NASA Astrophysics Data System (ADS)
Jolivet, S.; Mezghani, S.; El Mansori, M.
2016-09-01
The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.
The influence of surface finishing methods on touch-sensitive reactions
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Sokolov, A. P.; Krauinsh, P. Y.; Kozlova, A. D.; Bouchard, C.
2017-02-01
This paper describes the modern technological development trends in jewelry design. In the jewelry industry, new trends, associated with the introduction of updated non-traditional materials and finishing techniques, are appearing. The existing information-oriented society enhances the visual aesthetics of new jewelry forms, decoration techniques (depth and surface), synthesis of different materials, which, all in all, reveal a bias towards positive effects of visual design. Today, the jewelry industry includes not only traditional techniques, but also such improved techniques as computer-assisted design, 3D-prototyping and other alternatives to produce an updated level of jewelry material processing. The authors present the specific features of ornamental pattern designing, decoration types (depth and surface) and comparative analysis of different approaches in surface finishing. Identifying the appearance or the effect of jewelry is based on proposed evaluation criteria, providing an advanced visual aesthetics basis is predicated on touch-sensitive responses.
Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Hafley, Robert A.; Fahringer, David T.; Martin, Richard E.
2004-01-01
Electron beam freeform fabrication (EBF3) parts exhibit a ridged surface finish typical of many layer-additive processes. This, post-processing is required to produce a net shape with a smooth surface finish. High speed milling wire electrical discharge machining (EDM), electron beam glazing, and glass bead blasting were performed on EBF3-build 2219 aluminum alloy parts to reduce or eliminate the ridged surface features. Surface roughness, surface residual stress state, and microstructural characteristics were examined for each of the different surface treatment to assess the quality and effect of the surface treatments on the underlying material. The analysis evaluated the effectivenes of the different surface finishing techniques for achieving a smooth surface finish on an electron beam freeform fabricated part.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Effect of Burnishing Parameters on Surface Finish
NASA Astrophysics Data System (ADS)
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2017-08-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
NASA Astrophysics Data System (ADS)
Walton, Karl; Blunt, Liam; Fleming, Leigh
2015-09-01
Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq, showing optimal discrimination for a specific range of surface finish outcomes. As a consequence of edge shadowing surface segregation is suggested for characterization purposes.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Toward Magnetorheological Finishing of Magnetic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-10-24
Magnetorheological finishing (MRF) is a precision finishing process traditionally limited to processing only nonmagnetic materials, e.g., optical glasses, ceramics, polymers, and metals. Here we demonstrate that MRF can be used for material removal from magnetic material surfaces. Our approach is to place an MRF spot on machined surfaces of magnetic WC-Co materials. The resulting surface roughness is comparable to that produced on nonmagnetic materials. This spotting technique may be used to evaluate the depth of subsurface damage, or deformed layer, induced by earlier manufacturing steps, such as grinding and lapping.
Study of Profile Changes during Mechanical Polishing using Relocation Profilometry
NASA Astrophysics Data System (ADS)
Kumaran, S. Chidambara; Shunmugam, M. S.
2017-10-01
Mechanical polishing is a finishing process practiced conventionally to enhance quality of surface. Surface finish is improved by mechanical cutting action of abrasive particles on work surface. Polishing is complex in nature and research efforts have been focused on understanding the polishing mechanism. Study of changes in profile is a useful method of understanding behavior of the polishing process. Such a study requires tracing same profile at regular process intervals, which is a tedious job. An innovative relocation technique is followed in the present work to study profile changes during mechanical polishing of austenitic stainless steel specimen. Using special locating fixture, micro-indentation mark and cross-correlation technique, the same profile is traced at certain process intervals. Comparison of different parameters of profiles shows the manner in which metal removal takes place in the polishing process. Mass removal during process estimated by the same relocation technique is checked with that obtained using weight measurement. The proposed approach can be extended to other micro/nano finishing processes and favorable process conditions can be identified.
NASA Astrophysics Data System (ADS)
Gora, Wojciech S.; Tian, Yingtao; Cabo, Aldara Pan; Ardron, Marcus; Maier, Robert R. J.; Prangnell, Philip; Weston, Nicholas J.; Hand, Duncan P.
Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids). In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated.
Deterministic magnetorheological finishing of optical aspheric mirrors
NASA Astrophysics Data System (ADS)
Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng
2009-05-01
A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.
Madhyastha, Prashanthi Sampath; Hegde, Shreya; Srikant, N; Kotian, Ravindra; Iyer, Srividhya Sriraman
2017-01-01
Surface roughness associated with improper finishing/polishing of restorations can result in plaque accumulation, gingival irritation, surface staining, and poor esthetic of restored teeth. The study aimed to evaluate the efficiency of various finishing and polishing systems and time using various procedures on surface roughness of some esthetic restorative materials. In this in vitro study, samples of two composite materials, compomer and glass ionomer cement (GIC) materials, were fabricated. Finishing and polishing were done immediately ( n = 40) and after 1 week ( n = 40) using four systems (diamond bur + soflex discs; diamond bur + Astropol polishing brush; tungsten carbide bur + soflex discs; tungsten carbide bur + Astropol polishing brush). Surface roughness was measured using surface profilometer. Data were statistically analyzed by t -test (for each material and time period) and one-way analysis of variance followed by Tukey's post hoc (for finishing and polishing systems) at a significant level of P < 0.05. Analysis of time period, irrespective of finishing and polishing system showed that Ra values were greater ( P < 0.05) in delayed polishing in GIC > Z100 > Filtek P90 > Dyract AP, suggesting immediate polishing is better. Among the materials, Filtek P90 had the least Ra values indicating the smoothest surface among all materials, followed by Z100, Dyract AP, and GIC. Comparison of polishing and finishing systems irrespective of materials showed that Ra values were lower ( P > 0.05) in diamond + Astropol combination whereas diamond + soflex had the greatest Ra values. It might be concluded that: (i) Filtek P90 showed least Ra values followed by < Z100 < Dyract < GIC; (ii) immediate (24 h) finishing/polishing of materials is better than delayed; and (iii) among all these polishing systems, diamond bur-Astropol and Astrobrush showed good surface finish.
Evaluation of Additive Manufacturing for Composite Part Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Springfield, Robert M.
2015-02-01
The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.
Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T.; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A.
2015-06-01
In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4-5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts.
Free-form machining for micro-imaging systems
NASA Astrophysics Data System (ADS)
Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2008-02-01
While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.
Beltrami, Riccardo; Ceci, Matteo; De Pani, Gabriele; Vialba, Lodovico; Federico, Ricaldone; Poggio, Claudio; Colombo, Marco
2018-01-01
Objective: To evaluate the color stability of different esthetic restorative materials after surface finishing/polishing with different procedures. Materials and Methods: All materials were polymerized into silicone rubber rings to obtain specimens identical in size. Samples were randomly assigned into four groups (10 specimens of each composite for each group), and they were finished with different procedures: Control group (Group 1), three or two polishers interspersed with diamond grit (Groups 3 and 2, respectively), and one tungsten carbide bur + one polisher interspersed with diamond grit (Group 4). After staining process in coffee, a colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, and 28 days. Shapiro–Wilk test and Kruskal–Wallis analysis of variance were applied to assess significant differences among restorative materials. Means of the different polishing/finishing groups were compared with Scheffe's multiple comparison test at the 0.05 level of significance. Results: In control group, significant lower discolorations were recorded for Essentia, Admira Fusion, and Estelite. After finishing, Filtek Supreme XTE and Ceram.X Universal showed a significantly lower degree of staining. The finishing technique used for Group 4 produced higher color changes. Conclusions: Tungsten carbide burs produced the higher color variations; after finishing, the nanofilled composites showed lower discoloration than nanohybrid ones, and the time of exposure to the staining agent and the polishing/finishing technique influenced the color change. PMID:29657525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Schaffers, K I; Bayramian, A J
2008-02-26
Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.
NASA Astrophysics Data System (ADS)
Patil, Sanjay S.; Bhalerao, Yogesh J.
2017-02-01
Grinding is metal cutting process used for mainly finishing the automobile components. The grinding wheel performance becomes dull by using it most of times. So it should be reshaping for consistent performance. It is necessary to remove dull grains of grinding wheel which is known as dressing process. The surface finish produced on the work piece is dependent on the dressing parameters in sub-sequent grinding operation. Multi-point diamond dresser has four important parameters such as the dressing cross feed rate, dressing depth of cut, width of the diamond dresser and drag angle of the dresser. The range of cross feed rate level is from 80-100 mm/min, depth of cut varies from 10 - 30 micron, width of diamond dresser is from 0.8 - 1.10mm and drag angle is from 40o - 500, The relative closeness to ideal levels of dressing parameters are found for surface finish produced on the En-31 work piece during sub-sequent grinding operation by using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS).In the present work, closeness to ideal solution i.e. levels of dressing parameters are found for Computer Numerical Control (CNC) cylindrical angular grinding machine. After the TOPSIS technique, it is found that the value of Level I is 0.9738 which gives better surface finish on the En-31 work piece in sub-sequent grinding operation which helps the user to select the correct levels (combinations) of dressing parameters.
Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A
2014-09-01
The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p < 0.05) and a posteriori Mann-Whitney U test with Bonferroni correction (p < 0.0167) revealed a significant reduction of enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.
Ground/Flight Test Techniques and Correlation.
1983-02-01
Approximately 110 flights have been performed so far and the flight test program is essentially finished . Due to its character as an experimental... finish of 0.25 Vm (10 Win) or better. It was 91.4 em (36.00 in) long, with a cone extension that extended the length to 113.0 cm (44.50 in). Transition...weights were embedded during construction to give a representa- tive mass distribution." The surface finish achieved by this method of construction was
Yap, Adrian U J; Yap, W Y; Yeo, Egwin J C; Tan, Jane W S; Ong, Debbie S B
2003-01-01
This study investigated the effect of finishing/polishing techniques on the microleakage of resin-modified glass ionomer restorations. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with eight-fluted tungsten carbide burs. The teeth were then randomly divided into four groups and finishing/polishing was done with one of the following systems: (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each material-finishing/polishing system combination was eight. After finishing/polishing, the teeth were stored in distilled water at 37 degrees C for one week. The root apices were then sealed with acrylic and two coats of varnish was applied 1 mm beyond the restoration margins. The teeth were subsequently subjected to dye penetration testing (0.5% basic fuchsin), sectioned and scored. Data was analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of 0.05. Results of statistical analysis were as follows: Enamel margins: PF-OG
Abrasive wear of resin composites as related to finishing and polishing procedures.
Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C
2005-07-01
Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.
Advanced flow-polishing and surface metrology of the SO56 X Ray Telescope
NASA Technical Reports Server (NTRS)
1992-01-01
The surface finishing of X ray grazing incidence optics is a most demanding area of optical processing, both in terms of metrology and application of optical finishing techniques. An existing optical mirror was processed using a new removal technique that uses a jet of finely dispersed and extremely small particles that impact a surface, which under the correct conditions, produces an ultrasmooth surface, especially on aspheric curvatures. The surfaces of the SO56 mirror are tapered conical shapes that have a continuously changing radius with the primary mirror having a parabolic shape and the secondary mirror a hyperbolic shape. An optical ray trace that was conducted of a telescope used the measured parameters from the existing substrates to set up the prescription for the optical layout. The optimization indicated a wavefront performance of 0.10 A at 0.633 micron.
Acidic magnetorheological finishing of infrared polycrystalline materials.
Salzman, S; Romanofsky, H J; West, G; Marshall, K L; Jacobs, S D; Lambropoulos, J C
2016-10-20
Chemical-vapor-deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized "pebbles," and the surface roughness observed is considerably high. The fluid's parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (∼4.5) and low viscosity (∼47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives-alumina and nanodiamond-on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ∼28 nm peak-to-valley and ∼6-nm root mean square.
Acidic magnetorheological finishing of infrared polycrystalline materials
Salzman, S.; Romanofsky, H. J.; West, G.; ...
2016-10-12
Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
NASA Technical Reports Server (NTRS)
Feagans, P. L.
1972-01-01
Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.
Multiple Beam Interferometry in Elementary Teaching
ERIC Educational Resources Information Center
Tolansky, S.
1970-01-01
Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…
Advanced optic fabrication using ultrafast laser radiation
NASA Astrophysics Data System (ADS)
Taylor, Lauren L.; Qiao, Jun; Qiao, Jie
2016-03-01
Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.
Surface geometry of three packable and one hybrid composite after polishing.
Jung, Martin; Bruegger, Hilka; Klimek, Joachim
2003-01-01
This study evaluated the surface quality of four composite materials after polishing with six different polishing techniques. Eighty specimens were made using three packable composites (Definite/Degussa, SureFil/ Dentsply and Solitaire/Heraeus-Kulzer) and one hybrid composite (Herculite XRV/Kerr). Five specimens of each material were polished using flexible Sof-Lex discs. The remaining 75 specimens of each composite were prepared using three finishing protocols: a single 30 microm diamond (n = 25), two finishing diamonds (30/20 microm; n = 25) and a 30 microm diamond followed by a tungsten carbide finishing bur (n = 25). Final polishing of each of the three finishing groups was accomplished with SuperBuff, Diafix-oral, OneGloss, Astropol and HaWe Composite Polishers (n = 5, each). Surface roughness was evaluated quantitatively by laser-stylus profilometry. Average roughness (R(a)) was calculated; statistical analysis of the data was performed with two-way ANOVA and Scheffé post-hoc tests. The polished surfaces were examined qualitatively by SEM. The results showed significant effects on surface roughness from the different composites (p = 0.011) and polishing systems (p < 0.001). After polishing, the Solitaire surfaces (R(a) = 0.72 microm) were smoother than Definite (R(a) = 0.87 microm) and SureFil (R(a) = 0.89 microm) and significantly smoother than Herculite (R(a) = 0.92 microm; p = 0.011). Three of the polishing methods (SuperBuff, Diafix-oral and Astropol) achieved lower R(a)-values than Sof-Lex discs. The polishing quality of the one-step systems SuperBuff and Diafix-oral was strongly affected by the initial finishing protocol.
FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.
2018-01-01
Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984
ERIC Educational Resources Information Center
Hopton, Jim
1990-01-01
Describes how students incorporated the use of faux finishes in the construction of scenery for a school production of "Cinderella." After researching medieval castles and different types of stone surfaces, students used a sponge printing technique for exterior walls and a marbling technique for columns in the ballroom scene. (GG)
NASA Astrophysics Data System (ADS)
Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.
2017-07-01
This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.
NASA Astrophysics Data System (ADS)
Menapace, J. A.; Ehrmann, P. R.; Bickel, R. C.
2009-10-01
Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
NASA Astrophysics Data System (ADS)
Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.
2012-03-01
Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.
Applications of lasers to production metrology, control, and machine 'Vision'
NASA Astrophysics Data System (ADS)
Pryor, T. R.; Erf, R. K.; Gara, A. D.
1982-06-01
General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.
NASA Astrophysics Data System (ADS)
Xing, Bo
The scope of this work was to characterize the corrosion resistance of candidate austenitic alloys in supercritical water for the use of the fuel cladding material within the Canadian supercritical water-cooled reactor (SCWR) concept. A series of Commercial austenitic stainless steels (SS) and alloys were exposed to supercritical water for different exposure times up to 500 hours. Two surface finishes were applied - a coarse grinding with 120 grit abrasive or polishing with either 1200 grit or 0.05 microm alumina suspension. Gravimetric measurements and electron microscopy techniques were used to evaluate the oxidation behaviors of tested alloys. The superior corrosion resistance of alloy 310S was benefited from a critical Cr content of 25 wt.%. The surface finish played a significant role to vary the oxidation behavior of alloys containing slightly less than the critical Cr content. However, Oxide exfoliation was observed on low Cr content alloys.
Nanofluid as coolant for grinding process: An overview
NASA Astrophysics Data System (ADS)
Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.
2018-04-01
This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Detailed examinations of intergranular attack (IGA) in alloy 600 were performed after exposure to simulated PWR primary water at 325°C for 500 h. High-resolution analyses of IGA characteristics were conducted on specimens with either a 1 µm diamond or 1200-grit SiC surface finish using scanning electron microscopy, transmission electron microscopy and atom probe tomography techniques. The diamond-polish finish with very little preexisting subsurface damage revealed attack of high-energy grain boundaries that intersected the exposed surface to depths approaching 2 µm. In all cases, IGA from the surface is localized oxidation consisting of porous, nanocrystalline MO-structure and spinel particles along with regions of faceted wall oxidation. Surprisingly, this continuous IG oxidation transitions to discontinuous, discrete Cr-rich sulfide particles up to 50 nm in diameter. In the vicinity of the sulfides, the grain boundaries were severely Cr depleted (to <1 at%) and enriched in S. The 1200 grit SiC finish surface exhibited a preexisting highly strained recrystallized layer of elongated nanocrystalline matrix grains. Similar IG oxidation and leading sulfide particles were found, but the IGA depth was typically confined to the near-surface ( 400 nm) recrystallized region. Difference in IGA for the two surface finishes indicates that the formation of grain boundary sulfides occurs during the exposure to PWR primary water. The source of S remains unclear, however it is not present as sulfides in the bulk alloy nor is it segregated to bulk grain boundaries.
The Direct-Indirect Technique for Composite Restorations Revisited.
Ritter, André V; Fahl, Newton; Vargas, Marcos; Maia, Rodrigo R
2017-06-01
In the direct-indirect composite technique, composite is applied to a nonretentive tooth preparation (eg, a noncarious cervical lesion or a veneer/inlay/onlay preparation) without any bonding agent, sculpted to a primary anatomic form, and light-cured. The partially polymerized restoration is then removed from the preparation and finished and tempered extraorally chairside. The finished inlay is bonded to the preparation using a resin-based luting agent. Advantages of this technique include enhanced physical and mechanical properties afforded by the extraoral chairside tempering process because of increased monomer conversion, and greater operator control over the final marginal adaptation, surface finishing and polishing, and anatomy of the restoration, given that these elements are defined outside of the patient's mouth. The direct-indirect approach also affords enhanced gingival health and patient comfort. This article presents a clinical case in which the direct-indirect composite technique was used to restore three noncarious cervical lesions on the same quadrant on an adult patient. Clinical steps and tips for success are offered. The authors also present scanning electron microscope and atomic force microscope images showing the excellent marginal fit obtained with the direct-indirect composite technique.
Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel
NASA Astrophysics Data System (ADS)
Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.
2018-04-01
Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.
Neutral ion sources in precision manufacturing
NASA Technical Reports Server (NTRS)
Fawcett, Steven C.; Drueding, Thomas W.
1994-01-01
Ion figuring of optical components is a relatively new technology that can alleviate some of the problems associated with traditional contact polishing. Because the technique is non contacting, edge distortions and rib structure print through do not occur. This initial investigation was aimed at determining the effect of ion figuring on surface roughness of previously polished or ductile ground ceramic optical samples. This is the first step in research directed toward the combination of a pre-finishing process (ductile grinding or polishing) with ion figuring to produce finished ceramic mirrors. The second phase of the project is focusing on the development of mathematical algorithms that will deconvolve the ion beam profile from the surface figure errors so that these errors can be successfully removed from the optical components. In the initial phase of the project, multiple, chemical vapor deposited silicon carbide (CVD SiC) samples were polished or ductile ground to specular or near-specular roughness. These samples were then characterized to determine topographic surface information. The surface evaluation consisted of stylus profilometry, interferometry, and optical and scanning electron microscopy. The surfaces, were ion machined to depths from 0-5 microns. The finished surfaces were characterized to evaluate the effects of the ion machining process with respect to the previous processing methods and the pre-existing subsurface damage. The development of the control algorithms for figuring optical components has been completed. These algorithms have been validated with simulations and future experiments have been planned to verify the methods. This paper will present the results of the initial surface finish experiments and the control algorithms simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Ehrmann, P R; Bickel, R C
2009-11-05
Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical formore » surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.« less
NASA Astrophysics Data System (ADS)
Randi, Joseph A., III
2005-12-01
This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the grinding conditions or mechanical properties. Single crystals have greater strain rate effects associated than optical glasses. Hence, the strain rate is investigated during grinding by applying more aggressive process parameters and measuring the resulting surface finish. It is observed that while there are weak materials and crystallographic orientation effects from process parameters, the changes in strain rate do not affect the surface finish of these materials.
Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Dixit, S N; Genin, F Y
2004-01-05
Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less
Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.
Lee, Seung-Jun; Kim, Seong-Jong
2018-02-01
Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.
Leitão, E; Barbosa, M A; de Groot, K
1997-07-01
The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.
NASA Astrophysics Data System (ADS)
Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan
2018-06-01
Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.
An Experimental Technique for Developing Intermediate Strain Rates in Ductile Metals
2008-03-01
Smooth the surface of the specimen in the area of the gauge application to provide a surface finish which pro- motes optimum bonding by the adhe- sive...surface of any contamina- tion caused by previous operations such as marking or abrading Conditioner and Cotton Tipped Applicators 5. Neutralizing...Neutralize the surface so the pH of the surface is returned to 7 eliminating any remaining acidity on the specimen surface Neutralizer and Cotton Tipped
Technologies for precision manufacture of current and future windows and domes
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric
2009-05-01
The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.
1987-03-13
guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion
Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren
2010-01-01
The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.
Nanofinishing of freeform/sculptured surfaces: state-of-the-art
NASA Astrophysics Data System (ADS)
Nagdeve, Leeladhar; Jain, V. K.; Ramkumar, J.
2018-06-01
Freeform surfaces are being used in a multiplicity of applications in different kinds of industries related to Bio-medical (Bio-implants), micro channels in micro fluidics, automotives, turbine blades, impellers of artificial heart pumps, automobiles etc. Different parts in these industries need nano-level surface finish as their functional inevitability. It is very difficult and challenging to achieve high level of surface finish, especially on the components having freeform (or sculptured) surfaces, complex shapes, and 3-D features. Surface finish is a significant factor, which affects life and functionality of a product. Many traditional and advanced finishing processes have been developed for finishing of freeform/sculptured surfaces but still it has not been possible to achieve uniform nano level surface finish specially in case of freeform surfaces. To overcome the limitations of the existing nanofinishing processes, researchers are developing new processes for uniform nanofinishing of freeform surfaces. In this article, an attempt has been made to review different nanofinishing processes employed for freeform surfaces useful in different types of applications. In addition, experimental work, theoretical analysis and existing challenges of the finishing processes have been identified to fill the research gap.
Electro-rheological finishing for optical surfaces
NASA Astrophysics Data System (ADS)
Cheng, Haobo; Wang, Peng
2009-05-01
Many polishing techniques such as fixed-abrasive polishing, abrasive-free polishing and magnetorheological finishing etc., have been developed. Meanwhile, a new technique is proposed using the mixture of the electro-rheological (Er) fluid with abrasives as polishing slurry, which is a special process does not require pad. Electrorheological fluid is a special suspension liquid, whose viscosity has an approximate proportional relation with the electric strength applied. When the field strength reaches a certain limit, the phase transition occurs and the liquid acquires a solid like character, and while the electric field is removed, the fluid regains its original viscosity during the order of milliseconds. In this research work, we employed the characteristics of viscosity change of Er fluid to hold the polishing particles for micromachining. A point-contact electro-rheological finishing (Erf) tool was designed with a tip diameter 0.5~1mm. Both the anode and the cathode of the electric field were combined in the tool. The electric field could be controllable. When the tool moves across the profile of the work piece, by controlling the electric field strength as well as the other manufacturing parameters we can assure the deterministic material removal. Furthermore, the electro-rheological finishing process has been planned in detailed.
Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool
NASA Astrophysics Data System (ADS)
Barman, Anwesa; Das, Manas
2017-02-01
Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.
Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor
NASA Technical Reports Server (NTRS)
Moses, Jason J; Serovy, George, K
1951-01-01
A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.
Piezoelectric characterization of ejecta from shocked tin surfaces
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; Hammerberg, J. E.; King, N. S. P.; Lamoreaux, S. K.; Macrum, G.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Buttler, W. T.
2005-12-01
Using piezoelectric diagnostics, we have measured densities and velocities of ejected particulate as well as "free-surface velocities" of bulk tin targets shock loaded with high explosive. The targets had finely grooved, machined finishes ranging from 10 to 250μin. Two types of piezoelectric sensor ("piezopins"), lithium niobate and lead zirconate titanate, were compared for durability and repeatability; in addition, some piezopins were "shielded" with foam and metal foil in order to mitigate premature failure of the pins in high ejecta regimes. These experiments address questions about ejecta production at a given shock pressure as a function of surface finish; piezopin results are compared with those from complementary diagnostics such as x-ray radiography and time-resolved optical transmission techniques. The mass ejection shows a marked dependence on groove characteristics and cannot be described by a groove defect theory alone.
NASA Astrophysics Data System (ADS)
Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas
1990-05-01
There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Davis, P J; Steele, W A
2005-11-11
We have developed an experimental technique that combines magnetorheological finishing (MRF) and microscopy to examine fractures and/or artifacts in optical materials. The technique can be readily used to provide access to, and interrogation of, a selected segment of a fracture or object that extends beneath the surface. Depth slicing, or cross-sectioning at selected intervals, further allows the observation and measurement of the three-dimensional nature of the sites and the generation of volumetric representations that can be used to quantify shape and depth, and to understand how they were created, how they interact with surrounding material, and how they may bemore » eliminated or mitigated.« less
Grippaudo, Cristina; Cancellieri, Daniela; Grecolini, Maria E; Deli, Roberto
2010-01-01
The aim of this study was to evaluate the morphological effects and the surface irregularities produced by different methods of mechanical stripping (abrasive strips and burs) and chemical stripping (37% orthophosphoric acid) and the surface changes following the finishing procedures (polishing strips) or the subsequent application of sealants, in order to establish the right stripping method that can guarantee the smoothest surface. We have also analysed the level of wear on the different abrasive strips employed, according to their structure. 160 proximal surfaces of 80 sound molar teeth extracted for orthodontic and periodontal reasons, were divided into: 1 control group with non-treated enamel proximal surfaces and 5 different groups according to the stripping method used, were observed with scanning electron microscopy (SEM). Each one of the 5 treated groups was also divided into 3 different subgroups according to the finishing procedures or the subsequent application of sealants. The finishing stage following the manual reduction proves to be fundamental in reducing the number and depth of grooves created by the stripping. After the air rotor stripping method, the use of sealants is advised in order to obtain a smoother surface. The analysis of the combinations of mechanical and chemical stripping showed unsatisfactory results. Concerning the wear of the strips, we have highlighted a different abrasion degree for the different types of strips analysed with SEM. The enamel damages are limited only if the finishing procedure is applied, independently of the type of abrasive strip employed. It would be advisable, though clinically seldom possible, the use of sealants after the air rotor stripping technique. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2014-01-01
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534
Ultra-low roughness magneto-rheological finishing for EUV mask substrates
NASA Astrophysics Data System (ADS)
Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath
2013-09-01
EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.
Metal shell technology based upon hollow jet instability. [for inertial confinement fusion
NASA Technical Reports Server (NTRS)
Kendall, J. M.; Lee, M. C.; Wang, T. G.
1982-01-01
Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.
Postadjustment polishing of CAD-CAM ceramic with luminescence diamond gel.
Finger, W J; Noack, M D
2000-02-01
(1) to investigate by SEM and profilometry the effectiveness of Luminescence diamond polishing gel on machinable ceramic after adjustment grinding with different grit diamond finishing burs, and (2) to define a simple, time-saving ceramic finishing and polishing technique for clinically satisfactory results. Discs, 3 mm thick, were cut from Vita Mark II CAD-CAM ceramic and ground to a uniform surface finish on 600 grit wet SiC paper. Five specimens in each of the seven groups below were finished unidirectionally by a sweeping mode with the following Two Striper MFS diamond burs: 1. MF1 (45 microm); 2. MF2 (25 microm); 3. MF3 (10 microm); 4. MF1 + MF2; 5. MF1 + MF3; 6. MF2 + MF3; 7. MF1 + MF2 + MF3. Then, Luminescence diamond polishing gel was dispensed on a mandrel-mounted felt applicator and applied at 10,000 rpm for 60 s, and after dipping in water for another 60-s sequence. Surface roughness was determined for each step with a stylus-fitted surface analyzer. On each specimen five parallel tracings (evaluation length 4.0 mm and cut-off length 0.8 mm) were made 1 mm apart. Ra and Rz values were recorded as roughness parameters. Data was subjected to one-way ANOVA and Tukey's multiple comparison test at a significance level of alpha = 0.05. One additional sample for each grinding and polishing step in each of the seven groups was produced for SEM analysis. Diamond polishing after MF1 finishing reduced Ra and Rz significantly from 1.75 to 0.79, and from 10.0 to 4.09 microm, respectively, whereas the Ra and Rz reduction after MF3 finishing and diamond polishing were from 0.64 to 0.49 and from 4.31 to 1.81 microm. The polished surface roughness of specimens prefinished with MF2 or MF3 burs alone or as the final step after preceding grinding with coarser grits was not significantly different. The average Ra and Rz values were 0.42 microm and 1.73 microm. SEM photographs confirmed the uniformity of the surface finish in these groups. The second polishing sequence did not significantly improve the smoothness obtained with the first cycle.
Hunt, N P; Cunningham, S J; Golden, C G; Sheriff, M
1999-10-01
The purpose of this study was to investigate the effect of surface roughness on the relative corrosion rates of wires of four alloys-stainless steel, nickel titanium, cobalt chromium, and beta titanium. Batches of wire were divided into two groups. Wires in one group were industrially polished to provide a uniform surface finish; wires in the other group were left for comparison "as received." Wire diameter, hardness, and relative corrosion rates were compared within groups before and after polishing. Comparisons were also made across the four groups of alloys. The samples of as-received wires showed variations in surface finish, with beta titanium having the roughest appearance and cobalt chromium the smoothest. Nickel titanium and stainless steel surfaces were similar. Polishing provided a more uniform finish, but significantly reduced the diameter of the wires. Microhardness testing of wire surfaces of each alloy indicated that no significant work-hardening occurred as a result of polishing. The relative corrosion rates (expressed in terms of corrosion current density) in a 0.9% sodium chloride solution were estimated using the electrochemical technique of polarization resistance. Nickel titanium wires exhibited the greatest corrosion current density in the as-received state. Polishing significantly reduced the corrosion rate of nickel titanium, such that comparison between the four alloys in the polished state revealed no significant difference in their relative corrosion rate/corrosion current density.
Carneiro, Pma; Ramos, T M; de Azevedo, C S; de Lima, E; de Souza, Shj; Turbino, M L; Cesar, P F; Matos, A B
The aim of this study was to evaluate the influence of finishing and polishing systems and toothbrush abrasion on transmittance (T) and surface roughness (Ra) of three composite resins (Filtek Z350 XT, Tetric N-Ceram, and IPS Empress Direct). Eighteen resin disks (10 mm diameter × 2 mm thick) finished by polyester strips had initial surface smoothness recorded, representing phase 1 (P1). Specimens were divided into three groups (n=6) according to the finishing/polishing instrument used (OneGloss, TopGloss, and Sof-Lex) to compose phase 2 samples (P2). Then specimens were subjected to 514 cycles of toothbrush simulation using a toothpaste slurry, with a constant load applied to soft bristles, and were then washed (phase 3=P3). After each phase, the specimens were examined by an optical profiler and spectrophotometer to measure Ra and T. Data were analyzed by analysis of variance, Tukey and Pearson tests. T values were statistically influenced by composite resin ( p=0.000) and phase of measurement ( p=0.000) factors, while the finishing/polishing system used ( p=0.741) did not affect T. On the other hand, Ra values were statistically affected by the factor finishing/polishing system ( p=0.000), but not by composite resin ( p=0.100) and phase of measurement ( p=0.451). Tetric N-Ceram and Empress Direct presented higher values of roughness when polished by OneGloss, while TopGloss and Sof-Lex showed a lower roughness. It can be concluded that composite resins transmitted more light after dental abrasion. Transmittance of composite resins was not modified by the distinct roughness created by finishing/polishing instruments.
Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge
2002-07-01
The present paper compares the transformation behaviour and mechanical properties of two orthodontic wires of close chemical compositions. The effects of surface topography and surface finish residues on the potentiodynamic corrosion behaviour and biocompatibility are also reported. The cytotoxicity tests were performed on both alloys in fibroblast cell cultures from human gingiva using the MTT test. It is shown that the surface finish and the amounts of surface finish residues affect dramatically the corrosion resistance. Bad surface finish results in lower corrosion resistance. The in vitro biocompatibility, though not affected to the extent of corrosion resistance, is also reduced as the surface roughness and the amounts of residues increase. This is thought to be due to surface effects on corrosion and metallic ions release.
R. Sam Williams
1999-01-01
The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...
Solid Freeform Fabrication Symposium Proceedings Held in Austin, Texas on August 9-11, 1993
1993-09-01
between the accuracy and the size of the geometric description. Highly non-linear surfaces, such as those that comprise turbine blades , manifolds...flange. The fan blades were modeled using different surfacing techniques. Seven blades are then combined with the rotor to make the completed fan. Figure...successfully cast in aluminum, titanium , beryllium-copper, and stainless steel, with RMS surface finish as low as 1 micrometer, without any subsequent
DOT National Transportation Integrated Search
2014-06-01
Effective techniques for a nondestructive evaluation of mechanically stabilized earth (MSE) walls during normal operation : or immediately after an earthquake event are yet to be developed. MSE walls often have a rough surface finishing for the : pur...
Shafrir, Shai N; Lambropoulos, John C; Jacobs, Stephen D
2007-08-01
We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al(23)O(27)N(5)/ALON), polycrystalline alumina (Al(2)O(3)/PCA), and chemical vapor deposited (CVD) silicon carbide (Si(4)C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-08-01
We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (AL2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface roughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in themore » first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these har ceramics with the use of power spectral density to characterize surface features.« less
Investigation of Accelerated Life Prediction Techniques
1975-10-01
26, No. 1, 1974, ;). 13. 116. Krukar, M., et al, STUDDED TIRE PAVEMENT WEAR REDUCTION AND REPAIR, Washington State Dept. of Highways, Highway...167. Okushlma, K., and Kakino, Y., STUD * ON INFLUENCE OF GROOVE WEAR OF A TOOL TO SURFACE ROUGHNESS DURING FINISHING TURNING OF CARBON STEEL, Journal...MODIFICATION OF ASPHALT CEMENTS FOR IMPROVE- MENT OF WEAR RESISTANCE OF PAVEMENT SURFACES, Materials Research «nd Development, Inc., Oakland
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...
Nasoohi, Negin; Hoorizad, Maryam
2017-01-01
Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (P<0.05). Results: The smoothest surfaces with the lowest microhardness were obtained under Mylar strip without finishing/polishing for all composites (P<0.0001). The highest surface roughness was recorded for dry finishing/polishing for all composites (P<0.0001). Dry finishing/polishing increased the microhardness of all composites (P<0.0001). Conclusions: Dry finishing and polishing increases the microhardness and surface roughness of microhybrid and nanohybrid composite resins. PMID:29104597
Femtosecond laser polishing of optical materials
NASA Astrophysics Data System (ADS)
Taylor, Lauren L.; Qiao, Jun; Qiao, Jie
2015-10-01
Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2016-10-01
The Additive Manufacturing (AM) techniques are particularly appealing especially for titanium aerospace and biomedical components because they permit to achieve a strong reduction of the buy-to-fly ratio. However, finishing machining operations are often necessary to reduce the uneven surface roughness and geometrics because of local missing accuracy. This work shows the influence of the cutting parameters, cutting speed and feed rate, on the cutting forces as well as on the thermal field observed in the cutting zone, during a turning operation carried out on bars made of Ti6Al4V obtained by the AM process called Direct Metal Laser Sintering (DMLS). Moreover, the sub-surface microstructure alterations due to the process are also showed and commented.
NASA Astrophysics Data System (ADS)
Crespo Amoros, Jose Enrique
PVC pastes or plasticized PVC offer great possibilities in the industrial field in which this research work has been developed since they show great relevance in plastic processing. On one hand, it is important to study these materials from different points of view: quality improvement, wide range of performance, high versatility, low costs,.... On the other hand, most of the industrial fields that usually employ these polymeric materials are characterized by developing products on which aesthetic considerations and surface finishing acquire special relevance. These industrial fields include all those on which new designs require complex shapes and new and novelty surface finishing such as interior design (furniture, wood products,...) toys industry, houseware, shoe industry,.... The main aim of this work is to improve the use of PVC plastisols in these industrial fields by optimizing formulations with new additives (low toxicity plasticizers) and fillers (lignocellulosic wastes) to obtain new materials that minimize damages to environment. In this work, we have developed new plastisol formulations based on the use of low toxicity plasticizers to obtain more ecological plastisols. We have used a biodegradable plasticizer DINCH which is a derivative of a dicarboxilate as substitute of traditional plasticizers based on phthalates. As we are working with relatively new plasticizers (specially at industrial level) we have performed a whole study of its properties by using different experimental analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamical-mechanical analysis (DMA) and espectrofotometric techniques (visible and infrared). Furthermore a complete mechanical characterization has been carried out to analyze the most important parameters that influence on materials properties such as processing parameters (temperature and time) and plastisol formulations (mainly plasticizer content). We have also performed a comparative study regarding the results obtained with the most used plasticizer at industrial level, di-octyl phthalate (DOP). After this characterization, a study on the addition of cellulosic fillers was carried out to obtain materials with similar surface finishing than wood products. We used three different lignocellulosic fillers coming from wastes: almond husk residues since these wastes are quite abundant in our influence zone, rice husk and sawdust residues since they are produced everywhere in high amounts. It was studied the influence of the morphology and particle size on the final properties of the prepared mixtures to optimize formulations. These new plastisol formulations allow obtaining new materials in a wide range of mechanical properties, easy processing, interesting surface finishing and partially biodegradable, more careful with environment.
Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation
Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.
2016-08-09
Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less
Identification of Paper by Stationary Phase Performance
ERIC Educational Resources Information Center
Smith, Michael J.; Vale, Ilda C.; Gray, Fiona M.
2014-01-01
Paper is an extraordinary example of a composite engineering material with practical use in a huge variety of applications. Since its invention in China, there have been many alterations to manufacturing techniques, component formulation, and surface finishing, yet the essential characteristics of paper have not changed greatly. The objective of…
Surface Finish after Laser Metal Deposition
NASA Astrophysics Data System (ADS)
Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.
Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.
Transuranic contamination of stainless steel in nitric acid
NASA Astrophysics Data System (ADS)
Kerry, Timothy; Banford, Anthony W.; Thompson, Olivia R.; Carey, Thomas; Schild, Dieter; Geist, Andreas; Sharrad, Clint A.
2017-09-01
Stainless steels coupons have been exposed to transuranic species in conditions representative of those found in a spent nuclear fuel reprocessing plant. Stainless steel was prepared to different surface finishes and exposed to nitric acid of varying concentrations containing 237Np, 239Pu or 243Am for one month at 50 °C. Contamination by these transuranics has been observed on all surfaces exposed to the solution through the use of autoradiography. This technique showed that samples held in 4 M HNO3 bind 2-3 times as much radionuclide as those held in 10.5 M HNO3. It was also found that the polished steel surfaces generally took up more transuranic contamination than the etched and "as received" steel finishes. The extent of corrosion on the steel surfaces was found, by scanning electron microscopy, to be greater in solutions containing Np and Pu in comparison to that observed from contact with Am containing solutions, indicating that redox activity of transuranics can influence the mechanism of stainless steel corrosion.
Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results
NASA Astrophysics Data System (ADS)
Coelho, R. T.; Tanikawa, S. T.
2009-11-01
High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Fan, Bin; Wu, Fan
2017-10-01
Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.
Ferraris, Federico; Conti, Alessandro
2014-01-01
The following study asks three principle questions relative to composite finishing and composite polishing: 1) Will the superficial roughness of different restoration surfaces have different values, utilizing the same polishing system (multistep), after finishing with the tungsten carbide or diamond bur? 2) Under the same conditions of finishing and polishing sequences, will the composite surfaces (C), the composite-enamel (CE) and composite-dentin (CD) interfaces show different roughness values? 3) Will the surface roughness of composites of different translucency in the various phases of finishing and polishing, and on different interfaces, have different results? The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations when polishing, after finishing with tungsten carbide or diamond burs. Furthermore, the null hypothesis is that there are no significant differences on roughness between polishing on composite surface, composite-enamel and composite-dentin interfaces, and finally there are no differences on roughness after finishing and polishing of two composite with different translucency. For the study, 56 class V cavities were prepared on extracted teeth. Restorations were done in nanofilled composite Filtek XTE (3M Espe) in a standard fashion, and then finished and polished. The 28 buccal cavities were restored on the surface with composite enamel and the 28 palatals with composite body. Finishing was done with fine toothing burs in tungsten carbide (16 blades) or fine grit diamond burs (46 μm), and made by the same manufacturer (Komet). The second phase of finishing was done with burs (with the same form as already mentioned) ultrafine toothing tungsten carbide (30 blades) or with extra and ultrafine grit diamond (25 and 8 μm). The polishing phase for both of the earlier sequences was done with the application of three rubber tips with decreasing abrasiveness and an application with a self-polishing brush. All measurements were taken from surfaces C, and interfaces CE and CD. Statistical analyses were carried out with c2 test (a = 0.05). 1) There were no relevant differences of surface roughness on the different surfaces if the polishing was done after finishing with tungsten carbide or diamond burs. 2) Keeping the same sequence of finishing and polishing, a difference was noticed between C, CE and CD, where the latter showed greater roughness. 3) Analyzing the data in all the phases of finishing and polishing on every interface, it can be concluded that the composite enamel and the composite body did not show different levels of superficial roughness. The clinical relevance could be resumed as follows: no difference after polishing, which is preceded by tungsten carbide or diamond finishing burs. The less favorable interface to be polished is CD, compared to CE and C. Considering two composites with different translucency, no difference on roughness after finishing and polishing were detected.
Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.
Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C
2002-01-01
This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.
Rao, Duggineni Chalapathi; Kalavathy, N; Mohammad, H S; Hariprasad, A; Kumar, C Ravi
2015-01-01
Surface roughness promotes adhesion and colonization of denture plaque. Therefore, it is important to know the effects of polishing and finishing on the surface roughness of various acrylic resin materials. To evaluate and compare the effects of different conventional lathe polishing techniques on heat cured acrylic resins in producing surface roughness. Three different commercially available heat-cured acrylic resin materials namely DPI, Meliodent and Trevalon Hi were selected. 30 Specimens of each acrylic material (30 x 3 = 90, 10 x 60 x 2mm) were prepared and divided into 5 groups, each group consisted of 6 Nos. of specimens per material(6x3=18) and were grouped as Group A(unfinished), Group B (finished), Group C (Polishing Paste), Group D (Polishing Cake) and Group E (Pumice and Gold rouge). The resulted surface roughness (μm) was measured using Perthometer and observed under Scanning Electron Microscope. The values obtained were subjected statistical analyses. Among the materials tested, better results were obtained with Trevalon Hi followed by Meliodent and DPI. Among the polishing methods used, superior results were obtained with universal polishing paste followed by polishing cake; Pumice and Gold rouge. Although Pumice and Gold rouge values produced greater roughness value, they were well within the threshold value of 0.2 mm.
Control of crankshaft finish by scattering technique
NASA Astrophysics Data System (ADS)
Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola
2001-06-01
The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.
Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon
2016-12-01
The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.
Enhancing dropwise condensation through bioinspired wettability patterning.
Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M
2014-11-04
Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Davis, P J; Dixit, S
2007-03-07
Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and themore » MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.« less
NCMS PWB Surface Finishes Team project summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokas, J.; DeSantis, C.; Wenger, G.
1996-04-01
The NCMS PWB Surface Finishes Consortium is just about at the end of the five year program. Dozens of projects related to surface finishes and PWB solder-ability were performed by the team throughout the program, and many of them are listed in this paper. They are listed with a cross reference to where and when a technical paper was presented describing the results of the research. However, due to time and space constraints, this paper can summarize the details of only three of the major research projects accomplished by the team. The first project described is an ``Evaluation of PWBmore » Surface Finishes.`` It describes the solderability, reliability, and wire bondability of numerous surface finishes. The second project outlined is an ``Evaluation of PWB Solderability Test Methods.`` The third project outlined is the ``Development and Evaluation of Organic Solderability Preservatives.``« less
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1977-01-01
Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.
Experimental analysis of surface finish in normal conducting cavities
NASA Astrophysics Data System (ADS)
Zarrebini-Esfahani, A.; Aslaninejad, M.; Ristic, M.; Long, K.
2017-10-01
A normal conducting 805 MHz test cavity with an in built button shaped sample is used to conduct a series of surface treatment experiments. The button enhances the local fields and influences the likelihood of an RF breakdown event. Because of their smaller sizes, compared to the whole cavity surface, they allow practical investigations of the effects of cavity surface preparation in relation to RF breakdown. Manufacturing techniques and steps for preparing the buttons to improve the surface quality are described in detail. It was observed that even after the final stage of the surface treatment, defects on the surface of the cavities still could be found.
NASA Astrophysics Data System (ADS)
Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming
2017-05-01
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
Solder flow over fine line PWB surface finishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, F.M.; Hernandez, C.L.
1998-08-01
The rapid advancement of interconnect technology has stimulated the development of alternative printed wiring board (PWB) surface finishes to enhance the solderability of standard copper and solder-coated surfaces. These new finishes are based on either metallic or organic chemistries. As part of an ongoing solderability study, Sandia National Laboratories has investigated the solder flow behavior of two azole-based organic solderability preservations, immersion Au, immersion Ag, electroless Pd, and electroless Pd/Ni on fine line copper features. The coated substrates were solder tested in the as-fabricated and environmentally-stressed conditions. Samples were processed through an inerted reflow machine. The azole-based coatings generally providedmore » the most effective protection after aging. Thin Pd over Cu yielded the best wetting results of the metallic coatings, with complete dissolution of the Pd overcoat and wetting of the underlying Cu by the flowing solder. Limited wetting was measured on the thicker Pd and Pd over Ni finishes, which were not completely dissolved by the molten solder. The immersion Au and Ag finishes yielded the lowest wetted lengths, respectively. These general differences in solderability were directly attributed to the type of surface finish which the solder came in contact with. The effects of circuit geometry, surface finish, stressing, and solder processing conditions are discussed.« less
Kim, Sumin
2010-04-15
This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.
Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...
Akar, Gülcan Coşkun; Pekkan, Gürel; Çal, Ebru; Eskitaşçıoğlu, Gürcan; Özcan, Mutlu
2014-08-01
Surface-finishing protocols have a mechanical impact on ceramic surfaces that could eventually affect surface topography and light scattering. An optimum protocol is needed to avoid damaging the optical properties of ceramics. The purpose of this study was to determine the effects of different surface-finishing protocols on the surface roughness, color change, and translucency of ceramic and metal ceramic restorations. Standardized disk-shaped specimens (1.5 × 10 mm, n=128) were fabricated from 3 different ceramic core materials (aluminum oxide [Al2O3]-AL, zirconium oxide [ZrO2]-ZR, lithium disilicate [Li2Si2O5]-LIT), veneered (V) with dentin ceramics (n=32 per group), and placed in the following groups: ALV, ZRV, and LITV. The metal ceramic group acted as the control (n=32). Four different surface-finishing methods were tested. Airborne-particle abrasion with 50 μm Al2O3, polishing with adjustment kit, polishing with adjustment kit plus diamond polishing paste, and autoglazing (n=8 subgroup) were applied on the veneering ceramics. The specimens were analyzed with a profilometer for surface roughness, and color change and translucency were measured with a clinical spectrophotometer. Statistical analyses were performed with 1-way ANOVA and the Tukey honest significant difference tests (α=.05). Specimens treated with the airborne particle abrasion method showed significantly higher mean profilometer for surface roughness values in all groups (P<.05). The polishing with adjustment kit and autoglazing methods revealed statistically similar surface roughness values in all groups (P>.05). With the diamond polishing paste method, lower surface roughness values were achieved in the ZRV and metal ceramic groups acted as the control groups. Different surface-finishing methods affected the color change of the ceramic systems, except for ZRV. Surface-finishing protocols significantly affected the translucency values of the ALV, LITV, and metal ceramic groups (P<.05). No single surface-finishing protocol can be recommended to obtain the smoothest surface and the least color change without affecting translucency for the ceramics tested. The airborne-particle abrasion protocol created rougher surfaces and decreased translucency, and color change in zirconia was not affected by the finishing protocols. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Experimental Investigation of White Layer formation in Hard Turning
NASA Astrophysics Data System (ADS)
Umbrello, D.; Rotella, G.; Crea, F.
2011-05-01
Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.
Performance and Surface Integrity of Ti6Al4V After Sinking EDM with Special Graphite Electrodes
NASA Astrophysics Data System (ADS)
Amorim, Fred L.; Stedile, Leandro J.; Torres, Ricardo D.; Soares, Paulo C.; Henning Laurindo, Carlos A.
2014-04-01
Titanium and its alloys have high chemical reactivity with most of the cutting tools. This makes it difficult to work with these alloys using conventional machining processes. Electrical discharge machining (EDM) emerges as an alternative technique to machining these materials. In this work, it is investigated the performance of three special grades of graphite as electrodes when ED-Machining Ti6Al4V samples under three different regimes. The main influences of electrical parameters are discussed for the samples material removal rate, volumetric relative wear and surface roughness. The samples surfaces were evaluated using SEM images, microhardness measurements, and x-ray diffraction. It was found that the best results for samples material removal rate, surface roughness, and volumetric relative wear were obtained for the graphite electrode with 10-μm particle size and negative polarity. For all samples machined by EDM and characterized by x-ray (XRD), it was identified the presence of titanium carbides. For the finish EDM regimes, the recast layer presents an increased amount of titanium carbides compared to semi-finish and rough regimes.
Surface finish measurement studies
NASA Technical Reports Server (NTRS)
Teague, E. C.
1983-01-01
The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.
NASA Astrophysics Data System (ADS)
Nam, N. D.; Bui, Q. V.; Nhan, H. T.; Phuong, D. V.; Bian, M. Z.
2014-09-01
The corrosion resistance of a multilayered (NiP-Pd-Au) coating with various thicknesses of palladium (Pd) interlayer deposited on copper by an electroless method was investigated using electrochemical techniques including potentiodynamic polarization and electrochemical impedance spectroscopy. In addition, the surface finish was examined by x-ray diffraction analysis and scanning electron microscopy, and the contact angle of the liquid-solid interface was recorded. The corrosion resistance of the copper substrate was considerably improved by Pd interlayer addition. Increase of the thickness of the Pd interlayer enhanced the performance of the Cu-NiP-Pd-Au coating due to low porosity, high protective efficiency, high charge-transfer resistance, and contact angle. These are attributed to the diffusion of layers in the Cu-NiP-Pd-Au coating acting as a physical barrier layer, leading to the protection provided by the coating.
A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow
NASA Astrophysics Data System (ADS)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.
Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.
NASA Astrophysics Data System (ADS)
Herrera, René; Muszyńska, Monika; Krystofiak, Tomasz; Labidi, Jalel
2015-12-01
Thermally modified wood has been developed as an industrial method to improve durability and dimensional stability of wood and thus extends the range of uses and service life of wood-based products. Despite the improvements gained by treatment, surface finishing using coatings prevents esthetical changes such as color degradation or occasional growth of mold adding protection in outdoor use and extending the service life of products. The wood finishing process was carried out with commercially available waterborne and UV-curable coatings on industrially modified at 192, 200, 212 °C and unmodified European ash (Fraxinus excelsior L.) wood, using an industrial rollers system and a laboratory brushing system. Changes caused by thermal treatment which could affect the surface finish were measured and compared with control samples, such as water uptake, wettability and acidity. Following the wood finishing, surface properties and esthetic changes were evaluated; as well as the coatings performance. Thermally modified wood presented improved adherence compared with unmodified wood with a significant improvement in samples modified at 212 °C, which also present the highest hardness when UV-cured. Finishes with UV-curing maintain the hydrophobic effect of thermally modified wood, whereas waterborne finishes increase the surface wettability. Thermal modification did not negatively influence on the elastic properties of the coated substrate and thus allows this material to be finished with different coating systems in the same conditions as unmodified wood.
Finishability of CCA pressure-treated wood
Alan Ross; Richard Carlson; William Feist; Steven Bussjaeger
2000-01-01
Thus, a need arose for the development of surface finishes for CCA-treated wood that could address the special requirements of this substrate and provide protection against the ravages of water, sunlight, mildew, and other aspects of weathering and wear. Initially, this need was not addressed, most wood preserving companies had little expertise in surface finishes and...
Evaluation of several finishes on severely weathered wood
R. Sam Williams; Peter Sotos; William Feist
1999-01-01
Alkyd-, oil-modified-latex-, and latex-based finishes were applied to severely weathered western redcedar and redwood boards that did not have any surface treatment to ameliorate the weathered surface prior to painting. Six finishes were evaluated annually for 11 years for cracking, flaking, erosion, mildew growth, discoloration, and general appearance. Low-solids-...
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Stanford, malcolm K.; Thomas, Fransua; Edmonds, Brian J.
2010-01-01
A new composite, multi-constituent, solid lubricant coating, NASA PS400, developed for high temperature tribological applications, exhibits a smoother surface finish after grinding and polishing than its predecessors PS200 and PS300. In this paper, the baseline composition of PS400 is modified to investigate each individual constituent s role on the achievable surface finish through a series of coating deposition, grinding, and polishing experiments. Furthermore, to explore the limits of compositional tailoring for improved tribological performance, several PS400 coatings were doped with additional solid lubricants (graphite, MoS2 and BN) and tribologically tested. The test results clearly showed that, compared to PS300 coatings, PS400 achieves a smoother surface finish via a reduced lubricant content. Coatings prepared with higher than the baseline level (10 wt%) of lubricants exhibited higher final surface roughness than the earlier generation PS300 coatings. Reducing or eliminating the one or both lubricants (fluorides or silver) did not further improve the surface finish suggesting that the current composition of PS400 is near optimal with respect to surface finish. Lastly, attempts to improve the poor initial room temperature tribological behavior of PS400 via the addition of traditional solid lubricants were unsuccessful. Based upon this work and earlier results it is expected that future research will concentrate on developing methods to produce a lubricious glaze on the rubbing surface during break in to ensure that low friction and wear are rapidly achieved.
Surface-Finish Measurement with Interference Microscopes,
1977-02-01
Microscope 17 Multiple-Beam Interference Microscope .. 25 Fringes of Equal Chromatic Order 27 Nomarski Polarization-Contrast Technique 33...characteristics of each instrument: the double and multiple-beam interferometer, the FECO fringe interferometer, and the Nomarski polarization contrast...328X Beam Reichert 8X 0.15 2.22 87 33X Nomarski 16X 0.25 1.33 52 55X 203X Technique 32X 0.40 0.83 33 87X 395X 45 X 0.65 0.51 20 142X 567 X 80X
Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector.
Fan, Peng; Ma, Tianyu; Wei, Qingyang; Yao, Rutao; Liu, Yaqiang; Wang, Shi
2016-02-07
The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods.
Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts
NASA Astrophysics Data System (ADS)
Haidiezul, AHM; Aiman, AF; Bakar, B.
2018-03-01
One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer
Stripping Paint From Exterior Wood Surfaces
Mark T. Knaebe
2013-01-01
Removing paint and other film-forming finishes is a time consuming and often difficult process. In some cases, finishes need to be removed prior to repainting; for example, if the old surface is covered with severely peeled or blistered paint or if excessive paint buildup has caused cross-grain cracking. You must also remove the finish before applying a penetrating...
A study on the applications of AI in finishing of additive manufacturing parts
NASA Astrophysics Data System (ADS)
Fathima Patham, K.
2017-06-01
Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.
NASA Astrophysics Data System (ADS)
Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2008-04-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
POLLUTION PREVENTION IN THE METAL FINISHING INDUSTRY
A broad overview of the metal finishing processes in pollution prevention. The volume of hazardous/toxic waste streams produced from metal finishing operations is significant. It is common for product surfaces to undergo more than 10 finishing steps. The elimination of any of ...
Valder, Joshua F.; Delzer, Gregory C.; Bender, David A.; Price, Curtis V.
2011-01-01
This report presents finished-water matrix-spike recoveries of 270 anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine. Percent recoveries were calculated using analytical results from a study conducted during 2004-10 for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The study was intended to characterize the effect of quenching on finished-water matrix-spike recoveries and to better understand the potential oxidation and transformation of 270 anthropogenic organic compounds. The anthropogenic organic compounds studied include those on analytical schedules 1433, 2003, 2033, 2060, 2020, and 4024 of the USGS National Water Quality Laboratory. Three types of samples were collected from 34 NAWQA locations across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water matrix-spike samples, and (3) nonquenched finished-water matrix-spike samples. Percent recoveries of anthropogenic organic compounds in quenched and nonquenched finished-water matrix-spike samples are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 18 surface-water and 34 groundwater quenched finished-water matrix-spike samples paired with nonquenched finished-water matrix-spike samples were analyzed. Percent recoveries for the study are presented in two ways: (1) finished-water matrix-spike samples supplied by surface-water or groundwater, and (2) by use (or source) group category for surface-water and groundwater supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water matrix-spike samples also are presented.
SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results
NASA Astrophysics Data System (ADS)
Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.
2017-06-01
The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.
Computer numeric control generation of toric surfaces
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Ball, Gary A.; Keller, John R.
1994-05-01
Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.
Multi-Response Optimization of Resin Finishing by Using a Taguchi-Based Grey Relational Analysis
Shafiq, Faizan; Sarwar, Zahid; Jilani, Muhammad Munib; Cai, Yingjie
2018-01-01
In this study, the influence and optimization of the factors of a non-formaldehyde resin finishing process on cotton fabric using a Taguchi-based grey relational analysis were experimentally investigated. An L27 orthogonal array was selected for five parameters and three levels by applying Taguchi’s design of experiments. The Taguchi technique was coupled with a grey relational analysis to obtain a grey relational grade for evaluating multiple responses, i.e., crease recovery angle (CRA), tearing strength (TE), and whiteness index (WI). The optimum parameters (values) for resin finishing were the resin concentration (80 g·L−1), the polyethylene softener (40 g·L−1), the catalyst (25 g·L−1), the curing temperature (140 °C), and the curing time (2 min). The goodness-of-fit of the data was validated by an analysis of variance (ANOVA). The optimized sample was characterized by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to better understand the structural details of the resin finishing process. The results showed an improved thermal stability and confirmed the presence of well deposited of resin on the optimized fabric surface. PMID:29543724
Finishing Techniques for Silicon Nitride Bearings
1976-03-01
finishing procedures. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order...grinding. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude...lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude longer than those
Effects of surface polishing on the microstrain behavior of telescope mirror materials
NASA Technical Reports Server (NTRS)
Eul, W. A.; Woods, W. W.
1973-01-01
Rough ground silicic mirror substrate materials were found in previous investigations to exhibit significant surface yield. This effect was removed by surface etching, a procedure not normally employed in the finishing of optical telescope mirrors. The effects of fine grinding and polishing techniques as well as graded etching are investigated. Torsional shear measurements of yield strain versus stress are made on four candidate mirror substrate materials: polycrystalline silicon, ULE silica 7971, CER-VIT 101, and fused silica 7940. Commonly employed fine grinding and polishing practices are shown to remove a major portion of the surface yield found in rough ground mirror substrate materials.
Float polishing of optical materials.
Bennett, J M; Shaffer, J J; Shibano, Y; Namba, Y
1987-02-15
The float-polishing technique has been studied to determine its suitability for producing supersmooth surfaces on optical materials, yielding a roughness of <2 A rms. An attempt was made to polish six different materials including fused quartz, Zerodur, and sapphire. The low surface roughness was achieved on fused quartz, Zerodur, and Corning experimental glass-ceramic materials, and a surface roughness of <1 A rms was obtained on O-cut single-crystal sapphire. Presumably, similar surface finishes can also be obtained on CerVit and ULE quartz, which could not be polished satisfactorily in this set of experiments because of a mismatch between sample mounting and machine configuration.
Optical Microscopy Techniques to Inspect for Metallic Whiskers
NASA Technical Reports Server (NTRS)
Brusse, Jay A.
2006-01-01
Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques.
Solá-Ruiz, Ma Fernanda; Faus-Matoses, Ignacio; Del Rio Highsmith, Jamie; Fons-Font, Antonio
2014-01-01
The purpose of this study was to compare the differences in surface characteristics and roughness of teeth finished for porcelain veneer laminates using different instrumentation and to assess their influence on microleakage. Fifty-six extracted human maxillary central incisors were divided randomly into two groups: Group HsR teeth were finished with a high-speed handpiece with diamond burs; group SO teeth were finished with a sonic oscillating diamond instrument. Porcelain veneers were bonded to 24 teeth in each group. Microleakage was measured in the cervical area. Four remaining teeth in each group were examined using confocal laser-scanning microscopy and scanning electron microscopy. Oscillating instruments produced a rougher dentinal surface (Ra values; P = .029) than those finished with high-speed rotary technology. There is less microleakage when bonded restoration edges are situated over dentin that has been finished with sonic oscillating instrumentation (P = .006).
Logistics for the implementation of lead-free solders on electronic assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Artaki, I.
1993-12-31
The prospects of legislative and regulatory action aimed at taxing, restricting or banning lead-bearing materials from manufactured products has prompted the electronics community to examine the implementation of lead-free solders to replace currently used lead-containing alloys in the manufacture of electronic devices and assemblies. The logistics for changing the well established ``tin-lead solder technology`` require not only the selection of new compositions but also the qualification of different surface finishes and manufacturing processes. The meniscometer/wetting balance technique was used to evaluate the wettability of several candidate lead-free solders as well as to establish windows on processing parameters so as tomore » facilitate prototype manufacturing. Electroplated and electroless 100Sn coatings, as well as organic preservatives, were also examined as potential alternative finishes for device leads and terminations as well as circuit board conductor surfaces to replace traditional tin-lead layers. Sandia National Laboratories and AT&T have implemented a program to qualify the manufacturing feasibility of surface mount prototype circuit boards using several commercial lead-free solders by infrared reflow technology.« less
Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh
2015-09-01
This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.
Bagheri, Hossein; Aghajani, Farzaneh
2015-01-01
Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372
Wang, Jue; Maier, Robert L
2006-08-01
The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.
Surface finishing. [for aircraft wings
NASA Technical Reports Server (NTRS)
Kinzler, J. A.; Heffernan, J. T.; Fehrenkamp, L. G.; Lee, W. S. (Inventor)
1977-01-01
A surface of an article adapted for relative motion with a fluid environment is finished by coating the surface with a fluid adhesive. The adhesive is covered with a sheet of flexible film material under tension, and the adhesive is set while maintaining tension on the film material.
A new polishing process for large-aperture and high-precision aspheric surface
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci
2013-07-01
The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.
Implementing Cleaner Printed Wiring Board Technologies: Surface Finishes
This document describes the problems, solutions, and time and effort involved in implementing alternative surface finish technologies, and this guide is produced as part of the DfE Printed Wiring Board Project
Yap, Adrian U J; Ng, J J; Yap, S H; Teo, C K
2004-01-01
This study investigated the surface finish of resin-modified (Fuji II LC, GC) and highly viscous (Fuji IX GP Fast, GC) glass ionomer cements after treatment with three one-step finishing/polishing systems (One-Gloss [OG], Shofu; Pogo [PG], Dentsply; Sof-Lex Brush [SB], 3M-ESPE). The surface roughness obtained was compared to that using a matrix strip [MS], a two-step rubber abrasive (CompoSite [CS], Shofu) and a graded abrasive disk (Super Snap [SS], Shofu) system. Eight specimens (3-mm long x 3-mm wide x 2-mm deep) of each material were made for the various treatment groups. With the exception of the MS group, all groups were roughened with 320 grit grinding paper using a lapping device prior to finishing/polishing with the different systems. The mean surface roughness (microm) was measured with a profilometer. Data was subjected to ANOVA/Scheffe's tests at significance level 0.05. Mean Ra ranged from 0.13 to 1.04 microm for Fuji II LC and 0.14 to 0.81 for Fuji IX GP. For both materials, the smoothest surface was obtained with MS and the roughest with OG. Depending on the materials, the surface finish produced by PG and SB was superior or comparable to that obtained with CS and SS. The effectiveness of one-step systems, when used to finish/polish resin-modified and highly viscous glass ionomer cements, is product dependent.
Jeong, Haksan; Myung, Woo-Ram; Sung, Yong-Gue; Kim, Kyung-Yeol; Jung, Seung-Boo
2018-09-01
Microstructures and mechanical property of Sn-3.0Ag-0.5Cu (SAC305) and epoxy Sn-3.0Ag-0.5Cu (epoxy SAC) solder joints were investigated with various surface finishes; organic solderability preservative (OSP), electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). Bending property of solder joints was evaluated by 3-point bend test method. Microstructure and chemical composition of solder joints was characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. Epoxy did not effect on intermetallic compound (IMC) morphology. Scalloped shaped Cu6Sn5 IMC was observed at OSP surface finish. Chunky-like shaped and needle-like shaped (Ni,Cu)6Sn5 IMC were observed at the solder/ENIG joint and solder/ENEPIG joint, respectively. The bending cycles of SAC305/OSP joint, SAC305/ENIG joints and SAC305/ENEPIG joints were 720, 440 and 481 cycle numbers. The bending cycles of epoxy SAC and three types surface finished solder joints were over 1000 bending cycles. Under OSP surface finish, bending cycles of epoxy SAC solder was approximately 1.5 times higher than those of SAC305 solder joint. Bending cycles of epoxy SAC solder was over twice times higher than those of SAC305 solder with ENIG and ENEPIG surface finishes. The bending property of epoxy solder joint was enhanced due to epoxy fillet held the solder joint.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
Precision lens molding of asphero diffractive surfaces in chalcogenide materials
NASA Astrophysics Data System (ADS)
Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.
2015-10-01
Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.
An Extension of Holographic Moiré to Micromechanics
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Sciammarella, F. M.
The electronic Holographic Moiré is an ideal tool for micromechanics studies. It does not require a modification of the surface by the introduction of a reference grating. This is of particular advantage when dealing with materials such as solid propellant grains whose chemical nature and surface finish makes the application of a reference grating very difficult. Traditional electronic Holographic Moiré presents some difficult problems when large magnifications are needed and large rigid body motion takes place. This paper presents developments that solves these problems and extends the application of the technique to micromechanics.
Analyzing and improving surface texture by dual-rotation magnetorheological finishing
NASA Astrophysics Data System (ADS)
Wang, Yuyue; Zhang, Yun; Feng, Zhijing
2016-01-01
The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.
NASA Astrophysics Data System (ADS)
Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.
2016-07-01
Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.
Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes
NASA Astrophysics Data System (ADS)
Choudhari, C. M.; Patil, V. D.
2016-09-01
To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.
Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen
2017-07-01
In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.
Ryland, S; Bishea, G; Brun-Conti, L; Eyring, M; Flanagan, B; Jergovich, T; MacDougall, D; Suzuki, E
2001-01-01
The 1990s saw the introduction of significantly new types of paint binder chemistries into the automotive finish coat market. Considering the pronounced changes in the binders that can now be found in automotive paints and their potential use in a wide variety of finishes worldwide, the Paint Subgroup of the Scientific Working Group for Materials (SWGMAT) initiated a validation study to investigate the ability of commonly accepted methods of forensic paint examination to differentiate between these newer types of paints. Nine automotive paint systems typical of original equipment applications were acquired from General Motors Corporation in 1992. They consisted of steel panels coated with typical electrocoat primers and/or primer surfacers followed by a black nonmetallic base coat and clear coat. The primary purpose of this study was to evaluate the discrimination power of common forensic techniques when applied to the newer generation original automotive finishes. The second purpose was to evaluate interlaboratory reproducibility of automotive paint spectra collected on a variety of Fourier transform infrared (FT-IR) spectrometers and accessories normally used for forensic paint examinations. The results demonstrate that infrared spectroscopy is an effective tool for discriminating between the major automotive paint manufacturers' formulation types which are currently used in original finishes. Furthermore, and equally important, the results illustrate that the mid-infrared spectra of these finishes are generally quite reproducible even when comparing data from different laboratories, commercial FT-IR instruments, and accessories in a "real world," mostly uncontrolled, environment.
Ultra-smooth finishing of aspheric surfaces using CAST technology
NASA Astrophysics Data System (ADS)
Kong, John; Young, Kevin
2014-06-01
Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.
Portable flooring protects finished surfaces, is easily moved
NASA Technical Reports Server (NTRS)
Carmody, R. J.
1964-01-01
To protect curved, finished surface and provide support for workmen, portable flooring has been made from rigid plastic foam blocks, faced with aluminum strips. Held together by nylon webbing, the flooring can be rolled up for easy carrying.
Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.
1998-01-01
A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.
CAPSULE REPORT - MANAGING CYANIDE IN METAL FINISHING
The purpose of this document is to provide guidance to surface finishing manufacturers, metal finishing decision maker and regulators on management practices and control technologies for managing cyanide in the workplace. This information can benefit key industry stakeholder gro...
NASA Astrophysics Data System (ADS)
Amend, P.; Pscherer, C.; Rechtenwald, T.; Frick, T.; Schmidt, M.
This paper presents experimental results of manufacturing MID-prototypes by means of SLS, laser structuring and metallization. Therefore common SLS powder (PA12) doped with laser structuring additives is used. First of all the influence of the additives on the characteristic temperatures of melting and crystallization is analyzed by means of DSC. Afterwards the sintering process is carried out and optimized by experiments. Finally the generated components are qualified regarding their density, mechanical properties and surface roughness. Especially the surface quality is important for the metallization process. Therefore surface finishing techniques are investigated.
Kakaboura, A; Vougiouklakis, G; Argiri, G
1989-01-01
Finishing and polishing an amalgam restoration, is considered as an important and necessary step of the restorative procedure. Various polishing techniques have been recommended to success a smooth amalgam surface. The aim of this study was to investigate the influence of three different polishing treatments on the marginal integrity and surface smoothness of restorations made of three commercially available amalgams and a glass-cermet cement. The materials used were the amalgams, Amalcap (Vivadent), Dispersalloy (Johnson and Johnson), Duralloy (Degussa) and the glass-cermet Katac-Silver (ESPE). The occlusal surfaces of the restorations were polished by the methods: I) round bur, No4-rubber cup-zinc oxide paste in a small brush, II) round bur No 4-bur-brown, green and super green (Shofu) polishing cups and points successively and III) amalgam polishing bur of 12-blades-smooth amalgam polishing bur. Photographs from unpolished and polished surfaces of the restorations, were taken with scanning electron microscope, to evaluate the polishing techniques. An improvement of marginal integrity and surface smoothness of all amalgam restorations was observed after the specimens had been polished with the three techniques. Method II, included Shofu polishers, proved the best results in comparison to the methods I and III. Polishing of glass-cermet cement was impossible with the examined techniques.
Surface Fatigue Lives of Case-Carburized Gears With an Improved Surface Finish
NASA Technical Reports Server (NTRS)
Krantz, T. L.; Alanou, M. P.; Evans, H. P.; Snidle, R. W.; Krantz, T. L. (Technical Monitor)
2000-01-01
Previous research provides qualitative evidence that an improved surface finish can increase the surface fatigue lives of gears. To quantify the influence of surface roughness on life, a set of AISI 93 10 steel gears was provided with a nearmirror finish by superfinishing. The effects of the superfinishing on the quality of the gear tooth surfaces were determined using data from metrology, profilometry, and interferometric microscope inspections. The superfinishing reduced the roughness average by about a factor of 5. The superfinished gears were subjected to surface fatigue testing at 1.71 -GPa (248-ksi) Hertz contact stress, and the data were compared with the NASA Glenn gear fatigue data base. The lives of gears with superfinished teeth were about four times greater compared with the lives of gears with ground teeth but with otherwise similar quality.
APPROACHING ZERO DISCHARGE IN SURFACE FINISHING
This document provides guidance to surface finishing manufacturers on control technologies and process changes for approaching zero discharge (AZD). AZD is a key theme underlying the Strategic Goals Program (SGP). The SGP is a cooperative effort between the EPA nd the American El...
Finishing/polishing of composite and compomer restoratives: effectiveness of one-step systems.
Yap, Adrian U J; Yap, S H; Teo, C K; Ng, J J
2004-01-01
This study investigated the surface texture of composite (Z100, 3M ESPE) and compomer (F2000, 3M ESPE) restoratives after treatment with different one-step finishing/polishing systems (One-Gloss [OG], Shofu; PoGo [PG], Dentsply; Sof-Lex Brush [SB], 3M ESPE). The surface roughness obtained was compared to that using a matrix strip [MS], a two-step rubber abrasive (CompoSite [CS], Shofu) and a graded abrasive disk (Super Snap [SS], Shofu) system. Eight specimens (3-mm long x 3-mm wide x 2-mm deep) of each material were made according to manufacturer's instructions. With exception of the MS group, all groups were roughened with 320 grit grinding paper using a lapping device prior to finishing/polishing with the different systems. The mean surface roughness (microm) was measured with a profilometer. Data was subjected to ANOVA/Scheffe's tests and independent samples t-test at significance level 0.05. Mean Ra ranged from 0.22 to 0.32 microm for Z100 and 0.45 to 0.68 for F2000. For both materials, the smoothest surfaces were obtained with MS. The roughest surfaces were observed after treatment with SS and OG for Z100 and F2000, respectively. The effectiveness of the finishing/polishing systems was material dependent. The surface finish produced by PG and SB was superior or comparable to that obtained with CS, SS and OG.
A survey of telerobotic surface finishing
NASA Astrophysics Data System (ADS)
Höglund, Thomas; Alander, Jarmo; Mantere, Timo
2018-05-01
This is a survey of research published on the subjects of telerobotics, haptic feedback, and mixed reality applied to surface finishing. The survey especially focuses on how visuo-haptic feedback can be used to improve a grinding process using a remote manipulator or robot. The benefits of teleoperation and reasons for using haptic feedback are presented. The use of genetic algorithms for optimizing haptic sensing is briefly discussed. Ways of augmenting the operator's vision are described. Visual feedback can be used to find defects and analyze the quality of the surface resulting from the surface finishing process. Visual cues can also be used to aid a human operator in manipulating a robot precisely and avoiding collisions.
2003-07-01
magnetorheological (MRF) finishing to reduce surface roughness in half the time of previous processes . Improved image quality directly supports improved...affordably polish the inside surface of small tight free form optics to a finish on the order of 3 angstroms. • Demonstrate cycle time reduction...processes and controls for steel, titanium, and superalloys. FY2007: • Demonstrate an improved superfine finishing for optical components to
NASA Astrophysics Data System (ADS)
Ranjan, Prabhat; Balasubramaniam, R.; Jain, V. K.
2018-06-01
A molecular dynamics simulation (MDS) has been carried out to investigate the material removal phenomenon of chemo-mechanical magnetorheological finishing (CMMRF) process. To understand the role of chemical assisted mechanical abrasion in CMMRF process, material removal phenomenon is subdivided into three different stages. In the first stage, new atomic bonds viz. Fe-O-Si is created on the surface of the workpiece (stainless steel). The second stage deals with the rupture of parent bonds like Fe-Fe on the workpiece. In the final stage, removal of material from the surface in the form of dislodged debris (cluster of atoms) takes place. Effects of process parameters like abrasive particles, depth of penetration and initial surface condition on finishing force, potential energy (towards secondary phenomenon such as chemical instability of the finished surface) and material removal at atomic scale have been investigated. It was observed that the type of abrasive particle is one of the important parameters to produce atomically smooth surface. Experiments were also conducted as per the MDS to generate defect-free and sub-nanometre-level finished surface (Ra value better than 0.2 nm). The experimental results reasonably agree well with the simulation results.
Chronicle of 65 years of wood finishing research at the Forest Products Laboratory
Thomas M. Gorman; William C. Feist
1989-01-01
For 65 years, the Forest Products Laboratory (FPL) in Madison, Wisconsin, has had a continuous and extensive program of research on finishing wood for outdoor use. The research has stressed the fundamental aspects of wood weathering and the interactions of pretreatments and finishes on wood surfaces. This report outlines the history of the FPL wood finishing research...
NASA Astrophysics Data System (ADS)
Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.
2013-09-01
Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.
Machining approach of freeform optics on infrared materials via ultra-precision turning.
Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong
2017-02-06
Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.
Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj
2015-03-01
Drilling through the bone is a complicated process in orthopaedic surgery. It involves human as a part of the work so it needs better perfection and quality which leads to the sustainability. Different studies were carried out on this curious topic and some interesting results were obtained, which help the orthopaedic surgeon on the operation table. Major problems faced during bone drilling were crack initiation, thermal necrosis and burr formation. The surface topography of the bone is an indirect indication for the sustainability of bone joint. In this study, a comparison is made between conventional and a loose abrasive unconventional drilling technique for the surface characterization of the bone. The attempt has been made to show the feasibility of bone drilling with non-conventional technique and its aftereffect on the bone structure. The burr formation during conventional bone drilling was found to be more which leads to problems such as crack initiation and thermal necrosis. Scanning electrode microscope and surface roughness tester were used to characterize the surface of the fine drilled bone specimen and the results testified quite better surface finish and least crack formation while drilling with loose abrasive unconventional technique. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Anil, K. C.; Vikas, M. G.; Shanmukha Teja, B.; Sreenivas Rao, K. V.
2017-04-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, graphite (Grp) reinforced Aluminium 8011 is synthesized by convention stir casting process and Surface finish & machinability of prepared composite is examined by using lathe tool dynamometer attached with BANKA Lathe by varying the machining parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, Roughness Average (Ra) of machined surfaces is measured by using Surface Roughness Tester (Mitutoyo SJ201). From the studies it is cleared that mechanical properties of a composites increases with addition of Grp and The cutting force were decreased with the reinforcement percentage and thus increases the machinability of composites and also results in increased surface finish.
Chemically Accelerated Vibratory Surface Finishing (CAVSF)
2009-02-01
media) • End-roughness and micro structure of different C- steels • Material removal and roughness changes versus the amount of treatment solution in...surface finishing (CAVSF) Visual appearance of strip steel test pieces during the CAVSF process. 0-120 minutes = acid treatment 120-135 minutes = water... steel during the super-finishing process 0 50 100 150 200 250 300 350 0 50 100 150 200 250 Time minutes R e m o v e d m a t e r i a l m i c r
NASA Technical Reports Server (NTRS)
Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.
1982-01-01
Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.
CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS
Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...
Forces acting between polishing tool and workpiece surface in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf
2008-08-01
Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.
2013-05-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.
2012-10-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.
Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.
1998-10-27
A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.
Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng
2014-11-01
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809 nm) if the directions of cutting and MRF polishing are along the (110) direction.
Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira
1999-11-01
Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.
Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish
NASA Astrophysics Data System (ADS)
Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.
2011-09-01
The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab
The high level objectives of the this work were to: 1) scientifically understand critical phenomena affecting the surface figure during full aperture finishing; 2) utilize these fundamentals to more deterministically control the surface figure during finishing; 3) successfully polish under rogue particle-‘free’ environments during polishing by understanding/preventing key sources of rogue particles.
30 CFR 18.33 - Finish of surface joints.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...
Ferraris, Federico; Conti, Alessandro
2014-01-01
The aim of this study is to investigate different instruments for finishing composite restorations, as well as examining different surfaces and interfaces of the same restoration. The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations finishing between tungsten carbide and diamond burs, furthermore the null hypothesis is that there are no significant differences on roughness between finishing on composite surfaces (C), compositeenamel (CE) and composite-dentin (CD) interfaces. The study was performed on 28 teeth, and class V cavities were prepared on the extracted teeth. Restorations were done in Filtek XTE nanofilled composite (3M Espe) in a standardized method, to then be finished. A comparison was made in the phase 1 between tungsten carbide burs (16 blades), diamond burs (46 μm), with a similar shape by the same manufacturer (Komet). Each surface received 5 bur applications. Consequently, an analysis with a profilometer was performed. Phase 2 involved further confrontation of ulterior finishing with ultrafine tungsten carbide burs (30 blades) and with extra and ultrafine diamond burs (25 and 8 μm) (the same shape as previously mentioned). A second analysis was then performed with a profilometer. All measurements were taken on C surfaces, CE and CD interfaces. Statistical analyses were carried out with c2 test (a = 0.05). The finishing procedures with fine grit or toothing burs gave a better smoothness with tungsten carbide burs compared to diamond burs. While with the ultrafine grit no significant differences were noted between tungsten carbide and diamond burs on the CE and CD interfaces, the diamond bur left less superficial roughness on the C surfaces. With regards to the superficial roughness of the different areas of restoration, it can be concluded that: minor roughness was detected on C surfaces, while the CD interface had the most superficial roughness, regardless of whether the diamond burs or tungsten carbide burs were used. This study shows some statistical differences that could not be clinically perceivable. The clinical relevance could be resumed as follows: the fine tungsten carbide burs provided less roughness compared to a fine diamond bur. There were no differences between the ultrafine tungsten carbide and diamond burs. The less favourable interface to be finished is CD, compared to the CE interface and C surfaces.
NASA Technical Reports Server (NTRS)
Leon, R. P.
1987-01-01
Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.
Effect of natural and synthetic organics on the processing of ceramics
NASA Astrophysics Data System (ADS)
Schulz, Brett M.
Dry pressing has been shown to be an efficient and cost effective method of manufacturing ceramic ware. Dry pressed parts are typically manufactured with a low moisture content which has the further advantage of eliminating the drying step that is necessary for plastic formed ware, i.e., jiggered or ram pressed. Problems associated with the use of dry pressing in an industrial setting involve the high loss rate during the bisque firing process and the poor surface finish of the green (unfired) ware. It was the goal of this research to improve the surface finish of dry pressed ware to a level that is satisfactory for decorating of the bisque fired ware. The adsorption of organic additives, specifically dispersants, on the surface of particles is an important aspect of ceramic processing. The interactions between organic additives, specifically sodium poly[acrylic acid] and poly[vinyl alcohol], have been demonstrated to result in phase separation into distinct domains during the spray-drying process. This phase separation leads to a poly[vinyl alcohol]-rich film on the surface of the granulate which will increase the P1 value, the pressure at the onset of granule deformation, of the granulate. This negative interaction between the organics increases the surface roughness of the dry pressed ware. The roughness of the industrially prepared ware was determined using an optical interferometer to set a baseline for improvements in the surface finish of the dry pressed ware. Blending of dried granulate was determined to significantly improve the surface finish of the ware. Alternative binders to replace a plasticized poly[vinyl alcohol] were observed to show improvements in the surface finish of the ware dry pressed in a semi-isostatic die. In summary the most important aspect to improving the surface finish of dry pressed ware, i.e. facilitating compaction, is the selection of the organic additives. Additives which are observed to have a negative interaction, i.e. to phase separate into distinct domains, will result in an organic rich film at the surface of the granule thus increasing the P1 value of the granulate.
Optimal Magnetorheological Fluid for Finishing of Chemical-Vapor-Deposited Zinc Sulfide
NASA Astrophysics Data System (ADS)
Salzman, Sivan
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor- deposited zinc sulfide (ZnS) optics leaves visible surface artifacts known as "pebbles". These artifacts are a direct result of the material's inner structure that consists of cone-like features that grow larger (up to a few millimeters in size) as deposition takes place, and manifest on the top deposited surface as "pebbles". Polishing the pebble features from a CVD ZnS substrate to a flat, smooth surface to below 10 nm root-mean-square is challenging, especially for a non-destructive polishing process such as MRF. This work explores ways to improve the surface finish of CVD ZnS processed with MRF through modification of the magnetorheological (MR) fluid's properties. A materials science approach is presented to define the anisotropy of CVD ZnS through a combination of chemical and mechanical experiments and theoretical predictions. Magnetorheological finishing experiments with single crystal samples of ZnS, whose cuts and orientations represent most of the facets known to occur in the polycrystalline CVD ZnS, were performed to explore the influence of material anisotropy on the material removal rate during MRF. By adjusting the fluid's viscosity, abrasive type concentration, and pH to find the chemo-mechanical conditions that equalize removal rates among all single crystal facets during MRF, we established an optimized, novel MR formulation to polish CVD ZnS without degrading the surface finish of the optic.
NASA Astrophysics Data System (ADS)
Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan
2017-02-01
Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.
Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.
Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B
2002-01-01
This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS
Pump station for radioactive waste water
Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.
2003-11-18
A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.
40 CFR 426.135 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0... waste water, and employs hydrofluoric acid finishing techniques shall meet the following limitations...
40 CFR 426.135 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0... waste water, and employs hydrofluoric acid finishing techniques shall meet the following limitations...
40 CFR 426.135 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0... waste water, and employs hydrofluoric acid finishing techniques shall meet the following limitations...
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic.
Boaventura, Juliana Maria Capelozza; Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi
2013-01-01
To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) RESULTS: All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic.
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B
2018-02-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo
2018-04-01
The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.
NASA Astrophysics Data System (ADS)
Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo
2018-07-01
The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.
Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal
2016-07-01
Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Wang, C.; Wei, Q. L.; Huang, W.; Luo, Q.; He, J. G.; Tang, G. P.
2013-07-01
The CeO2 nanoparticles with modified surface and mean sizes distribution during 107.0 nm - 127.7 nm are used as abrasive in magnetorheological finishing (MRF) fluid. The slow rotation dispersion without shearing thinning is better than fast emulsification dispersion. Steady D-shaped finishing spots and high quality precise processing surface with PV=0.1λ, GRMS=0.002λ/cm, Rq=0.83 nm are obtained on a 435 mm x 435 mm BK7 glass under self-developed MRF apparatus.
NASA Astrophysics Data System (ADS)
Menapace, Joseph A.
2010-11-01
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A
2010-10-27
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less
Dwell time algorithm based on the optimization theory for magnetorheological finishing
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen
2010-10-01
Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.
Effect of processing parameters on surface finish for fused deposition machinable wax patterns
NASA Technical Reports Server (NTRS)
Roberts, F. E., III
1995-01-01
This report presents a study on the effect of material processing parameters used in layer-by-layer material construction on the surface finish of a model to be used as an investment casting pattern. The data presented relate specifically to fused deposition modeling using a machinable wax.
ERIC Educational Resources Information Center
Lengert, Gerald
This manual, a self-study guide for apprentices in the drywall finishing trade in British Columbia, attempts to establish standards for the trade. It tells how to produce a properly taped and filled drywall surface and describes what that surface should look like. The standards emphasize quality work that can be realistically achieved on the job.…
Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish
NASA Astrophysics Data System (ADS)
Chu, Ming-Hui; Liang, S. W.; Chen, Chih; Huang, Annie T.
2012-09-01
Organic solderable preservative (OSP) has been adopted as the Cu substrate surface finish in flip-chip solder joints for many years. In this study, the electromigration behavior of lead-free Sn-Cu solder alloys with thin-film under bump metallization and OSP surface finish was investigated. The results showed that severe damage occurred on the substrate side (cathode side), whereas the damage on the chip side (cathode side) was not severe. The damage on the substrate side included void formation, copper dissolution, and formation of intermetallic compounds (IMCs). The OSP Cu interface on the substrate side became the weakest point in the solder joint even when thin-film metallization was used on the chip side. Three-dimensional simulations were employed to investigate the current density distribution in the area between the OSP Cu surface finish and the solder. The results indicated that the current density was higher along the periphery of the bonding area between the solder and the Cu pad, consistent with the area of IMC and void formation in our experimental results.
NASA Astrophysics Data System (ADS)
Saurín, N.; Minami, I.; Sanes, J.; Bermúdez, M. D.
2016-03-01
The present work evaluates different materials and surface finish in the presence of newly designed, hydrophobic halogen-free room temperature ionic liquids (RTILs) as lubricants. A reciprocating tribo-tester was employed with steel-ceramic and steel-thermosetting epoxy resin contacts under boundary lubrication conditions. Four different tetraalkylphosphonium organosilanesulfonate RTILs provided excellent lubricating performance, with friction coefficients as low as 0.057, and non-measurable wear for the higher roughness machine-finish stainless steel flat against sapphire balls, in the case of the lubricants containing the 2-trimethylsilylethanesulfonate anion. Higher friction coefficients of the order of 0.1 and wear volumes of the order of 10-4 mm3 were observed for the lower roughness fine-finished flat stainless steel surface. All RTILs prevent wear of epoxy resin against stainless steel balls, with friction coefficients in the range of 0.03-0.06. EDX analysis shows the presence of RTILs on the stainless steel surfaces after the tribological tests. Under the experimental conditions, no corrosive processes were observed.
16 CFR 1509.8 - Construction and finishing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.8 Construction and finishing. (a) All wood surfaces of non-full-size baby cribs shall be smooth and free from splinters. (b) All wood parts of non... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Construction and finishing. 1509.8 Section...
16 CFR 1508.7 - Construction and finishing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.7 Construction and finishing. (a) All wood surfaces shall be smooth and free from splinters. (b) All wood parts shall be free from splits, cracks, or other... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Construction and finishing. 1508.7 Section...
Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-05-01
The effect of interfacial microstructures on the bonding strength of Sn-3.0Ag-0.5Cu Pb-free solder bumps with respect to the loading speed, annealing time, and surface finish was investigated. The shear strength increased and the ductility decreased with increasing shear speed, primarily because of the time-independent plastic hardening and time-dependent strain-rate sensitivity of the solder alloy. The shear strength and toughness decreased for all surface finishes under the high-speed shear test of 500 mm/s as a result of increasing intermetallic compound (IMC) growth and pad interface weakness associated with increased annealing time. The immersion Sn and organic solderability preservative (OSP) finishes showed lower shear strength compared to the electroless nickel immersion gold (ENIG) finish. With increasing annealing time, the ENIG finish exhibited the pad open fracture mode, whereas the immersion Sn and OSP finishes exhibited the brittle fracture mode. In addition, the shear strength of the solder joints was correlated with each fracture mode.
Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials.
Zurek, Alec D; Alfaro, Maria F; Wee, Alvin G; Yuan, Judy Chia-Chun; Barao, Valentim A; Mathew, Mathew T; Sukotjo, Cortino
2018-03-06
In the field of prosthodontics, patients often require complex and extensive restorative care. This can involve the use of dental restorations to restore teeth on both the maxillary and mandibular arch. Current literature has evaluated the wear properties of different dental ceramics against enamel, but studies regarding dental ceramics opposing one another are limited. The purpose of this study was to assess the wear potential and wear behavior of CAD/CAM zirconia (ZR) and lithium disilicate (LD) materials against a similar ceramic material, and how the surface finish of these dental ceramics might affect patterns of wear. Using a sphere-on-plate tribometer system, different surface finishes (glazed-G and glazed then polished-GP) of ZR and LD were evaluated following wear simulation. Artificial saliva of physiologic pH was used as a lubricant during wear simulation at 37°C. The coefficient of friction (COF) was calculated during the wear simulation. After wear simulation was complete, volume loss, surface roughness, and surface characterization of the specimens were analyzed using white-light interferometry and scanning electron microscopy (SEM). Statistical significance between materials and surface finish was established with two-way ANOVA and Bonferroni post hoc test (α = 0.05). Based on the 2-way ANOVA, material (p = 0.002) significantly affected the COF. LD showed a higher COF (p = 0.002) than ZR. Material (p < 0.001) and surface finish (p = 0.004) significantly affected the surface roughness inside the scar. ZR had significantly lower surface roughness compared to LD (p < 0.001). For outside scar, surface finish (p < 0.001) significantly affected the surface roughness. Polished specimens showed significantly higher roughness compared to glazed specimens for both inside (p = 0.004) and outside scar (p < 0.001). For volume loss, material (p < 0.001) and the interaction between material and surface finish (p < 0.001) were statistically significant. LD had higher volume loss than ZR (p < 0.001). For both glazed and polished finished, LD-G and LD-GP had significantly higher volume loss than ZR-G (p = 0.028), and ZR-GP (p < 0.001), respectively. SEM analysis indicated particle build-up and a grooving mechanism of wear for the LD-GP specimens. This suggested a three-body wear phenomenon occurring for LD-GP specimens, which was not visible in SEM imaging for other specimen types. This study demonstrated the resistance to wear and low abrasiveness of ZR when compared to LD in a simulated masticatory environment. This can be best explained by the increased strength of ZR, and the introduction of three-body wear to LD specimens from the accumulation of embedded wear debris onto its surface. Wear data and comparison of SEM images following wear simulation confirmed this interpretation. © 2018 by the American College of Prosthodontists.
1958-01-01
the surface-finish range desired, differ- cessary in order to establish optimum conditions ent grades of grinding wheels were used on the cen- for...FATIGUEHESULTS 05 MT O AT VARIO0 QRIAIN U- ZES HABLESSES , AND SURFACE INISHE.. TEbT BEOLTJ OF 010 LOBE IN DE1CEtDIh, (’D,6 Hard- Gr-in Sur(...(e Wiebull Ha
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic
Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi
2013-01-01
Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0–S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. PMID:22724660
Mildew and mildew control for wood surfaces
Steve Bussjaeger; George Daisey; R. Simmons; Saul Spindel; Sam Williams
1999-01-01
Mildew growth is an ongoing problem. Fungal spores land on surface and, under the environmental conditions, grow. Ideal conditions are warm, moist climates, oxygen, and a substrate that serves as a nutrient source for mildew. Mildew growth on finishes cause discoloration and premature failure of the finish. Prevention of mildew can be done by pretreating the wood with...
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)
2013-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.
Combined fabrication technique for high-precision aspheric optical windows
NASA Astrophysics Data System (ADS)
Hu, Hao; Song, Ci; Xie, Xuhui
2016-07-01
Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.
Dermal exposure potential from textiles that contain silver nanoparticles
Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M
2014-01-01
Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110
Research on error control and compensation in magnetorheological finishing.
Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng
2011-07-01
Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.
Dermal exposure potential from textiles that contain silver nanoparticles.
Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas
2014-01-01
Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); P<0·01. We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.
Quantification of Changes in Mulberry Silk Fabrics due to Different Laundering: Using WAXS Technique
NASA Astrophysics Data System (ADS)
Parameswara, P.; Nivedita, S.; Somashekar, R.
2011-07-01
Loom finished mulberry silk fabrics (Taffeta) were machine laundered and hand laundered several times. X-ray diffractograms of pure and laundered fabrics were used to calculate microstructural parameters like average crystallite size (D) and lattice strain (Vegr) employing Williamson-Hall plot. Microstructural parameters were compared with measured mechanical properties like breaking load, tenacity, and elongation of warp yarns unraveled from fabrics. Surface morphology and texture of silk fabrics changed upon washing is evident from SEM images.
NASA Astrophysics Data System (ADS)
Walter, R.; Kannan, M. Bobby; He, Y.; Sandham, A.
2013-08-01
In this study, the in vitro degradation behaviour of AZ91 magnesium alloy with two different surface finishes was investigated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The polarisation resistance (Rp) of the rough surface alloy immersed in SBF for 3 h was ~30% lower as compared to that of the smooth surface alloy. After 12 h immersion in SBF, the Rp values for both the surface finishes decreased and were also similar. However, localised degradation occurred sooner, and to a noticeably higher severity in the rough surface alloy as compared to the smooth surface alloy.
USDA-ARS?s Scientific Manuscript database
Two rapid immunomagnetic separation (IMS) protocols were evaluated to recover 1-2 log CFU/g inoculated E. coli O157:H7 from 30 different commercial, finished compost samples. Both protocols detected E. coli O157:H7 in compost samples; PCR techniques required the removal of inhibitors to reduce poss...
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-04-01
The effects of surface finishes on the in situ interfacial reaction characteristics of ball grid array (BGA) Sn-3.0Ag-0.5Cu lead-free solder bumps were investigated under annealing and electromigration (EM) test conditions of 130°C to 175°C with 5.0 × 103 A/cm2. During reflow and annealing, (Cu,Ni)6Sn5 intermetallic compound (IMC) formed at the interface of electroless nickel immersion gold (ENIG) finish. In the case of both immersion Sn and organic solderability preservative (OSP) finishes, Cu6Sn5 and Cu3Sn IMCs formed. Overall, the IMC growth velocity of ENIG was much lower than that of the other finishes. The activation energies of total IMCs were found to be 0.52 eV for ENIG, 0.78 eV for immersion Sn, and 0.72 eV for OSP. The ENIG finish appeared to present an effective diffusion barrier between the Cu substrate and the solder, which leads to better EM reliability in comparison with Cu-based pad systems. The failure mechanisms were explored in detail via in situ EM tests.
Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng
2013-10-15
Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of ENEPIG and Immersion Silver Surface Finishes Under Drop Loading
NASA Astrophysics Data System (ADS)
Pearl, Adam; Osterman, Michael; Pecht, Michael
2016-01-01
The effect of printed circuit board surface finish on the drop loading reliability of ball grid array (BGA) solder interconnects has been examined. The finishes examined include electroless nickel/electroless palladium/immersion gold (ENEPIG) and immersion silver (ImAg). For the ENEPIG finish, the effect of the Pd plating layer thickness was evaluated by testing two different thicknesses: 0.05 μm and 0.15 μm. BGA components were assembled onto the boards using either eutectic Sn-Pb or Sn-3.0Ag-0.5Cu (SAC305) solder. Prior to testing, the assembled boards were aged at 100°C for 24 h or 500 h. The boards were then subjected to multiple 1500-g drop tests. Failure analysis indicated the primary failure site for the BGAs to be the solder balls at the board-side solder interface. Cratering of the board laminate under the solder-attached pads was also observed. In all cases, isothermal aging reduced the number of drops to failure. The components soldered onto the boards with the 0.15- μm-Pd ENEPIG finish with the SAC305 solder had the highest characteristic life, at 234 drops to failure, compared with the other finish-solder combinations.
USDA-ARS?s Scientific Manuscript database
Many malodorous compounds emitted from the feedlot surface of beef finishing facilities result from protein degradation. The inclusion of wet distillers grain with solubles (WDGS) in beef finishing diets has been shown to increase odorous compounds in waste due to excess nitrogen excretion. Zilpater...
USDA-ARS?s Scientific Manuscript database
Many malodorous compounds emitted from the feedlot surface of beef finishing facilities result from protein degradation of feces and urine. The inclusion of wet distillers grain with solubles (WDGS) in beef finishing diets has been shown to increase nitrogen excretion which can increase odorous comp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J; Menapace, J A; Schaffers, K I
Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less
Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application
NASA Astrophysics Data System (ADS)
Ratnasingam, J.; Nyugen, V.; Ioras, F.
The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.
Magnetorheological finishing for removing surface and subsurface defects of fused silica optics
NASA Astrophysics Data System (ADS)
Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Cormont, Philippe; Maunier, Cedric; Lambert, Sebastien
2014-09-01
We investigate the capacity of magnetorheological finishing (MRF) process to remove surface and subsurface defects of fused silica optics. Polished samples with engineered surface and subsurface defects were manufactured and characterized. Uniform material removals were performed with a QED Q22-XE machine using different MRF process parameters in order to remove these defects. We provide evidence that whatever the MRF process parameters are, MRF is able to remove surface and subsurface defects. Moreover, we show that MRF induces a pollution of the glass interface similar to conventional polishing processes.
Surface Integrity of Inconel 718 by Ball Burnishing
NASA Astrophysics Data System (ADS)
Sequera, A.; Fu, C. H.; Guo, Y. B.; Wei, X. T.
2014-09-01
Inconel 718 has wide applications in manufacturing mechanical components such as turbine blades, turbocharger rotors, and nuclear reactors. Since these components are subject to harsh environments such as high temperature, pressure, and corrosion, it is critical to improve the functionality to prevent catastrophic failure due to fatigue or corrosion. Ball burnishing as a low plastic deformation process is a promising technique to enhance surface integrity for increasing component fatigue and corrosion resistance in service. This study focuses on the experimental study on surface integrity of burnished Inconel 718. The effects of burnishing ball size and pressure on surface integrity factors such as surface topography, roughness, and hardness are investigated. The burnished surfaces are smoother than the as-machined ones. Surface hardness after burnishing is higher than the as-machined surfaces, but become stable over a certain burnishing pressure. There exists an optimal process space of ball sized and burnishing pressure for surface finish. In addition, surface hardness after burnishing is higher than the as-machined surfaces, which is confirmed by statistical analysis.
Effect of temperature and O-ring gland finish on sealing ability of Viton V747-75
NASA Technical Reports Server (NTRS)
Lach, Cynthia L.
1993-01-01
As a part of the redesign project of the Space Shuttle solid rocket motor (SRM) following the Challenger accident, the field joint was redesigned to minimize the relative joint motion caused by internal motor pressurization during ignition. The O-ring seals and glands for the field joint were designed both to accommodate structural deflections and to promote pressure-assisted sealing. Tests were conducted in various face seal fixtures to evaluate the ability of Viton V747-75 O-rings to seal for a range of temperatures and surface finishes of the redesigned O-ring gland. The effect of surface finish on the sealing performance and wear characteristics of the O-rings was evaluated during simulated launch conditions that included low-frequency vibrations, gap openings, and rapid pressurizations. The effect of contamination on the sealing performance was also investigated. The O-rings sealed throughout the 75 deg F leak check test and for the seal tests from 50 deg F to 120 deg F for the range of surface finishes investigated. Although abrasions were found in the O-rings from pressurization against the rougher finishes, these abrasions were not detrimental to sealing. Below 50 deg F, Viton V747-75 O-rings were insufficiently resilient to track the test gap opening.
Way to nanogrinding technology
NASA Astrophysics Data System (ADS)
Miyashita, Masakazu
1990-11-01
Precision finishing process of hard and brittle material components such as single crystal silicon wafer and magnetic head consists of lapping and polishing which depend too much on skilled labor. This process is based on the traditional optical production technology and entirely different from the automated mass production technique in automobile production. Instead of traditional lapping and polishing, the nanogrinding is proposed as a new stock removal machining to generate optical surface on brittle materials. By this new technology, the damage free surface which is the same one produced by lapping and polishing can be obtained on brittle materials, and the free carvature can also be generated on brittle materials. This technology is based on the motion copying principle which is the same as in case of metal parts machining. The new nanogrinding technology is anticipated to be adapted as the machining technique suitable for automated mass production, because the stable machining on the level of optical production technique is expected to be obtained by the traditional lapping and polishing.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
Kim, Wanlim; Yoon, Pil Whan; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong; Yoon, Kang Sup
2017-07-01
The high failure rate of cemented femoral components in the 1970s facilitated the improvement of the cementing technique and surface finishes such as polymethylmethacrylate (PMMA)-precoated stems, reporting a survival rate of >95% at 10 years from some studies. However, controversy persists regarding whether precoated femoral stems are associated with a longer revision-free prosthesis survival. The purpose of this study was to evaluate the clinical and radiological outcomes of PMMA-precoated femoral stems, and analyze factors associated with implant survival. We retrospectively reviewed 73 primary hybrid total hip arthroplasties performed using PMMA-precoated femoral stems. The mean age of the patients was 61 years. During the mean follow-up period of 13 years, 18 hips (24.7%) underwent aseptic loosening, and all of the loosened stems were subjected to revision surgery 8.8 years (range 4.6-15.5 years) from the index surgery. Younger age and poor cementing were significantly associated with aseptic loosening (P = 0.013 and P < 0.001, respectively). However, the aseptic loosening rate was also high at 13.1% even with a good cementing technique. In conclusion, the PMMA-precoated stem failed to show expected advantages and needs to be replaced with other surface finish stem designs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1300-1306, 2017. © 2016 Wiley Periodicals, Inc.
The Adolescent Who Does Not Finish Anything.
ERIC Educational Resources Information Center
Breiner, Sander J.
1985-01-01
Practical information for therapists who deal with adolescents who do not finish tasks is presented. The relationship of task incompletion to neurosis, psychosis, depression, homosexuality, and drug abuse is described, and techniques and guidelines for treatment are provided. (Author)
NASA Astrophysics Data System (ADS)
Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.
2015-10-01
We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.
Surface microroughness of ion-beam etched optical surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savvides, N.
2005-03-01
Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000 nm) by a broad ion-beam source (Ar{sup +} ions of energy 600 eV and ion current density of 1 mA cm{sup -2}). Highly polished samples of fused silica and Zerodur (Rq{approx}3.5 A) showed a small decrease in microroughness (to 2.5 A)more » after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq{approx}1 A rms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5x10{sup -3}-25 {mu}m{sup -1}) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.« less
X-ray microfocusing with off-axis ellipsoidal mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-07-27
High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing propertiesmore » of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.« less
Life cycle assessment of mobile phone housing.
Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru
2004-01-01
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.
2007-01-01
The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal care and domestic use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. Source and finished water samples were collected during phase 2 and analyzed for constituents that were detected frequently during phase 1. This report presents concentration data for AOCs in ground water, surface water, and finished water of CWSs sampled for SWQA studies during 2002-05. Specifically, this report presents the analytical results of samples collected during phase 1 including (1) samples from 221 wells that were analyzed for 258 AOCs; (2) monthly samples from 9 surface-water sites that were analyzed for 258 AOCs during phase 1; and (3) samples from a subset of the wells and surface-water sites located in areas with substantial agricultural production that were analyzed for 3 additional pesticides and 16 pesticide degradates. Samples collected during phase 2 were analyzed for selected AOCs that were detected most frequently in source water during phase 1 sampling; analytical results for phase 2 are presented for (1) samples of source water and finished water from 94 wells; and (2) samples of source water and finished water samples that were collected monthly and during selected flow conditions at 8 surface-water sites. Results of quality-assurance/quality-control samples collected for SWQA studies during 2002-05 also are presented.
NASA Astrophysics Data System (ADS)
Mahamood, Rasheedat M.
2018-03-01
Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.
Probing the underlying physics of ejecta production from shocked Sn samples
NASA Astrophysics Data System (ADS)
Zellner, M. B.; McNeil, W. Vogan; Hammerberg, J. E.; Hixson, R. S.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.
2008-06-01
This effort investigates the underlying physics of ejecta production for high explosive (HE) shocked Sn surfaces prepared with finishes typical to those roughened by tool marks left from machining processes. To investigate the physical mechanisms of ejecta production, we compiled and re-examined ejecta data from two experimental campaigns [W. S. Vogan et al., J. Appl. Phys. 98, 113508 (1998); M. B. Zellner et al., ibid. 102, 013522 (2007)] to form a self-consistent data set spanning a large parameter space. In the first campaign, ejecta created upon shock release at the back side of HE shocked Sn samples were characterized for samples with varying surface finishes but at similar shock-breakout pressures PSB. In the second campaign, ejecta were characterized for HE shocked Sn samples with a constant surface finish but at varying PSB.
NASA Technical Reports Server (NTRS)
Thornhill, J. W.
1977-01-01
The development of a process for fabricating 2 x 4 cm back surface field silicon solar cells having screen printed wraparound contacts is described. This process was specifically designed to be amenable for incorporation into the automated nonvacuum production line. Techniques were developed to permit the use of screen printing for producing improved back surface field structures, wraparound dielectric layers, and wraparound contacts. The optimized process sequence was then used to produce 1852 finished cells. Tests indicated an average conversion efficiency of 11% at AMO and 28 C, with an average degradation of maximum power output of 1.5% after boiling water immersion or thermal shock cycling. Contact adherence was satisfactory after these tests, as well as long term storage at high temperature and high humidity.
Antonson, Sibel A; Yazici, A Rüya; Kilinc, Evren; Antonson, Donald E; Hardigan, Patrick C
2011-07-01
The aim of this study was to compare four finishing/polishing systems (F/P) on surface roughness and gloss of different resin composites. A total of 40 disc samples (15 mm × 3 mm) were prepared from a nanofill - Filtek Supreme Plus (FS) and a micro-hybrid resin composite - Esthet-X (EX). Following 24h storage in 37°C water, the top surfaces of each sample were roughened using 120-grit sandpaper. Baseline measurements of surface roughness (Ra, μm) and gloss were recorded. Each composite group was divided into four F/P disk groups: Astropol[AP], Enhance/PoGo[EP], Sof-Lex[SL], and an experimental disk system, EXL-695[EXL] (n=5). The same operator finished/polished all samples. One sample from each group was evaluated under SEM. Another blinded-operator conducted postoperative measurements. Results were analysed by two-way ANOVA, two interactive MANOVA and Tukey's t-test (p<0.05). In surface roughness, the baseline of two composites differed significantly from each other whereas postoperatively there was no significance. The Sof-Lex F/P system provided the smoothest surface although there were no statistical significance differences between F/P systems (p>0.01). In gloss, FS composite with the EXL-695 system provided a significantly higher gloss (p<0.01). EX treated by Soflex revealed the least gloss (p<0.05). SEM images revealed comparable results for F/P systems but EX surfaces included more air pockets. Four different finishing/polishing systems provided comparable surface smoothness for both composites, whereas EXL with FS provided significantly higher gloss. SEM evaluations revealed that the EX surface contained more air pockets but F/P systems were compatible. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
Report to Congress on the Activities of the DoD Office of Technology Transition
2001-02-01
known as Magnetorheological Finishing (MRF), that provides significant cost savings in the manufacture of precision optical surfaces. Compared to...The programs included: - The Army’s Advanced Optics Manufacturing program developed a multi- axis, computer-controlled optical finishing technology...percent. The MRF finishing machine is commercially available, and has received industry-wide acclaim, winning two of the optical industry’s most
Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H
2017-05-01
Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P < 0.05), and there was no statistically significant difference among composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.
Trench formation in <110> silicon for millimeter-wave switching device
NASA Astrophysics Data System (ADS)
Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.
1999-11-01
Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.
An investigation into magnetic electrolytic abrasive turning
NASA Astrophysics Data System (ADS)
Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.
2013-07-01
The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.
Surface Fatigue Resistance with Induction Hardening
NASA Technical Reports Server (NTRS)
Townsend, Dennis; Turza, Alan; Chapman, Mike
1996-01-01
Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.
Development of hybrid fluid jet/float polishing process
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.
2013-09-01
On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.
A new seamless, smooth, interior, absorptive finishing system
NASA Astrophysics Data System (ADS)
D'Antonio, Peter
2003-10-01
Government architecture typically employs classic forms of vaults, domes and other focusing or reflective shapes, usually created with hard materials like concrete and plaster. The use of conventional porous absorption is typically rejected as an acoustical surface material for aesthetic reasons. Hence, many of these new and existing facilities have compromised speech intelligibility and music quality. Acousticians have sought a field-applied, absorptive finishing system that resembles a smooth plaster or painted drywall surface, since the dawn of architectural acoustics. Some success has been achieved using sprayed cellulose or cementitious materials, but surface smoothness has been a challenge. A new approach utilizing a thin microporous layer of mineral particles applied over a mineral wool panel will be described. This material can be applied to almost any shape surface, internally pigmented to match almost any color and renovated. Because of these unique characteristics the new seamless, absorptive, finishing system is being specified for many new and renovated spaces. Application examples will be presented.
da Costa, Juliana B; Goncalves, Flavia; Ferracane, Jack L
2011-01-01
The purpose of this study was to evaluate surface finish and gloss of a two-step composite finishing/polishing (F/P) disc system compared with two multistep systems on five composites. Seventy-five disc-shaped composite specimens (D=10.0 mm, 2 mm thick, n=15 per composite) were made of microfill (Durafill-D), nanofill (Filtek Supreme-FS), nanohybrid (Premise-PR), and microhybrids (Filtek Z250-FZ, Esthet-EX). One side of each specimen was initially finished with a carbide bur. Five specimens of each resin composite were randomly assigned to receive full F/P by each of the disc systems: two-step (Enhance Flex NST-EF) and four-step (Sof-Lex-SL, Super-Snap-SS). Surface gloss was measured with a glossmeter and surface roughness was measured with a profilometer. Results were analyzed by two-way analysis of variance (ANOVA)/Tukey's (α<0.05). No difference in gloss was noted among the three F/P systems when used with D and EX; no difference between SL and EF when used with any composite, except for FS; and no difference between SL and SS when used with any composite. SL and EF showed similar surface roughness when used on all composites, except for EX. EF and SS showed similar surface roughness on PR. SL and SS showed similar surface roughness values on every composite, except for FZ. EF was capable of providing similar gloss and surface roughness to SL on four composites evaluated but was not able to produce as glossy or as smooth a surface as SS for three of the five composites.
NASA Astrophysics Data System (ADS)
Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru
2013-02-01
Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.
NASA Astrophysics Data System (ADS)
Chan, Kwai S.
2015-12-01
Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.
Impact of nitinol stent surface processing on in-vivo nickel release and biological response.
Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon
2018-05-01
Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed this knowledge gap by implanting single and overlapped nitinol stents with different surface finishes to assess systemic impact on minipigs (i.e. serum and urine nickel levels, liver and kidney function, immune and blood count) over the 6 month implantation period. In addition, nickel levels and histopathology in stented arteries were analyzed on explant to determine relationships between surface processing and local adverse tissue reactions. The findings presented here highlight the importance of surface processing on in-vivo nickel release and subsequent impact on local biological response for nitinol implants. Published by Elsevier Ltd.
Chemical-milling solution for invar alloy
NASA Technical Reports Server (NTRS)
Batiuk, W.
1980-01-01
Excellent surface finishes and tolerances are achieved using two formulations. Solution A gives finish of 3.17 micrometers after milling at 57 to 63 deg C. Constituents of A are: Hydrofluoric acid (70%), 5,8 oz/gal; nitric acid (40-42) degrees Baume), 40 oz/gal. Alternative solution gives 2.16 micrometer finish, and differs from A by addition of 7% phosphoric acid. Formulations eliminate channeling at root fillets, dishing, island formation, and overhangs.
Vichi, A; Fonzar, R Fabian; Goracci, C; Carrabba, M; Ferrari, M
To assess the efficacy of dedicated finishing/polishing systems on roughness and gloss of VITA Suprinity and IPS e.max CAD. A total of 24 blocks of Suprinity and 24 of e.max were cut into a wedge shape using an InLab MC-XL milling unit. After crystallization, the 24 Suprinity wedges were divided into four subgroups: group A.1: Suprinity Polishing Set Clinical used for 30 seconds and group A.2: for 60 seconds; group A.3: VITA Akzent Plus Paste; and group A.4: spray. The 24 e.max wedges (group B) were divided into four subgroups according to the finishing procedure: group B.1: Optrafine Ceramic Polishing System for 30 seconds and group B.2: for 60 seconds; group B.3: IPS e.max CAD Crystall/Glaze paste; and group B.4: spray. After finishing/polishing, gloss was assessed with a glossmeter and roughness evaluated with a profilometer. Results were analyzed by applying a two-way analysis of variance for gloss and another for roughness (α=0.05). One specimen per each subgroup was observed with a scanning electron microscope. For roughness, materials and surface were significant factors ( p<0.001). Suprinity exhibited significantly lower roughness than e.max. Also the Material-Surface Treatment interaction was statistically significant ( p=0.026). For gloss, both material and surface treatment were significant factors ( p<0.001). VITA Suprinity showed significantly higher gloss than e.max. Also the Material-Surface Treatment interaction was statistically significant ( p<0.001). Manual finishing/polishing for 60 seconds and glazing paste are the most effective procedures in lowering the roughness of CAD/CAM silica-based glass ceramics. Manual finishing/polishing for 60 seconds allows milled silica-based glass ceramics to yield a higher gloss. VITA Suprinity displayed higher polishability than IPS e.max CAD.
The surface fatigue life of contour induction hardened AISI 1552 gears
NASA Astrophysics Data System (ADS)
Townsend, Dennis P.; Turza, Alan; Chaplin, Mike
1995-07-01
Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.
The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Turza, Alan; Chaplin, Mike
1995-01-01
Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.
Automated Finishing with Autofinish
Gordon, David; Desmarais, Cindy; Green, Phil
2001-01-01
Currently, the genome sequencing community is producing shotgun sequence data at a very high rate, but finishing (collecting additional directed sequence data to close gaps and improve the quality of the data) is not matching that rate. One reason for the difference is that shotgun sequencing is highly automated but finishing is not: Most finishing decisions, such as which directed reads to obtain and which specialized sequencing techniques to use, are made by people. If finishing rates are to increase to match shotgun sequencing rates, most finishing decisions also must be automated. The Autofinish computer program (which is part of the Consed computer software package) does this by automatically choosing finishing reads. Autofinish is able to suggest most finishing reads required for completion of each sequencing project, greatly reducing the amount of human attention needed. Autofinish sometimes completely finishes the project, with no human decisions required. It cannot solve the most complex problems, so we recommend that Autofinish be allowed to suggest reads for the first three rounds of finishing, and if the project still is not finished completely, a human finisher complete the work. We compared this Autofinish-Hybrid method of finishing against a human finisher in five different projects with a variety of shotgun depths by finishing each project twice—once with each method. This comparison shows that the Autofinish-Hybrid method saves many hours over a human finisher alone, while using roughly the same number and type of reads and closing gaps at roughly the same rate. Autofinish currently is in production use at several large sequencing centers. It is designed to be adaptable to the finishing strategy of the lab—it can finish using some or all of the following: resequencing reads, reverses, custom primer walks on either subclone templates or whole clone templates, PCR, or minilibraries. Autofinish has been used for finishing cDNA, genomic clones, and whole bacterial genomes (see http://www.phrap.org). PMID:11282977
Lathe Attachment Finishes Inner Surface of Tubes
NASA Technical Reports Server (NTRS)
Lancki, A. J.
1982-01-01
Extremely smooth finishes are machined on inside surfaces of tubes by new attachment for a lathe. The relatively inexpensive accessory, called a "microhone," holds a honing stone against workpiece by rigid tangs instead of springs as in conventional honing tools. Inner rod permits adjustment of microhoning stone, while outer tube supports assembly. Outer tube is held between split blocks on lathe toolpost. Microhoning can be done with either microhone or workpiece moving and other member stationary.
NASA Astrophysics Data System (ADS)
Han, Jin; Kim, Jong-Wook; Lee, Hiwon; Min, Byung-Kwon; Lee, Sang Jo
2009-02-01
A new microfabrication method that combines localized ion implantation and magnetorheological finishing is proposed. The proposed technique involves two steps. First, selected regions of a silicon wafer are irradiated with gallium ions by using a focused ion beam system. The mechanical properties of the irradiated regions are altered as a result of the ion implantation. Second, the wafer is processed by using a magnetorheological finishing method. During the finishing process, the regions not implanted with ion are preferentially removed. The material removal rate difference is utilized for microfabrication. The mechanisms of the proposed method are discussed, and applications are presented.
Mach 5 electroformed nickel nozzle refurbishment FNAS investigation of ultra-smooth surfaces
NASA Technical Reports Server (NTRS)
Rood, Robert; Griffith, Charles; Engelhaupt, Darell
1992-01-01
This task is in support of the Quiet Hypersonic Wind Tunnel effort currently in effect at NASA Langley Research Center, VA. A laminar flow wind tunnel nozzle has been previously fabricated by electroforming pure nickel over a machined and polished two piece stainless steel mandrel. The mandrel was removed leaving the replicate nozzle surface. The nozzle was then pressed into a heavy stainless steel jacket for mounting features and rigidity. The original nickel surface was a replication of the polished mandrel but had degraded due to oxidation. The inside surface requirements are very stringent in order to achieve laminar or quiet flow at the desired pressure and temperature for the specific design of Mach 5. The throat area of the axisymmetric device must have a surface finish with no defects greater than 16 microinches. This requires an rms average background of about four microinches or better for inspection purposes. A coating of nickel-phosphorous alloy was applied by catalytic deposition and then the inside of the nozzle was polished retaining dimensional and surface finish tolerances as specified per drawings supplied. Since the unit is not an optical component, conventional optical inspection methods for surface finish and figure are not readily achieved. Measurements were made using surface profilometry.
Effect of Surface Preparation on the 815°C Oxidation of Single-Crystal Nickel-Based Superalloys
NASA Astrophysics Data System (ADS)
Sudbrack, Chantal K.; Beckett, Devon L.; MacKay, Rebecca A.
2015-11-01
A primary application for single-crystal superalloys has been jet engine turbine blades, where operation temperatures reach well above 1000°C. The NASA Glenn Research Center is considering use of single-crystal alloys for future, lower temperature application in the rims of jet engine turbine disks. Mechanical and environmental properties required for potential disk rim operation at 815°C are being examined, including the oxidation and corrosion behavior, where there is little documentation at intermediate temperatures. In this study, single-crystal superalloys, LDS-1101+Hf and CMSX-4+Y, were prepared with different surface finishes and compared after isothermal and cyclic oxidation exposures. Surface finish has a clear effect on oxide formation at 815°C. Machined low-stress ground surfaces after exposure for 440 h produce thin Al2O3 external scales, which is consistent with higher temperature oxidation, whereas polished surfaces with a mirror finish yield much thicker NiO external scales with subscale of Cr2O3-spinel-Al2O3, which may offer less reliable oxidation resistance. Additional experiments separate the roles of cold-work, localized deformation, and the extent of polishing and surface roughness on oxide formation.
Evaluate error correction ability of magnetorheological finishing by smoothing spectral function
NASA Astrophysics Data System (ADS)
Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin
2014-08-01
Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.
Schlisselberg, Dov B; Yaron, Sima
2013-08-01
Bacterial colonization and biofilm formation on stainless steel (SS) surfaces can be sources for cross contamination in food processing facilities, possessing a great threat to public health and food quality. Here the aim was to demonstrate the influence of surface finish of AISI 316 SS on colonization, biofilm formation and susceptibility of Salmonella Typhimurium to disinfection. Initial attachment of S. Typhimurium on surfaces of SS was four times lower, when surface was polished by Bright-Alum (BA) or Electropolishing (EP), as compared to Mechanical Sanded (MS) or the untreated surface (NT). The correlation between roughness and initial bacterial attachment couldn't account on its own to explain differences seen. Biofilms with similar thickness (15-18 μm) were developed on all surfaces 1-day post inoculation, whereas EP was the least covered surface (23%). Following 5-days, biofilm thickness was lowest on EP and MS (30 μm) and highest on NT (62 μm) surfaces. An analysis of surface composition suggested a link between surface chemistry and biofilm development, where the higher concentrations of metal ions in EP and MS surfaces correlated with limited biofilm formation. Interestingly, disinfection of biofilms with chlorine was up to 130 times more effective on the EP surface (0.005% surviving) than on the other surfaces. Overall these results suggest that surface finish should be considered carefully in a food processing plant. Copyright © 2013 Elsevier Ltd. All rights reserved.
New head gradient coil design and construction techniques.
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2014-05-01
To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
The report gives results of an investigation of pollution prevention options to reduce indoor emissions from a type of finished engineered wood. Emissions were screened from four types of finished engineered wood: oak-veneered particleboard coated and cured with a heat-curable, a...
40 CFR 141.714 - Requirements for uncovered finished water storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Requirements for uncovered finished water storage facilities. 141.714 Section 141.714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment Technique...
Fort Campbell Childers House: Historic Maintenance and Repair Manual
2006-09-01
coal-tar pitch and surfaced with a layer of gravel or slag in a heavy coat of asphalt or coal-tar pitch or finished with a cap sheet; generally used...such as lead, tin, copper, terneplate, and zinc with appropriate chemical methods because their finishes can be easily abraded by blasting methods...tin, copper, terneplate, and zinc with grit blasting which will abrade the surface of the metal. • Using cleaning methods, which alter or damage
A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2006-07-01
In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.
Ion beam technology applications study. [ion impact, implantation, and surface finishing
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.
1978-01-01
Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.
Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Correr, Gisele Maria; Leonardi, Denise Piotto; da Cunha, Leonardo Fernandes; Furuse, Adilson Yoshio
2015-01-01
Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine; medium-grit and fine-grit CVD (chemical vapor deposition) tips in an ultrasonic device. Roughness parameters (n = 5) and MSBS to a glass-ceramic (n = 10) were determined. Data were analyzed using ANOVA and Tukey's test (α = 5%). Results. Control group showed lower mean roughness readings and groups that used medium-grit diamond burs showed the highest mean roughness values. Regarding MSBS, there was no statistical difference when comparing the groups gritted with the same brand of medium- and fine-grit burs and tips. Conclusions. Cavity surface finishing influenced the roughness parameters and MSBS of a glass-ceramic to enamel and dentin. Medium-grit diamond burs in high-speed turbine showed the highest mean roughness values. Fine-grit CVD tips in ultrasound presented the highest MSBS values for both enamel and dentin. PMID:27347507
Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Correr, Gisele Maria; Leonardi, Denise Piotto; da Cunha, Leonardo Fernandes; Furuse, Adilson Yoshio
2015-01-01
Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine; medium-grit and fine-grit CVD (chemical vapor deposition) tips in an ultrasonic device. Roughness parameters (n = 5) and MSBS to a glass-ceramic (n = 10) were determined. Data were analyzed using ANOVA and Tukey's test (α = 5%). Results. Control group showed lower mean roughness readings and groups that used medium-grit diamond burs showed the highest mean roughness values. Regarding MSBS, there was no statistical difference when comparing the groups gritted with the same brand of medium- and fine-grit burs and tips. Conclusions. Cavity surface finishing influenced the roughness parameters and MSBS of a glass-ceramic to enamel and dentin. Medium-grit diamond burs in high-speed turbine showed the highest mean roughness values. Fine-grit CVD tips in ultrasound presented the highest MSBS values for both enamel and dentin.
Patil, Harshal Ashok; Chitko, Shrikant Shrinivas; Kerudi, Veerendra Virupaxappa; Maheshwari, Amit Ratanlal; Patil, Neeraj Suresh; Tekale, Pawankumar Dnyandeo; Gore, Ketan Ashorao; Zope, Amit Ashok
2016-08-01
Reflectivity of an object is a good parameter for surface finish. As the patient evaluates finishing as a function of gloss/reflectivity/shine an attempt is made here to evaluate changes in surface finish with custom made reflectometer. The aim of the present study was to study the effect of various procedures during orthodontic treatment on the shine of enamel, using a custom made reflectometer. Sixty one extracted premolars were collected and each tooth was mounted on acrylic block. Reflectivity of the teeth was measured as compared to standard before any procedure. One tooth was kept as standard throughout the study. Sixty teeth were acid etched. Reflectivity was measured on custom made reflectometer and readings recorded. Same procedure was repeated after debonding. Then 60 samples were divided into three groups: Group 1 - Tungsten Carbide, Group 2 - Astropol, Group 3- Sof-Lex disc depending upon the finishing method after debonding and reflectivity was measured. The mean percentage of reflectivity after acid etching was 31.4%, debonding 45.5%, Tungsten carbide bur finishing (Group 1) was 58.3%, Astropol (Group 2) 72.8%, and Sof-Lex disc (Group 3) 84.4% as that to the standard. There was statistically very highly significant (p<0.001) difference in reflectivity restored by the three finishing materials in the study. Thus, the light reflection was better in Group 3> Group 2> Group 1. The primary goal was to restore the enamel to its original state after orthodontic treatment. The methods tested in this study could not restore the original enamel reflectivity.
The detection of fatigue cracks by nondestructive testing methods
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.
1974-01-01
X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.
Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques
NASA Astrophysics Data System (ADS)
Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md
2017-12-01
In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS process with default parameters.
Surface morphology study in high speed milling of soda lime glass
NASA Astrophysics Data System (ADS)
Konneh, Mohamed; Bagum, Mst. Nasima; Ali, Mohammad Yeakub; Amin, A. K. M. Nurul
2018-05-01
Soda lime glass has a wide range of applications in optical, bio-medical and semi-conductor industries. It is undeniably a challenging task to produce micro finish surface on an amorphous brittle solid like soda lime glass due to its low fracture toughness. In order to obtain such a finish surface, ductile machining has been exploited, as this usually cause's plastic flow which control crack propagation. At sub-micro scale cutting parameters, researchers achieved nano finish surface in micro milling operation using coated tool. However it is possible to enhance the rate of material removal (RMR) of soda lime glass at flexible cutting condition. High speed cutting at micro meter level, extend of thermal softening might be prominent than the strain gradient strengthening. The purpose of this study was to explore the effects of high cutting speed end milling parameters on the surface texture of soda lime glass using uncoated carbide tool. The spindle speed, depth of cut and feed rate were varied from 20,000 to 40,000 rpm, 10 to 30 mm/min and 30 to 50 µm respectively. Mathematical model of roughness has been developed using Response Surface Methodology (RSM). Experimental verification confirmed that surface roughness (Ra) 0.38 µm is possible to achieve at increased RMR, 4.71 mm3/min.
Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon; ...
2017-12-11
The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.
NASA Astrophysics Data System (ADS)
Kafka, K. R. P.; Hoffman, B.; Papernov, S.; DeMarco, M. A.; Hall, C.; Marshall, K. L.; Demos, S. G.
2017-12-01
The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Finally, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of 3, while maintaining <1-nm surface roughness.
The Role of Nanodiamonds in the Polishing Zone During Magnetorheological Finishing (MRF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGroote, J.E.; Marino, A.E.; WIlson, J.P.
2008-01-07
In this work we discuss the role that nanodiamond abrasives play in magnetorheological finishing. We hypothesize that, as the nanodiamond MR fluid is introduced to the magnetic field, the micron sized spherical carbonyl iron (CI) particles are pulled down towards the rotating wheel, leaving a thin layer of nanodiamonds at the surface of the stiffened MR fluid ribbon. Our experimental results shown here support this hypothesis. We also show that surface roughness values inside MRF spots show a strong correlation with the near surface mechanical properties of the glass substrates and with drag force.
Gingival Retraction Methods for Fabrication of Fixed Partial Denture: Literature Review
S, Safari; Ma, Vossoghi Sheshkalani; Mi, Vossoghi Sheshkalani; F, Hoseini Ghavam; M, Hamedi
2016-01-01
Fixed dental prosthesis success requires appropriate impression taking of the prepared finish line. This is critical in either tooth supported fixed prosthesis (crown and bridge) or implant supported fixed prosthesis (solid abutment). If the prepared finish line is adjacent to the gingival sulcus, gingival retraction techniques should be used to decrease the marginal discrepancy among the restoration and the prepared abutment. Accurate marginal positioning of the restoration in the prepared finish line of the abutment is required for therapeutic, preventive and aesthetic purposes. In this article, conventional and modern methods of gingival retraction in the fixed tooth supported prosthesis and fixed implant supported prosthesis are expressed. PubMed and Google Scholar databases were searched manually for studies on gingival tissue managements prior to impression making in fixed dental prosthesis since 1975. Conclusions were extracted and summarized. Keywords were impression making, gingival retraction, cordless retraction, and implant. Gingival retraction techniques can be classified as mechanical, chemical or surgical. In this article, different gingival management techniques are discussed. PMID:28959744
Gingival Retraction Methods for Fabrication of Fixed Partial Denture: Literature Review.
S, Safari; Ma, Vossoghi Sheshkalani; Mi, Vossoghi Sheshkalani; F, Hoseini Ghavam; M, Hamedi
2016-06-01
Fixed dental prosthesis success requires appropriate impression taking of the prepared finish line. This is critical in either tooth supported fixed prosthesis (crown and bridge) or implant supported fixed prosthesis (solid abutment). If the prepared finish line is adjacent to the gingival sulcus, gingival retraction techniques should be used to decrease the marginal discrepancy among the restoration and the prepared abutment. Accurate marginal positioning of the restoration in the prepared finish line of the abutment is required for therapeutic, preventive and aesthetic purposes. In this article, conventional and modern methods of gingival retraction in the fixed tooth supported prosthesis and fixed implant supported prosthesis are expressed. PubMed and Google Scholar databases were searched manually for studies on gingival tissue managements prior to impression making in fixed dental prosthesis since 1975. Conclusions were extracted and summarized. Keywords were impression making, gingival retraction, cordless retraction, and implant. Gingival retraction techniques can be classified as mechanical, chemical or surgical. In this article, different gingival management techniques are discussed.
MRF, ELSM and STED: tools to study defects in fused silica optics
NASA Astrophysics Data System (ADS)
Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Neauport, J.
2013-11-01
The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy at 351 nm, on a millimetre scale target in the centre of an experiment chamber. The final optic assembly of this system operating at a wavelength of 351 nm is made up of large fused silica optics, working in transmission, that are used to convey and focus the laser beam. Under high fluences (i.e. more than 5 J/cm2 for 3 ns pulses), the limited lifetime of final optical assembly is a major concern for fusion scale laser facilities. Previous works have shown that surface finishing processes applied to manufacture these optical components can leave subsurface cracks (SSD), pollution or similar defects that act as initiators of the laser damage. In this work, we used epi-fluorescent light scanning microscopy (ELSM) and Stimulated Emission Depletion (STED) in confocal mode with fluorescent dye tagging to get a better knowledge of size and depth of these subsurface cracks. Magnetorheological fluid finishing technique (MRF) was also used as a tool to remove these cracks and thus assess depths measured by confocal microscopy. Subsurface cracks with a width of about 120 nm are observed up to ten micrometers below the surface.
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2018-05-01
We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.
2010-04-01
could result in higher maintenance costs. For example, a wood-frame building finished with a shingle roof might have higher maintenance costs over the...long term compared to a building finished with a steel roof because the shingles would have to be replaced periodically over the life of the...because the exterior surfaces and interior finishes for both the midrise building and separate housing units were very similar, no difference in
Temporal Check-All-That-Apply Characterization of Syrah Wine.
Baker, Allison K; Castura, John C; Ross, Carolyn F
2016-06-01
Temporal Check-All-That-Apply (TCATA) is a new dynamic sensory method for which analysis techniques are still being developed and optimized. In this study, TCATA methodology was applied for the evaluation of wine finish by trained panelists (n = 13) on Syrah wines with different ethanol concentrations (10.5% v/v and 15.5% v/v). Raw data were time standardized to create a percentage of finish duration, subsequently segmented into thirds (beginning, middle, and end) to capture panel perception. Results indicated the finish of the high ethanol treatments lasted longer (approximately 12 s longer) than the low ethanol treatment (P ≤ 0.05). Within each finish segment, Cochran's Q was conducted on each attribute and differences were detected amongst treatments (P ≤ 0.05). Pairwise tests showed the high ethanol treatments were more described by astringency, heat/ethanol burn, bitterness, dark fruit, and spices, whereas the low ethanol treatment was more characterized by sourness, red fruit, and green flavors (P ≤ 0.05). This study demonstrated techniques for dealing with the data generated by TCATA. Furthermore, this study further characterized the influence of ethanol on wine finish, and by extension wine quality, with implications to winemakers responsible for wine processing decisions involving alcohol management. © 2016 Institute of Food Technologists®
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion miscroscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching, and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Effect of surface topography on structural growth of thick sputtered films
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Primarily thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica, glass, and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. These nodules do not disappear after full annealing. Further, they have undesirable effects on mechanial properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.
2010-01-01
The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. This report presents the analytical results of source- water samples from 448 community water system wells and 21 surface-water sites. This report also presents the analytical results of finished-water samples from 285 wells and 20 surface-water sites from community water systems. Results of quality-assurance/quality-control samples also are presented including data for equipment blanks, field blanks, source solution blanks, and replicate samples.
Enhanced condensation heat transfer with wettability patterning
NASA Astrophysics Data System (ADS)
Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine
2015-11-01
Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.
NASA Astrophysics Data System (ADS)
Ray, U.; Artaki, I.; Gordon, H. M.; Vianco, P. T.
1994-08-01
Substitution of lead-free solders in electronic assemblies requires changes in the conventional Sn:Pb finishes on substrates and component leads to prevent contamination of the candidate lead-free solder. Options for solderability preservative coatings on the printed wiring board include organic (azole or rosin/resin based) films and tin-based plated metallic coatings. This paper compares the solderability performance and corrosion protection effectiveness of electroless tin coatings vs organic azole films after exposure to a series of humidity and thermal cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of SnCu intermetallic phases as long as the intermetallic phase is underneath a protective Sn layer. Thin azole films decompose upon heating in the presence of oxygen and lead to solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.
Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui
2016-06-13
In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.
Nanofinishing of BK7 glass using a magnetorheological solid rotating core tool.
Kumar, Sumit; Singh, Anant Kumar
2018-02-01
Surface finishing is a promising method to improve the optical characteristics of crown glass. BK7 finds its applications in transmissive optics, i.e., lenses of binoculars, lenses of microscopes, lenses of telescopes, and light-emitting diodes. The magnetorheological (MR) nanofinishing of optical glasses using a solid rotating core tool is found more advantageous than the other advanced finishing processes in aspects such as precision and accuracy. In the present research, the MR nanofinishing with a solid rotating core tool is carried out on the BK7 glass of size 10×10×3 mm. Response surface methodology is conducted in order to find the optimum process parameters. The effects of process parameters on the percentage change in surface roughness are analyzed. The best surface roughness R a and R q values are achieved at 22 nm and 32 nm from the initial of 41 nm and 57 nm in 30 min of the finishing time cycle. To study the surface morphology of nanofinished BK7 glass, scanning electron microscopy is performed with sputter coating of gold on a glass specimen.
Screen test for cadmium and nickel plates as developed and used within the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Phan, A. H.; Zimmerman, A. H.
1994-01-01
A new procedure described here was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.
Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination
NASA Astrophysics Data System (ADS)
Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.
2015-02-01
The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.
NASA Astrophysics Data System (ADS)
Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves
2016-12-01
Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.
Mach 6 electroformed nickel nozzle refurbishment: FNAS investigation of ultra-smooth surfaces
NASA Technical Reports Server (NTRS)
Rood, Robert; Griffith, Charles; Engelhaupt, Darell; Cernosek, John
1992-01-01
The task objective has been to apply a coating of nickel-phosphorous alloy to a laminar flow wind tunnel nozzle by catalytic deposition and then polish and inspect the inside surface using optical device processes. The surface of the nozzle was coated with a nickel-phosphorous alloy of sufficient hardness and corrosion resistance to improve the durability. Due to plating defects that were clearly process related and not inherent, the final polished part was less than the desired quality. Surface finishing processes and lapping media were identified which produced a submicron surface finish on the interior plated surface. Defects apparently manifested by the first plating attempt were repaired using a small brush plating process demonstrating that individual small defects can be repaired. Measurement and analysis by profilometry demonstrated that quantitative control of the surface can be achieved.
Study on the relevance of some of the description methods for plateau-honed surfaces
NASA Astrophysics Data System (ADS)
Yousfi, M.; Mezghani, S.; Demirci, I.; El Mansori, M.
2014-01-01
Much work has been undertaken in recent years into the determination of a complete parametric description of plateau-honed surfaces with the intention of making a link between the process conditions, the surface topography and the required functional performances. Different advanced techniques (plateau/valleys decomposition using the normalized Abbott-Firestone curve or morphological operators, multiscale decomposition using continuous wavelets transform, etc) were proposed and applied in different studies. This paper re-examines the current state of developments and addresses a discussion on the relevance of the different proposed parameters and characterization methods for plateau-honed surfaces by considering the control loop manufacturing-characterization-function. The relevance of appropriate characterization is demonstrated through two experimental studies. They consider the effect of the most plateau honing process variables (the abrasive grit size and abrasive indentation velocity in finish-honing and the plateau-honing stage duration and pressure) on cylinder liner surface textures and hydrodynamic friction of the ring-pack system.
Eye aberration analysis with Zernike polynomials
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
Magnetorheological finishing: a perfect solution to nanofinishing requirements
NASA Astrophysics Data System (ADS)
Sidpara, Ajay
2014-09-01
Finishing of optics for different applications is the most important as well as difficult step to meet the specification of optics. Conventional grinding or other polishing processes are not able to reduce surface roughness beyond a certain limit due to high forces acting on the workpiece, embedded abrasive particles, limited control over process, etc. Magnetorheological finishing (MRF) process provides a new, efficient, and innovative way to finish optical materials as well many metals to their desired level of accuracy. This paper provides an overview of MRF process for different applications, important process parameters, requirement of magnetorheological fluid with respect to workpiece material, and some areas that need to be explored for extending the application of MRF process.
GOKTURK, Hakan; OZKOCAK, Ismail; BUYUKGEBİZ, Fevzi; DEMİR, Osman
2016-01-01
ABSTRACT Objective The aim of this study was to investigate the effectiveness of conventional syringe irrigations, passive ultrasonic irrigation (PUI), Vibringe, CanalBrush, XP-endo Finisher, and laser-activated irrigation (LAI) systems in removing double antibiotic paste (DAP) from root canals. Material and Methods One hundred five extracted single-rooted teeth were instrumented. The roots were split longitudinally. Three standard grooves were created and covered with DAP. The roots were distributed into seven groups: Group 1, beveled needle irrigation; Group 2, double side-vented needle irrigation; Group 3, CanalBrush; Group 4, XP-endo Finisher; Group 5, Vibringe; Group 6, PUI; Group 7, LAI. The amount of remaining DAP was scored under a stereomicroscope. Results Group 4, Group 6, and Group 7 removed significantly more DAP than the other protocols in the coronal region. Group 7 was more efficient in the middle region; however, no significant difference was found between Group 7 and Group 6. No differences were found between groups in the apical region either, except for the comparisons between groups 7 and 2, and groups 2 and 3. Conclusions None of the investigated protocols were able to completely remove the DAP from the grooves. The Vibringe and XP-endo Finisher systems showed results similar to those of conventional needle irrigation. PMID:28076461
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab
2016-09-22
In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) modelmore » used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also simultaneously leading to low roughness surface with high removal rates.« less
Wear behavior of pressable lithium disilicate glass ceramic.
Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling
2016-07-01
This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
NASA Astrophysics Data System (ADS)
Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat
2017-03-01
The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.
Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.
2008-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) began implementing Source Water-Quality Assessments (SWQAs) in 2002 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water). Finished water is the water that is treated, which typically involves, in part, the addition of chlorine or other disinfection chemicals to remove pathogens, and is ready to be delivered to consumers. Finished water is collected before the water enters the distribution system. This report describes the study design and percent recoveries of anthropogenic organic compounds (AOCs) with and without the addition of ascorbic acid to preserve water samples containing free chlorine. The percent recoveries were determined by using analytical results from a laboratory study conducted in 2004 by the USGS's National Water Quality Laboratory (NWQL) and from data collected during 2004-06 for a field study currently (2008) being conducted by the USGS's NAWQA Program. The laboratory study was designed to determine if preserving samples with ascorbic acid (quenching samples) adversely affects analytical performance under controlled conditions. During the laboratory study, eight samples of reagent water were spiked for each of five analytical schedules evaluated. Percent recoveries from these samples were then compared in two ways: (1) four quenched reagent spiked samples analyzed on day 0 were compared with four quenched reagent spiked samples analyzed on day 7 or 14, and (2) the combined eight quenched reagent spiked samples analyzed on day 0, 7, or 14 were compared with eight laboratory reagent spikes (LRSs). Percent recoveries from the quenched reagent spiked samples that were analyzed at two different times (day 0 and day 7 or 14) can be used to determine the stability of the quenched samples held for an amount of time representative of the normal amount of time between sample collection and analysis. The comparison between the quenched reagent spiked samples and the LRSs can be used to determine if quenching samples adversely affects the analytical performance under controlled conditions. The field study began in 2004 and is continuing today (February 2008) to characterize the effect of quenching on field-matrix spike recoveries and to better understand the potential oxidation and transformation of 277 AOCs. Three types of samples were collected from 11 NAWQA Study Units across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water spiked samples, and (3) nonquenched finished-water spiked samples. Percent recoveries of AOCs in quenched and nonquenched finished-water spiked samples collected during 2004-06 are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 6 surface-water and 7 ground-water quenched finished-water spiked samples paired with nonquenched finished-water spiked samples were analyzed. Analytical results for the field study are presented in two ways: (1) by surface-water supplies or ground-water supplies, and (2) by use (or source) group category for surface-water and ground-water supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water spiked samples also are presented.
A new seamless, smooth, interior, absorptive finishing system
NASA Astrophysics Data System (ADS)
D'Antonio, Peter
2003-04-01
Architects and acousticians have sought a field-applied, absorptive finishing system that resembles a smooth plaster or painted drywall surface, since the dawn of architectural acoustics. Some success has been achieved using sprayed cellulose or cementitious materials, but surface smoothness has been a challenge. A new approach utilizing a thin microporous layer of mineral particles applied over a mineral wool panel will be described. This material can be applied to almost any shape surface, internally pigmented to match almost any color and renovated. It is currently finding application in many architectural applications, including museums. A recent installation in the New Pinakothek Museum in Munich will be illustrated.
The Master Clock Building at USNO Infrastructure
2008-12-01
type finish on top of about 3.5 inches of foam insulation. This along with cinder block, fiber glass insulation, and 5/8-inch-X drywall provides a...keep the building on temperature. The outside surface of the building is an “Exterior Finish Insulation Systems” (EFIS). This is made up of a stucco
A number of the chemicals identified as potential EDCs have been observed in surface and ground waters leading to concern over the possible presence of EDCs in finished drinking waters. Although there has not yet been a determination of risks posed by EDCs in finished waters, it ...
NASA Astrophysics Data System (ADS)
He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji
2017-01-01
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
New head gradient coil design and construction techniques
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2013-01-01
Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485
Non-contact XUV metrology of Ru/B4C multilayer optics by means of Hartmann wavefront analysis.
Ruiz-Lopez, Mabel; Dacasa, Hugo; Mahieu, Benoit; Lozano, Magali; Li, Lu; Zeitoun, Philippe; Bleiner, Davide
2018-02-20
Short-wavelength imaging, spectroscopy, and lithography scale down the characteristic length-scale to nanometers. This poses tight constraints on the optics finishing tolerances, which is often difficult to characterize. Indeed, even a tiny surface defect degrades the reflectivity and spatial projection of such optics. In this study, we demonstrate experimentally that a Hartmann wavefront sensor for extreme ultraviolet (XUV) wavelengths is an effective non-contact analytical method for inspecting the surface of multilayer optics. The experiment was carried out in a tabletop laboratory using a high-order harmonic generation as an XUV source. The wavefront sensor was used to measure the wavefront errors after the reflection of the XUV beam on a spherical Ru/B 4 C multilayer mirror, scanning a large surface of approximately 40 mm in diameter. The results showed that the technique detects the aberrations in the nanometer range.
Underwater Laser Micromilling of Commercially-Pure Titanium Using Different Scan Overlaps
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-01-01
Underwater laser milling process is a technique for minimizing the thermal damage and gaining a higher material removal rate than processing in air. This paper presents the effect of laser scan overlap on cavity width, depth and surface roughness in the laser milling of commercially-pure titanium in water. The effects of laser pulse energy and pulse repetition rate were also examined, in which a nanosecond pulse laser emitting a 1064-nm wavelength was used in this study. The experimental results indicated that a wide and deep cavity was achievable under high laser energy and large scan overlap. According to the surface roughness, the use of high pulse repetition rate together with low laser energy can promote a smooth laser-milled surface particularly at 50% scan overlap. These findings can further suggest a suitable laser micromilling condition for titanium in roughing and finishing operations.
USDA-ARS?s Scientific Manuscript database
Introduction: Mature, finished compost made from various feedstocks should undergo testing for the presence of Escherichia coli O157:H7 to ensure thermal destruction of the pathogen during composting. Immunomagnetic separation (IMS) –based methods may provide an assay which can be conducted within...
Hot mill process parameters impacting on hot mill tertiary scale formation
NASA Astrophysics Data System (ADS)
Kennedy, Jonathan Ian
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.
Progress in ion figuring large optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, L.N.
1995-12-31
Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less
NASA Astrophysics Data System (ADS)
Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan
2014-08-01
In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.
Process of preparing metal parts to be heated by means of infrared radiance
Mayer, Howard Robinson [Cincinnati, OH; Blue, Craig A [Knoxville, TN
2009-06-09
A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.
Down to the roughness scale assessment of piston-ring/liner contacts
NASA Astrophysics Data System (ADS)
Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C.
2017-02-01
The effects of surface roughness in hydrodynamic bearings been accounted for through several approaches, the most widely used being averaging or stochastic techniques. With these the surface is not treated “as it is”, but by means of an assumed probability distribution for the roughness. The so called direct, deterministic or measured-surface simulation) solve the lubrication problem with realistic surfaces down to the roughness scale. This leads to expensive computational problems. Most researchers have tackled this problem considering non-moving surfaces and neglecting the ring dynamics to reduce the computational burden. What is proposed here is to solve the fully-deterministic simulation both in space and in time, so that the actual movement of the surfaces and the rings dynamics are taken into account. This simulation is much more complex than previous ones, as it is intrinsically transient. The feasibility of these fully-deterministic simulations is illustrated two cases: fully deterministic simulation of liner surfaces with diverse finishings (honed and coated bores) with constant piston velocity and load on the ring and also in real engine conditions.
NASA Astrophysics Data System (ADS)
Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa
2017-06-01
An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.
Structure and corrosion properties of PVD Cr-N coatings
NASA Astrophysics Data System (ADS)
Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.
2002-05-01
PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating ``permeable'' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated systems to crevice corrosion. Increased coating thickness can also greatly reduce the incidence of through-coating porosity such that the improvement in corrosion performance of thicker Cr-N coatings is significant.
El-Rafie, H M; El-Rafie, M H; AbdElsalam, H M; El-Sayed, W A
2016-05-01
This work is a small effort in the production of an eco-friendly natural based antibacterial and anti-inflammatory finished cotton fabrics using the ethanolic extracts (Ex) of the sea grass Halophila stipulacea (H. stipulacea) and marine macroalgae [Colbomenia sinuosa (C. sinuosa) and Ulva fasciata (U. fasciata)]. The extracts were phytochemically screened for their constituents. These extracts were used to finish cotton fabrics by a variety of methods. Concerning this, fabrics (F) were singly treated with ethanolic extracts (ExF) of these marine organisms by the dip technique and the extract encapsulated with sodium alginate or meypro gum. The encapsulated fabric (EnF) was further finished individually with citric acid (CA), (EnF/CA) and mono-tert-butyl ether of glycerol (MTBG) binder (EnF/Bin) by the pad-dry-cure technique. The fabrics so-finished were evaluated for their antibacterial and anti-inflammatory activities without washing (control) and after different washing cycles. The results obtained showed that, both EnF/CA and EnF/Bin inhibit the bacterial growth by about 90% after 10 washing cycles for both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The anti-inflammatory activity, the potency% reached to 88.3% for the fabric encapsulated with microcapsules of sodium alginate/H. stipulacea sea grass and the EnF/CA. Copyright © 2016 Elsevier B.V. All rights reserved.
Production of Near-Mirror Surface Quality by Precision Grinding
NASA Technical Reports Server (NTRS)
Dimofte, Florin; Krantz, Timothy
2003-01-01
Mechanical components such as gears and bearings operate with the working surfaces in intimate contact with a mating part. The performance of such components will be influenced by the quality of the working surface. In general, a smoother surface will perform better than a rougher surface since the lubrication conditions are improved. For example, surfaces with a special near-mirror quality finish of low roughness performed better than ground surfaces when tested using a block-on-ring arrangement. Bearings with near-mirror quality have been tested and analyzed; lower running torques were measured and improved fatigue life was anticipated. Experiments have been done to evaluate the performance of gears with improved, low roughness surface finishing. The measured performance improvements include an increased scuffing (scoring) load capacity by a factor of 1.6, a 30-percent reduction of gear tooth running friction, and longer fatigue lives by a factor of about four. One can also anticipate that near-mirror quality surface finishing could improve the performance of other mechanical components such as mechanical seals and heavily loaded journal bearings. Given these demonstrated benefits, capable and economical methods for the production of mechanical components with near-mirror quality surfaces are desired. One could propose the production of near-mirror quality surfaces by several methods such as abrasive polishing, chemical assisted polishing, or grinding. Production of the surfaces by grinding offers the possibility to control the macro-geometry (form), waviness, and surface texture with one process. The present study was carried out to investigate the possibility of producing near-mirror quality surfaces by grinding. The present study makes use of a specially designed grinding machine spindle to improve the surface quality relative to the quality produced when using a spindle of conventional design.
Paravina, Rade D; Roeder, Leslie; Lu, Huan; Vogel, Karin; Powers, John M
2004-08-01
To evaluate the effects of different finishing and polishing procedures on surface roughness, gloss and color of five resin composites: two experimental microhybrid composites - FZ-Dentin (FZD) and FZ-Enamel (FZE), one commercial microhybrid composite - Esthet-X (EX), and two microfilled composites - Heliomolar (HM) and Renamel Microfill (RM). Surface roughness, gloss and color of the disc-shaped specimens (10 mm in diameter and 2-mm thick) were measured as Mylar (baseline), 16-fluted carbide bur and polishing were completed. Sixteen specimens of each composite were randomized to four groups of four. After finishing with a 16-fluted finishing bur, each group was polished by a different system: 1. Astropol (A), 2. Sof-lex disc (S), 3. Po-Go (P), 4. Enhance (E). Average surface roughness (Ra) was measured with a profilometer. Gloss measurements were performed using small-area glossmeter, while color coordinate values were recorded using a spectrophotometer. A deltaE*ab< or =1 was considered to be the limit of perceptibility. The order of surface roughness ranked according to polishing system (for all five composites together) was: P < S < E < A. The order of surface roughness ranked according to composites was: RM < FZD < FZ < HM < EX. The order of gloss ranked according to polishing system (for all five composites together) was: P > E > A > S. The order of gloss values for the polished composites (for each of four polishing systems) was: RM > FZD > FZE > HM > EX. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of surface roughness among five composites and four polishing systems were 0.01 and 0.01 microm, respectively. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of gloss among five composites and four polishing systems were 6 and 5 GU, respectively. Color differences (deltaE*ab) among five composites and four polishing methods were found to range from 0.2 to 1.1.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2018-05-01
The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
This Control Techniques Guideline (CTG) provides the necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work practices to reduce waste and evaporation through pollution prevention methods; these represent available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This draft Control Techniques Guidelines (CTG) provides necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC`s) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work pratices to reduce waste and evaporation through pollution prevention methods; these represent reasonably available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.
NASA Astrophysics Data System (ADS)
Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.
2011-09-01
The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.
Performance of back-primed and factory-finished hardboard lap siding in southern Florida
Charles. Carll; Mark. Knaebe; Vyto. Malinauskas; Peter. Sotos; Anton. TenWolde
2000-01-01
Because of performance problems with hardboard siding in southern Florida, the U.S. Department of Housing and Urban Development (HUD) proposed a local standard requiring prefinishing of siding and priming of all siding surfaces, including the back. However, the effectiveness of these practices was questioned. To determine if back-priming or factory finishing improves...
Subsurface damage in some single crystalline optical materials.
Randi, Joseph A; Lambropoulos, John C; Jacobs, Stephen D
2005-04-20
We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p-v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p-v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p-v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.
Electropolishing effect on roughness metrics of ground stainless steel: a length scale study
NASA Astrophysics Data System (ADS)
Nakar, Doron; Harel, David; Hirsch, Baruch
2018-03-01
Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.
Code of Federal Regulations, 2014 CFR
2014-07-01
... than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0..., discharges greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0..., discharges greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing techniques... any 1 day Average of daily values for 30 consecutive days shall not exceed— Lead 0.2 0.1 Fluoride 26.0..., discharges greater than 50 gallons per day of process waste water, and employs hydrofluoric acid finishing...
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish (i.e., scratches, inclusions, etc.) act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Auto-recognition of surfaces and auto-generation of material removal volume for finishing process
NASA Astrophysics Data System (ADS)
Kataraki, Pramod S.; Salman Abu Mansor, Mohd
2018-03-01
Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.
Effect of surface finish on the failure mechanisms of flip-chip solder joints under electromigration
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Lai, Y. S.; Tsai, C. M.; Kao, C. R.
2006-12-01
Two substrate surface finishes, Au/Ni and organic solderable preservative (OSP), were used to study the effect of the surface finish on the reliability of flip-chip solder joints under electromigration at 150°C ambient temperature. The solder used was eutectic PbSn, and the applied current density was 5×103 A/cm2 at the contact window of the chip. The under bump metallurgy (UBM) on the chip was sputtered Cu/Ni. It was found that the mean-time-to-failure (MTTF) of the OSP joints was six times better than that of the Au/Ni joints (3080 h vs. 500 h). Microstructure examinations uncovered that the combined effect of current crowding and the accompanying local Joule heating accelerated the local Ni UBM consumption near the point of electron entrance. Once Ni was depleted at a certain region, this region became nonconductive, and the flow of the electrons was diverted to the neighboring region. This neighboring region then became the place where electrons entered the joint, and the local Ni UBM consumption was accelerated. This process repeated itself, and the Ni-depleted region extended further on, creating an ever-larger nonconductive region. The solder joint eventually, failed when the nonconductive region became too large, making the effective current density very high. Accordingly, the key factor determining the MTTF was the Ni consumption rate. The joints with the OSP surface finish had a longer MTTF because Cu released from the substrate was able to reduce the Ni consumption rate.
NASA Astrophysics Data System (ADS)
Schinhaerl, Markus; Schneider, Florian; Rascher, Rolf; Vogt, Christian; Sperber, Peter
2010-10-01
Magnetorheological finishing is a typical commercial application of a computer-controlled polishing process in the manufacturing of precision optical surfaces. Precise knowledge of the material removal characteristic of the polishing tool (influence function) is essential for controlling the material removal on the workpiece surface by the dwell time method. Results from the testing series with magnetorheological finishing have shown that a deviation of only 5% between the actual material removal characteristic of the polishing tool and that represented by the influence function caused a considerable reduction in the polishing quality. The paper discusses reasons for inaccuracies in the influence function and the effects on the polishing quality. The generic results of this research serve for the development of improved polishing strategies, and may be used in alternative applications of computer-controlled polishing processes that quantify the material removal characteristic by influence functions.
Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings
NASA Astrophysics Data System (ADS)
Fossati, Alessio; di Ferdinando, Martina; Bardi, Ugo; Scrivani, Andrea; Giolli, Carlo
2012-03-01
CoNiCrAlY coatings were produced by means of the vacuum plasma spraying (VPS) process onto CMSX-4 single crystal nickel superalloy disk substrates. As-sprayed samples were annealed at high temperatures in low vacuum. Three kinds of finishing processes were carried out, producing three types of samples: as-sprayed, mechanically smoothed by grinding, ground and PVD coated by using aluminum targets in an oxygen atmosphere. Samples were tested under isothermal conditions, in air, at 1000 °C, and up to 5000 h. Morphological, microstructural and compositional analyses were performed on the coated samples in order to assess the high temperature oxidation behavior provided by the three different surface finishing processes. Several differences were observed: grinding operations decrease the oxidation resistance, whereas the PVD process can increase the performances over longer time with respect of the as-sprayed samples.
Gujba, Abdullahi K.; Medraj, Mamoun
2014-01-01
The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284
In Situ Fringe Projection Profilometry for Laser Power Bed Fusion Process
NASA Astrophysics Data System (ADS)
Zhang, Bin
Additive manufacturing (AM) offers an industrial solution to produce parts with complex geometries and internal structures that conventional manufacturing techniques cannot produce. However, current metal additive process, particularly the laser powder bed fusion (LPBF) process, suffers from poor surface finish and various material defects which hinder its wide applications. One way to solve this problem is by adding in situ metrology sensor onto the machine chamber. Matured manufacturing processes are tightly monitored and controlled, and instrumentation advances are needed to realize this same advantage for metal additive process. This encourages us to develop an in situ fringe projection system for the LPBF process. The development of such a system and the measurement capability are demonstrated in this dissertation. We show that this system can measure various powder bed signatures including powder layer variations, the average height drop between fused metal and unfused powder, and the height variations on the fused surfaces. The ability to measure textured surface is also evaluated through the instrument transfer function (ITF). We analyze the mathematical model of the proposed fringe projection system, and prove the linearity of the system through simulations. A practical ITF measurement technique using a stepped surface is also demonstrated. The measurement results are compared with theoretical predictions generated through the ITF simulations.
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
Programmable Automated Welding System (PAWS): Control of welding through software and hardware
NASA Technical Reports Server (NTRS)
Kline, Martin D.; Doyle, Thomas E.
1994-01-01
The ATD phase of the PAWS program ended in November 1992 and the follow-on ManTech program was started in September 1993. The system will be industrially hardened during the first year of this program. Follow-on years will focus upon the transition into specific end-user sites. These implementations will also expand the system into other welding processes (e.g. FCAW, GTAW, PAW). In addition, the architecture is being developed for application to other non-welding robotic processes (e.g. inspection, surface finishing). Future development is anticipated to encompass hardening for extreme environments, expanded exception handling techniques, and application to a range of manipulators.
Wire electric-discharge machining and other fabrication techniques
NASA Technical Reports Server (NTRS)
Morgan, W. H.
1983-01-01
Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.
Quintas, Adriana Ferreira; Oliveira, Fabiano; Bottino, Marco Antonio
2004-09-01
Prosthetic restorations that fit poorly may affect periodontal health and occlusion. Studies that have evaluated the accuracy of fit of ceramic restorations before and after cementation assessed primarily intracoronal restorations. This in vitro study evaluated the effect of different finish lines, ceramic manufacturing techniques, and luting agents on the vertical discrepancy of ceramic copings. Two stainless steel molars were prepared for complete crowns with 2 different finish lines (heavy chamfer and rounded shoulder); each molar was duplicated to fabricate 90 copings. A total of 180 copings generated 18 groups (n=10 for each finish line-coping material-luting agent combination). Luting agents tested included zinc phosphate, resin-modified glass ionomer (Fuji Plus), and resin composite cements (Panavia F). A metal frame was developed on which to screw the stainless steel model and a ceramic coping; the distance (microm) between 2 predetermined points was measured before and after cementation by a profile projector under a torquing force. A 4-way ANOVA with repeated measurements was performed to assess the influence of each factor in the vertical marginal discrepancy: 3 between-coping factors (finish line-coping material-luting agent) and 1 within-coping factor (before and after cementation) (alpha=.05). Procera copings presented the lowest mean values ( P <.05) of vertical marginal discrepancy before and after cementation (25/44 microm) when compared to Empress 2 (68/110 microm) and InCeram Alumina copings (57/117 microm), regardless of any combinations among all finish lines and luting agents tested. Considering each factor separately, the ceramic manufacturing technique appeared to be the most important factor tested for the definitive vertical discrepancy of all-ceramic copings, with lower mean values for Procera copings.
Kellogg, Harvey J.; Holm, Robert O.
1983-01-01
A groove refinishing tool which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.
Scanning electron microscope investigation of the structural growth in thick sputtered coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1975-01-01
Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Li, Shengyi; Guan, Chaoliang; Shen, Xinmin; Dai, Yifan; Wang, Zhuo
2013-04-01
Nanoparticle jet polishing (NJP) is presented as a posttreatment to remove magnetorheological finishing (MRF) marks. In the NJP process the material is removed by chemical impact reaction, and the material removal rate of convex part is larger than that of the concave part. Smoothing thus can progress automatically in the NJP process. In the experiment, a silica glass sample polished by MRF was polished by NJP. Experiment results showed the MRF marks were removed clearly. The uniform polishing process shows that the NJP process can remove the MRF marks without destroying the original surface figure. The surface root-mean-square roughness is improved from 0.72 to 0.41 nm. power spectral density analysis indicates the surface quality is improved, and the experimental result validates effective removal of MRF marks by NJP.
R. Sam Williams
2005-01-01
Contrary to what might be called popular myth, research shows that allowing exterior wood surfaces to weather before applying paint does not help the cause of long-term coating performance. Instead, weathering prior to painting has been shown to contribute significantly to premature failure of the finish due to loss of adhesion.
Recent analytical developments for powder characterization
NASA Astrophysics Data System (ADS)
Brackx, E.; Pages, S.; Dugne, O.; Podor, R.
2015-07-01
Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing
NASA Astrophysics Data System (ADS)
Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco
2017-10-01
Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.
NASA Technical Reports Server (NTRS)
2001-01-01
Moen Incorporated identified a market need for more durable polished brass plumbing fixtures. NASA's Glenn Research Center is a leader in surface coating technology, which enhances the physical properties of a wide range of materials. The collaborative efforts of Glenn and Moen resulted in a new polished brass finish called LifeShine(R). Based on testing results generated at NASA Glenn, Moen was able to manufacture an affordable, polished brass finish that is as durable as chrome, and resists deterioration. LifeShine is guaranteed to resist normal wear and tear and is even scratch-resistant to cleaning products as abrasive as steel wool. Moen was able to incorporate other colors into the LifeShine finish technology including classic gold, nickel, Satine(TM), Black Opal(TM), stainless, and copper. The company added titanium to LifeShine, making the finish even stronger and increasing its already superior durability. Highly resistant to salt and humidity, the LifeShine finish will remain intact even when the fixture is dented.
ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability
NASA Astrophysics Data System (ADS)
Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.
2013-05-01
It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.
Burnishing of rotatory parts to improve surface quality
NASA Astrophysics Data System (ADS)
Celaya, A.; López de Lacalle, L. N.; Albizuri, J.; Alberdi, R.
2009-11-01
In this paper, the use of rolling burnishing process to improve the final quality of railway and automotive workpieces is studied. The results are focused on the improvement of the manufacturing processes of rotary workpieces used in railway and automotion industry, attending to generic target of achieving `maximum surface quality with minimal process time'. Burnishing is a finishing operation in which plastic deformation of surface irregularities occurs by applying pressure through a very hard element, a roller or a ceramic ball. This process gives additional advantages to the workpiece such as good surface roughness, increased hardness and high compressive residual stresses. The effect of the initial turning conditions on the final burnishing operation has also been studied. The results show that feeds used in the initial rough turning have little influence in the surface finish of the burnished workpieces. So, the process times of the combined turning and burnishing processes can be reduced, optimizing the shaft's machining process.
The effects of surface finish and grain size on the strength of sintered silicon carbide
NASA Technical Reports Server (NTRS)
You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.
1985-01-01
The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.
Optical properties of sputtered aluminum on graphite/epoxy composite material
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Teichman, Louis A.
1989-01-01
Solar absorptance, emittance, and coating thickness were measured for a range of coating thicknesses from about 400 A to 2500 A. The coatings were sputtered from an aluminum target onto 1-inch-diameter substrates of T300/5209 graphite/epoxy composite material with two different surface textures. Solar absorptance and emittance values for the specimens with the smooth surface finish were lower than those for the specimens with the rough surface finish. The ratio of solar absorptance to emittance was higher for the smooth specimens, increasing from 2 to 4 over the coating thickness range, than for the rough ones, which had a constant ratio of about 1. The solar absorptance and emittance values were dependent on the thickness of the sputtered coating.
Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.
2009-11-01
Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
Yew, H Z; Berekally, T L; Richards, L C
2013-12-01
The aim of this study was to evaluate colour stability upon exposure to spices of a nano-filled and a micro-hybrid resin composite finished either with Sof-Lex™ discs (SLD) or against plastic strips (PS). Forty cylindrical specimens of 3 mm thickness were fabricated from Filtek Supreme XT ™ (FS) and Gradia Direct X™ (GD). The top surface of each specimen was polished with SLD while the bottom surface was finished against PS. All samples were immersed in staining solutions (0.1% weight turmeric, paprika and tamarind) and distilled water at 37 °C. Colour after 0, 24, 72 and 168 hours of immersion was recorded with a reflection spectrophotometer using CIE L*a*b* parameters and the results were statistically analysed with repeated measures of ANOVA and Bonferroni post hoc tests. Among all the staining solutions tested, the highest colour deviation was obtained in the turmeric group. FS finished against PS showed significantly more colour changes compared to specimens polished with SLD, while GD finished against PS were found to be more resistant to colour changes. Within the limitations of this study all the spices tested have the potential to stain resin composites with turmeric causing the most significant discolouration. Micro-hybrid and nano-filled resin composites appeared to respond differently to staining by spices when either finished with PS or polished with SLD. © 2013 Australian Dental Association.
40 CFR 63.5345 - How do I distinguish between the two upholstery product process operations?
Code of Federal Regulations, 2014 CFR
2014-07-01
... less than 4 grams of finish add-on per square foot, and operations with 4 grams or more of finish add... process. (2) Use a scale with an accuracy of at least 5 percent of the mass in grams of the representative... mass in grams gained on the representative section by its surface area in square feet to determine...
40 CFR 63.5345 - How do I distinguish between the two upholstery product process operations?
Code of Federal Regulations, 2012 CFR
2012-07-01
... less than 4 grams of finish add-on per square foot, and operations with 4 grams or more of finish add... process. (2) Use a scale with an accuracy of at least 5 percent of the mass in grams of the representative... mass in grams gained on the representative section by its surface area in square feet to determine...
Finishes checklist : a guide to achieving optimum coating performance on exterior wood surfaces
Tony Bonura; Steve Bussjeager; Lynne Christensen; George Daisey; Tom Daniels; Mark Hirsch; Charles J. Jourdain; D. Douglas Mall; Bob Springate; Louis E. Wagner; Warren Harry; R. Sam Williams
2004-01-01
When the time comes for a consumer to select the wood and finish types for a given outdoor project, there is a wide variety of sources of information, articles, and opinions available. Occasionally, these sources will conflict, mostly due to the data available at the time of publication, or practical experience based on a snapshot of conditions at a given time period....
Bacteria adhere to food products and processing surfaces that can cross-contaminate other products and work surfaces (Arnold, 1998). Using materials for food processing surfaces that are resistant to bacterial contamination could enhance food safety. Stainless steel, although sus...
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING
Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...
PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION
Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...
NASA Astrophysics Data System (ADS)
Bechtold, Michael; Mohring, David; Fess, Edward
2007-05-01
OptiPro Systems has developed a new finishing process for the manufacturing of precision optical components. UltraForm Finishing (UFF) has evolved from a tire shaped tool with polishing material on its periphery, to its newest design, which incorporates a precision rubber wheel wrapped with a band of polishing material passing over it. Through our research we have developed a user friendly graphical interface giving the optician a deterministic path for finishing precision optical components. Complex UFF Algorithms combine the removal function and desired depth of removal into a motion controlled tool path which minimizes surface roughness and form errors. The UFF process includes 5 axes of computer controlled motion, (3 linear and 2 rotary) which provide the flexibility for finishing a variety of shapes including spheres, aspheres, and freeform optics. The long arm extension, along with a range of diameters for the "UltraWheel" provides a unique solution for the finishing of steep concave shapes such as ogives and domes. The UltraForm process utilizes, fixed and loose abrasives, in combination with our proprietary "UltraBelts" made of a range of materials such as polyurethane, felt, resin, diamond and others.
NASA Astrophysics Data System (ADS)
Nadolny, K.; Kapłonek, W.
2014-08-01
The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations
NASA Astrophysics Data System (ADS)
Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing
2013-03-01
Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.
POLLUTION PREVENTION METHODS IN THE SURFACE COATING INDUSTRY
The surface coating industry is rapidly changing to meet environmental and economic pressures. Some of the changes include new formulations which meet environmental regulations, higher performance finishes with improved properties, continued development of solventless technologie...
Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.
1976-01-01
X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.
NASA Astrophysics Data System (ADS)
Anan, Ruito; Matsuoka, Hironori; Ono, Hajime; Ryu, Takahiro; Nakae, Takashi; Shuto, Schuichi; Watanabe, Suguru; Sato, Yuta
2017-04-01
This study examined the improvements to the tool life and finished surface roughness by using water-miscible cutting fluids in carbon fiber reinforced plastics end milling. In cutting tests, it was found that the use of emulsion type, soluble type, and solution type cutting fluids improved tool life compared with the case of dry cutting. Specifically, significant differences in tool life were observed at a high cutting speed of 171 m/min. In addition, the finished surface exhibited a low level of roughness when the solution type cutting fluid was used, regardless of the cutting speed.
Videometric Applications in Wind Tunnels
NASA Technical Reports Server (NTRS)
Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu
1997-01-01
Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.
The 100-mile run: preparation, performance, and recovery. A case report.
Fred, H L
1981-01-01
This study analyzed the training methods and racing techniques of 12 athletes who have completed 100-mile runs. It showed that use of aspirin during the race can be dangerous if the run takes place in hot weather. No other consistent correlation was evident, however, between the variables examined and the finishing times. The findings suggest that an average marathoner can finish the 100-mile run without modifying his training program.
Methods for providing ceramic matrix composite components with increased thermal capacity
NASA Technical Reports Server (NTRS)
Steibel, James Dale (Inventor); Utah, David Alan (Inventor)
2001-01-01
A method for enhancing the cooling capability of a turbine component made from a ceramic matrix composite. The method improves the thermal performance of the component by producing a surface having increased cooling capacity, thereby allowing the component to operate at a higher temperature. The method tailors the available surface area on the cooling surface of the composite component by depositing a particulate layer of coarse grained ceramic powders of preselected size onto the surface of the ceramic matrix composite component. The size of the particulate is selectively tailored to match the desired surface finish or surface roughness of the article. The article may be designed to have different surface finishes for different locations, so that the application of different sized powders can provide different cooling capabilities at different locations, if desired. The compositions of the particulates are chemically compatible with the ceramic material comprising the outer surface or portion of the ceramic matrix composite. The particulates are applied using a slurry and incorporated into the article by heating to an elevated temperature without melting the matrix, the particulates or the fiber reinforcement.
Da Costa, Juliana; Ferracane, Jack; Paravina, Rade D; Mazur, Rui Fernando; Roeder, Leslie
2007-01-01
The purpose of this in vitro study was to evaluate the surface finish and gloss of five direct resin composites polished with six polishing systems. One hundred and fifty disk-shaped composite specimens (D=10.0 mm, 2-mm-thick, N=30 per material) were made. One side of each specimen was finished with a 16-fluted carbide finishing bur and then polished. Five specimens of each resin composite were randomly assigned to one of the six polishing systems. The surface roughness and gloss were measured with a surface profilometer and a glossmeter. The results were analyzed by two-way analysis of variance and Tukey's t-test (p
Research, development and application of noncombustible Beta fiber structures. [for Apollo
NASA Technical Reports Server (NTRS)
Dillon, J. J.; Cobb, E. S.
1975-01-01
Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.
Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures.
Magne, P; Oh, W S; Pintado, M R; DeLong, R
1999-12-01
This in vitro study compared the wear of enamel against 3 types of ceramics with high esthetic potential (designed for layering techniques): feldspathic porcelain (Creation), aluminous porcelain (Vitadur alpha), and low-fusing glass (Duceram-LFC). Laboratory finishing (glazing/polishing) and chairside polishing with a Dialite kit were simulated to compare their respective effects on wear. Tooth-material specimen pairs were placed in an artificial mouth using closed-loop servohydraulics. Constant masticatory parameters (13.5 N occlusal force, 0.62 mm lateral excursion; 0.23 second cuspal contact time) were maintained for 300, 000 cycles at a rate of 4 Hz. The occlusal surface of each pair was mapped and digitally recorded before and after each masticatory test. Quantitative changes were measured in terms of depth and volume of wear. Quantitative wear characteristics were assessed by SEM. Significant differences were observed (2-factor ANOVA, P <.05). Duceram-LFC generated increased volume loss of enamel (0.197 mm(3)) compared with Creation (0.135 mm(3)) and Vitadur alpha (0.153 mm(3)). Creation exhibited the lowest ceramic wear and lowest combined volume loss (0.260 mm(3); the sum of the data for enamel and the opposing material) compared with Duceram-LFC (0.363 mm(3)) and Vitadur alpha (0.333 mm(3)). The most significant differences among materials were observed in volume loss, not in depth of wear. For all 3 ceramic systems, qualitative SEM evaluation revealed an abrasive type of wear. Wear characteristics of chairside polished specimens were similar to those of laboratory finished specimens (glazed and polished). Duceram-LFC was the most abrasive ceramic for the antagonistic tooth. Creation ceramic was the least abrasive material and most resistant to wear. Defects, brittleness, and the possibly insufficient toughness of LFC may explain its increased abrasiveness. Laboratory and chairside finishing procedures generated similar results.
Defect Detectability Improvement for Conventional Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hill, Chris
2013-01-01
This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.
Chemical milling solution produces smooth surface finish on aluminum
NASA Technical Reports Server (NTRS)
Lorenzen, H. C.
1966-01-01
Elementary sulfur mixed into a solution of caustic soda and salts produces an etchant which will chemically mill end-grain surfaces on aluminum plate. This composition results in the least amount of thickness variation and pitting.
TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy
NASA Astrophysics Data System (ADS)
Parthiban, K.; Duraiselvam, Muthukannan; Manivannan, R.
2018-06-01
The technique for order of preference by similarity ideal solution (TOPSIS) approach was used for optimizing the process parameters of laser micro-drilling of nickel superalloy C263 with Thermal Barrier Coating (TBC). Plasma spraying was used to deposit the TBC and a pico-second Nd:YAG pulsed laser was used to drill the specimens. Drilling angle, laser scan speed and number of passes were considered as input parameters. Based on the machining conditions, Taguchi L8 orthogonal array was used for conducting the experimental runs. The surface roughness and surface crack density (SCD) were considered as the output measures. The surface roughness was measured using 3D White Light Interferometer (WLI) and the crack density was measured using Scanning Electron Microscope (SEM). The optimized result achieved from this approach suggests reduced surface roughness and surface crack density. The holes drilled at an inclination angle of 45°, laser scan speed of 3 mm/s and 400 number of passes found to be optimum. From the Analysis of variance (ANOVA), inclination angle and number of passes were identified as the major influencing parameter. The optimized parameter combination exhibited a 19% improvement in surface finish and 12% reduction in SCD.
Van Hooreweder, Brecht; Lietaert, Karel; Neirinck, Bram; Lippiatt, Nicholas; Wevers, Martine
2017-04-01
Additive manufacturing techniques such as Selective Laser Melting (SLM) allow carefully controlled production of complex porous structures such as scaffolds. These advanced structures can offer many interesting advantages over conventionally produced products in terms of biological response and patient specific design. The surface finish of AM parts is often poor because of the layer wise nature of the process and adhering particles. Loosening of these particles after implantation should be avoided, as this could put the patient's health at risk. In this study the use of hydrochloric acid and hydrogen peroxide mixtures for surface treatment of cobalt-chromium F75 scaffolds produced by SLM is investigated. A 27% HCl and 8% H 2 O 2 etchant proved effective in removing adhering particles while retaining the quasi-static and fatigue performance of the scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hooreweder, Brecht Van; Lietaert, Karel; Neirinck, Bram; Lippiatt, Nicholas; Wevers, Martine
2017-06-01
Additive manufacturing techniques such as Selective Laser Melting (SLM) allow carefully controlled production of complex porous structures such as scaffolds. These advanced structures can offer many interesting advantages over conventionally produced products in terms of biological response and patient specific design. The surface finish of AM parts is often poor because of the layer wise nature of the process and adhering particles. Loosening of these particles after implantation should be avoided, as this could put the patient's health at risk. In this study the use of hydrochloric acid and hydrogen peroxide mixtures for surface treatment of cobalt-chromium F75 scaffolds produced by SLM is investigated. A 27% HCl and 8% H 2 O 2 etchant proved effective in removing adhering particles while retaining the quasi-static and fatigue performance of the scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance Improvement of Friction Stir Welds by Better Surface Finish
NASA Technical Reports Server (NTRS)
Russell, Sam; Nettles, Mindy
2015-01-01
The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.
Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Zaunbracher, K.
2011-07-01
Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finishedmore » cell performance.« less
Performance evaluation of Titanium nitride coated tool in turning of mild steel
NASA Astrophysics Data System (ADS)
Srinivas, B.; Pramod Kumar, G.; Cheepu, Muralimohan; Jagadeesh, N.; kumar, K. Ravi; Haribabu, S.
2018-03-01
The growth in demand for bio-gradable materials is opened as a venue for using vegetable oils, coconut oils etc., as alternate to the conventional coolants for machining operations. At present in manufacturing industries the demand for surface quality is increasing rapidly along with dimensional accuracy and geometric tolerances. The present study is influence of cutting parameters on the surface roughness during the turning of mild steel with TiN coated carbide tool using groundnut oil and soluble oil as coolants. The results showed vegetable gave closer surface finish compares with soluble oil. Cutting parameters has been optimized with Taguchi technique. In this paper, the main objective is to optimize the cutting parameters and reduce surface roughness analogous to increase the tool life by apply the coating on the carbide inserts. The cost of the coating is more, but economically efficient than changing the tools frequently. The plots were generated and analysed to find the relationship between them which are confirmed by performing a comparison study between the predicted results and theoretical results.
Biomachining: metal etching via microorganisms.
Díaz-Tena, Estíbaliz; Barona, Astrid; Gallastegui, Gorka; Rodríguez, Adrián; López de Lacalle, L Norberto; Elías, Ana
2017-05-01
The use of microorganisms to remove metal from a workpiece is known as biological machining or biomachining, and it has gained in both importance and scientific relevance over the past decade. Conversely to mechanical methods, the use of readily available microorganisms is low-energy consuming, and no thermal damage is caused during biomachining. The performance of this sustainable process is assessed by the material removal rate, and certain parameters have to be controlled for manufacturing the machined part with the desired surface finish. Although the variety of microorganisms is scarce, cell concentration or density plays an important role in the process. There is a need to control the temperature to maintain microorganism activity at its optimum, and a suitable shaking rate provides an efficient contact between the workpiece and the biological medium. The system's tolerance to the sharp changes in pH is quite limited, and in many cases, an acid medium has to be maintained for effective performance. This process is highly dependent on the type of metal being removed. Consequently, the operating parameters need to be determined on a case-by-case basis. The biomachining time is another variable with a direct impact on the removal rate. This biological technique can be used for machining simple and complex shapes, such as series of linear, circular, and square micropatterns on different metal surfaces. The optimal biomachining process should be fast enough to ensure high production, a smooth and homogenous surface finish and, in sum, a high-quality piece. As a result of the high global demand for micro-components, biomachining provides an effective and sustainable alternative. However, its industrial-scale implementation is still pending.
Pinto, Gustavo Da Col dos Santos; Dias, Kleber Campioni; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Consani, Simonides; Pires-De-Souza, Fernanda de Carvalho Panzeri
2013-01-01
To assess the influence of finishing/polishing procedure on color stability (ΔE ) and surface roughness (R(a)) of composites (Heliomolar and Tetric - color A2) submitted to accelerated artificial aging (AAA). Sixty test specimens were made of each composite (12 mm × 2 mm) and separated into six groups (n = 10), according to the type of finishing/polishing to which they were submitted: C, control; F, tip 3195 F; FF, tip 3195 FF; FP, tip 3195 F + diamond paste; FFP, tip 3195 FF + diamond paste; SF, Sof-Lex discs. After polishing, controlled by an electromechanical system, initial color (spectrophotometer PCB 6807 BYK GARDNER) and R(a) (roughness meter Surfcorder SE 1700, cut-off 0.25 mm) readings were taken. Next, the test specimens were submitted to the AAA procedure (C-UV Comexim) for 384 hours, and at the end of this period, new color readings and R(a) were taken. Statistical analysis [2-way analysis of variance (ANOVA), Bonferroni, P < 0.05] showed that all composites demonstrated ΔE alteration above the clinically acceptable limits, with the exception of Heliomolar composite in FP. The greatest ΔE alteration occurred for Tetric composite in SF (13.38 ± 2.10) statistically different from F and FF (P < 0.05). For R(a), Group F showed rougher samples than FF with statistically significant difference (P < 0.05). In spite of the surface differences, the different finishing/polishing procedures were not capable of providing color stability within the clinically acceptable limits.
NASA Astrophysics Data System (ADS)
Pan, Jisheng; Yu, Peng; Yan, Qiusheng; Li, Weihua
2017-05-01
Strontium titanate (SrTiO3, STO) ceramic substrate is an incipient ferroelectric material with a perovskite structure and which has a wide range of applications in the fields of microwave, millimetre wave, and optic fibre. This paper reports on a system of experiments carried out on STO substrates using a new magnetorheological (MR) finishing process where dynamic magnetic fields are formed by magnetic poles rotate. The results show that a circular ring shaped polishing belt with a stability evaluation zone appears on the surface after being polished by MR finishing with a single-point dynamic magnetic field. The dynamic magnetic fields are stronger when the revolutions of magnetic pole increase and eccentricity of pole enlarge, with the surface finish is smoother and more material is removed. The optimum machining times, machining gap, oscillation distance, eccentricity of pole, revolutions of the workpiece and magnetic pole are 60 min, 0.8 mm, 0 mm, 7 mm, and 350 r min-1 and 90 r min-1, respectively, and the best MR fluid consists of 6 wt% of diamond abrasives in W1 particle size and 18 wt% of carbonyl iron powder in W3.5 particle size. A surface roughness of Ra and a material removal rate of 8 nm and 0.154 μm min-1 can be obtained in these optimum process conditions. Finally, the polishing mechanism for dynamic magnetic fields and the mechanism for removing material from STO ceramic substrates are discussed in detail.
NASA Technical Reports Server (NTRS)
Gilmore, Randy
1993-01-01
The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.
Wang, R L; Yuan, C Y; Pan, Y X; Tian, F C; Wang, Z H; Wang, X Y
2017-04-09
Objective: To investigate surface properties of novel flowable composites after polishing and simulated brushing wear, compared to their pasty counterpart. Methods: Composites employed in this study were: three flowable composites (A1: Clearfil Majesty ES Flow; B1: Beautifil Flow Plus F00; C1: Filtek Bulk Fill) and three paste composites (A2: Clearfil Majesty; B2: Beautifil; C2: Filtek Z350. Eleven disk-shaped specimens were made for each material. The specimens were cured, then subjected to sandpaper finishing for 20 s, one-step polishing for 30 s, finally subjected to simulated brushing for 10 000 cycles. Surface roughness and glossiness were measured before finishing, after finishing, after polishing, after 5 000 brushing cycles and after 10 000 brushing cycles, respectively. Data obtained were analyzed using two-way ANOVA method. Scanning electron microscope was employed to examine the microscopic appearance of each material. Results: Surface roughness (0.11~0.22 μm) and glossiness (74.25~86.48 GU) of each material were similar after one-step polishing. After brushing simulation, roughness increased significantly and glossiness decreased significantly for each material ( P< 0.05). Group A1 presented the best gloss ([50.68±1.58] GU) after final wear ( P< 0.05). Flowable composites of group A1 and B1 tested in the present setup showed better surface properties compared to their pasty counterpart (group A2 and B2). Conclusions: Within the limit of this study, flowable composites tested in the present research can obtain similar surface polish or even better than the paste composite counterpart.
NASA Astrophysics Data System (ADS)
Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.
2018-02-01
This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.
1952-07-01
for background Impregna ted Coton - 3 Walked, Crawled Sateen Coverall 2.60 mr/hr I N Impregnated Cotton Gloves 3.70 SImpregnated Cotton Undershirts...3.1 Clothing Contamiiated Through Wear in the Shot Area (Surface Shot) * . . . . 43 4.3.2 Swatches Contaminated by Controlled Methods (Special Finishes ...43 4.3.3 Clothing Contaminated by Controlled Methods (Special Finishes ) . . . , . 50 4.3.4 Radiographs of Contamination ..... 51 vi son
Experimental Investigation – Magnetic Assisted Electro Discharge Machining
NASA Astrophysics Data System (ADS)
Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali
2018-04-01
Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.
Derivation of mechanical characteristics for Ni/Au intermetallic surface with SAC305 solder
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong
2013-03-01
Many surface finish methods are used to connect a substrate with the electric components of IT products in the micro-packaging process, and various types of lead-free solder have been developed as alternative materials to lead-based solder to reduce environmental contamination. However, there has been little research on the mechanical properties of the inter-metallic surface which is generated in the bumping process between the lead-free solder and surface films such as Ni/Au. The present work is to derive the material properties of a Ni/Au inter-metallic surface with SAC305 solder. A series of indentation tests were carried out by changing four nano-scale indentation depths and two strain rates. Also, a reverse algorithm method was adopted to determine the elastic-plastic stress-strain curve based on the load-displacement curve from the indentation test data. As a result of the material characterization effort, the mean elastic modulus, yield strength and strain hardening exponent of IMC with Ni/Au finish were determined.
Green technology for durable finishing of viscose fibers via self-formation of AuNPs.
Emam, Hossam E; El-Hawary, Nancy S; Ahmed, Hanan B
2017-03-01
Sensitivity of dyes' colors to the surrounding environment causes lower durability and stability of color, which reflects the importance of durable finishing treatment. Current technique offered antimicrobial/durable finishing of viscose fibers through direct formation of AuNPs inside fibers macromolecules without using any external agents. By using the reducing properties of cellulose in viscose, Au +3 was reduced to AuNPs and CHO/OH of cellulose subsequently were oxidized to COOH. For comparison, two different media were used; aqueous and alkaline. Increasing the reactivity and accessibility of cellulose macromolecules in alkali leaded to enlargement of the reduction process and more incorporation of AuNPs. Size of AuNPs inside fiber was recorded to be in range of 22-112nm and 14-100nm, in case of using aqueous and alkaline medium, respectively. Structure and properties of fibers were not changed by treatment according to XRD and ATR-FTIR data. The treated fibers were acquired durable violet color by the action of LSPR for AuNPs and darker color obtained using higher Au +3 concentration. The treated fibers exhibited good inhibition against different pathogenic microbes including bacteria and fungi. One-pot, quite simple, inexpensive, green and industrial viable are the significant advantages of the current technique for viscose finishing (pigmentation and antimicrobial action). Copyright © 2016 Elsevier B.V. All rights reserved.
Some aerodynamic considerations related to wind tunnel model surface definition
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1980-01-01
The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.
Diagnostic guide for evaluating surface distortions in veneered furniture and cabinetry
Alfred W. Christiansen; Mark Knaebe
2004-01-01
Manufacturers and installers of wood-veneered furniture and cabinetry sometimes find that their products eventually develop surface distortions, characterized by either buckling or cracking of the surface finish. The veneer itself sometimes buckles or cracks. Most surface distortions are caused by moisture changes in the product. This guide is a diagnostic tool for...
Water wells on St. Thomas, U.S. Virgin Islands
Steiger, J.I.; Kessler, Richard
1993-01-01
This report is a compilation of well-inventory data collected from December 1989 to December 1990 on St. Thomas, U.S. Virgin Islands from 367 wells. The report includes well locations on 1982, 7.5 minute series, USGS topographic maps, which are published to scale, and tables of selected well data. The report includes the following well information; well name, U.S. Geological Survey Ground Water Site Identification number, use of water, year well constructed, reported depth of well, measured depth of well, casing diameter, type of well finish and finish interval, land surface altitude of well, depth to water below land surface, date water level measured, and well yield. (USGS)
Evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites
NASA Technical Reports Server (NTRS)
Jordan, K.; Clinton, R.; Jeelani, S.
1991-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials have been studied. Test results indicate that moisture substantially degrades the integrity of the interfacial bond between C/P and G/P materials. The apparent effect of the autoclave curing of the C/P material reduces the ultimate interlaminar shear length of the C/P material by 20 percent compared to the hydroclave curing of the C/P material. The variation in applied surface finishes is found to have no appreciable effect on the ultimate interlaminar shear strength of the interface in the wet laminate.
NASA Astrophysics Data System (ADS)
Ichida, Yoshio; Sato, Ryunosuke; Morimoto, Yoshitaka; Ohsawa, Yoshiteru; Fredj, Nabil Ben
In this paper, we describe the formation mechanism of a finished surface in ultrahigh-speed grinding under a peripheral wheel speed higher than 200m/s. Grinding experiments using a grinding machine tool equipped with an active magnetic bearing spindle have been conducted over a range of grinding speeds from 60 to 300m/s. Moreover, grinding tests for producing some individual grooves using a grinding tool with multiple cBN grit have been carried out to clarify the effects of grinding speed on the side swelling formed along both sides of the grinding grooves. From the results of these experiments, we have confirmed that the roughness of the ground surface decreases with an increase in grinding speed, and this decrease is mainly due to the reduction of the swelling ratio with increasing grinding speed.
Eastman, Alexander W.; Yuan, Ze-Chun
2015-01-01
Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642
Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis
Jamshidy, Ladan; Faraji, Payam; Sharifi, Roohollah
2016-01-01
Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique. PMID:28003824
Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis.
Jamshidy, Ladan; Mozaffari, Hamid Reza; Faraji, Payam; Sharifi, Roohollah
2016-01-01
Introduction . One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods . A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results . The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion . The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.
Analysis of the Material Removal Rate in Magnetic Abrasive Finishing of Thin Film Coated Pyrex Glass
NASA Astrophysics Data System (ADS)
Lee, Hee Hwan; Lee, Seoung Hwan
The material removal rate (MRR) during precision finishing/polishing is a key factor, which dictates the process performance. Moreover, the MRR or wear rate is closely related to the material/part reliability. For nanoscale patterning and/or planarization on nano-order thickness coatings, the prediction and in-process monitoring of the MRR is necessary, because the process is not characterizable due to size effects and material property/process condition variations as a result of the coating/substrate interactions. The purpose of this research was to develop a practical methodology for the prediction and in-process monitoring of MRR during nanoscale finishing of coated surfaces. Using a specially designed magnetic abrasive finishing (MAF) and acoustic emission (AE) monitoring setup, experiments were carried out on indium-zinc-oxide (IZO) coated Pyrex glasses. After a given polishing time interval, AFM indentation was conducted for each workpiece sample to measure the adhesion force variations of the coating layers (IZO), which are directly related to the MRR changes. The force variation and AE monitoring data were compared to the MRR calculated form the surface measurement (Nanoview) results. The experimental results demonstrate strong correlations between AFM indentation and MRR measurement data. In addition, the monitored AE signals show sensitivity of the material structure variations of the coating layer, as the polishing progresses.
Erdakov, Ivan Nikolaevich; Taha, Mohamed~Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-01-01
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness (Ra) prediction of one component in computer numerical control (CNC) turning over minimal machining time (Tm) and at prime machining costs (C). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness. PMID:29772670
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie
2010-12-01
The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.
Geng, Daxi; Zhang, Deyuan; Li, Zhe; Liu, Dapeng
2017-03-01
The production of high quality bolt holes, especially on the carbon fiber reinforced plastics/titanium alloy (CFRP/Ti) stacks, is essential to the manufacturing process in order to facilitate part assembly and improve the component mechanical integrity in aerospace industry. Reaming is widely used as a mandatory operation for bolt holes to meet the strict industry requirements. In this paper, the ultrasonic elliptical vibration-assisted reaming (UEVR) which is considered as a new method for finish machining of CFRP/Ti stacked holes is studied. The paper outlines an analysis of tool performance and hole quality in UEVR compared with that in conventional reaming (CR). Experimental results show that the quality of holes was significantly improved in UEVR. This is substantiated by monitoring cutting force, hole geometric precision and surface finish. The average thrust forces and torque in UEVR were decreased over 30% and 60% respectively. It is found that, during first 45 holes, better diameter tolerance (IT7 vs. IT8), smaller diameter difference of CFRP and Ti holes (around 3μm vs. 12μm), better geometrical errors were achieved in UEVR as compared to CR. As for surface finish, both of the average roughness and hole surface topography in UEVR were obviously improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Centerless grinding of TiAl using conventional grinding wheels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.E.; Smits, D.; Eylon, D.
1995-12-31
Ordered gamma titanium aluminide (TiAl) based alloys are now under consideration for automotive valves because of their light weight and high strength at temperatures up to 850 C. Finishing comprises as much as 70% of the cost of an automotive valve, therefore the grindability of TiAl valves will influence their commercial viability. This study compared the grindability of the TiAl alloy Ti-47Al-2Nb-1.75Cr (at%) to standard valve steels, nickel base superalloys, and conventional titanium alloys using the centerless grinding process. Three grinding conditions simulating stem grinding were selected. The power requirements, grinding time, and grinding wheel consumption were used to estimatemore » the cost to grind TiAl on conventional centerless grinding equipment using vitrified bonded silicon carbide wheels. The metallurgical effects of rough and finish stem grinding cycles on the surface were determined. The grindability factor of TiAl, a measure of grinding cost, was slightly inferior to conventional valve steels, but much better than conventional titanium alloys. The high work hardening rate of the TiAl resulted in much better surface finish at high metal removal rates than that achieved in steels. No grinding cracks were observed, even under the rough grinding conditions. Microhardness profiles indicated significant work hardening of the surface under all three grinding conditions.« less
Fine figure correction and other applications using novel MRF fluid designed for ultra-low roughness
NASA Astrophysics Data System (ADS)
Maloney, Chris; Oswald, Eric S.; Dumas, Paul
2015-10-01
An increasing number of technologies require ultra-low roughness (ULR) surfaces. Magnetorheological Finishing (MRF) is one of the options for meeting the roughness specifications for high-energy laser, EUV and X-ray applications. A novel MRF fluid, called C30, has been developed to finish surfaces to ULR. This novel MRF fluid is able to achieve <1.5Å RMS roughness on fused silica and other materials, but has a lower material removal rate with respect to other MRF fluids. As a result of these properties, C30 can also be used for applications in addition to finishing ULR surfaces. These applications include fine figure correction, figure correcting extremely soft materials and removing cosmetic defects. The effectiveness of these new applications is explored through experimental data. The low removal rate of C30 gives MRF the capability to fine figure correct low amplitude errors that are usually difficult to correct with higher removal rate fluids. The ability to figure correct extremely soft materials opens up MRF to a new realm of materials that are difficult to polish. C30 also offers the ability to remove cosmetic defects that often lead to failure during visual quality inspections. These new applications for C30 expand the niche in which MRF is typically used for.
Alveolar-Membrane Diffusing Capacity Limits Performance in Boston Marathon Qualifiers
Lavin, Kaleen M.; Straub, Allison M.; Uhranowsky, Kathleen A.; Smoliga, James M.; Zavorsky, Gerald S.
2012-01-01
Purpose (1) to examine the relation between pulmonary diffusing capacity and marathon finishing time, and (2), to evaluate the accuracy of pulmonary diffusing capacity for nitric oxide (DLNO) in predicting marathon finishing time relative to that of pulmonary diffusing capacity for carbon monoxide (DLCO). Methods 28 runners [18 males, age = 37 (SD 9) years, body mass = 70 (13) kg, height = 173 (9) cm, percent body fat = 17 (7) %] completed a test battery consisting of measurement of DLNO and DLCO at rest, and a graded exercise test to determine running economy and aerobic capacity prior to the 2011 Steamtown Marathon (Scranton, PA). One to three weeks later, all runners completed the marathon (range: 2∶22:38 to 4∶48:55). Linear regressions determined the relation between finishing time and a variety of anthropometric characteristics, resting lung function variables, and exercise parameters. Results In runners meeting Boston Marathon qualification standards, 74% of the variance in marathon finishing time was accounted for by differences in DLNO relative to body surface area (BSA) (SEE = 11.8 min, p<0.01); however, the relation between DLNO or DLCO to finishing time was non-significant in the non-qualifiers (p = 0.14 to 0.46). Whereas both DLCO and DLNO were predictive of finishing time for all finishers, DLNO showed a stronger relation (r2 = 0.30, SEE = 33.4 min, p<0.01) compared to DLCO when considering BSA. Conclusion DLNO is a performance-limiting factor in only Boston qualifiers. This suggests that alveolar-capillary membrane conductance is a limitation to performance in faster marathoners. Additionally, DLNO/BSA predicts marathon finishing time and aerobic capacity more accurately than DLCO. PMID:22984520
Materials Database Development for Ballistic Impact Modeling
NASA Technical Reports Server (NTRS)
Pereira, J. Michael
2007-01-01
A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.
Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I; Zhang, Yong
2009-06-01
The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require a continuous energy input, but a more recent discovery is the possibility of using a superhydrophobic surface. Most reported research uses small sections of lithographically patterned surfaces and rarely considers pressure differences or varying flow rates. In this work we present a method for creating a uniform superhydrophobic nanoribbon layer on the inside of round copper tubes of millimetric internal radius. Two types of experiments are described, with the first involving a simultaneous comparison of four tubes with different surface finishes (as received, as received with hydrophobic coating, nanoribbon, and nanoribbon with a hydrophobic coating) under constant flow rate conditions using water and water-glycerol mixtures. The results show that the superhydrophobic nanoribbon with a hydrophobic coating surface finish allows greater flow at low pressure differences but that the effect disappears as the pressure at the inlet of the tube is increased. The second experiment is a simple visual demonstration of the low-pressure behavior using two nominally identical tubes in terms of length and cross-section, but with one tube possessing a superhydrophobic internal surface finish. In this experiment a reservoir is allowed to feed the two tubes with open ends via a T-piece and it is observed that, once flow commences, it preferentially occurs down the superhydrophobic tube.
NASA Astrophysics Data System (ADS)
Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba
2018-03-01
Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.
Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718
NASA Technical Reports Server (NTRS)
Lambert, D. M.
2016-01-01
The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown might be lower than the knockdown observed above about one million cycles, where it tended to stabilize. This was not universal for all temperatures tested. The higher temperature tests are thought to be influenced by the test temperature, which perhaps continued the aging process. Further evaluation of the method is suggested.
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Wells, D.
2000-01-01
Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.
Layered chalcogenide glass structures for IR lenses
NASA Astrophysics Data System (ADS)
Gibson, Daniel; Bayya, Shyam; Sanghera, Jas; Nguyen, Vinh; Scribner, Dean; Maksimovic, Velimir; Gill, John; Yi, Allen; Deegan, John; Unger, Blair
2014-07-01
A technique for fabricating novel infrared (IR) lenses can enable a reduction in the size and weight of IR imaging optics through the use of layered glass structures. These structures can range from having a few thick glass layers, mimicking cemented doublets and triplets, to having many thin glass layers approximating graded index (GRIN) lenses. The effectiveness of these structures relies on having materials with diversity in refractive index (large Δn) and dispersion and similar thermo-viscous behavior (common glass transition temperature, ΔTg = 10°C). A library of 13 chalcogenide glasses with broad IR transmission (NIR through LWIR bands) was developed to satisfy these criteria. The lens fabrication methodology, including glass design and synthesis, sheet fabrication, preform making, lens molding and surface finishing are presented.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.
Shell Separation for Mirror Replication
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coil. Coating application station means that portion of the metal coil surface coating operation where.... Finish coat operation means the coating application station, curing oven, and quench station used to... operation means the application system used to apply an organic coating to the surface of any continuous...
Material removal in magnetorheological finishing of optics.
Kordonski, William; Gorodkin, Sergei
2011-05-10
A concept of material removal based on the principle of conservation of particles momentum in a binary suspension is applied to analyze material removal in magnetorheological finishing and magnetorheological jet processes widely used in precision optics fabrication. According to this concept, a load for surface indentation by abrasive particles is provided at their interaction near the wall with heavier basic (magnetic) particles, which fluctuate (due to collision) in the shear flow of concentrated suspension. The model is in good qualitative and quantitative agreement with experimental results.
Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces
2006-06-20
specimens, typically 3 specimens at 5 stress levels, although stresses were chosen to obtain a full curve, with runout defined as 107 cycles. Maximum...measured using the ASTM G-65 method of a rubber wheel with dry sand rubbing against the substrate (see Figure 4-27). 100 120 140 160 180 200 220 240...different finishing methods. Silicon carbide, aluminum oxide and diamond grinding wheels were tested for the finishing trials. It was determined by
Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi
Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.
Kozhinova, Irina A; Romanofsky, Henry J; Maltsev, Alexander; Jacobs, Stephen D; Kordonski, William I; Gorodkin, Sergei R
2005-08-01
The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Maloney, Chris
2016-07-01
NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.
NASA Astrophysics Data System (ADS)
Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar
2017-08-01
Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.
Precision machining of optical surfaces with subaperture correction technologies MRF and IBF
NASA Astrophysics Data System (ADS)
Schmelzer, Olaf; Feldkamp, Roman
2015-10-01
Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao
2014-08-01
Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.
Farrington, Timothy; Coward, Trevor; Onambele-Pearson, Gladys; Taylor, Rebecca L; Earl, Philip; Winwood, Keith
2016-02-01
The aim of this study was to measure the finished thickness of a single identical 4-mm EVA mouthguard model from a large fabricated sample group and to evaluate the degree of material thinning and variations during the fabrication process. Twenty boxes were distributed to dental technician participants, each containing five duplicated dental models (n = 100), alongside 5 × 4 mm mouthguard blanks and a questionnaire. The mouthguards were measured using electronic callipers (resolution: ±0.01 mm) at three specific points. The five thickest and thinnest mouthguards were examined using a CT scanner to describe the surface typography unique to each mouthguard, highlighting dimensional thinning patterns during the fabrication process. Of the three measurement points, the anterior sulcus point of the mouthguard showed a significant degree of variation (up to 34% coefficient of variation), in finished mouthguard thickness between individuals. The mean thickness of the mouthguards in the anterior region was 1.62 ± 0.38 mm with a range of 0.77-2.80 mm. This variation was also evident in the occlusion and posterior lingual regions but to a lesser extent (up to 12.2% and 9.8% variations, respectively). This study highlights variability in the finished thickness of the mouthguards especially in the anterior sulcus region measurement point, both within and between individuals. At the anterior region measurement point of the mouthguard, the mean thickness was 1.62 mm, equating to an overall material thinning of 59.5% when using a single 4-mm EVA blank. This degree of thinning is comparative to previous single operator research studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bircher, Chad; Shao, Yiping
2012-01-01
Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems. PMID:22320787
Bircher, Chad; Shao, Yiping
2012-02-01
Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bircher, Chad; Shao Yiping
Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.« less
Hatamleh, Muhanad M; Wu, Xiaohong; Alnazzawi, Ahmad; Watson, Jason; Watts, David
2018-04-01
Surface and mechanical properties of titanium alloys are integral for their use in restoring bone defects of skull and face regions. These properties are affected by the method of constructing and surface treatment of the titanium implant. This study aimed to investigate the effects of titanium finishing protocols on the surface morphology, hardness and biocompatibility of TiAl6V4. Square shaped TiAl6V4 specimens (ASTM F68) (10×10×0.5mm) were divided into seven groups of different surface treatments (n=10). The treatments included mechanical polishing, sandblasting with AL 2 O 3 (50μm), immersion in different acids, and/or electro-chemical anodization. Weight loss %; 3D micro-roughness; Knoop micro-hardness, and osteoblast cell attachment and proliferation (after 3 days) were determined for each specimen. Data was analysed using one way ANOVA and Dunett T3 post-hoc tests, and t-test (p<0.05). Weight loss % was in the range of 1.70-5.60 as mechanical polishing produced the highest weight loss, followed by sandblasting, and combined protocol of mechanical polishing and acid treatment (p<0.05). Micro-roughness values (μm) were in the range of 2.81-16.68. It was the highest for control specimens (p<0.05), and smoothest surfaces after combined mechanical polishing and acid treatment; or after electro-chemical treatment (p<0.05). Micro-hardness values (MPa) ranged 170.90-442.15 as sandblasting with/without acid treatment caused statically significantly the highest values (p<0.05) while control and mechanically polished specimens had the lowest values (p<0.05). All treatments produced equally biocompatible surfaces (p>0.05) after 1h or 3 days. Furthermore, osteoblast cell proliferation statistically significantly increased after 3days among each surface treatment (p<0.05). Different finishing treatments have variable effect on cranioplasty titanium surface loss, micro-roughness and micro-hardness but constant improved biocompatibility effect. Electro-chemical treatment caused less material loss and produced biocompatible smoothest surface of comparable hardness; hence it can be suitable for cranioplasty titanium surface finishing. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Imaging-based logics for ornamental stone quality chart definition
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Gargiulo, Aldo; Serranti, Silvia; Raspi, Costantino
2007-02-01
Ornamental stone products are commercially classified on the market according to several factors related both to intrinsic lythologic characteristics and to their visible pictorial attributes. Sometimes these latter aspects prevail in quality criteria definition and assessment. Pictorial attributes are in any case also influenced by the performed working actions and the utilized tools selected to realize the final stone manufactured product. Stone surface finishing is a critical task because it can contribute to enhance certain aesthetic features of the stone itself. The study was addressed to develop an innovative set of methodologies and techniques able to quantify the aesthetic quality level of stone products taking into account both the physical and the aesthetical characteristics of the stones. In particular, the degree of polishing of the stone surfaces and the presence of defects have been evaluated, applying digital image processing strategies. Morphological and color parameters have been extracted developing specific software architectures. Results showed as the proposed approaches allow to quantify the degree of polishing and to identify surface defects related to the intrinsic characteristics of the stone and/or the performed working actions.
Effect of Surface Treatment on the Properties of Wool Fabric
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.
Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.
Estimation of tool wear length in finish milling using a fuzzy inference algorithm
NASA Astrophysics Data System (ADS)
Ko, Tae Jo; Cho, Dong Woo
1993-10-01
The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.
DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan
2017-02-01
Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-01-01
This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740
Nanoindentation hardness of particles used in magnetorheological finishing (MRF).
Shorey, A B; Kwong, K M; Johnson, K M; Jacobs, S D
2000-10-01
Knowledge of the hardness of abrasive particles that are used in polishing is a key to the fundamental understanding of the mechanisms of material removal. The magnetorheological-finishing process uses both magnetic and nonmagnetic abrasive particles during polishing. The nanohardnesses of the micrometer-sized magnetic carbonyl iron and nonmagnetic abrasive particles have been measured successfully by use of novel, to our knowledge, sample-preparation and nanoindentation techniques. Some of the results reported compare favorably with existing microhardness data found in the literature, whereas other results are new.
Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-05-16
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.
2009-01-01
We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.
Novel Techniques for Millimeter-Wave Packages
NASA Technical Reports Server (NTRS)
Herman, Martin I.; Lee, Karen A.; Kolawa, Elzbieta A.; Lowry, Lynn E.; Tulintseff, Ann N.
1995-01-01
A new millimeter-wave package architecture with supporting electrical, mechanical and material science experiment and analysis is presented. This package is well suited for discrete devices, monolithic microwave integrated circuits (MMIC's) and multichip module (MCM) applications. It has low-loss wide-band RF transitions which are necessary to overcome manufacturing tolerances leading to lower per unit cost Potential applications of this new packaging architecture which go beyond the standard requirements of device protection include integration of antennas, compatibility to photonic networks and direct transitions to waveguide systems. Techniques for electromagnetic analysis, thermal control and hermetic sealing were explored. Three dimensional electromagnetic analysis was performed using a finite difference time-domain (FDTD) algorithm and experimentally verified for millimeter-wave package input and output transitions. New multi-material system concepts (AlN, Cu, and diamond thin films) which allow excellent surface finishes to be achieved with enhanced thermal management have been investigated. A new approach utilizing block copolymer coatings was employed to hermetically seal packages which met MIL STD-883.
This is an ESTE project summary brief. Many of the finished interior surfaces of homes and buildings are composed of materials that are prone to mold growth. These surfaces include gypsum board, wood flooring, insulation, and components of the heating and air conditioning system...
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane
2018-05-01
Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.
NASA Astrophysics Data System (ADS)
Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.
2018-06-01
The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.
Wind tunnel model surface gauge for measuring roughness
NASA Technical Reports Server (NTRS)
Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.
1987-01-01
The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Novel Passivating/Antireflective Coatings for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Faur, H. M.; Mateescu, C. G.; Alterovitz, S. A.; Scheiman, D.; Jenkins, P. P.; Brinker, D. J.
2005-01-01
We are developing a novel process to grow passivating/antireflective (AR) coatings for terrestrial and space solar cells. Our approach involves a Room Temperature Wet Chemical Growth (RTWCG) process, which was pioneered, and is under development at SPECMAT, Inc., under a Reimbursable Space Act Agreement with NASA Glenn Research Center. The RTWCG passivating/AR coatings with graded index of refraction are applied in one easy step on finished (bare) cells. The RTWCG coatings grown on planar, textured and porous Si, as well as on poly-Si, CuInSe2, and III-V substrates, show excellent uniformity irrespective of surface topography, crystal orientation, size and shape. In this paper we present some preliminary results of the RTWCG coatings on Si and III-V substrates that show very good potential for use as a passivation/AR coating for space solar cell applications. Compared to coatings grown using conventional techniques, the RTWCG coatings have the potential to reduce reflection losses and improve current collection near the illuminated surface of space solar cells, while reducing the fabrication costs.
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV Lambda/2 to Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV~Lambda/2 to ~Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV~Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.
2017-01-01
Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
Manufacturing PDMS micro lens array using spin coating under a multiphase system
NASA Astrophysics Data System (ADS)
Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei
2017-05-01
The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.
Measuring Thermoforming Behaviour
NASA Astrophysics Data System (ADS)
Michaeli, W.; Hopmann, C.; Ederleh, L.; Begemann, M.
2011-05-01
Thermoforming is the process of choice for manufacturing thin-gauge or large-area parts for packaging or technical applications. The process allows low-weight parts to be produced rapidly and economically from thermoplastic semi-finished products. A technical and consequently economical problem is the choice of the right material in combination with the thermoformability of the product. The prediction of thermoformability includes the aspired product features and geometry and defined wall thickness distributions, depending on the specific stretchability of the semifinished product. In practice, thermoformability is estimated by empirical tests with the particular semi-finished product using e.g. staged pyramidal moulds or model cars. With this method, it still cannot be ensured that the product can be thermoformed with the intended properties. A promising alternative is the forming simulation using finite element analysis (FEA). For the simulation, it is necessary to describe the material behaviour using defined material models and the appropriate parameters. Therefore, the stress-/strain-behaviour of the semi-finished product under defined conditions is required. There are several, entirely different measurement techniques used in industry and at research facilities. This paper compares a choice of different measurement techniques to provide an objective basis for future work and research. The semi-finished products are examined with the Membrane-Inflation-Rheometer (MIR), an equibiaxial strain rheometer. A flat sample is heated to the desired temperature in silicone oil. During the measurement, a servohydraulic linear drive advances a piston, thus displacing the hot silicone oil and inflating the specimen to form a sphere. Further measurements are carried out with the Karo IV Laboratory Stretching Machine at Brückner Maschinenbau GmbH & Co. KG, Siegsdorf, Germany. The samples are heated using hot air. During the biaxial stretching, the resulting forces at the clamps are measured. These techniques are compared to the stretching device developed at IKV. This measuring device is integrated into a laboratory thermoforming machine, which allows a close-to-real-process heating, handling and forming of the semi-finished products. After the heating with IR-radiation, force-displacement data is measured during the equibiaxial deformation. This work shows the differences between these methods and emphasises the particular benefits. Further measurement methods, like uniaxial tensile tests and plug deformation, and the effects on the forming simulation will be part of future research.
NASA Astrophysics Data System (ADS)
Kunimura, Shinsuke; Ohmori, Hitoshi
We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.
NASA Astrophysics Data System (ADS)
Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; Yamamura, Kazuya
2015-05-01
Reaction-sintered silicon carbide (RS-SiC), which is considered as a promising mirror material for space telescope systems, requires a high surface property. An ultrasmooth surface with a Ra surface roughness of 0.480 nm was obtained after water vapor plasma oxidation for 90 min followed by ceria slurry polishing for 40 min. The oxidation process of RS-SiC by water vapor plasma was analyzed based on the Deal-Grove model, and the theoretical calculation results are consistent with the measured data obtained by scanning white light interferometer (SWLI), scanning electron microscopy/energy-dispersive x-ray, and atomic force microscope. The polishing process of oxidized RS-SiC by ceria slurry was investigated according to the Preston equation, which would theoretically forecast the evolutions of RS-SiC surfaces along with the increasing of polishing time, and it was experimentally verified by comparing the surface roughnesses obtained by SWLI and the surface morphologies obtained by SEM. The mechanism analysis on the finishing of RS-SiC would be effective for the optimization of water vapor plasma oxidation parameters and ceria slurry polishing parameters, which will promote the application of RS-SiC substrates by improving the surface property obtained by the oxidation-assisted polishing method.
Follstaedt, David M.; Moran, Michael P.
2005-03-15
A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.
Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing
NASA Astrophysics Data System (ADS)
McNickle, Alan D.; Etsion, Izhak
2002-10-01
This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.
Mechanical properties of anodized coatings over molten aluminum alloy
Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...
2007-10-22
A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.
1981-07-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, andmore » few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
NASA Astrophysics Data System (ADS)
Takacs, Peter Z.
1982-04-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense X-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.
El-Sheikh, Manal A
2016-11-05
The photosensitized grafting of vinyl monomers onto a range of polymeric substrates has been the subject of particular interest in the recent past. Carboxymethyl starch (CMS)-poly acrylamide (PAAm) graft copolymer (CMS-g-PAAm) with high graft yield was successfully prepared by grafting of acrylamide onto CMS using UV irradiation in the presence of the water soluble 4-(trimethyl ammoniummethyl) benzophenone chloride photoinitiator. CMS-g-PAAm with nitrogen content of 8.3% and grafting efficiency up to 98.9% was obtained using 100% AAm, a material: liquor ratio of 1:14 and 1% photinitiator at 30°C for 1h of UV irradiation. The synthesis of CMS-g-PAAm was confirmed by FTIR and Nitrogen content (%). Surface morphology of CMS and surface morphological changes of CMS after grafting with AAm were studied using SEM. Thermal properties of both CMS and CMS-g-PAAm were studied using TGA and DSC. To impart easy care finishing to cotton fabrics, aqueous formulations of: CMS-g-PAAm, dimethylol dihydroxy ethylene urea (DMDHEU), CMS-g-PAAm-DMDHEU mixture or methylolated CMS-g-PAAm were used. Cotton fabrics were padded in these formulations, squeezed to a wet pick up 100%, dried at 100°C for 5min, cured at 150°C for 5min, washed at 50°C for 10min and air-dried. CRA (crease recovery angle) of untreated fabrics and fabrics finished with a mixture of 2% CMS-g-PAAm and 10% DMDHEU or methylolated CMS-g-PAAm (10% formaldehyde) were: 136°, 190°, 288° respectively. Increasing the number of washing cycles up to five cycles results in an insignificant decrease in the CRA and a significant decrease in RF (releasable formaldehyde) of finished fabric samples. The morphologies of the finished and unfinished cotton fabrics were performed by SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric
NASA Astrophysics Data System (ADS)
Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.
2011-02-01
Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.
Rodriguez, Andres; Autio, Wesley R; McLandsborough, Lynne A
2008-01-01
The purpose of this study was to evaluate the effect of surface roughness (Ra) and finish of mechanically polished stainless steel (Ra = 0.26 +/- 0.05, 0.49 +/- 0.10, and 0.69 +/- 0.05 microm) and electropolished stainless steel (Ra = 0.16 +/- 0.06, 0.40 +/- 0.003, and 0.67 +/- 0.02 microm) on Listeria adhesion and biofilm formation. A four-strain cocktail of Listeria monocytogenes was used. Each strain (0.1%) was added to 200 ml of tryptic soy broth (TSB), and coupons were inserted to the mixture for 5 min. For biofilm formation, coupons with adhesive cells were incubated in 1:20 diluted TSB at 32 degrees C for 48 h. The experiment was performed by a randomized block design. Our results show that the level of Listeria present after 48 h of incubation (mean = 7 log CFU/cm2) was significantly higher than after 5 min (mean = 6.0 log CFU/cm2) (P < 0.01). No differences in initial adhesion were seen in mechanically finished (mean = 6.7 log CFU/cm2) when compared with electropolished stainless steel (mean = 6.7 log CFU/cm2) (P > 0.05). Listeria initial adhesion (values ranged from 5.9 to 6.1 log CFU/cm2) or biofilm formation (values ranged from 6.9 to 7.2 log CFU/cm2) was not significantly correlated with Ra values (P > 0.05). Image analysis with an atomic force microscope showed that bacteria did not colonize the complete surface after 48 h but were individual cells or grouped in microcolonies that ranged from 5 to 10 microm in diameter and one to three cell layers in thickness. Exopolymeric substances were observed to be associated with the colonies. According to our results, electropolishing stainless steel does not pose a significant advantage for food sanitation over mechanically finished stainless steel.
Pala, Kanşad; Tekçe, Neslihan; Tuncer, Safa; Serim, Merve Efe; Demirci, Mustafa
2016-01-01
The objectives of this study were to evaluate the mechanical and physical properties of resin composites. The materials evaluated were the Clearfil Majesty Posterior, Filtek Z550 and G-aenial Posterior composites. A total of 189 specimens were fabricated for microhardness, roughness, gloss and color tests. The specimens were divided into three finishing and polishing systems: Enhance, OneGloss and Sof-Lex Spiral. Microhardness, roughness, gloss and color were measured after 24 h and after 10,000 thermocycles. Two samples from each group were evaluated using SEM and AFM. G-aenial Posterior exhibited the lowest microhardness values. The mean roughness ranged from 0.37 to 0.61 µm. The smoothest surfaces were obtained with Sof-Lex Spiral for each material. G-aenial Posterior with Enhance was determined to be the glossiest surfaces. All of the materials exhibited similar ΔE values ranging between 1.69 and 2.75. Sof-Lex Spiral discs could be used successfully to polish composites.
Ultra-Light Precision Membrane Optics
NASA Technical Reports Server (NTRS)
Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)
2001-01-01
SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
Dynamic evolution of interface roughness during friction and wear processes.
Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L
2014-01-01
Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Fream, Ronald
1976-01-01
When the process of remodeling a golf course is undertaken with professional and thorough planning, creative design, and proper construction techniques, the finished product can provide many years of challenging and esthetically pleasing golf play. (JD)
Magnetic field effects on shear and normal stresses in magnetorheological finishing.
Lambropoulos, John C; Miao, Chunlin; Jacobs, Stephen D
2010-09-13
We use a recent experimental technique to measure in situ shear and normal stresses during magnetorheological finishing (MRF) of a borosilicate glass over a range of magnetic fields. At low fields shear stresses increase with magnetic field, but become field-independent at higher magnetic fields. Micromechanical models of formation of magnetic particle chains suggest a complex behavior of magnetorheological (MR) fluids that combines fluid- and solid-like responses. We discuss the hypothesis that, at higher fields, slip occurs between magnetic particle chains and the immersed glass part, while the normal stress is governed by the MRF ribbon elasticity.
21 CFR 172.846 - Sodium stearoyl lactylate.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) As an emulsifier or stabilizer in liquid and solid edible fat-water emulsions intended for use as... finished edible fat-water emulsion. (4) As a formulation aid, processing aid, or surface-active agent in...
Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology
NASA Astrophysics Data System (ADS)
Riahi, Mohammadreza
2016-06-01
In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.
Lacerda, Vánia A; Pereira, Leandro O; Hirata JUNIOR, Raphael; Perez, Cesar R
2015-12-01
To evaluate the effectiveness of disinfection/sterilization methods and their effects on polishing capacity, micomorphology, and composition of two different composite fiishing and polishing instruments. Two brands of finishing and polishing instruments (Jiffy and Optimize), were analyzed. For the antimicrobial test, 60 points (30 of each brand) were used for polishing composite restorations and submitted to three different groups of disinfection/sterilization methods: none (control), autoclaving, and immersion in peracetic acid for 60 minutes. The in vitro tests were performed to evaluate the polishing performance on resin composite disks (Amelogen) using a 3D scanner (Talyscan) and to evaluate the effects on the points' surface composition (XRF) and micromorphology (MEV) after completing a polishing and sterilizing routine five times. Both sterilization/disinfection methods were efficient against oral cultivable organisms and no deleterious modification was observed to point surface.
The Effect of Ultrapolish on a Transonic Axial Rotor
NASA Technical Reports Server (NTRS)
Roberts, William B.; Thorp, Scott; Prahst, Patricia S.; Strazisar, Anthony
2005-01-01
Back-to-back testing has been done using NASA fan rotor 67 in the Glenn Research Center W8 Axial Compressor Test Facility. The rotor was baseline tested with a normal industrial RMS surface finish of 0.5-0.6 m (20-24 microinches) at 60, 80 and 100% of design speed. At design speed the tip relative Mach number was 1.38. The blades were then removed from the facility and ultrapolished to a surface finish of 0.125 m (5 microinch) or less and retested. At 100% speed near the design point, the ultrapolished blades showed approximately 0.3 - 0.5% increase in adiabatic efficiency. The difference was greater near maximum flow. Due to increased relative measurement error at 60 and 80% speed, the performance difference between the normal and ultrapolished blades was indeterminate at these speeds.
Technology of high-speed combined machining with brush electrode
NASA Astrophysics Data System (ADS)
Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.
2018-03-01
The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.
NASA Astrophysics Data System (ADS)
Lawrence, K. Deepak; Ramamoorthy, B.
2016-03-01
Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.
Diamond turning of thermoplastic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.; Scattergood, R.O.
Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.
Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei
2016-10-01
A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10 mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01 mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.
Lifetime Predictions of a Titanium Silicate Glass with Machined Flaws
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly
2003-01-01
A dynamic fatigue study was performed on a Titanium Silicate glass to assess its susceptibility to delayed failure and to compare the results with those of a previous study. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions. The material strength and lifetime was seen to increase due to the removal of residual stress through grinding and polishing. Influence on time-to-failure is addressed for the case with and without residual stress present. Titanium silicate glass otherwise known as ultra-low expansion (ULE)* glass is a candidate for use in applications requiring low thermal expansion characteristics such as telescope mirrors. The Hubble Space Telescope s primary mirror was manufactured from ULE glass. ULE contains 7.5% titanium dioxide which in combination with silica results in a homogenous glass with a linear expansion coefficient near zero. delayed failure . This previous study was based on a 230/270 grit surface. The grinding and polishing process reduces the surface flaw size and subsurface damage, and relieves residual stress by removing the material with successively smaller grinding media. This results in an increase in strength of the optic during the grinding and polishing sequence. Thus, a second study was undertaken using samples with a surface finish typically achieved for mirror elements, to observe the effects of surface finishing on the time-to-failure predictions. An allowable stress can be calculated for this material based upon modulus of rupture data; however, this does not take into account the problem of delayed failure, most likely due to stress corrosion, which can significantly shorten lifetime. Fortunately, a theory based on fracture mechanics has been developed enabling lifetime predictions to be made for brittle materials susceptible to delayed failure. Knowledge of the factors governing the rate of subcritical flaw growth in a given environment enables the development of relations between lifetime, applied stress and failure probability for the material under study. Dynamic fatigue is one method of obtaining the necessary information to develop these relationships. In this study, the dynamic fatigue method was used to construct a time-to-failure diagram for polished ULE glass.
Advanced Infusion Techniques with 3-D Printed Tooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuttall, David; Elliott, Amy; Post, Brian K.
The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is a small business. Phase II as discussed herein is under consideration by MVP as of this writing. Overall, it is anticipated that developing this process for manufacturing tooling for complex contoured surfaces has applicability to naval and other watercraft as well as bathrooms and large trucks.« less
Nd:YOV4 laser polishing on WC-Co HVOF coating
NASA Astrophysics Data System (ADS)
Giorleo, L.; Ceretti, E.; Montesano, L.; La Vecchia, G. M.
2017-10-01
WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 µm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.
Vanderford, Brett J; Mawhinney, Douglas B; Trenholm, Rebecca A; Zeigler-Holady, Janie C; Snyder, Shane A
2011-02-01
Proper collection and preservation techniques are necessary to ensure sample integrity and maintain the stability of analytes until analysis. Data from improperly collected and preserved samples could lead to faulty conclusions and misinterpretation of the occurrence and fate of the compounds being studied. Because contaminants of emerging concern, such as pharmaceuticals and personal care products (PPCPs) and steroids, generally occur in surface and drinking water at ng/L levels, these compounds in particular require such protocols to accurately assess their concentrations. In this study, sample bottle types, residual oxidant quenching agents, preservation agents, and hold times were assessed for 21 PPCPs and steroids in surface water and finished drinking water. Amber glass bottles were found to have the least effect on target analyte concentrations, while high-density polyethylene bottles had the most impact. Ascorbic acid, sodium thiosulfate, and sodium sulfite were determined to be acceptable quenching agents and preservation with sodium azide at 4 °C led to the stability of the most target compounds. A combination of amber glass bottles, ascorbic acid, and sodium azide preserved analyte concentrations for 28 days in the tested matrices when held at 4 °C. Samples without a preservation agent were determined to be stable for all but two of the analytes when stored in amber glass bottles at 4 °C for 72 h. Results suggest that if improper protocols are utilized, reported concentrations of target PPCPs and steroids may be inaccurate.
High-speed scanning: an improved algorithm
NASA Astrophysics Data System (ADS)
Nachimuthu, A.; Hoang, Khoi
1995-10-01
In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.
ERIC Educational Resources Information Center
Lisitano, Larry F.; And Others
1983-01-01
Three student projects using clay are discussed. These include a ceramic wall panel with an eagle motif, clay vessels formed by coiling clay, and clay puppets made with light bulbs as armatures. Instructions on materials, forming techniques, and finishing are given. (IS)
Selection and application of exterior stains for wood
R. Sam Williams; William C. Feist
1999-01-01
Exterior stains for wood protect the wood surface from sunlight and moisture. Because stains are formulated to penetrate the wood surface, they are not prone to crack or peel as can film-forming finishes, such as paints. This publication describes the properties of stains and wood, methods for applying stains, and the expected service life of stains.
EDM machinability of SiCw/Al composites
NASA Technical Reports Server (NTRS)
Ramulu, M.; Taya, M.
1989-01-01
Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.
Paver automation for road surfacing
NASA Astrophysics Data System (ADS)
Tihonov, A.; Velichkin, V.
2017-10-01
The paper discusses factors that bear on the quality of motor road pavement as access roads and highways are built and used. A block diagram is proposed to organize elements of the automatic control system to control the asphalt paver’s mechanisms; the system is based on a microprocessor onboard controller to maintain preset elevation of the finishing plate; description of its operation principle is offered. The paper names primary converters to control the finishing plate elevation. A new control method is described to control the machine’s straight-line movement with GLONASS Satellite Positioning System (SPS) during operation.
Possible Applications of 3D Printing Technology on Textile Substrates
NASA Astrophysics Data System (ADS)
Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.
2016-07-01
3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.
Ribeiro, Isabella Lima Arrais; Campos, Fernanda; Sousa, Rafael Santiago; Alves, Maria Luiza Lima; Rodrigues, Dalton Matos; Souza, Rodrigo Othavio Assuncão; Bottino, Marco Antonio
2015-01-01
Discrepancies at the abutment/crown interface can affect the longevity of zirconia restorations. The aim was to evaluate the marginal and internal discrepancies (MD and ID) of zirconia copings manufactured by two milling systems with different finish lines. Three aluminum-master-dies (h = 5.5 mm; Ψ =7.5 mm; 6), with different finish lines (large chamfer [LC]; tilted chamfer [TC]; rounded shoulder [RS]) were fabricated. Twenty impressions were made from each master die and poured. Sixty zirconia copings were manufactured and divided according to the factors "finish line" and "milling system" (n = 10): CAD LC = Computer-aided design/computer-aided manufacturing (CAD/CAM) + LC; CAD TC = CAD/CAM + TC; CAD RS = CAD/CAM + RS; MAD LC = manually aided design/manually aided manufacturing (MAD/MAM) + LC; MAD TC = MAD/MAM + TC; and MAD RS = MAD/MAM + RS. For MD analysis, each coping was fixed, and the distance between the external edges of the coping and the edge of the cervical preparation was measured (50 points). Using the same copings, the ID of each coping was evaluated, by the replica technique, at 12 points equally distributed among the regions (n = 10): Ray (R), axial (A), and occlusal (Occl). The measurements were performed by optical microscopy (Χ250). The data (μm) were subjected to parametric and non-parametric statistical analyses. For the MAD/MAM system, the "finish line" (P = 0.0001) affected significantly the MD median values (μm): LC = 251.80 a , RS = 68.40 a and TC = 8.10 b (Dunn's test). For the CAD/CAM system, the median MD values (μm) were not affected by the factor "finish line" (P = 0.4037): LC = 0.82 a , RS = 0.52 a , and TC = 0.89 a . For the ID, it was observed interaction between the finish line types and the region (P = 0.0001) and between region and milling system (P = 0.0031) (RM-ANOVA). The CAD/CAM system presented lower MD values, regardless the finish line. However, the MAD/MAM system showed ID values smaller than those of CAD/CAM.
NASA Astrophysics Data System (ADS)
Shi, Feng; Shu, Yong; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi
2013-07-01
Based on the elastic-plastic deformation theory, status between abrasives and workpiece in magnetorheological finishing (MRF) process and the feasibility of elastic polishing are analyzed. The relationship among material removal mechanism and particle force, removal efficiency, and surface topography are revealed through a set of experiments. The chemical dominant elastic super-smooth polishing can be fulfilled by changing the components of magnetorheological (MR) fluid and optimizing polishing parameters. The MR elastic super-smooth finishing technology can be applied in polishing high-power laser-irradiated components with high efficiency, high accuracy, low damage, and high laser-induced damage threshold (LIDT). A 430×430×10 mm fused silica (FS) optic window is polished and surface error is improved from 538.241 nm [peak to valley (PV)], 96.376 nm (rms) to 76.372 nm (PV), 8.295 nm (rms) after 51.6 h rough polishing, 42.6 h fine polishing, and 54.6 h super-smooth polishing. A 50×50×10 mm sample is polished with exactly the same parameters. The roughness is improved from 1.793 nm [roughness average (Ra)] to 0.167 nm (Ra) and LIDT is improved from 9.77 to 19.2 J/cm2 after MRF elastic polishing.
Shen, Chaobo; Hai, Zhou; Zhao, Cong; Zhang, Jiawei; Evans, John L.; Bozack, Michael J.; Suhling, Jeffrey C.
2017-01-01
This study illustrates test results and comparative literature data on the influence of isothermal aging and thermal cycling associated with Sn-1.0Ag-0.5Cu (SAC105) and Sn-3.0Ag-0.5Cu (SAC305) ball grid array (BGA) solder joints finished with ENIG and ENEPIG on the board side and ENIG on the package side compared with ImAg plating on both sides. The resulting degradation data suggests that the main concern for 0.4 mm pitch 10 mm package size BGA is package side surface finish, not board side. That is, ENIG performs better than immersion Ag for applications involving long-term isothermal aging. SAC305, with a higher relative fraction of Ag3Sn IMC within the solder, performs better than SAC105. SEM and polarized light microscope analysis show cracks propagated from the corners to the center or even to solder bulk, which eventually causes fatigue failure. Three factors are discussed: IMC, grain structure, and Ag3Sn particle. The continuous growth of Cu-Sn intermetallic compounds (IMC) and grains increase the risk of failure, while Ag3Sn particles seem helpful in blocking the crack propagation. PMID:28772811
Study on combined polishing process of aspherical aluminum mirrors
NASA Astrophysics Data System (ADS)
Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng
2017-10-01
The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.
Finishing procedures in orthodontic-surgical cases.
Brunel, Jean-Michel
2015-09-01
To ensure optimal results, we must do our utmost to achieve targets based on order, symmetry and precision, our ultimate aim being to strive towards the desired harmony, planned contrast and exact proportions. Orthodontic-surgical treatments require specific finishing procedures, which most often call for multidisciplinary, or even transdisciplinary, collaboration. Finishing will involve the dental arches just as much as the orofacial environment. Above all, treatment of this kind demands a highly targeted approach in combination with well-defined and perfectly executed techniques. To finish a case satisfactorily, reasonable targets should be aimed for to ensure they are achieved. One must be ambitious and yet wise. A tight alliance of surgeon and orthodontist will nurture convincing and achievable projects and good, lifelong outcomes. Following the consolidation phase, roughly 4 to 6 weeks post-surgery, we can initiate the final orthodontic treatment, which, in effect, constitutes a mini-treatment in its own right. "Details make perfection, but perfection is not a detail" (Leonardo Da Vinci). "A lucid mind is the ante-chamber of intelligence" (Léo Ferré). In the order of life, every form of unity is always unique, and if each of us is unique, it is because everyone else is too. Ambition, wisdom, lucidity and efficiency will guarantee a successful result, the successful result. We must not be mere observers of our treatments, but the architect, project manager and site foreman at one and the same time. One could talk ad infinitum about finishing orthodontic-surgical cases because everything else leads up to the case-finishing and even the fullest description could never be exhaustive. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.
Brscic, M; Ricci, R; Prevedello, P; Lonardi, C; De Nardi, R; Contiero, B; Gottardo, F; Cozzi, G
2015-08-01
The aim of this study was to compare a fully slatted concrete floor (concrete slatted (CS)) with the same floor on which synthetic rubber slats were placed on the concrete slats (rubber slatted (RS)) as housing solution for finishing beef cattle. The present study involved five commercial beef cattle farms in which the floor of at least three pens was kept as fully slatted, and in an equal number of pens a rubber cover was placed on the floor, tightly matching the gap profile of the concrete slats to allow the drainage of manure. A total of 326 finishing beef bulls were used (153 on CS and 173 on RS), and regardless of the floor treatment animals were housed in groups of 6 to 12 bulls/pen with a space allowance of 3.1 ± 0.2 m2/bull. Bulls had similar initial live weights (422.3 kg on CS and 425.0 kg on RS), but bulls on RS were heavier at the end of the finishing period with a higher average daily gain than bulls kept on CS (1.53 v. 1.46 kg/day; P<0.05). The proportion of bulls treated for locomotor problems was lower in RS pens compared with CS. Rubber covering prevented the occurrence of bursitis, but it increased the odds for hoof overgrowth at end of the finishing period. Hoof overgrowth detected in vivo in bulls on RS was confirmed at the slaughterhouse by the longer dorsal wall and diagonal lengths of the hoof as well as by a more acute toe angle. Compared with bulls on CS, bulls on RS showed less inactivity and resting time, increased social interactions, decreased abnormal lying down and unsuccessful attempts to lie down, as well as shortened the time for lying down. Bulls in RS pens were dirtier compared with those in CS pens, likely due to the draining gaps being reduced to 11.6 ± 1.2% of the total pen surface compared with the 16.9 ± 1.7% in CS pens. This study gave further evidence about the positive effects of the RS floor on growth performance and welfare of finishing beef cattle, although compromising cleanliness and hoof overgrowth.
Nemane, Vaishali; Akulwar, Ravikumar Suryakanth; Meshram, Suresh
2015-08-01
The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 90(0)C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 90(0)C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer and feather edged preparations. They showed the worst occlusal seat. It was found that the finish lines like shoulder preparations which exhibit poor sealing prior to complete cementation allow good seating whereas margins which seal earlier do not allow escape of cement and hence do not seat completely.
Nemane, Vaishali; Meshram, Suresh
2015-01-01
Background The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. Materials and Methods This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 900C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Results Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 900C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer and feather edged preparations. They showed the worst occlusal seat. Conclusion It was found that the finish lines like shoulder preparations which exhibit poor sealing prior to complete cementation allow good seating whereas margins which seal earlier do not allow escape of cement and hence do not seat completely. PMID:26436039
NASA Astrophysics Data System (ADS)
Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin
2016-02-01
The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization ( M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.