mach number show a much smaller than expected pressure amplification at the noise directivity peak, strong boundary layer shielding in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference between fuselage surface and free-space noise predictions as a function of frequency and Mach number. Comparison of calculated and measured effects obtained in a Prop-Fan model flight test show good agreement, particularly near and aft of the plane of rotation at high cruise Mach number.
Flow field survey near the rotational plane of an advanced design propeller on a JetStar airplane
NASA Technical Reports Server (NTRS)
Walsh, K. R.
1985-01-01
An investigation was conducted to obtain upper fuselage surface static pressures and boundary layer velocity profiles below the centerline of an advanced design propeller. This investigation documents the upper fuselage velocity flow field in support of the in-flight acoustic tests conducted on a JetStar airplane. Initial results of the boundary layer survey show evidence of an unusual flow disturbance, which is attributed to the two windshield wiper assemblies on the aircraft. The assemblies were removed, eliminating the disturbances from the flow field. This report presents boundary layer velocity profiles at altitudes of 6096 and 9144 m (20,000 and 30,000 ft) and Mach numbers from 0.6 to 0.8, and it investigated the effects of windshield wiper assemblies on these profiles. Because of the unconventional velocity profiles that were obtained with the assemblies mounted, classical boundary layer parameters, such as momentum and displacement thicknesses, are not presented. The effects of flight test variables (Mach number and angles of attack and sideslip) and an advanced design propeller on boundary layer profiles - with the wiper assemblies mounted and removed - are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanxia
2017-01-15
Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafinemore » grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the distribution feasibility of GBPs. •Precession electron diffraction orientation mapping showed a shear texture.« less
Compacted dimensions and singular plasmonic surfaces.
Pendry, J B; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele
2017-11-17
In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer. Copyright © 2017, American Association for the Advancement of Science.
Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation
NASA Astrophysics Data System (ADS)
Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri
2018-05-01
We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.
Smectic layer instabilities in liquid crystals.
Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A
2015-02-07
Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Shaocheng; Klein, Stephen A.; Yio, J. John
2006-03-11
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and model forecast data are evaluated using observations collected during the Atmospheric Radiation Measurement (ARM) October 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE) at its North Slope of Alaska (NSA) site. It is shown that the ECMWF analysis reasonably represents the dynamic and thermodynamic structures of the large-scale systems that affected the NSA during M-PACE. The model-analyzed near-surface horizontal winds, temperature, and relative humidity also agree well with the M-PACE surface measurements. Given the well-represented large-scale fields, the model shows overall good skill in predicting various cloud types observed during M-PACE; however, themore » physical properties of single-layer boundary layer clouds are in substantial error. At these times, the model substantially underestimates the liquid water path in these clouds, with the concomitant result that the model largely underpredicts the downwelling longwave radiation at the surface and overpredicts the outgoing longwave radiation at the top of the atmosphere. The model also overestimates the net surface shortwave radiation, mainly because of the underestimation of the surface albedo. The problem in the surface albedo is primarily associated with errors in the surface snow prediction. Principally because of the underestimation of the surface downwelling longwave radiation at the times of single-layer boundary layer clouds, the model shows a much larger energy loss (-20.9 W m-2) than the observation (-9.6 W m-2) at the surface during the M-PACE period.« less
Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej
2018-03-15
One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.