A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.
Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min
2015-04-01
A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-bo, E-mail: walkman67@163.com; Liu, Jin-liang
2014-04-15
In this paper, the inner surface flash-over of high-voltage self-breakdown switch, which is used as a main switch of pulse modulator, is analyzed in theory by employing the method of distributed element equivalent circuit. Moreover, the field distortion of the switch is simulated by using software. The results of theoretical analysis and simulation by software show that the inner surface flash-over usually starts at the junction points among the stainless steel, insulator, and insulation gas in the switch. A switch with improved structure is designed and fabricated according to the theoretical analysis and simulation results. Several methods to avoid innermore » surface flash-over are used to improve the structure of switch. In experiment, the inductance of the switch is no more than 100 nH, the working voltage of the switch is about 600 kV, and the output voltage and current of the accelerator is about 500 kV and 50 kA, respectively. And the zero-to-peak rise time of output voltage at matched load is less than 30 ns due to the small inductance of switch. The original switch was broken-down after dozens of experiments, and the improved switch has been worked more than 200 times stably.« less
Anode initiated surface flashover switch
Brainard, John P.; Koss, Robert J.
2003-04-29
A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.
Surface Electric Strength of Thermoplastic Materials in Vacuum
1981-11-27
For all the 1 lengths of investigated samples the flashover voltage showed the tendency of going down as the pressure increased from 133.322xi0" 6 Pa to...0,4 =326%10-8 133.32?*0 133= 322 -10V Figure 5.1. Flashover voltage as a function of pressure for samplesfrom polymethylmethacrylate. Direct...course of switching surge 400/2000 ýis L -76 AV L 1t0 01 1 01’O Tr W33.322.106 033.32210-" I33.322-10Ŗ 133.)2210- W3. 322 . 10-" Pa Figure 5.2
Research on plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, Demetrius D.; Han, Kwang S.
1993-01-01
The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'
NASA Astrophysics Data System (ADS)
Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai
2018-01-01
Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.
An experimental investigation of electric flashover across solid insulators in vacuum
NASA Technical Reports Server (NTRS)
Vonbaeyer, H. C.
1984-01-01
The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation
NASA Astrophysics Data System (ADS)
Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki
This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.
Vacuum-surface flashover switch with cantilever conductors
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2001-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Sharp improvement of flashover strength from composite micro-textured surfaces
NASA Astrophysics Data System (ADS)
Huo, Yankun; Liu, Wenyuan; Ke, Changfeng; Chang, Chao; Chen, Changhua
2017-09-01
A composite micro-textured surface structure is proposed and demonstrated to enhance the surface flashover strength of polymer insulators used in vacuum. The structure is fabricated in two stages, with periodic triangular grooves of approximately 210 μm in width formed in the first stage and micro-holes of approximately 2 μm coated on the inner surface of grooves in the second. The aim is to exploit the synergistic effects between the grooves and micro-holes to suppress the secondary electron yield to obtain a better flashover performance. To acquire insulators with the composite micro-textured surface, the CO2 laser processing technique is applied to treat the surface of the PMMA insulators. The test results show that the flashover voltages of the insulators with the two-stage fabricated structure increase by 150% compared with the untreated samples in the best state. Compared with the traditional macro-groove structures on insulators, the proposed composite micro-textured insulators exhibit a better surface flashover performance.
Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation
NASA Astrophysics Data System (ADS)
Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun
2017-06-01
The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng
2016-06-15
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less
NASA Astrophysics Data System (ADS)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng
2016-06-01
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.
Investigation of Optically Induced Avalanching in GaAs
1989-06-01
by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs
An experimental and theoretical investigation into the ``worm-hole'' effect
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jiancang; Zhang, Xibo; Pan, Yafeng; Wang, Limin; Fang, Jinpeng; Sun, Xu; Li, Rui; Zeng, Bo; Cheng, Jie
2013-08-01
On a nanosecond time scale, solid insulators abnormally fail in bulk rather than on surface, which is termed as the "worm-hole" effect. By using a generator with adjustable output pulse width and dozens of organic glass (PMMA) and polystyrene (PS) samples, experiments to verify this effect are conducted. The results show that under short pulses of 10 ns, all the samples fail due to bulk breakdown, whereas when the pulse width is tuned to a long pulse of 7 μs, the samples fail as a result of surface flashover. The experimental results are interpreted by analyzing the conditions for the bulk breakdown and the surface flashover. It is found that under short pulses, the flashover threshold would be as high as the bulk breakdown strength (EBD) and the flashover time delay (td) would be longer than the pulse width (τ), both of which make the dielectrics' cumulative breakdown occur easily; whereas under long pulses, that Ef is much lower than EBD and td is smaller than τ is advantageous to the occurrence of the surface flashover. In addition, a general principle on solid insulation design under short pulse condition is proposed based on the experimental results and the theoretical analysis.
Time- and space-resolved light emission and spectroscopic research of the flashover plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.
2015-02-21
The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV,more » respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.« less
High voltage pulse conditioning
Springfield, Ray M.; Wheat, Jr., Robert M.
1990-01-01
Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.
2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum
NASA Astrophysics Data System (ADS)
Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang
2018-04-01
With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.
Characteristics of plasma-puff trigger for a inverse-pinch plasma switch
NASA Technical Reports Server (NTRS)
Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.
Surface Flashover of Semiconductors: A Fundamental Study
1993-06-16
surface electric fields for a number of samples with aluminum and gold contacts. Effects of processing varia- tions such as anneal method (rapid thermal...more uniform pre- breakdown surface fields. 3. Various contact materials and processing methods were used to determine effects on flashover...diffusion depths determined by this method were generally consistent with the estimated depths. 2-4 In order to characterize better the diffused layers
NASA Astrophysics Data System (ADS)
Yamano, Yasushi; Takahashi, Masahiro; Kobayashi, Shinichi; Hanada, Masaya; Ikeda, Yoshitaka
Neutral beam injectors (NBI) used for JT-60 are required to generate negative ions of 500 keV energies. To produce such high-energy ions, the electrostatic accelerators consisting of 3-stage of electrodes and three insulator rings are applied. The insulators are made of Fiberglass Reinforced Plastic (FRP) which is composed of epoxy resin and glass fibers. The surface discharges along the insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP and epoxy resin insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for epoxy resin, FRP and Alumina samples under vacuum condition. In addition, the measurements of secondary electron emission (SEE) characteristics are also reported. These are important parameters to analyze surface discharge characteristics of insulators in vacuum.
Plasma puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Choi, E. H.
1990-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.
NASA Astrophysics Data System (ADS)
Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun
2017-08-01
For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.
NASA Astrophysics Data System (ADS)
Sun, Guang-Yu; Guo, Bao-Hong; Song, Bai-Peng; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun
2018-06-01
A 2D simulation based on particle-in-cell and Monte Carlo collision algorithm is implemented to investigate the accumulation and dissipation of surface charges on an insulator during flashover with outgassing in vacuum. A layer of positive charges is formed on the insulator after the secondary electrons emission (SEE) reaches saturation. With the build-up of local pressure resulting from gas desorption, the incident energy of electrons is affected by electron-neutral collisions and field distortion, remarkably decreasing the charge density on the insulator. Gas desorption ionization initiates near the anode, culminating, and then abates, followed by a steady and gradual augmentation as the negatively charged surface spreads towards the cathode and halts the SEE nearby. The initiation of flashover development is discussed in detail, and a subdivision of flashover development is proposed, including an anode-initiated desorption ionization avalanche, establishment of a plasma sheath, and plasma expansion. The transform from saturation to explosion of space charges and dissipation of the surface charge are revealed, which can be explained by the competition between multipactor electrons and ionized electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Zhao, Wen-Bin; Ma, Xin-Pei; Li, Guang-Xin; Ma, Kui; Zheng, Nan; Yan, Zhang
Ceramic material has been widely used as insulator in vacuum. Their high hardness and brittle property brings some difficulty in the application. A new kind of machinable ceramic was invented recently. The ceramic can be machined easily and accurately after being sintered, which provides the possibility of making the insulator with fine and complicated configuration. The paper studies its surface insulation performance and flashover phenomena under pulsed excitation in vacuum. The ceramic samples with different crystallization parameters are tested under the vacuum level of 10-4 Pa. The machinable ceramic behaves better surface insulation performance than comparative the Al2O3 and glass sample. The effect of crystallization level on the trap density and flashover current is also presented. After flashover shots many times, the surface microscopic patterns of different samples are observed to investigate the damage status, which can be explained by the thermal damage mechanism.
NASA Astrophysics Data System (ADS)
Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong
2014-09-01
In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
High voltage insulation of bushing for HTS power equipment
NASA Astrophysics Data System (ADS)
Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun
2012-12-01
For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.
Low Current Surface Flashover for Initiation of Electric Propulsion Devices
NASA Astrophysics Data System (ADS)
Dary, Omar G.
There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.
NASA Astrophysics Data System (ADS)
Zhang, Ruiqi; Cai, Li; Chen, Junwu; Wang, Luo; Tan, Xuefeng
2018-04-01
This paper presents a new method to improve 110kV porcelain insulator flashover voltage by adding a metal ring on the insulator cap, which can not only effectively reduce the field strength of the steel cap, but also reduce the tangential field intensity of the umbrella group and inhibit the development of the discharge process, thus the flashover voltage can be increased. The surface strength calculation model of 110kV porcelain insulator is established by the finite element method (FEM), and the parameters of the metal ring are designed by neural network genetic algorithm (BP-GA). Then the experiments were carried out to verify the results, and the results show that the metal ring plate under the optimum parameters can greatly improve the flashover voltage.
Pulse power switch development
NASA Astrophysics Data System (ADS)
Harvey, R.; Gallagher, H.; Hansen, S.
1980-01-01
The objective of this study program has been to define an optimum technical approach to the longer range goal of achieving practical high repetition rate high power spark gap switches. Requirements and possible means of extending the state of the art of crossed field closing switches, vacuum spark gaps, and pressurized spark gaps are presented with emphasis on reliable, efficient and compact devices operable in burst mode at 250-300 kV, 40-60 kA, =1 kHz with approximately 50 nsec pulses rising in approximately 3 ns. Models of these devices are discussed which are based upon published and generated design data and on underlying physical principles. Based upon its relative advantages, limitations and tradeoffs we conclude that the Hughes Crossatron switch is the nearest term approach to reach the switch goal levels. Theoretical, experimental, and computer simulation models of the plasma show a collective ion acceleration mechanism to be active which is predicted to result in current rise times approaching 10 nsec. A preliminary design concept is presented. For faster rise times we have shown a vacuum surface flashover switch to be an interesting candidate. This device is limited by trigger instabilities and will require further basic development. The problem areas relevant to high pressure spark gaps are reviewed.
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
NASA Astrophysics Data System (ADS)
Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping
2017-09-01
The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.
Morphology and FT-IR analysis of anti-pollution flashover coatings with adding nano SiO2 particles
NASA Astrophysics Data System (ADS)
Guo, Kai; Du, Yishu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong
2017-12-01
By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM), infrared spectrometer (FT-IR) and EDS characterization were carried out on the coating surface analysis. Those results has been use to optimize the further design and platform of the enhanced K-PRTV pollution flash coating experiment. It is also to improve the plan formulation, formulation optimization and preparation of the hydrophobic modified K-PRTV which is based on anti-pollution coating experiment. More importantly, the anti-pollution flashover K-PRTV coating with super hydrophobic modified is the great significance for K-PRTV coating.
NASA Astrophysics Data System (ADS)
Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO
2018-02-01
Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
Coleman, J. E.; Moir, D. C.; Crawford, M. T.; ...
2015-03-11
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. Our objective is to quantify the dynamics over the ~100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. We present a qualitative comparison of calculated and measured results, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. Additionally, initial visible spectroscopy measurements will also be presentedmore » confirming the ion species are dominated by hydrogen.« less
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, J. E.; Moir, D. C.; Crawford, M. T.
2015-03-15
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less
Yamano, Y; Takahashi, M; Kobayashi, S; Hanada, M; Ikeda, Y
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500 keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Yamano, Y.; Takahashi, M.; Kobayashi, S.; Hanada, M.; Ikeda, Y.
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong
2018-03-01
Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue
Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistancemore » to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.« less
Modeling of surface flashover on spacecraft
NASA Technical Reports Server (NTRS)
Kushner, Mark J.
1991-01-01
A model for predicting the onset of surface flashover discharges (SFDs) in the context of high voltage pulse power modulators was developed and used to investigate mechanisms leading to the onset of SFDs. We demonstrated that it is possible to analyze surface discharges in a manner similar to gas phase discharges using transport coefficients such as the first Townsend coefficient. Our parameterization of various methods to prevent, or at least delay, the onset of SFDs was not particularly successful in that many of the strategies that we investigated do not yield significantly improved performance. The only safe strategy to reduce the occurrence of SFDs is to prevent the dielectric from being charged in the first place. This leads one to consider passive or active schemes which employ the low pressure of attaching gases which flood the surface prior or coincident to pulsing the high voltage apparatus. Our calculations indicate that only small amounts gas (10s Torr effective pressure at substrate) would be sufficient for many of the anticipated applications. If the surface is flooded only when high voltage is applied across the dielectric, the gas consumption would be nominal.
Skin Effect Simulation for Area 11 Dense Plasma Focus Hot Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehan, B. Timothy
Two arc flashover events occurred at the DPF Area 11 facility. These flashover events happened in the same location on the bank current delivery plates. The damage from one of these events can be seen on the left-hand side of Figure 1. Since the flashovers occurred in the same area of the bank, and the reliability of the bank is important for future DPF experiments, a failure analysis effort was initiated. Part of this failure analysis effort was an effort to understand the physical reasons behind why the flashover happened, and why it happened in the same place twice. Thismore » paper summarizes an effort to simulate the current flow in the bank in order to understand the reasons for the flashover.« less
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Mundson, Chris
1993-01-01
Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Voltage Sag due to Pollution Induced Flashover Across Ceramic Insulator Strings
NASA Astrophysics Data System (ADS)
Reddy B, Subba; Goswami, Arup Kumar
2017-11-01
Voltage sag or voltage dips are significant to industrial reliability. There is a necessity to characterize the feeder level power quality (PQ) and the PQ performance among various utility companies. Contamination/pollution induced flashover is the ultimate consequence of the creeping discharges across the insulator strings which induce voltage sag. These have a severe threat on the safe and reliable operation of power systems. In the present work an attempt has been made to experimentally investigate the occurrence of voltage sag/dips during pollution induced flashovers. Results show significant dip/sag in the voltage magnitude during the flashover process.
External insulation of electrified railway and energy saving analysis
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-04-01
Through the analysis of the formation process of insulator surface fouling and the cause of fouling of the insulator, the electrified railway was explored to utilize the coating material on the surface of the insulator to achieve the effect of flashover prevention. At the same time the purpose of energy conservation can be achieved.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, V.; Grant, C. D.; McCarrick, J. F.
2012-03-01
A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolvedmore » infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.« less
NASCAP simulation of laboratory charging tests using multiple electron guns
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.; Parks, D. E.
1981-01-01
NASCAP calculations have been performed simulating exposure of a spacecraft-like model to multiple electron guns. The results agree well with experiment. It is found that magnetic field effects are fairly small, but substantial differential charging can result from electron gun placement. Conditions for surface flashover are readily achieved.
Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques
NASA Astrophysics Data System (ADS)
Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.
2009-12-01
We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang, E-mail: zhaoliang@ninit.ac.cn; Li, Rui; Zheng, Lei
2015-04-15
The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse widthmore » decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.« less
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Venable, Demetrius D.; Lee, Ja H.; Choi, Eun H.; Kim, Y. K.; Kim, J. H.; Nguyen, D. X.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(sub opt) less than 450 Torr for He and N2. For Argon 20 mTorr is less than P(sub opt) is less than 5 Torr. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z = 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z = 100 ohms.
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Han, K. S.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(opt) less than 450 Torr for He and N2. For Argon 120 mTorr less than P(opt) less than 5 Torr for argon. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z equals 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z equals 100 ohms.
Arc initiation in cathodic arc plasma sources
Anders, Andre
2002-01-01
A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.
Room/corner tests of wall linings with 100/300 kW burner
M. A. Dietenberger; O. Grexa; R. H. White; M. S. Sweet; M. Janssens
1995-01-01
Six room/comer tests of common wall linings were conducted with gypsum-lined ceiling exposed to propane burning at 100 kW for 10 min followed by 300 kW for 10 min. This test protocol is an option provided by ISO 9705. The flashover event occurred at 1,000 kW rate of heat release within several seconds of observing flames out the doorway. The time to flashover of the...
Protection of Electrical Systems from EM Hazards - Design Guide.
1981-09-01
cm) Surface flashover Voltage (KV/cm) This criterion should be met for lighting voltage stresses of either polarity applied at up to 1000 KV/v sec rate...suppressor devices can be predicted. The part failure rate models in the handbook include the effects of part electrical stress , thermal stress , operating... stress . This test series contained over one million device hours of operation at temperatures uF to 145°C. The average duration of testing ranges from
Characterization of the Electrostatic Environment of Launchers
NASA Astrophysics Data System (ADS)
Soyah, Jamila; Mantion, Pascal; Herlem, Yannick
2016-05-01
The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.
Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; McGrath, P.B.; Burns, C.W.
1996-12-31
Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Investigation of the delay time distribution of high power microwave surface flashover
NASA Astrophysics Data System (ADS)
Foster, J.; Krompholz, H.; Neuber, A.
2011-01-01
Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.
The Principle and the Application of Self-cleaning Anti-pollution Coating in Power System
NASA Astrophysics Data System (ADS)
Zhao, Y. J.; Zhang, Z. B.; Liu, Y.; Wang, J. H.; Teng, J. L.; Wu, L. S.; Zhang, Y. L.
2017-11-01
The common problem existed in power system is analyzed in this paper. The main reason for the affection of the safe and stable operation to power equipment is flash-over caused by dirt and discharge. Using the self-cleaning anti-pollution coating in the power equipment surface is the key to solve the problem. In the work, the research progress and design principle about the self-cleaning anti-pollution coating was summarized. Furthermore, the preparation technology was also studied. Finally, the application prospect of hard self-cleaning anti-pollution coating in power system was forecast.
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawano, Taichi; Sakamoto, Naoki; Nakayama, Hiroshi
For a needle-plane electrode system with a barrier, which establishes the electric field across the axis of a groove, creeping discharge characteristics in N2 gas under µs pulse voltage applications have been investigated. The distance h between the barrier surface and the needle tip as well as the distance M between the groove center and the needle tip were changed. In the case of h=0.3mm, when the needle tip is located near the far-side groove edge from the plane electrode (M=0.6mm), the flashover voltage has the maximum value. At that time, a growth of a corona is suppressed near the groove edge. These unique characteristics should associate with a field relaxation.
Development of a head-phantom and measurement setup for lightning effects.
Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael
2016-08-01
Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Somesh Vinayak, E-mail: somesh-vinayak@yahoo.com, E-mail: svtewari@barc.gov.in; Sharma, Archana; Mittal, K. C.
An experimental investigation of surface flashover characteristics of PMMA and POM is studied in compressed nitrogen gas environment with nitrogen as the background gas. The operating pressure range is from 1kg/cm{sup 2} to 4kg/cm{sup 2}. It is observed that the breakdown voltage of PMMA is higher than POM owing to a higher permittivity mismatch between POM- nitrogen interface as compared to the PMMA- nitrogen interface. The reduction in spacer efficiency with pressure for PMMA is 11% as compared to POM which shows a higher reduction of 18%. This paper further emphasizes on the role of energy level and density ofmore » charge carrier trapping centers for a reduced breakdown voltage in POM as compared to PMMA.« less
NASA Astrophysics Data System (ADS)
Fang, Z.; Qiu, Y.; Kuffel, E.
2004-08-01
Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics.
Pulsed Plasma Electron Sources
NASA Astrophysics Data System (ADS)
Krasik, Yakov
2008-11-01
Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E < 10^5 V/cm this plasma is not uniform and there is a time delay in its formation. Thus, there is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E <= 10^5 V/cm. In the present report, several types of plasma electron source (PES) will be considered. The first type of PES is fiber-based cathodes, with and without CsI coating. The operation of these cathodes is governed by the formation of the flashover plasma which serves as a source of electrons. The second type of PES is the ferroelectric plasma source (FPS). The operation of FPS, characterized by the formation of dense surface flashover plasma is accompanied also by the generation of fast microparticles and energetic neutrals. The latter was explained by Coulomb micro-explosions of the ferroelectric surface due to an large time-varying electric field at the front of the expanding plasma. A short review of recent achievements in the operation of a multi-FPS-assisted hollow anode to generate a large area electron beam will be presented as well. Finally, parameters of the plasma produced by a multi-capillary cathode with FPS and velvet igniters will be discussed. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, S.Efimov, J. Felsteiner V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
NASA Astrophysics Data System (ADS)
Li, Jian; Wei, Yuan; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wu, Zhuolin
2017-05-01
Moisture is a significant factor that affects the insulation performance of outdoor high-voltage insulators in power systems. Accumulation of water droplets on insulators causes severe problems such as flashover of insulators and power outage. In this study, we develop a method to fabricate a micro/nano hierarchical super hydrophobic surface. The as-prepared super hydrophobic surface exhibits a water contact angle (WCA) of 160.4 ± 2°, slide angle (SA) less than 1° and surface free energy (SFE) of 5.99 mJ/m2. We investigated the electrohydropdynamic behavior of water droplet on a horizontal super hydrophobic surface compared with hydrophobic RTV silicone rubber surface which was widely used as anti-pollution coating or shed material of composite insulator. Results show that water droplet tended to a self-propelled motion on the super hydrophobic surface while it tended to elongate and break up on the RTV surface. The micro/nano hierarchical surface structure and chemical components with low surface free energy of the super hydrophobic surface jointly contributed to the reduction of skin fraction drag and subsequently made it possible for the motion of water droplet driven by electric field. Furthermore, the self-propelled motion of water droplets could also sweep away contaminations along its moving trace, which provides super hydrophobic surface a promising anti-pollution prospect in power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, Harold
2012-08-31
In earlier work, a study done at the Pacific Northwest National Laboratory examined a NERC proposed standard specifying clearances between vegetation and power lines. The method proposed for calculating the clearances was based on the results of testing for high-voltage line designs. An equation developed to relate the results of testing with rod-plane gaps to proposed tower window sizes was incorporated into the calculations. The equation in question, sometimes called the “Gallet equation,” describes the insulation performance of the atmosphere for air gaps of a few meters. The equation was described in the PNNL study as a good and simple-to-usemore » way to solve a problem made difficult by the nonlinear interactions of the variables. For calculations based on this equation, a certain set of assumptions must be made. In particular, a value for a quantity called the “gap factor” is needed. This is the amount by which the gap to be modeled by the equation is stronger than the reference gap that was used in developing the Gallet equation. That reference gap is the gap between a rod and a plane. This follow-on report examines the effect on flashover probabilities of assuming an incorrect value for the gap factor. In particular, the flashover probability is found that would result from using a value of 1.3 when a gap factor of 1.0 should be applied. It is shown that with these assumptions the probability of a flashover changes from being extremely unlikely (about 1 in 1000 chance) to a virtual certainty (about 97% chance).« less
NASA Astrophysics Data System (ADS)
Fang, Zhi; Qiu, Yuchang; Wang, Hui; E, Kuffel
2007-10-01
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.
BROMINATED FLAME RETARDANTS: WHY DO WE CARE?
Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2010 CFR
2010-07-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2011 CFR
2011-01-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
Mechanical switching of ferroelectric domains beyond flexoelectricity
NASA Astrophysics Data System (ADS)
Chen, Weijin; Liu, Jianyi; Ma, Lele; Liu, Linjie; Jiang, G. L.; Zheng, Yue
2018-02-01
The resurgence of interest in flexoelectricity has prompted discussions on the feasibility of switching ferroelectric domains 'non-electrically'. In this work, we perform three-dimensional thermodynamic simulations in combination with ab initio calculations and effective Hamiltonian simulations to demonstrate the great effects of surface screening and surface bonding on ferroelectric domain switching triggered by local tip loading. A three-dimensional simulation scheme has been developed to capture the tip-induced domain switching behavior in ferroelectric thin films by adequately taking into account the surface screening effect and surface bonding effect of the ferroelectric film, as well as the finite elastic stiffness of the substrate and the electrode layers. The major findings are as follows. (i) Compared with flexoelectricity, surface effects can be overwhelming and lead to much more efficient mechanical switching caused by tip loading. (ii) The surface-assisted mechanical switching can be bi-directional without the necessity of reversing strain gradients. (iii) A mode transition from local to propagating domain switching occurs when the screening below a critical value. A ripple effect of domain switching appears with the formation of concentric loop domains. (iv) The ripple effect can lead to 'domain interference' and a deterministic writing of confined loop domain patterns by local excitations. Our study reveals the hidden switching mechanisms of ferroelectric domains and the possible roles of surface in mechanical switching. The ripple effect of domain switching, which is believed to be general in dipole systems, broadens our current knowledge of domain engineering.
Molecular switches and motors on surfaces.
Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S
2013-01-01
Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.
A ceramic radial insulation structure for a relativistic electron beam vacuum diode.
Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong
2008-06-01
For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces
NASA Astrophysics Data System (ADS)
Weinelt, Martin; von Oppen, Felix
2012-10-01
In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on metal surfaces, focusing on electronic and vibrational spectroscopy in one case and scanning tunneling microscopy studies in the other. Original research articles describe results in many aspects of the field, including: Self-assembly, self-organization, and controlled growth of molecular layers on various substrates. Highly-ordered arrays provide model systems with extraordinary structural properties, allowing one to adjust interactions between molecules and between molecule and substrate, and can be robustly prepared from solution, an essential prerequisite for applications. Conformational or electronic switching of molecules adsorbed at metal and semiconductor surfaces. These studies highlight the elementary processes governing molecular switching at surfaces as well as the wide range of possible stimuli. Carbon-based substrates such as graphene or carbon nanotubes. These substrates are attractive due to their effective two-dimensionality which implies that switching of adsorbed molecules can effect a significant back-action on the substrate. Mechanisms of conformational switching. Several contributions study the role of electron-vibron coupling and heating in current-induced conformational switching. We hope that the collection of articles presented here will stimulate and encourage researchers in surface physics and interfacial chemistry to contribute to the still emerging field of molecular switches at surfaces. We wish to acknowledge the support and input from many colleagues in preparing this special section. A significant part of this work has been conducted in the framework of the Sonderforschungsbereich 658 Elementary Processes in Molecular Switches at Surfaces of the Deutsche Forschungsgemeinschaft, to which we are grateful for financial support. Molecular surfaces at switches contents Molecular switches at surfacesMartin Weinelt and Felix von Oppen Optically and thermally induced molecular switching processes at metal surfacesPetra Tegeder Effects of electron-vibration coupling in transport through single moleculesKatharina J Franke and Jose Ignacio Pascual Vibrational heating in single-molecule switches: an energy-dependent density-of-states approachT Brumme, R Gutierrez and G Cuniberti Reversible switching of single tin phthalocyanine molecules on the InAs(111)A surfaceC Nacci, K Kanisawa and S Fölsch Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube-spiropyran distanceP Bluemmel, A Setaro, C Maity, S Hecht and S Reich Carbon nanotubes as substrates for molecular spiropyran-based switchesE Malic, A Setaro, P Bluemmel, Carlos F Sanz-Navarro, Pablo Ordejón, S Reich and A Knorr Ultrafast dynamics of dithienylethenes differently linked to the surface of TiO2 nanoparticlesLars Dworak, Marc Zastrow, Gehad Zeyat, Karola Rück-Braun and Josef Wachtveitl Switching the electronic properties of Co-octaethylporphyrin molecules on oxygen-covered Ni films by NO adsorptionC F Hermanns, M Bernien, A Krüger, J Miguel and W Kuch STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100)K Zenichowski, Ch Nacci, S Fölsch, J Dokić, T Klamroth and P Saalfrank A switch based on self-assembled thymineFatih Kalkan, Michael Mehlhorn and Karina Morgenstern The growth and electronic structure of azobenzene-based functional molecules on layered crystalsJ Iwicki, E Ludwig, J Buck, M Kalläne, F Köhler, R Herges, L Kipp and K Rossnagel Voltage-dependent conductance states of a single-molecule junctionY F Wang, N Néel, J Kröger, H Vázquez, M Brandbyge, B Wang and R Berndt Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulationJohannes Mielke, Sofia Selvanathan, Maike Peters, Jutta Schwarz, Stefan Hecht and Leonhard Grill Preparing and regulating a bi-stable molecular switch by atomic manipulationS Sakulsermsuk, R E Palmer and P A Sloan Mixed self-assembled monolayers of azobenzene photoswitches with trifluoromethyl and cyano end groupsDaniel Brete, Daniel Przyrembel, Christian Eickhoff, Robert Carley, Wolfgang Freyer, Karsten Reuter, Cornelius Gahl and Martin Weinelt Reversible electron-induced cis-trans isomerization mediated by intermolecular interactionsCh Lotze, Y Luo, M Corso, K J Franke, R Haag and J I Pascual Transport properties of graphene functionalized with molecular switchesNiels Bode, Eros Mariani and Felix von Oppen
Ievlev, Anton V.; Maksymovych, Petro; Trassin, Morgan; ...
2016-10-11
Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence towards the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristinemore » surfaces contain ions (e.g. Cl -) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. Finally, at higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.« less
Fire endurance research at the Forest Products Laboratory
R. H. White
1990-01-01
Fire endurance research activities and facilities at the FPL concern the ability of a wood member or assembly to withstand the effects of fire while acting as a fire barrier and supporting a load. Fire endurance is generally concerned with the post-flashover portion of the fire. The importance of fire endurance in fire safety is reflected in building code requirements...
Hatch, G.L.; Brummond, W.A.; Barrus, D.M.
1984-04-05
The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.
An all-optical switch based on a surface plasmon polariton resonator
NASA Astrophysics Data System (ADS)
Pan, Zijuan; Lang, Peilin; Duan, Gaoyan
2018-04-01
All-optical switch is one of the key parts of optical circuit. We employ a temperature-sensitive resonator to form an optical switch. The resonator deforms under the applied light and adjusts the transmittance of the structure. To our knowledge, this is the first design of an all-optical surface plasmon polariton (SPP) switch based on the heat deformation effect.
NASA Astrophysics Data System (ADS)
Lipatov, E. I.; Tarasenko, V. F.
2008-03-01
The optoelectronic switching in two natural diamond samples of type 2-A is studied at voltages up to 1000 V and the energy density of control 60-ns, 308-nm laser pulses up to 0.6 J cm-2. It is shown that the design of a diamond switch affects the switching efficiency. When the energy density exceeds 0.2 J cm-2 and the interelectrode surface is completely illuminated, the surface breakdown is initiated by UV radiation, which shunts the current flow through the diamond crystal. When the illumination of the interelectrode surface is excluded, the surface breakdown does not occur. The threshold radiation densities sufficient for initiating the surface breakdown are determined for electric field strengths up to 10 kV cm-1.
Finite element based contact analysis of radio frequency MEMs switch membrane surfaces
NASA Astrophysics Data System (ADS)
Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen
2017-10-01
Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire
Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.
Modified corrosion protection coatings for Concrete tower of Transmission line
NASA Astrophysics Data System (ADS)
Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin
2017-12-01
By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.
Wilcox, R.B.
1991-09-10
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.
Terahertz optoelectronics with surface plasmon polariton diode.
Vinnakota, Raj K; Genov, Dentcho A
2014-05-09
The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.
Wilcox, Russell B.
1991-01-01
A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.
A fault-tolerant strategy based on SMC for current-controlled converters
NASA Astrophysics Data System (ADS)
Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.
2018-05-01
The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.
Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales
NASA Technical Reports Server (NTRS)
Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.
2004-01-01
The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.
Vacuum Flashover Characteristics of Laminated Polystyrene Insulators
1999-06-01
space charge dominated. A minimum wafer thickness and/or the number of wafers required for the application can be calculated. Equation 1 represents...toward the anode. qn is the fraction of charge deposited on that section of the stack. Equation 1 comes from the assumption that a space charge ...Rodriguez, A.E., and Honig, E.M., "Characterization of an Insulated Space Charge Limited Non-Relativistic Electron Beam Diode Operating at 300 kV/cm
Kapton wire concerns for aerospace vehicles
NASA Technical Reports Server (NTRS)
Vanlaak, J.
1994-01-01
This presentation outlines the background to the concern of using Kapton wire for aerospace vehicles and proposes it should not be utilized in new builds for spacecraft power applications. A NASA HQ investigation concluded that the risk of Kapton arc-tracking/flashover is a credible threat to the shuttle orbiter, but rationale is presented for continued flight for the time being. Recommendations for the protection of the shuttle and the build of the space station are given.
Switching State-Feedback LPV Control with Uncertain Scheduling Parameters
NASA Technical Reports Server (NTRS)
He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.
2017-01-01
This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.
Flexible circuits with integrated switches for robotic shape sensing
NASA Astrophysics Data System (ADS)
Harnett, C. K.
2016-05-01
Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.
30 CFR 57.12002 - Controls and switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Controls and switches. 57.12002 Section 57... Surface and Underground § 57.12002 Controls and switches. Electric equipment and circuits shall be provided with switches or other controls. Such switches or controls shall be of approved design and...
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1986-05-02
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
Explosive-driven, high speed, arcless switch
Skogmo, Phillip J.; Tucker, Tillman J.
1987-01-01
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
NASA Astrophysics Data System (ADS)
Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang
2018-04-01
Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.
NASA Astrophysics Data System (ADS)
Das, Nilanjan
Among the various candidates for non-volatile random access memory (RAM), interfacial resistive switch in Ag/Pr0.7Ca0.3 MnO3 (PCMO) configuration has drawn major attention in recent years due to its potential as a high storage density (˜ terabyte) device. However, the diverse nature of the resistive switch in different systems makes the development of a unifying model for its underlying physics very difficult. This dissertation will address both issues, namely, characterization of switches for device applications and development of a system-independent generic model, in detail. In our work, we have studied the properties electric pulse induced interfacial switch in electrode/PCMO system. A very fast speed ("write speed") of 100 ns, threshold ("programming voltage") as low as 2 V (for micro electrodes), and non-volatility ("data retention") of switched states have been achieved. A clear distinction between fast switch and sub-threshold slow quasistatic-dc switch has been made. Results obtained from time-dependence studies and impedance spectroscopy suggest that defect creation/annihilation, such as broken bonds (under very high field at interface, 107V/cm), is likely the mechanism for the sub-micros fast switching. On the other hand, slow accumulative process, such as electromigration of point defects, are responsible for the subthreshold quasi-dc switch. Scanning probe imaging has revealed the nanoscale inhomogeneity of the switched surfaces, essential for observing a resistive switch. Evolution of such structures has been observed under surface pre-training. Device scalability has been tested by creating reversible modification of surface conductivities with atomic force microscopy, thus creating the "nano-switch" (limited to a region of 10--100 nm).
1980-07-01
the polarity indicators. Martin’s relationship describes the conditions present when flashover occurs. W. C. Crewson of Pulsar Associates, Inc...I 0 co I I II I I I L- - a’ S-- CD cm 40 S - L Cd) 00 00r 0- L- a’OI CMI 0~ >’i I C 0 u 0CJ CA 0 0 0 m. r- Lo . fl Lo V’ 41.0 r - C 09 4 J -C O O l .oC
Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance
Ondrej Grexa; Mark A. Dietenberger; Robert H. White
2012-01-01
This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
Membrane Switches Check Seal Pressure
NASA Technical Reports Server (NTRS)
Hodgetts, P. J.; Stuckenberg, F. H.; Morrissey, E. T.
1984-01-01
Array of flexible membrane switches used to indicate closure of seal. Switch membrane responds to pressure exerted by rigid surface on compliant sealing medium and provides switch contacts monitored electronically. Membrane switches connected in series and placed under seal. When all switches are closed lamp or LED lights up, indicating requisite seal pressure has been realized at all switch positions. Principle used to ensure integrity of seals on refrigerator and oven doors, weatherstripping, hatches, spacecraft, airplanes, and submarines.
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1987-07-14
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.
Hatch, George L.; Brummond, William A.; Barrus, Donald M.
1986-01-01
A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.
Current-induced switching of magnetic molecules on topological insulator surfaces
NASA Astrophysics Data System (ADS)
Locane, Elina; Brouwer, Piet W.
2017-03-01
Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.
NASA Astrophysics Data System (ADS)
Tian, Ziqi; Wen, Jin; Ma, Jing
2013-07-01
It is a challenge to simulate the switching process of functional self-assembled monolayers (SAMs) on metal surfaces, since the systems consist of thousands of atoms and the switching is triggered by quantum-mechanical events. Herein a molecular dynamics simulation with a reactive rotation potential of N=N bond is implemented to investigate the dynamic conformational changes and packing effects on the stimuli-responsive isomerization of the terminally thiol functionalized azobiphenyls (AZOs), which are bound on the Au(111) surface. To, respectively, distinguish the time evolutions that start from cis and trans initial configurations, two different functions are established to model the potential energy curves for cis-to-trans and trans-to-cis transitions, instead of the only one cosine function used in the conventional non-reactive force fields. In order to simulate the conformation transitions of the AZO film on surface, a random switching function, depending on the N=N twisting angle, is constructed to consider both forward and backward cis/trans isomerization events and to trigger the reaction by changing the N atom types automatically. The factors that will influence the isomerization process, including the choice of ensembles and thermostat algorithms, the time intervals separating each switching, and the forms of the switching function, are systematically tested. Most AZO molecules switch from the cis to trans configuration with a coverage of 5.76 × 10-6 mol/m2 on a picosecond time scale, and a low coverage might make the switching irreversible, which is in agreement with the experiments.
30 CFR 57.12018 - Identification of power switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Identification of power switches. 57.12018 Section 57.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12018 Identification of power switches. Principal power switches...
30 CFR 57.12018 - Identification of power switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Identification of power switches. 57.12018 Section 57.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12018 Identification of power switches. Principal power switches...
30 CFR 57.12018 - Identification of power switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of power switches. 57.12018 Section 57.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12018 Identification of power switches. Principal power switches...
30 CFR 57.12018 - Identification of power switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Identification of power switches. 57.12018 Section 57.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12018 Identification of power switches. Principal power switches...
30 CFR 57.12018 - Identification of power switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Identification of power switches. 57.12018 Section 57.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12018 Identification of power switches. Principal power switches...
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)
2005-01-01
Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.
2006-07-01
sites. The strength member of the safety core insulators is a fiberglass belt wrapped around pins in the end fittings. Porcelain tubes cover the belt... porcelain tube and heavily tracked the fiberglass belt but left the belt intact structurally (Figure 1). Figure 1. Cutler safety core insulator ...fail-safe insulators . For these tests, the porcelain tube of the safety core insulator was replaced with a plastic see-through tube. The test report [5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, Harold
2012-03-31
NERC has proposed a standard to use to specify clearances between vegetation and power lines. The purpose of the rule is to reduce the probability of flashover to a calculably low level. This report was commissioned by FERC’s Office of Electrical Reliability. The scope of the study was analysis of the mathematics and documentation of the technical justification behind the application of the Gallet equation and the assumptions used in the technical reference paper
Advanced Radiation Theory Support Annual Report 2003, Final Report
2004-04-19
diameter wires would lose a higher mass fraction. Table 2. Energy Transfers for Ti Loads Dia. & Case H 2 H13 Mass -a-m Z,DE kJ kJ Pg 1000 - Z 428.2...issues covered are (1) issues and directions for future research, (2) zero- and one-dimensional modeling of DQ experiments, (3) enhanced energy ...coupling and x-ray emission in z-pinch implosions, (4) confinement and compression of magnetic flux by plasma shells, and (6) flashover and energy coupling
30 CFR 77.704-9 - Operating disconnecting or cutout switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...
30 CFR 77.704-9 - Operating disconnecting or cutout switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...
30 CFR 77.704-9 - Operating disconnecting or cutout switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...
30 CFR 77.704-9 - Operating disconnecting or cutout switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...
30 CFR 77.704-9 - Operating disconnecting or cutout switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
2017-11-01
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Ultrafast Beam Switching Using Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.
Direct measurement of photomechanical switching cross-sections of single-molecules on a surface
NASA Astrophysics Data System (ADS)
Cho, Jongweon; Comstock, Matthew J.; Levy, Niv; Berbil-Bautista, Luis; Lauterwasser, Frank; Frechet, Jean M. J.; Crommie, Michael F.
2008-03-01
The photomechanical switching of photoactive molecules in solution strongly depends on the wavelength of light. This dependence is crucial to reliably control the photomechanical state of target molecules. Recently, reversible photomechanical switching of individual azobenzene molecular derivatives on the Au(111) surface has been reported for one particular wavelength of UV illumination [1]. To further understand this process and its possible applications in future nanotechnologies, we have investigated photomechanical switching rates and saturation behavior for azobenzene molecular derivatives at a surface under optical stimulation at different wavelengths. Using single-molecule-resolved scanning tunneling microscopy, we have determined both the forward and reverse photomechanical molecular switching cross-sections at different wavelengths. In a dramatic departure from solution-based environments, visible light does not efficiently reverse the photoreaction. [1] Matthew J. Comstock, Niv Levy, Armen Kirakosian, Jongweon Cho, Frank Lauterwasser, Jessica H. Harvey, David A. Strubbe, Jean M. J. Fr'echet, Dirk Trauner, Steven G. Louie, and Michael F. Crommie, Phys. Rev. Lett. 99, 038301 (2007)
Repetitive switching for an electromagnetic rail gun
NASA Astrophysics Data System (ADS)
Gruden, J. M.
1983-12-01
Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
30 CFR 57.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Design of switches and starting boxes. 57.12041 Section 57.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12041 Design of switches and starting boxes. Switches and starting...
30 CFR 75.519-1 - Main power circuits; disconnecting switches; locations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main power circuits; disconnecting switches...-General § 75.519-1 Main power circuits; disconnecting switches; locations. Section 75.519 requires (a) that a disconnecting switch be installed on the surface at a point within 500 feet of the place where...
30 CFR 75.519-1 - Main power circuits; disconnecting switches; locations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main power circuits; disconnecting switches...-General § 75.519-1 Main power circuits; disconnecting switches; locations. Section 75.519 requires (a) that a disconnecting switch be installed on the surface at a point within 500 feet of the place where...
30 CFR 57.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of switches and starting boxes. 57.12041 Section 57.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12041 Design of switches and starting boxes. Switches and starting...
30 CFR 57.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Design of switches and starting boxes. 57.12041 Section 57.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12041 Design of switches and starting boxes. Switches and starting...
30 CFR 57.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Design of switches and starting boxes. 57.12041 Section 57.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12041 Design of switches and starting boxes. Switches and starting...
30 CFR 75.519-1 - Main power circuits; disconnecting switches; locations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main power circuits; disconnecting switches...-General § 75.519-1 Main power circuits; disconnecting switches; locations. Section 75.519 requires (a) that a disconnecting switch be installed on the surface at a point within 500 feet of the place where...
30 CFR 57.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Design of switches and starting boxes. 57.12041 Section 57.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12041 Design of switches and starting boxes. Switches and starting...
30 CFR 75.519-1 - Main power circuits; disconnecting switches; locations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main power circuits; disconnecting switches...-General § 75.519-1 Main power circuits; disconnecting switches; locations. Section 75.519 requires (a) that a disconnecting switch be installed on the surface at a point within 500 feet of the place where...
30 CFR 75.519-1 - Main power circuits; disconnecting switches; locations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main power circuits; disconnecting switches...-General § 75.519-1 Main power circuits; disconnecting switches; locations. Section 75.519 requires (a) that a disconnecting switch be installed on the surface at a point within 500 feet of the place where...
Four-channel surface coil array for sequential CW-EPR image acquisition
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi
2013-09-01
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
Spark gap switch with spiral gas flow
Brucker, John P.
1989-01-01
A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.
30 CFR 77.1800 - Cutout switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Trolley... be provided with cutout switches at intervals of not more than 2,000 feet and near the beginning of...
77 FR 45327 - Petition for Rulemaking To Adopt Revised Competitive Switching Rules
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board 49 CFR Chapter X [Docket No. EP-711] Petition for Rulemaking To Adopt Revised Competitive Switching Rules AGENCY: Surface Transportation Board... evidence about the impact of the proposal, if it were to be adopted. Specifically, the Board is seeking...
78 FR 49721 - Petition for Rulemaking To Adopt Revised Competitive Switching Rules
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board 49 CFR Chapter X [Docket No. EP 711] Petition for Rulemaking To Adopt Revised Competitive Switching Rules AGENCY: Surface Transportation Board... Board sought empirical information about the impact of the proposal if it were to be adopted. The Board...
Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip
Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; ...
2015-06-19
The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-09-01
We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.
Two intermediate states of the conformational switch in dual specificity phosphatase 13a.
Wei, Chun Hwa; Min, Hee Gyeong; Kim, Myeongbin; Kim, Gwan Hee; Chun, Ha-Jung; Ryu, Seong Eon
2018-02-01
Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrical properties of double layer dielectric structures for space technology
NASA Astrophysics Data System (ADS)
Lian, Anqing
1993-04-01
Polymeric films such as polyimide (PI) and polyethylene terephthalate (PET) are used in space technology as thermal blankets. Thin SiO2 and SiN coatings plasma deposited onto PI and PET surfaces were proposed to protect the blanket materials against the space environment. The electrical properties of this kind of dual layer dielectric structure were investigated to understand the mechanisms for suppressing charge accumulation and flashover. Bulk and surface electrical conductivities of thin single-layer PI and PET samples and of the dual layer SiO2 and SiN combinations with PI and PET were measured in a range of applied electrical fields. The capacitance voltage (CV) technique was used for analyzing charge transport and distribution in the structures. The electric current in the bulk of the SiO2/PI and SiN/PI samples was found to depend on the polarity of the electric field. Other samples did not exhibit any such polarity effect. The polarity dependence is attributed to charge trapping at the PI/plasma deposit interface. The CV characteristics of the Al-PI-SiO2-Si structure confirm that charges which can modify the local electric field can be trapped near the interface. A model is proposed to interpret the properties of the currents in dual layer structures. This model can semi-quantitatively explain all the observed results.
NASA Astrophysics Data System (ADS)
Woods, J.; O'Handley, R. C.
1990-05-01
The polarization of low-energy secondary electrons emitted from iron- and cobalt-based amorphous melt-spun ribbons is measured as a function of the applied in-plane magnetic field yielding surface hysteresis loops. The polarization is measured in real time up to a frequency of 10 kHz and hysteresis loops are displayed on an oscilloscope. The bulk losses are measured on the same samples in the same configuration with a secondary winding. The area of the loop (energy loss/cycle) is measured as a function of applied magnetic field switching rate for both the surface polarization and bulk magnetization measurements. The surface loss per cycle increases linearly with the switching rate and the bulk loss per cycle increases much more slowly with switching rate. This is the first discrimination of bulk and surface losses we are aware of.
Performance improvement of long-range surface plasmon structure for use in an all-optical switch
NASA Astrophysics Data System (ADS)
Jandaghian, Ali; Lotfalian, Ali; Kouhkan, Mohsen; Mohajerani, Ezeddin
2017-12-01
This paper presents important parameters in performance of long-range surface plasmon (LRSP) structure (SF4/PVA/silver/PMMA-DR1) that are improved. We select poly(vinyl alcohol) (PVA) as the first dielectric layer due to its water solubility and good optical properties. The thickness of PVA and silver layers is optimized by transfer matrix method based on Fresnel equations. Surface morphologies of PVA and silver surfaces are analyzed by AFM imaging due to their important role in the performance of an LRSP structure. Furthermore, the sensitivity of an all-optical switch based on plasmon is investigated. In order to compare the sensitivity of LRSP and conventional surface plasmon (SP) structures in switching mode, full wide of half maximum, resonance angles, and pump powers of both structures are measured by a custom-made optical setup based on angular interrogation with a precision of 0.01 deg. Finally, we conclude that for creating equal signal levels in both samples, the required pump power for LRSP structure was about three times less than that for conventional SP; thus, these results led to power savings in optical switches.
Lightning protection of distribution lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, T.E.; Short, T.A.; Anderson, J.G.
1994-01-01
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.
Event-Related Potential Responses to Task Switching Are Sensitive to Choice of Spatial Filter
Wong, Aaron S. W.; Cooper, Patrick S.; Conley, Alexander C.; McKewen, Montana; Fulham, W. Ross; Michie, Patricia T.; Karayanidis, Frini
2018-01-01
Event-related potential (ERP) studies using the task-switching paradigm show that multiple ERP components are modulated by activation of proactive control processes involved in preparing to repeat or switch task and reactive control processes involved in implementation of the current or new task. Our understanding of the functional significance of these ERP components has been hampered by variability in their robustness, as well as their temporal and scalp distribution across studies. The aim of this study is to examine the effect of choice of reference electrode or spatial filter on the number, timing and scalp distribution of ERP elicited during task-switching. We compared four configurations, including the two most common (i.e., average mastoid reference and common average reference) and two novel ones that aim to reduce volume conduction (i.e., reference electrode standardization technique (REST) and surface Laplacian) on mixing cost and switch cost effects in cue-locked and target-locked ERP waveforms in 201 healthy participants. All four spatial filters showed the same well-characterized ERP components that are typically seen in task-switching paradigms: the cue-locked switch positivity and target-locked N2/P3 effect. However, both the number of ERP effects associated with mixing and switch cost, and their temporal and spatial resolution were greater with the surface Laplacian transformation which revealed rapid temporal adjustments that were not identifiable with other spatial filters. We conclude that the surface Laplacian transformation may be more suited to characterize EEG signatures of complex spatiotemporal networks involved in cognitive control. PMID:29568260
2015-01-01
Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057
Detection and size analysis of proteins with switchable DNA layers.
Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard
2009-04-01
We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
Tokuda, Naoto; Kitaoka, Yasushi; Matsuzawa, Akiko; Tsukamoto, Ayaka; Sase, Kana; Sakae, Shinsuke; Takagi, Hitoshi
2017-01-01
The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservative-free-Tafluprost group (20 eyes). The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500), superficial punctate keratopathy (AD classification), and tear film breakup time (TBUT) were assessed before switching and at 12 weeks after switching. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.
Dynamic switching enables efficient bacterial colonization in flow.
Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert
2018-05-22
Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.
Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.
Lijun Long; Jun Zhao
2017-04-01
In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.
NASA Astrophysics Data System (ADS)
Tao, Ye; Ding, Wentao; Wang, Zhongqiang; Xu, Haiyang; Zhao, Xiaoning; Li, Xuhong; Liu, Weizhen; Ma, Jiangang; Liu, Yichun
2018-05-01
In this work, we demonstrated an effective method to improve the switching reliability of HfOx based RRAM device by inserting mountain-like surface-graphited carbon (MSGC) layer. The MSGC layer was fabricated through thermal annealing of amorphous carbon (a-C) film with high sp2 proportion (49.7%) under 500 °C on Pt substrate, whose characteristics were validated by XPS and Raman spectrums. The local electric-field (LEF) was enhanced around the nanoscale tips of MSGC layer due to large surface curvature, which leads to simplified CFs and localization of resistive switching region. It takes responsibility to the reduction of high/low resistance states (HRS/LRS) fluctuation from 173.8%/64.9% to 23.6%/6.5%, respectively. In addition, the resulting RRAM devices exhibited fast switching speed (<65 ns), good retention (>104 s at 85 °C) and low cycling degradation. This method could be promising to develop reliable and repeatable high-performance RRAM for practical applications.
Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P
2011-11-01
A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows. Copyright © 2011 Elsevier Inc. All rights reserved.
Variable Structure Control of a Hand-Launched Glider
NASA Technical Reports Server (NTRS)
Anderson, Mark R.; Waszak, Martin R.
2005-01-01
Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.
Cheng, Xin-bing; Liu, Jin-liang; Qian, Bao-liang; Zhang, Yu; Zhang, Hong-bo
2009-11-01
A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.
A study of dielectric breakdown along insulators surrounding conductors in liquid argon
Lockwitz, Sarah; Jostlein, Hans
2016-03-22
High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less
NASA Astrophysics Data System (ADS)
Staple, Bevan D.; Muller, Lilac; Miller, David C.
2003-01-01
We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (
Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films
NASA Astrophysics Data System (ADS)
Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.
2012-08-01
Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.
Simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, S. H.
1984-01-01
A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.
Switching terahertz wave with grating-coupled Kretschmann configuration.
Jiu-Sheng, Li
2017-08-07
We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.
Electrode erosion properties of gas spark switches for fast linear transformer drivers
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2017-12-01
Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.
NASA Astrophysics Data System (ADS)
Banerjee, Bibaswan
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
Ultrafast Directional Beam Switching in Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.
MEMS switches having non-metallic crossbeams
NASA Technical Reports Server (NTRS)
Scardelletti, Maximillian C (Inventor)
2009-01-01
A RF MEMS switch comprising a crossbeam of SiC, supported by at least one leg above a substrate and above a plurality of transmission lines forming a CPW. Bias is provided by at least one layer of metal disposed on a top surface of the SiC crossbeam, such as a layer of chromium followed by a layer of gold, and extending beyond the switch to a biasing pad on the substrate. The switch utilizes stress and conductivity-controlled non-metallic thin cantilevers or bridges, thereby improving the RF characteristics and operational reliability of the switch. The switch can be fabricated with conventional silicon integrated circuit (IC) processing techniques. The design of the switch is very versatile and can be implemented in many transmission line mediums.
Trench formation in <110> silicon for millimeter-wave switching device
NASA Astrophysics Data System (ADS)
Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.
1999-11-01
Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.
Dunn, Katherine E; Trefzer, Martin A; Johnson, Steven; Tyrrell, Andy M
2016-08-01
Molecular computation with DNA has great potential for low power, highly parallel information processing in a biological or biochemical context. However, significant challenges remain for the field of DNA computation. New technology is needed to allow multiplexed label-free readout and to enable regulation of molecular state without addition of new DNA strands. These capabilities could be provided by hybrid bioelectronic systems in which biomolecular computing is integrated with conventional electronics through immobilization of DNA machines on the surface of electronic circuitry. Here we present a quantitative experimental analysis of a surface-immobilized OR gate made from DNA and driven by strand displacement. The purpose of our work is to examine the performance of a simple representative surface-immobilized DNA logic machine, to provide valuable information for future work on hybrid bioelectronic systems involving DNA devices. We used a quartz crystal microbalance to examine a DNA monolayer containing approximately 5×10(11)gatescm(-2), with an inter-gate separation of approximately 14nm, and we found that the ensemble of gates took approximately 6min to switch. The gates could be switched repeatedly, but the switching efficiency was significantly degraded on the second and subsequent cycles when the binding site for the input was near to the surface. Otherwise, the switching efficiency could be 80% or better, and the power dissipated by the ensemble of gates during switching was approximately 0.1nWcm(-2), which is orders of magnitude less than the power dissipated during switching of an equivalent array of transistors. We propose an architecture for hybrid DNA-electronic systems in which information can be stored and processed, either in series or in parallel, by a combination of molecular machines and conventional electronics. In this architecture, information can flow freely and in both directions between the solution-phase and the underlying electronics via surface-immobilized DNA machines that provide the interface between the molecular and electronic domains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fallarino, Lorenzo; Berger, Andreas; Binek, Christian
2015-02-01
A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001 ) textured chromia thin films strongly support this model of the magnetic reversal mechanism.
Moore, Amanda M; Dameron, Arrelaine A; Mantooth, Brent A; Smith, Rachel K; Fuchs, Daniel J; Ciszek, Jacob W; Maya, Francisco; Yao, Yuxing; Tour, James M; Weiss, Paul S
2006-02-15
Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.
Ahn, Hyun S; Bard, Allen J
2015-12-15
In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.
NASA Astrophysics Data System (ADS)
Lee, Hong-Sub; Park, Chang-Sun; Park, Hyung-Ho
2014-05-01
This study demonstrated that the resistive switching voltage of perovskite manganite material could be controlled by A-site cation substitution in "A" MnO3 perovskite manganite structure. A partial substitution of La3+ in La0.7Sr0.3MnO3 with smaller cation Gd3+ induced A-site vacancy of the largest Sr2+ cation with surface segregation of SrOy due to ionic size mismatch, and the induced vacancies reduced migration energy barrier. The operating voltage decreased from 3.5 V to 2.5 V due to a favorable condition for electrochemical migration and redox of oxygen ions. Moreover, surface-segregated SrOy was enhanced with Gd-substitution and the SrOy reduced Schottky-like barrier height and resistive switching ratio from the potential drop and screening effect. The relationship between A-site vacancy generation resulting in surface segregation of SrOy and resistive switching behavior was also investigated by energy resolved x-ray photoelectron spectroscopy, O 1s near edge x-ray absorption spectroscopy, and current voltage measurement.
Novel Material Integration for Reliable and Energy-Efficient NEM Relay Technology
NASA Astrophysics Data System (ADS)
Chen, I.-Ru
Energy-efficient switching devices have become ever more important with the emergence of ubiquitous computing. NEM relays are promising to complement CMOS transistors as circuit building blocks for future ultra-low-power information processing, and as such have recently attracted significant attention from the semiconductor industry and researchers. Relay technology potentially can overcome the energy efficiency limit for conventional CMOS technology due to several key characteristics, including zero OFF-state leakage, abrupt switching behavior, and potentially very low active energy consumption. However, two key issues must be addressed for relay technology to reach its full potential: surface oxide formation at the contacting surfaces leading to increased ON-state resistance after switching, and high switching voltages due to strain gradient present within the relay structure. This dissertation advances NEM relay technology by investigating solutions to both of these pressing issues. Ruthenium, whose native oxide is conductive, is proposed as the contacting material to improve relay ON-state resistance stability. Ruthenium-contact relays are fabricated after overcoming several process integration challenges, and show superior ON-state resistance stability in electrical measurements and extended device lifetime. The relay structural film is optimized via stress matching among all layers within the structure, to provide lower strain gradient (below 10E-3/microm -1) and hence lower switching voltage. These advancements in relay technology, along with the integration of a metallic interconnect layer, enable complex relay-based circuit demonstration. In addition to the experimental efforts, this dissertation theoretically analyzes the energy efficiency limit of a NEM switch, which is generally believed to be limited by the surface adhesion energy. New compact (<1 microm2 footprint), low-voltage (<0.1 V) switch designs are proposed to overcome this limit. The results pave a pathway to scaled energy-efficient electronic device technology.
NASA Astrophysics Data System (ADS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
32. TYPICAL BRYANT ITEMS FROM THE 1930S; TOP ROW LEFT ...
32. TYPICAL BRYANT ITEMS FROM THE 1930S; TOP ROW LEFT TO RIGHT: PORCELAIN CASED SWITCH, ROTARY SWITCH, SHORTING PLUG TO BYPASS FUSE; SECOND ROW: BRASS INCANDESCENT LAMP SURFACE RECEPTACLE, INCANDESCENT LAMPHOLDER WITH ADAPTER FOR GLASS GLOBE; THIRD ROW: PORCELAIN BASE ROTARY SWITCH, APPLIANCE BREAKER WITH COVER REMOVED, APPLIANCE BREAKER - Bryant Electric Company, 1421 State Street, Bridgeport, Fairfield County, CT
Media impact switching surface during an infectious disease outbreak
NASA Astrophysics Data System (ADS)
Xiao, Yanni; Tang, Sanyi; Wu, Jianhong
2015-01-01
There are many challenges to quantifying and evaluating the media impact on the control of emerging infectious diseases. We modeled such media impacts using a piecewise smooth function depending on both the case number and its rate of change. The proposed model was then converted into a switching system, with the switching surface determined by a functional relationship between susceptible populations and different subgroups of infectives. By parameterizing the proposed model with the 2009 A/H1N1 influenza outbreak data in the Shaanxi province of China, we observed that media impact switched off almost as the epidemic peaked. Our analysis implies that media coverage significantly delayed the epidemic's peak and decreased the severity of the outbreak. Moreover, media impacts are not always effective in lowering the disease transmission during the entire outbreak, but switch on and off in a highly nonlinear fashion with the greatest effect during the early stage of the outbreak. The finding draws the attention to the important role of informing the public about `the rate of change of case numbers' rather than `the absolute number of cases' to alter behavioral changes, through a self-adaptive media impact switching on and off, for better control of disease transmission.
Chen, Hong; Yang, Jintao; Xiao, Shengwei; Hu, Rundong; Bhaway, Sarang M; Vogt, Bryan D; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Chang, Yung; Li, Lingyan; Zheng, Jie
2016-08-01
Development of smart regenerative surface is a highly challenging but important task for many scientific and industrial applications. Specifically, very limited research efforts were made for surface regeneration between bio-adhesion and antifouling properties, because bioadhesion and antifouling are the two highly desirable but completely opposite properties of materials. Herein, we developed salt-responsive polymer brushes of poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl) propane-1-sulfonate) (polyVBIPS), which can be switched reversibly and repeatedly between protein capture/release and surface wettability in a controllable manner. PolyVBIPS brush has demonstrated its switching ability to resist both protein adsorption from 100% blood plasma/serum and bacterial attachment in multiple cycles. PolyVBIPS brush also exhibits reversible surface wettability from ∼40° to 25° between in PBS and in 1M NaCl solutions in multiple cycles. Overall, the salt-responsive behaviors of polyVBIPS brushes can be interpreted by the "anti-polyelectrolyte effect", i.e. polyVBIPS brushes adopt a collapsed chain conformation at low ionic strengths to achieve surface adhesive, but an extended chain conformation at high ionic strength to realize antifouling properties. We expect that polyVBIPS will provide a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, and regenerative properties. Unlike many materials with "one-time switching" capability for surface regeneration, we developed a new regenerative surface of zwitterionic polymer brush, which exhibits a reversible salt-induced switching property between a biomolecule-adhesive state and a biomolecule repellent state in complex media for multiple cycles. PolyVBIPS is easily synthesized and can be straightforward coated on the surface, which provides a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, regenerative properties. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Meng, T C; Hetsko, M L; Gillin, F D
1993-01-01
Expression of TSA 417, the predominant cysteine-rich variable surface protein of Giardia lamblia WB clone C6 trophozoites, did not change during encystation in vitro. However, in vitro excystation of cysts derived in vitro or in vivo consistently produced TSA 417 nonexpressing trophozoite populations, suggesting that completion of the life cycle leads to antigenic switching. Images PMID:8225614
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
NASA Astrophysics Data System (ADS)
Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio
2018-04-01
For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.
Zahiripour, Seyed Ali; Jalali, Ali Akbar
2014-09-01
A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Designing pH induced fold switch in proteins
NASA Astrophysics Data System (ADS)
Baruah, Anupaul; Biswas, Parbati
2015-05-01
This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.
NASA Astrophysics Data System (ADS)
Dutta, Anirban; Khattar, Bhawna; Banerjee, Alakananda
2012-12-01
Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources—switch-trigger or EMG-trigger—were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool—recurrence quantification analysis (RQA)—was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters—the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES-assisted gait training. Therefore, the study showed an improvement in paretic muscle function during a fatiguing task following gait training with EMG-triggered NMES. This study also showed that RQA parameters—%Rec and %Det—were sensitive to changes in paretic/non-paretic muscle properties due to gait training and can be used for non-invasive muscle monitoring in stroke survivors undergoing rehabilitation.
Pope, K.E.
1959-12-15
This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.
pH-controlled silicon nanowires fluorescence switch
NASA Astrophysics Data System (ADS)
Mu, Lixuan; Shi, Wensheng; Zhang, Taiping; Zhang, Hongyan; She, Guangwei
2010-08-01
Covalently immobilizing photoinduced electronic transfer (PET) fluorophore 3-[N, N-bis(9-anthrylmethyl)amino]-propyltriethoxysilane (DiAN) on the surface of silicon nanowires (SiNWs) resulted a SiNWs-based fluorescence switch. This fluorescence switch is operated by adjustment of the acidity of the environment and exhibits sensitive response to pH at the range from 8 to 10. Such response is attributed to the effect of pH on the PET process. The successful combination of logic switch and SiNWs provides a rational approach to assemble different logic molecules on SiNWs for realization of miniaturization and modularization of switches and logic devices.
Wei, Ting; Zhan, Wenjun; Yu, Qian; Chen, Hong
2017-08-09
Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.
2016-07-21
In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated formore » ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.« less
Photo-induced micro-mechanical optical switch
Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.
2002-01-01
An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.
NASA Astrophysics Data System (ADS)
Tang, Zhenghua; Lim, Chang-Keun; Palafox-Hernandez, J. Pablo; Drew, Kurt L. M.; Li, Yue; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.
2015-08-01
Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies. Electronic supplementary information (ESI) available: Additional modeling analysis, QCM analysis, UV-vis and CD spectroscopy data. See DOI: 10.1039/C5NR02311D
NASA Astrophysics Data System (ADS)
Yang, Zhenyin
Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).
Development and simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, Sang H.
1989-01-01
The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.
Texturing Copper To Reduce Secondary Emission Of Electrons
NASA Technical Reports Server (NTRS)
Jensen, Kenneth A.; Curren, Arthur N.; Roman, Robert F.
1995-01-01
Ion-beam process produces clean, deeply textured surfaces on copper substrates with reduced secondary electron emission. In process, molybdenum ring target positioned above and around copper substrate. Target potential repeatedly switched on and off. Switching module described in "High-Voltage MOSFET Switching Circuit" (LEW-15986). Useful for making collector electrodes for traveling-wave-tube and klystron microwave amplifiers, in which secondary emission of electrons undesirable because of reducing efficiency.
17. DETAIL OF CONTROL PANEL FOR FILTER #9: CONTROL SWITCHES ...
17. DETAIL OF CONTROL PANEL FOR FILTER #9: CONTROL SWITCHES CONTROL BY PERCENTAGE OF VALVE OPENINGS INFLUENT, EFFLUENT, DRAINAGE, BACKWASH AND SURFACE WASH. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA
The electroosmotic droplet switch: countering capillarity with electrokinetics.
Vogel, Michael J; Ehrhard, Peter; Steen, Paul H
2005-08-23
Electroosmosis, originating in the double-layer of a small liquid-filled pore (size R) and driven by a voltage V, is shown to be effective in pumping against the capillary pressure of a larger liquid droplet (size B) provided the dimensionless parameter sigmaR(2)/epsilon|zeta|VB is small enough. Here sigma is surface tension of the droplet liquid/gas interface, epsilon is the liquid dielectric constant, and zeta is the zeta potential of the solid/liquid pair. As droplet size diminishes, the voltage required to pump electroosmotically scales as V approximately R(2)/B. Accordingly, the voltage needed to pump against smaller higher-pressure droplets can actually decrease provided the pump poresize scales down with droplet size appropriately. The technological implication of this favorable scaling is that electromechanical transducers made of moving droplets, so-called "droplet transducers," become feasible. To illustrate, we demonstrate a switch whose bistable energy landscape derives from the surface energy of a droplet-droplet system and whose triggering derives from the electroosmosis effect. The switch is an electromechanical transducer characterized by individual addressability, fast switching time with low voltage, and no moving solid parts. We report experimental results for millimeter-scale droplets to verify key predictions of a mathematical model of the switch. With millimeter-size water droplets and micrometer-size pores, 5 V can yield switching times of 1 s. Switching time scales as B(3)/VR(2). Two possible "grab-and-release" applications of arrays of switches are described. One mimics the controlled adhesion of an insect, the palm beetle; the other uses wettability to move a particle along a trajectory.
Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems
NASA Astrophysics Data System (ADS)
Jeffrey, Mike R.
2015-10-01
Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the implementation of decisions or control strategies. To understand what is lost, and what can be retained, when we model a switch as an instantaneous event, requires a consideration of so-called hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the form of nonlinear switching terms. A general expression for the switch can be developed in the form of a series of sigmoid functions. We review the key steps in extending Filippov's method of sliding modes to such systems. We show how even slight nonlinear effects can hugely alter the behaviour of an electronic control circuit, and lead to "hidden" attractors inside the switching surface.
Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems.
Jeffrey, Mike R
2015-10-01
Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the implementation of decisions or control strategies. To understand what is lost, and what can be retained, when we model a switch as an instantaneous event, requires a consideration of so-called hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the form of nonlinear switching terms. A general expression for the switch can be developed in the form of a series of sigmoid functions. We review the key steps in extending Filippov's method of sliding modes to such systems. We show how even slight nonlinear effects can hugely alter the behaviour of an electronic control circuit, and lead to "hidden" attractors inside the switching surface.
Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey, Mike R., E-mail: mike.jeffrey@bristol.ac.uk
2015-10-15
Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the implementation of decisions or control strategies. To understand what is lost, and what can be retained, when we model a switch as an instantaneous event, requires a consideration of so-called hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the form of nonlinear switching terms. A general expression for the switch can be developed in the form of a series of sigmoid functions. We review the key steps in extending Filippov's method of sliding modes to such systems. We showmore » how even slight nonlinear effects can hugely alter the behaviour of an electronic control circuit, and lead to “hidden” attractors inside the switching surface.« less
Threshold Switching Characteristics of Nb/NbO 2 /TiN Vertical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuhan; Comes, Ryan B.; Wolf, Stuart A.
2016-01-01
Nb/NbO2/TiN vertical structures were synthesized in-situ and patterned to devices with different contact areas. The devices exhibited threshold resistive switching with minimal hysteresis and a small EThreshold (60~90 kV/cm). The switching behavior was unipolar, and demonstrated good repeatability. A less sharp but still sizable change in the device resistance was observed up to 150 °C. It was found that the resistive switching without Nb capping layer exhibited the hysteretic behavior and much larger EThreshold (~250 kV/cm) likely due to a 2-3 nm surface Nb2O5 layer. The stable threshold switching behavior well above room temperature shows the potential applications of thismore » device as an electronic switch.« less
NASA Astrophysics Data System (ADS)
Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit
2018-05-01
We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.
Ferroelastic domain switching dynamics under electrical and mechanical excitations.
Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-02
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ferroelastic domain switching dynamics under electrical and mechanical excitations
NASA Astrophysics Data System (ADS)
Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-01
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
UV/vis and NIR light-responsive spiropyran self-assembled monolayers.
Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R
2013-04-02
Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.
Wang, Xiaoguang; Miller, Daniel S.; de Pablo, Juan J.; ...
2014-08-15
The spontaneous positioning of colloids on the surfaces of micrometer-sized liquid crystal (LC) droplets and their subsequent polymerization offers the basis of a general and facile method for the synthesis of patchy microparticles. The existence of multiple local energetic minima, however, can generate kinetic traps for colloids on the surfaces of the LC droplets and result in heterogeneous populations of patchy microparticles. To address this issue, in this paper it is demonstrated that adsorbate-driven switching of the internal configurations of LC droplets can be used to sweep colloids to a single location on the LC droplet surfaces, thus resulting inmore » the synthesis of homogeneous populations of patchy microparticles. The surface-driven switching of the LC can be triggered by addition of surfactant or salts, and permits the synthesis of dipolar microparticles as well as “Janus-like” microparticles. Finally, by using magnetic colloids, the utility of the approach is illustrated by synthesizing magnetically responsive patchy microdroplets of LC with either dipolar or quadrupolar symmetry that exhibit distinct optical responses upon application of an external magnetic field.« less
Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei
2017-06-27
Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.
Chung, So-Hyang; Lim, Sung A; Tchach, Hungwon
2016-02-01
To evaluate the efficacy and safety profile of carbomer-based lipid-containing artificial tear formulations (CBLAT) in patients with dry eye syndrome. A multicenter parallel-group study was conducted in 412 patients with dry eye syndrome. Of these patients, 221 switched from using artificial tears to CBLAT (switching group) and 191 added CBLAT to their current treatment (add-on group). Ocular symptom scores, ocular staining grades, tear film breakup time (tBUT), Schirmer I test value, and Korean dry eye level (as defined by the Korean Corneal Disease Study Group guidelines) were evaluated at baseline and after 4 weeks of treatment. After 4 weeks of treatment, ocular surface staining grade, tBUT, Schirmer I value, ocular irritation symptom scores, and the positive rate of visual symptom improved significantly in both groups. Mean reductions in ocular surface staining grades (-0.8 ± 0.9) and ocular irritation symptom scores (-0.8 ± 0.8) in the add-on group were significantly higher than those (-0.5 ± 0.8 and -0.6 ± 0.8) in the switching group (P < 0.01 and P < 0.05). The positive rate of visual symptoms (44.2%) in the add-on group was significantly higher than that (26.4%) in the switching group (P < 0.01). The decrease of Korean dry eye level was 30.1% in the switching group and 51.6% in the add-on group. More patients in the add-on group had decreased dry eye levels than those in the switching group (P < 0.0001). CBLAT improves ocular surface staining grades, tBUT, Schirmer I values, and ocular symptoms in patients with dry eye syndrome.
Effectiveness of BaTiO 3 dielectric patches on YBa 2Cu 3O 7 thin films for MEM switches
Vargas, J.; Hijazi, Y.; Noel, J.; ...
2014-05-12
A micro-electro-mechanical (MEM) switch built on a superconducting microstrip filter will be utilized to investigate BaTiO 3 dielectric patches for functional switching points of contact. Actuation voltage resulting from the MEM switch provokes static friction between the bridge membrane and BaTiO 3 insulation layer. Furthermore, the dielectric patch crystal structure and roughness affect the ability of repetitively switching cycles and lifetime. We performed a series of experiments using different deposition methods and RF magnetron sputtering was found to be the best deposition process for the BaTiO 3 layer. The effect examination of surface morphology will be presented using characterization techniquesmore » as x-ray diffraction, SEM and AFM for an optimum switching device. The thin film is made of YBa 2Cu 3O 7 deposited on LaAlO 3 substrate by pulsed laser deposition. In our work, the dielectric material sputtering pressure is set at 9.5x10 -6 Torr. The argon gas is released through a mass-flow controller to purge the system prior to deposition. RF power is 85 W at a distance of 9 cm. The behavior of Au membranes built on ultimate BaTiO 3 patches will be shown as part of the results. These novel surface patterns will in turn be used in modelling other RF MEM switch devices such as distributed-satellite communication system operating at cryogenic temperatures.« less
The Design and Operation of a Slowfall AXCP (Air-Deployed Expendable Current Profiler).
1988-05-01
Control Sensors pressure switch , P/N 607G6 .................................................... 13 Figure 8. Two-dimensional, free-body diagram of the...surface as well as a release mechanism. We then considered using an inexpensive pressure switch to trip the release mechanism. After a market survey...guillotine and pressure switch from the 250 to 300 psi pressure of seawater without resorting to a high precision 0-ring sealing system and pressure
Energy scaling of passively Q-switched lasers In the Mj-range
NASA Astrophysics Data System (ADS)
Neumann, J.; Huss, R.; Kolleck, C.; Kracht, Dietmar
2017-11-01
Q-switched lasers systems with ns pulse duration and energies ranging from 1 to more than 100mJ are utilized for many spaceborne applications such as altimetry of planets and moons. Furthermore, Q-switched lasers can be used for distance measurements during docking and landing manoeuvres. To keep the diameter of the beam small over a large distance and to consequently achieve a good lateral resolution, a good beam propagation factor M² is required. Moreover, Q-switched lasers can be used directly on the planetary surface for exploration by laser-induced breakdown spectroscopy or laser desorption mass spectrometry.
Communication using VCSEL laser array
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
2008-01-01
Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.
Magnetization switching process in a torus nanoring with easy-plane surface anisotropy
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.
2017-11-01
We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.
NASA Astrophysics Data System (ADS)
Velayi, Elmira; Norouzbeigi, Reza
2018-05-01
Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.
Surface dynamics and mechanics in liquid crystal polymer coatings
NASA Astrophysics Data System (ADS)
Liu, Danqing; Broer, Dirk J.
2015-03-01
Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.
Saiki, Jun; Holcombe, Alex O
2012-03-06
Sudden change of every object in a display is typically conspicuous. We find however that in the presence of a secondary task, with a display of moving dots, it can be difficult to detect a sudden change in color of all the dots. A field of 200 dots, half red and half green, half moving rightward and half moving leftward, gave the appearance of two surfaces. When all 200 dots simultaneously switched color between red and green, performance in detecting the switch was very poor. A key display characteristic was that the color proportions on each surface (summary statistics) were not affected by the color switch. When the color switch is accompanied by a change in these summary statistics, people perform well in detecting the switch, suggesting that the secondary task does not disrupt the availability of this statistical information. These findings suggest that when the change is missed, the old and new colors were represented, but the color-location pattern (binding of colors to locations) was not represented or not compared. Even after extended viewing, changes to the individual color-location pattern are not available, suggesting that the feeling of seeing these details is misleading.
Compact low crosstalk 1x2 wavelength selective switch architectures
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Chaitavon, Khunat
2005-02-01
Thin film filter (TF)-based 1x2 wavelength selective switch (WSS) architectures are introduced. Our key idea is to locate a movable mirror orientated at a desired angle close to the TF to switch the desired wavelength optical beams to the wanted switch ports. Our first proposed WSS is in the transmissive mode where the surfaces of the TF and the movable mirror are parallel to each other and it provides a moderate optical isolation. Another WSS structure is in reflective configuration in which the movable mirror is tilted with respect to the surface of the TF and when combined with the optical circulator leads to a very low optical coherent crosstalk. Our experiment using a commercially available TF and a movable mirror shows that our transmissive-mode WSS provides a -18.87 dB optical coherent crosstalk while a much improved < -53 dB optical coherent crosstalk can be obtained between the two switching ports in our reflective-mode WSS structure. Our reflective 1x2 WSS also gives a higher optical loss due to the use of an optical circulator. Low polarization dependent loss of < 0.1 dB is determined for both WSS structures.
Li, Yijun; Wang, Cheng; Zhu, Yibo; Zhou, Xiaohong; Xiang, Yu; He, Miao; Zeng, Siyu
2017-03-15
This work presents a fully integrated graphene field-effect transistor (GFET) biosensor for the label-free detection of lead ions (Pb 2+ ) in aqueous-media, which first implements the G-quadruplex structure-switching biosensing principle in graphene nanoelectronics. We experimentally illustrate the biomolecular interplay that G-rich DNA single-strands with one-end confined on graphene surface can specifically interact with Pb 2+ ions and switch into G-quadruplex structures. Since the structure-switching of electrically charged DNA strands can disrupt the charge distribution in the vicinity of graphene surface, the carrier equilibrium in graphene sheet might be altered, and manifested by the conductivity variation of GFET. The experimental data and theoretical analysis show that our devices are capable of the label-free and specific quantification of Pb 2+ with a detection limit down to 163.7ng/L. These results first verify the signaling principle competency of G-quadruplex structure-switching in graphene electronic biosensors. Combining with the advantages of the compact device structure and convenient electrical signal, a label-free GFET biosensor for Pb 2+ monitoring is enabled with promising application potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulation and characterization of a laterally-driven inertial micro-switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenguo; Wang, Yang; Wang, Huiying
2015-04-15
A laterally-driven inertial micro-switch was designed and fabricated using surface micromachining technology. The dynamic response process was simulated by ANSYS software, which revealed the vibration process of movable electrode when the proof mass is shocked by acceleration in sensitive direction. The test results of fabricated inertial micro-switches with and without anti-shock beams indicated that the contact process of micro-switch with anti-shock beams is more reliable than the one without anti-shock beams. The test results indicated that three contact signals had been observed in the contact process of the inertial switch without anti-shock beams, and only one contact signal in themore » inertial switch with anti-shock beams, which demonstrated that the anti-shock beams can effectively constrain the vibration in non-sensitive direction.« less
Molecular switches from benzene derivatives adsorbed on metal surfaces
Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre
2013-01-01
Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660
30 CFR 56.12002 - Controls and switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Controls and switches. 56.12002 Section 56.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12018 - Identification of power switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Identification of power switches. 56.12018 Section 56.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12002 - Controls and switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Controls and switches. 56.12002 Section 56.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12018 - Identification of power switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Identification of power switches. 56.12018 Section 56.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12002 - Controls and switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Controls and switches. 56.12002 Section 56.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12018 - Identification of power switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Identification of power switches. 56.12018 Section 56.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12018 - Identification of power switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Identification of power switches. 56.12018 Section 56.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12002 - Controls and switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Controls and switches. 56.12002 Section 56.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12002 - Controls and switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Controls and switches. 56.12002 Section 56.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12018 - Identification of power switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of power switches. 56.12018 Section 56.12018 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.
1998-10-13
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.
We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in futuremore » optical systems.« less
Passively Q-switched side pumped monolithic ring laser
NASA Technical Reports Server (NTRS)
Li, Steven X. (Inventor)
2012-01-01
Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
30 CFR 56.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Design of switches and starting boxes. 56.12041 Section 56.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Design of switches and starting boxes. 56.12041 Section 56.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Design of switches and starting boxes. 56.12041 Section 56.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Design of switches and starting boxes. 56.12041 Section 56.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12041 - Design of switches and starting boxes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of switches and starting boxes. 56.12041 Section 56.12041 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.; Hawkins, Steven A.
An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
MOSFET Switching Circuit Protects Shape Memory Alloy Actuators
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2011-01-01
A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.
Toggling Bistable Atoms via Mechanical Switching of Bond Angle
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.
Switching behavior of resistive change memory using oxide nanowires
NASA Astrophysics Data System (ADS)
Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi
2018-06-01
Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.
Winther, Birgit; McCue, Karen; Ashe, Kathleen; Rubino, Joseph R; Hendley, J Owen
2007-10-01
Rhinovirus infection may be acquired by inoculation of virus on fingertips to conjunctiva or nose (self-inoculation). The virus contaminating the fingertips may come from hand contact with someone with a cold or from virus in mucus on environmental surfaces. This study was designed to assess rhinovirus contamination of surfaces by adults with colds and rhinovirus transfer from surfaces to fingertips during normal daily activities. Fifteen adults with natural rhinovirus colds stayed overnight in a local hotel. Ten touched sites in each room were tested for rhinovirus RNA using RT-PCR. Transfer to fingertips of five subjects was examined by drying 10 microl of virus-containing mucus from each subject onto light switches, telephone dial buttons and telephone handsets. After an interval of 1 or 18 hr the subject flipped the light switch, pressed the button, held the handset. Fingertip rinses were tested for virus. Thirty five percent of the 150 environmental sites in the rooms were contaminated. Common virus-positive sites were door handles, pens, light switches, TV remote controls, faucets, and telephones. Rhinovirus was transferred from surfaces to fingertips in 18/30 (60%) trials 1 hr after contamination and in 10/30 (33%) of trials 18 hr (overnight) after contamination. Adults with colds commonly contaminate environmental surfaces with rhinovirus; virus on surfaces can be transferred to a fingertip during normal daily activities. (c) 2007 Wiley-Liss, Inc.
Alarm toe switch. [Patent application
Ganyard, F.P.
1980-11-18
An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.
NASA Astrophysics Data System (ADS)
Jin, Yaming; Lu, Xiaomei; Zhang, Junting; Kan, Yi; Bo, Huifeng; Huang, Fengzhen; Xu, Tingting; Du, Yingchao; Xiao, Shuyu; Zhu, Jinsong
2015-07-01
For rhombohedral multiferroelectrics, non-180° ferroelectric domain switching may induce ferroelastic and/or (anti-)ferromagnetic effect. So the determination and control of ferroelectric domain switching angles is crucial for nonvolatile information storage and exchange-coupled magnetoelectric devices. We try to study the intrinsic characters of polarization switching in BiFeO3 by introducing a special data processing method to determine the switching angle from 2D PFM (Piezoresponse Force Microscopy) images of randomly oriented samples. The response surface of BiFeO3 is first plotted using the piezoelectric tensor got from first principles calculations. Then from the normalized 2D PFM signals before and after switching, the switching angles of randomly oriented BiFeO3 grains can be determined through numerical calculations. In the polycrystalline BiFeO3 films, up to 34% of all switched area is that with original out-of-plane (OP) polarization parallel to the poling field. 71° polarization switching is more favorable, with the area percentages of 71°, 109° and 180° domain switching being about 42%, 29% and 29%, respectively. Our analysis further reveals that IP stress and charge migration have comparable effect on switching, and they are sensitive to the geometric arrangements. This work helps exploring a route to control polarization switching in BiFeO3, so as to realize desirable magnetoelectric coupling.
Generalization of fewest-switches surface hopping for coherences
NASA Astrophysics Data System (ADS)
Tempelaar, Roel; Reichman, David R.
2018-03-01
Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.
Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer
NASA Technical Reports Server (NTRS)
Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.
2012-01-01
In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.
Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario
2018-03-01
The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiser, Anne-Laure; Vincent, Thierry; Brieu, Natalie; Lin, Yea-Lih; Portalès, Pierre; Mettling, Clément; Reynes, Jacques; Corbeau, Pierre
2010-12-15
For unclear reasons, about 50% of HIV-infected subjects harbour CXCR4-using (X4) viral strains in addition of CCR5-using (R5) viral strains at late stages of the disease. One hypothesis is that a low CD4(+) T-cell surface CCR5 density could facilitate the emergence of X4 strains. Alternatively, one could argue that a high CD4(+) T-cell surface CXCR4 density that is observed in individuals presenting with X4 strains, could favour R5 to X4 switch. Here, we tested both hypotheses. In vivo, we observed by quantitative flow cytometry no difference in CD4(+) T-cell surface CCR5 densities between patients with or without X4 strains. In the course of an in vitro R5 infection, the delay of emergence of X4 mutants was similar between cells expressing 2 distinct cell surface CCR5 densities, but shorter (12 ± 0 days and 21 ± 0 days, respectively, P = 0.01) in cells expressing a high surface CXCR4 density as compared with cells with a low surface CXCR4 density. These data argue for a role of CXCR4 density, but not of CCR5 density, in the emergence of X4 strains. They are reassuring concerning the risk of inducing an R5 to X4 switch using CCR5 antagonists to treat HIV infection.
Ultrahigh density ferroelectric storage and lithography by high order ferroic switching
Kalinin, Sergei V.; Baddorf, Arthur P.; Lee, Ho Nyung; Shin, Junsoo; Gruverman, Alexei L.; Karapetian, Edgar; Kachanov, Mark
2007-11-06
A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F
2012-09-24
We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.
Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro
2014-07-01
Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ganyard, Floyd P.
1982-01-01
An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.
A New Phenomenon in Saudi Females' Code-Switching: A Morphemic Analysis
ERIC Educational Resources Information Center
Turjoman, Mona O.
2016-01-01
This sociolinguistics study investigates a new phenomenon that has recently surfaced in the field of code-switching among Saudi females residing in the Western region of Saudi Arabia. This phenomenon basically combines bound Arabic pronouns, tense markers or definite article to English free morphemes or the combination of bound English affixes to…
A Simple 2-Transistor Touch or Lick Detector Circuit
ERIC Educational Resources Information Center
Slotnick, Burton
2009-01-01
Contact or touch detectors in which a subject acts as a switch between two metal surfaces have proven more popular and arguably more useful for recording responses than capacitance switches, photocell detectors, and force detectors. Components for touch detectors circuits are inexpensive and, except for some special purpose designs, can be easily…
NASA Astrophysics Data System (ADS)
Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.
2014-09-01
We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.
New Fluid Prevents Railway Ice
NASA Technical Reports Server (NTRS)
2001-01-01
Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.
Rago, Vincenzo; Silva, João R; Brito, João; Barreira, Daniel; Mohr, Magni; Krustrup, Peter; Rebelo, António N
2018-04-04
Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations or injury outcomes according to different pitch surfaces. A total of 224 studies were retrieved from a literature search. Twenty articles met the inclusion criteria: 9 for acute physical and physiological responses, 2 for training adaptations and 9 for injury assessment. The literature lacks consistent evidence regarding the effects of pitch surface on performance and health outcomes in soccer players. However, it seems that occasionally switching training surfaces seems a valuable strategy for focusing on specific musculoskeletal queries and enhancing players' fitness. For instance, sand training may be occasionally proposed as complementary training strategy, given the recruitment of additional musculature probably not involved on firmer surfaces, but the possible training-induced adaptations of non-conventional soccer surfaces (e.g., sand) might potentially result into a negative transfer on AT or NG. Since the specific physical demands of soccer can differ between surfaces, coaches should resort to the use of non-traditional surfaces with parsimony, emphasizing the specific surface-related motor tasks, normally observed on natural grass or artificial turf. Further studies are required to better understand the physiological effects induced by systematic surface-specific training, or switching between pitch surfaces.
Ownby, G.W.; White, C.W.; Zehner, D.M.
1979-12-28
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.
Ownby, Gary W.; White, Clark W.; Zehner, David M.
1981-01-01
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.
Operating principles of an electrothermal vibrometer for optical switching applications
NASA Astrophysics Data System (ADS)
Pai, Min-fan; Tien, Norman C.
1999-09-01
A compact polysilicon surface-micromachined microactuator designed for optical switching applications is described. This actuator is fabricated using the foundry MUMPs process provided by Cronos Integrated Microsystems Inc. Actuated electrothermally, the microactuator allows fast switching speeds and can be operated with a low voltage square-wave signal. The design, operation mechanisms for this long-range and high frequency thermal actuation are described. A vertical micromirror integrated with this actuator can be operated with a 10.5 V, 20 kHz 15% duty-cycle pulse signal, achieving a lateral moving speed higher than 15.6 mm/sec. The optical switch has been operated to frequencies as high as 30 kHz.
Microfabricated triggered vacuum switch
Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM
2010-05-11
A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.
Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo
2007-06-12
Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage.
Constant power speed range extension of surface mounted PM motors
Lawler, Jack Steward; Bailey, John Milton
2001-01-01
A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.
Bowl Inversion and Electronic Switching of Buckybowls on Gold.
Fujii, Shintaro; Ziatdinov, Maxim; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kiguchi, Manabu
2016-09-21
Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp(2)-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.
Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A
2014-09-01
We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.
Seo, Jungmok; Lee, Soonil; Han, Heetak; Jung, Hwae Bong; Hong, Juree; Song, Giyoung; Cho, Suk Man; Park, Cheolmin; Lee, Wooyoung; Lee, Taeyoon
2013-08-14
A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature sensitive surfaces and methods of making same
Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA
2002-09-10
Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.
Impact of surface strain on the spin dynamics of deposited Co nanowires
NASA Astrophysics Data System (ADS)
Polyakov, O. P.; Korobova, J. G.; Stepanyuk, O. V.; Bazhanov, D. I.
2017-01-01
Tailoring the magnetic properties at atomic-scale is essential in the engineering of modern spintronics devices. One of the main concerns in the novel nanostructured materials design is the decrease of the paid energy in the way of functioning, but allowing to switch between different magnetic states with a relative low-cost energy at the same time. Magnetic anisotropy (MA) energy defines the stability of a spin in the preferred direction and is a fundamental variable in magnetization switching processes. Transition-metal wires are known to develop large, stable spin and orbital magnetic moments together with MA energies that are orders of magnitude larger than in the corresponding solids. Different ways of controlling the MA have been exploited such as alloying, surface charging, and external electrical fields. Here we investigate from a first-principle approach together with dynamic calculations, the surface strain driven mechanism to tune the magnetic properties of deposited nanowires. We consider as a prototype system, the monoatomic Co wires deposited on strained Pt(111) and Au(111) surfaces. Our first-principles calculations reveal a monotonic increase/decrease of MA energy under compressive/tensile strain in supported Co wire. Moreover, the spin dynamics studies based on solving the Landau-Lifshitz-Gilbert equation show that the induced surface-strain leads to a substantial decrease of the required external magnetic field magnitude for magnetization switching in Co wire.
Investigation of Surface Breakdown on Semiconductor Devices Using Optical Probing Techniques.
1990-01-01
18] L. Bovino , T. Burke, R. Youmans, M. Weiner, and J. Car, r, "Recent Advances in Optically C’ntrolled Bulk Semiconductor Switches," Digest of...Comp. Simul. 5 (3), 175 (1988). [321 M. Weiner, L. Bovino , R. Youmans, and T. Burke, "Modeling of the Optically Conrolled Semiconductor Switch," J
Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Zhang, Xueji
2015-01-01
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. PMID:28347110
Synchronized femtosecond laser pulse switching system based nano-patterning technology
NASA Astrophysics Data System (ADS)
Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho
2017-07-01
This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.
Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Peng, Zhiguang; Cui, Xiaoyu; Neil, Eric; Li, Yuanshi; Kasap, Safa; Yang, Qiaoqin
2018-03-01
V2O5 thin films are well-known "smart" materials due to their reversible wettability under UV irradiation and dark storage. Their surfaces are usually hydrophobic and turn into hydrophilic under UV irradiation. However, the V2O5 thin films deposited by magnetron sputtering in present work are superhydrophilic and turned into hydrophobic after days' of storage in air. This change can be recovered by heating. The effects of many factors including surface roughness, irradiation from visible light, UV, & X-ray, and storage in air & vacuum on the reversible switching of wettability were investigated. The results show that air absorption is the main factor causing the film surface change from superhydrophilicity to hydrophobicity.
Block copolymer micelles as switchable templates for nanofabrication.
Krishnamoorthy, Sivashankar; Pugin, Raphaël; Brugger, Juergen; Heinzelmann, Harry; Hoogerwerf, Arno C; Hinderling, Christian
2006-04-11
Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structuring of the underlying material to form either pillars or holes depending on the switching state is demonstrated.
Energy-switching potential energy surface for ground-state C3
NASA Astrophysics Data System (ADS)
Rocha, C. M. R.; Varandas, A. J. C.
2018-05-01
The multiple energy switching scheme [J. Chem. Phys. 119 (2003) 2596] has been used to improve the double many-body expansion (DMBE II) potential energy surface of C3 near its linear global minima by morphing it with an accurate Taylor-series expansion [J. Chem. Phys. 144 (2016) 044307]. The final ES form attains the accuracy of the local form in reproducing the rovibrational spectrum of C3 while keeping unaltered all key attributes of the original DMBE II, namely conical intersection seams and dissociative channels. The ES form is therefore commended for adiabatic spectroscopic and reaction dynamics studies.
Galvão, B R L; Rodrigues, S P J; Varandas, A J C
2008-07-28
A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
2017-10-23
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Ultra-compact Marx-type high-voltage generator
Goerz, David A.; Wilson, Michael J.
2000-01-01
An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.
Compact x-ray source and panel
Sampayon, Stephen E [Manteca, CA
2008-02-12
A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
NASA Astrophysics Data System (ADS)
Rodriguez, Brian Joseph
Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.
A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations.
Roman, S J; Meyers, M; Volz, K; Matsumura, P
1992-01-01
CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch. Images PMID:1400175
Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers
Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo
2007-01-01
Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage. PMID:17535889
Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; ...
2014-12-15
Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual formmore » of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, James J.
A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention,more » a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.« less
High Frequency PIN-Diode Switches for Radiometer Applications
NASA Technical Reports Server (NTRS)
Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.
2011-01-01
Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.
Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser
NASA Astrophysics Data System (ADS)
Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng
2015-07-01
We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.
High voltage photo switch package module
Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E
2014-02-18
A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.
Surface switching statistics of rotating fluid: Disk-rim gap effects
NASA Astrophysics Data System (ADS)
Tasaka, Yuji; Iima, Makoto
2017-04-01
We examined the influence of internal noise on the irregular switching of the shape of the free surface of fluids in an open cylindrical vessel driven by a bottom disk rotating at constant speed [Suzuki, Iima, and Hayase, Phys. Fluids 18, 101701 (2006), 10.1063/1.2359740]. A slight increase in the disk-rim gap (less than 3% of the disk radius) was established experimentally to cause significant changes in this system, specifically, frequent appearance of the surface descending event connecting a nonaxisymmetric shape in strong mixing flow (turbulent flow) and an axisymmetric shape in laminar flow, as well as a shift in critical Reynolds number that define the characteristic states. The physical mechanism underlying the change is analyzed in terms of flow characteristics in the disk-rim gap, which acts as a noise source, and a mathematical model established from measurements of the surface height fluctuations with noise term.
Domains in Ferroelectric Nanostructures
NASA Astrophysics Data System (ADS)
Gregg, Marty
2010-03-01
Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device, the need to fully understand how size and morphology affect domain behaviour in small scale ferroelectrics is obvious. In this talk, observations from a programme of study examining domains in meso and nano-scale BaTiO3 shapes, that have been cut directly from bulk single crystal using focused ion beam milling, will be presented. In general, the equilibrium static domain configurations that occur appear to be the result of a simultaneous desire to minimize both the macroscopic strain and depolarizing fields developed on cooling through the Curie Temperature. While such governing factors might be obvious, the specific patterns that result as a function of morphology are often non-intuitive, and a series of images of domains in nanodots, rods and wires will be presented and rationalised. In addition, the nature in which morphological factors influence domain dynamics during switching will be discussed, with particular focus on axial switching in nanowires, and the manner in which local surface perturbations (such as notches and antinotches) affect domain wall propagation. In collaboration with Alina Schilling, Li-Wu Chang, Mark McMillen, Raymond McQuaid, and Leo McGilly, Queen's University Belfast; Gustau Catalan, Universitat Autonoma de Barcelona; and James Scott, University of Cambridge.
Fiber-optical switch using cam-micromotor driven by scratch drive actuators
NASA Astrophysics Data System (ADS)
Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.
2005-01-01
We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.
Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.
Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi
2017-10-04
Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.
Study of surface modes on a vibrating electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Shao, Yifeng; Bociort, Florian; Urbach, H. Paul
2017-10-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
Evolving optical second-harmonic anisotropy at the cleaved Bi2Se3 surface
NASA Astrophysics Data System (ADS)
An, Yong; Green, Avery; Diebold, Alain
Bismuth selenide (Bi2Se3) is a centrosymmetric topological insulator with conducting surface states. The surface states have been studied by various electrical and optical techniques in air, but ambience effects and surface aging have not been adequately addressed. Optical second-harmonic generation (SHG) is a suitable probe for the Bi2Se3 surface because SHG arises from symmetry breaking at the surface and thus should detect surface states preferentially over bulk states. However, a strong time dependence of SHG is often observed, hampering the detection and investigation of the surface states. Here we find a new phenomenon in which the major and minor intensity lobes of a measured rotational-anisotropy SHG pattern from a cleaved Bi2Se3 (111) surface can significantly change with time and eventually switch their amplitudes. This switching provides a means for tracking the progress of surface oxidation inside a quintuple layer of Bi2Se3. We also perform pump-probe SHG experiments, comparatively on freshly cleaved and oxidized Bi2Se3 surfaces, to study charge dynamics at the oxide/Bi2Se3 interface and to detect spin polarization of photoexcited surface states in the Bi2Se3 topological insulator. This work was supported by the SRC NRI Institute for Nanoelectronics Discovery and Exploration (INDEX).
Passive Gas-Gap Heat Switches for Use in Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Panek, J.; Tuttle, J. G.; Krebs, Carolyn (Technical Monitor)
2001-01-01
We have designed, built, and tested a gas gap heat switch that works passively, without the need for a separate, thermally activated getter. This switch uses He-3 condensed as a thin film on alternating plates of copper. The switch is thermally conductive at temperatures above about 0.2 K, and is insulating if either end of the switch is below about 0.15 K. The "on" conductance (7 mW/K at 0.25K) is limited by the surface area and gap between the copper leaves, the saturated vapor pressure of the He-3, and the Kapitza boundary resistance between the He-3 and the copper. The "off" conductance is determined by the helium containment shell which physically supports the two conductive ends. We have also designed and are building passive gas gap heat switches which will passively turn off near 1 K and 4 K. For these switches we rely on the rapidly changing vapor pressure of He-4 above neon or copper substrates, respectively, when the coverage is less than one monolayer. The different binding energies of the He-4 to the neon or copper give rise to the different temperatures where the switches transition between the on and off states.
Electro-Optic Surface Field Imaging System
1989-06-01
ELECTRO - OPTIC SURFACE FIELD IMAGING SYSTEM L. E. Kingsley and W. R. Donaldson LABORATORY FOR LASER ENERGETICS University of Rochester 250 East...surface electric fields present during switch operation. The electro - optic , or Pockel’s effect, provides an extremely useful probe of surface electric...fields. Using the electro - optic effect, surface fields can be measured with an optical probe. This paper describes an electro - optic probe which is
NASA Astrophysics Data System (ADS)
La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping
2017-05-01
The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.
Cao, Ye; Kalinin, Sergei V.
2016-12-15
Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Kalinin, Sergei V.
Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less
NASA Astrophysics Data System (ADS)
Reznikov, Mitya; Lopatina, Lena M.; O'Callaghan, Michael J.; Bos, Philip J.
2011-03-01
The effect of surface alignment on the achievement of analog ("V"-shaped) electric field control of director rotation in SmC* liquid crystal devices is investigated experimentally and through numerical modeling. Ferroelectric SmC* liquid crystals are intrinsically analog and thresholdless, i.e. the director can be rotated freely around the tilt cone. Whether or not a SmC* liquid crystal cell exhibits thresholdless switching depends strongly on the influence of the cell's alignment layers, on the magnitude of the liquid crystal's spontaneous polarization, and on whether smectic layers adopt a bookshelf or chevron configuration. To study the effect of the surface alignment layers, we have exploited a technique for the vertical (bookshelf) alignment of the smectic layers that does not depend on surface anisotropy. The alignment technique allows an experimental study of the influence of surfaces spanning a wide range of pretilt angles, azimuthal and zenithal anchoring energies. This technique is used to study the effect of surfaces on the threshold behavior of director rotation in SmC* materials under the influence of an electric field. The alignment technique also allowed us to use a high-PS liquid crystal material having an I-A-C phase sequence and reduced layer shrinkage thought to be well suited to thresholdless switching. We show that the alignment layer has a strong effect, and that excellent analog response can be achieved for the case of alignment layers which promote homeotropic director orientation. We further model and discuss the potential effect of a thin layer of nematic at the surface and the possibility of gliding of the easy axis during switching.
NASA Astrophysics Data System (ADS)
Duan, W. J.; Wang, J. B.; Zhong, X. L.
2018-05-01
Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.
Wang, Li; Fang, Li; Liu, Shufeng
2015-09-07
A responsive hairpin DNA aptamer switch was ingeniously designed for enzyme-free, sensitive and selective electrochemical detection of ATP. It takes full advantage of the target-triggered liberation effect of the toehold region and the concomitant proximity effect with the branch-migration region to execute the toehold-mediated strand displacement reaction on the electrode surface.
Nanoparticle-Wetted Relays: Reconfigurable Surfaces for Energy Transmission Contacts
2007-01-01
in-situ monitoring of contact processes as described previously4,17. 9 1. Da Vinci , Leonardo . Madrid Codices, Manuscript I. Biblioteca Nacional...technologists from pre-Hellenistic pulleys and Da Vinci mechanisms for transmission of mechanical energy to modern switches and relays for...Hellenistic pulleys and Da Vinci mechanisms for transmission of mechanical energy1 to modern switches and relays for transmission of electrical energy
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison,; Neil, Singleton [Santa Fe, NM; John, Migliori [Los Alamos, NM; Albert, [Santa Fe, NM
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
Evidence for rare capsular switching in Streptococcus agalactiae.
Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário
2010-03-01
The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen.
Evidence for Rare Capsular Switching in Streptococcus agalactiae▿
Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário
2010-01-01
The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen. PMID:20023016
Edmunds, L M; Rawlinson, A
1998-10-01
Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.
Reduction of Tribocorrosion Products When using the Platform-Switching Concept.
Alrabeah, G O; Knowles, J C; Petridis, H
2018-03-01
The reduced marginal bone loss observed when using the platform-switching concept may be the result of reduced amounts of tribocorrosion products released to the peri-implant tissues. Therefore, the purpose of this study was to compare the tribocorrosion product release from various platform-matched and platform-switched implant-abutment couplings under cyclic loading. Forty-eight titanium implants were coupled with pure titanium, gold alloy, cobalt-chrome alloy, and zirconia abutments forming either platform-switched or platform-matched groups ( n = 6). The specimens were subjected to cyclic occlusal forces in a wet acidic environment for 24 h followed by static aqueous immersion for 6 d. The amount of metal ions released was measured using inductively coupled plasma mass spectrometry. Microscopic evaluations were performed pre- and postimmersion under scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy X-ray for corrosion assessment at the interface and wear particle characterization. All platform-switched groups showed less metal ion release compared with their platform-matched counterparts within each abutment material group ( P < 0.001). Implants connected to platform-matched cobalt-chrome abutments demonstrated the highest total mean metal ion release (218 ppb), while the least total mean ion release (11 ppb) was observed in the implants connected to platform-switched titanium abutments ( P ≤ 0.001). Titanium was released from all test groups, with its highest mean release (108 ppb) observed in the implants connected to platform-matched gold abutments ( P < 0.001). SEM images showed surface tribocorrosion features such as pitting and bands of fretting scars. Wear particles were mostly titanium, ranging from submicron to 48 µm in length. The platform-matched groups demonstrated a higher amount of metal ion release and more surface damage. These findings highlight the positive effect of the platform-switching concept in the reduction of tribocorrosion products released from dental implants, which consequently may minimize the adverse tissue reactions that lead to peri-implant bone loss.
Volcanic ash impacts on critical infrastructure
NASA Astrophysics Data System (ADS)
Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.
2012-01-01
Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this approach is likely to become increasingly necessary.
Hagen, Sebastian; Kate, Peter; Leyssner, Felix; Nandi, Dhananjay; Wolf, Martin; Tegeder, Petra
2008-10-28
Two-photon photoemission spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely different compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change in the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find that photoexcitation above a threshold hnu approximately 2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a thresholdlike behavior below hnu approximately 2.2 eV and above hnu approximately 4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.
NASA Astrophysics Data System (ADS)
Hagen, Sebastian; Kate, Peter; Leyssner, Felix; Nandi, Dhananjay; Wolf, Martin; Tegeder, Petra
2008-10-01
Two-photon photoemission spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely different compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change in the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find that photoexcitation above a threshold hν ≈2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a thresholdlike behavior below hν ≈2.2 eV and above hν ≈4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-06-01
The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less
Sialic acid-triggered macroscopic properties switching on a smart polymer surface
NASA Astrophysics Data System (ADS)
Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei
2018-01-01
Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
2016-01-01
Diarylethene molecules are prototype molecular switches with their two isomeric forms exhibiting strikingly different conductance, while maintaining similar length. We employed low-temperature scanning tunneling microscopy (STM) to resolve the energy and the spatial extend of the molecular orbitals of the open and closed isomers when lying on a Au(111) surface. We find an intriguing difference in the extension of the respective HOMOs and a peculiar energy splitting of the formerly degenerate LUMO of the open isomer. We then lift the two isomers with the tip of the STM and measure the current through the individual molecules. By a simple analytical model of the transport, we show that the previously determined orbital characteristics are essential ingredients for the complete understanding of the transport properties. We also succeeded in switching the suspended molecules by the current, while switching the ones which are in direct contact to the surface occurs nonlocally with the help of the electric field of the tip. PMID:27775886
Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-08-23
Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.
Lightning Protection System for Space Shuttle
NASA Technical Reports Server (NTRS)
1977-01-01
The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.
Enhanced dielectric-wall linear accelerator
Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.
1998-09-22
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.
Enhanced dielectric-wall linear accelerator
Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
Study on Resistive Switching Property of Ti Doped Novel NiO Thin Films
NASA Astrophysics Data System (ADS)
Li, Y.; Zhao, G. Y.; Kou, Z. B.; Liu, J. C.; Zhu, R.
2018-01-01
Ti doped nickel oxide thin films have been fabricated by sol-gel dip-coating process using nickel acetate and tetrabutyl titanate as source materials. The effect of the amount of Ti dopant on the surface roughness, optical, chemical state and electrical properties of NiO: Ti thin films was observed by atomic force microscopy (AFM), Uv-vis spectroscopy, X-ray photoelectron spectroscopy(XPS) and I-V measurement, respectively. Results show that the Ti doping is an effective ways to improve the resistive switching behaviors and it is a convenient way to understand the mechanism of the resistive switching behaviors.
Kato, Daiki; Sakai, Hayato; Araki, Yasuyuki; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku
2018-03-28
Photophysical control and switching on organic-inorganic hybrid interfaces are of great interest in diverse fundamental and applicative research areas. 6,13-Bis(triisopropylsilylethynyl)pentacene (TP) is well-known to exhibit efficient singlet fission (SF) for generation of high-yield triplet excited states in aggregated forms, whereas perylenediimide (PDI) ensembles show the characteristic excimer formation. Additionally, a combination of pentacene (electron donor: D) and PDI (electron acceptor: A) is expected to undergo an efficient photoinduced electron transfer (PET), and absorption of two chromophores combined covers the entire visible region. Therefore, the concentration-dependent mixed self-assembled monolayers (SAMs) composed of two chromophores enable us to control and switch the photophysical processes on a surface. In this work, a series of mixed SAMs composed of TP and PDI units on gold nanoclusters (GNCs) were newly synthesized by changing the relative molecular concentration ratios. Structural control of mixed SAMs on a gold surface based on the concentration ratios was successfully achieved. Time-resolved femtosecond and nanosecond transient absorption measurements clearly demonstrate photophysical control and switching of the above competitive reactions such as SF, electron transfer (ET) and excimer formation. The maximum quantum yields of triplet states (ΦT = ∼170%) and electron transfer (ΦET = ∼95%) were quantitatively evaluated by changing the concentration ratios. The rate constants of SF and excimer processes are largely dependent on the concentration ratios, whereas the rate constants of ET processes approximately remain constant. These findings are also discussed based on the statistical framework of the assembly of chromophores on the gold surface.
Active plasmonics in WDM traffic switching applications
NASA Astrophysics Data System (ADS)
Papaioannou, Sotirios; Kalavrouziotis, Dimitrios; Vyrsokinos, Konstantinos; Weeber, Jean-Claude; Hassan, Karim; Markey, Laurent; Dereux, Alain; Kumar, Ashwani; Bozhevolnyi, Sergey I.; Baus, Matthias; Tekin, Tolga; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos
2012-09-01
With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a ``naturally'' energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted.
Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves
NASA Astrophysics Data System (ADS)
Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer
2018-05-01
Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.
Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir
2015-08-25
Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.
Contact effects in light activated GaAs switches
NASA Astrophysics Data System (ADS)
Durkin, P. S.
1985-05-01
The purpose of this work was to examine the effects of various types of contacts on the switching behavior of a light-triggered power switch. The switch was constructed from a homogeneous wafer of chromium-doped gallium arsenide; the contacts were either ohmic, non-ohmic, or Schottky barriers. These were formed on the wafer in two geometries; both contacts on one side, and one contact spacings were used to permit the effects of the location of the existing laser pulse to be studied. A high voltage power supply (zero to 20 kV) was employed as the bias supply. A Nd:YAG laser, in the pulsed mode, was used to trigger the switch, which was mounted on a cold finger cooled to near liquid nitrogen temperature. Cooling reduced the dark current to manageable values (less than 1 micro A), and also reduced the avalanche breakdown voltage. The results of the measurements indicate that ohmic contacts produced more reliable switching than the non-ohmic or Schottky contacts, in as much as the shape of the output current pulse was better, and the number of pulses which the switches could sustain before the pulse shape deteriorated was greater, for the ohmic contacts. Surface discharge between the one-sided contacts obscured any differences in switching characteristics which might have depended on the location of the pulsed light excitation, so that no correlation between position and behavior could be obtained.
An electrically actuated molecular toggle switch
NASA Astrophysics Data System (ADS)
Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf
2017-03-01
Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.
Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM
2012-01-01
BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
Yang, Chao; Wu, Lei; Li, Gang
2018-06-13
A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface
NASA Astrophysics Data System (ADS)
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-01
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
Neuberger, M S; Rajewsky, K
1981-01-01
From a hybrid mouse cell line (B1-8) that secreted an IgM, lambda 1 anti-(4-hydroxy-3-nitrophenyl)acetyl antibody but that had no detectable surface IgM, selection for a variant with lambda 1 chains on the surface resulted in the isolation of a line that had switched from mu to delta expression. The surface and secreted Igs of this line were typed as IgD with two monoclonal antibodies, and the parental IgM and variant IgD molecules carried the same variable regions as judged by hapten-binding and idiotypic analysis. The surface and secreted delta chains of the IgD variant have apparent molecular weights of 64,000 and 61,000, respectively. However, the unglycosylated secreted delta polypeptide chain has a molecular weight of only 44,000. The secreted IgD exists predominantly in the delta 2 lambda A2 form, does not contain J protein, is relatively stable in serum, and does not fix complement. Images PMID:6940132
Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation
Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.
2014-01-01
Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123
Light-controlled plasmon switching using hybrid metal-semiconductor nanostructures.
Paudel, Hari P; Leuenberger, Michael N
2012-06-13
We present a proof of concept for the dynamic control over the plasmon resonance frequencies in a hybrid metal-semiconductor nanoshell structure with Ag core and TiO(2) coating. Our method relies on the temporary change of the dielectric function ε of TiO(2) achieved through temporarily generated electron-hole pairs by means of a pump laser pulse. This change in ε leads to a blue shift of the Ag surface plasmon frequency. We choose TiO(2) as the environment of the Ag core because the band gap energy of TiO(2) is larger than the Ag surface plasmon energy of our nanoparticles, which allows the surface plasmon being excited without generating electron-hole pairs in the environment at the same time. We calculate the magnitude of the plasmon resonance shift as a function of electron-hole pair density and obtain shifts up to 126 nm at wavelengths around 460 nm. Using our results, we develop the model of a light-controlled surface plasmon polariton switch.
Dedobbeleer, Olivier; Stockis, Julie; van der Woning, Bas; Coulie, Pierre G; Lucas, Sophie
2017-07-15
Production of active TGF-β is regulated at a posttranslational level and implies release of the mature cytokine dimer from the inactive, latent TGF-β precursor. There are several cell-type specific mechanisms of TGF-β activation. We identified a new mechanism operating on the surface of human regulatory T cells and involving membrane protein GARP, which binds latent TGF-β1. The paracrine activity of regulatory T cell-derived TGF-β1 contributes to immunosuppression and can be inhibited with anti-GARP Abs. Whether other immune cell types use surface GARP to activate latent TGF-β1 was not known. We show in this study that stimulated, human B lymphocytes produce active TGF-β1 from surface GARP/latent TGF-β1 complexes with isotype switching to IgA production. Copyright © 2017 by The American Association of Immunologists, Inc.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface.
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-29
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component "Recognition-Mediating-Function" design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Switchable vanadium oxide films by a sol-gel process
NASA Astrophysics Data System (ADS)
Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.
1991-07-01
Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.
Transient current interruption mechanism in a magnetically delayed vacuum switch
NASA Technical Reports Server (NTRS)
Morris, Gibson, Jr.; Dougal, Roger A.
1993-01-01
The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.
Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.
2010-01-01
We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619
Glow discharge cleaning of vacuum switch tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Toya, H.
1991-10-01
This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attainedmore » by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.« less
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector
NASA Astrophysics Data System (ADS)
Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.
2018-06-01
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
NASA Astrophysics Data System (ADS)
Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.
2017-10-01
Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.
NASA Astrophysics Data System (ADS)
Shan, Chao; Yong, Jiale; Yang, Qing; Chen, Feng; Huo, Jinglan; Zhuang, Jian; Jiang, Zhuangde; Hou, Xun
2018-04-01
Controlling the underwater bubble wettability on a solid surface is of great research significance. In this letter, a simple method to achieve reversible switch between underwater superaerophilicity and underwater superaerophobicity on a superhydrophobic nanowire-haired mesh by alternately vacuumizing treatment in water and drying in air is reported. Such reversible switch endows the as-prepared mesh with many functional applications in controlling bubble's behavior on a solid substrate. The underwater superaerophilic mesh is able to absorb/capture bubbles in water, while the superaerophobic mesh has great anti-bubble ability. The reversible switch between underwater superaerophilicity and superaerophobicity can selectively allow bubbles to go through the resultant mesh; that is, bubbles can pass through the underwater superaerophilic mesh while are fully intercepted by the underwater superaerophobic mesh in a water medium. We believe these meshes will have important applications in removing or capturing underwater bubbles/gas.
A Magnetoresistive Heat Switch for the Continuous ADR
NASA Technical Reports Server (NTRS)
Canavan, E. R.; Dipirro, M. J.; Jackson, M.; Panek, J.; Shirron, P. J.; Tuttle, J. G.; Krebs, C. (Technical Monitor)
2001-01-01
In compensated elemental metals at low temperature, a several Tesla field can suppress electronic heat conduction so thoroughly that heat is effectively carried by phonons alone. In approximately one mm diameter single crystal samples with impurity concentrations low enough that electron conduction is limited by surface scattering, the ratio of zerofield to high-field thermal conductivity can exceed ten thousand. We have used this phenomenon to build a compact, solid-state heat switch with no moving parts and no enclosed fluids. The time scale for switching states is limited by time scale for charging the magnet that supplies the controlling field. Our design and fabrication techniques overcome the difficulties associated with manufacturing and assembling parts from single crystal tungsten. A clear disadvantage of the magnetoresistive switch is the mass and complexity of the magnet system for the controlling field. We have discovered a technique of minimizing this mass and complexity, applicable to the continuous adiabatic demagnetization refrigerator.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Design of rocker switches for work-vehicles--an application of Kansei Engineering.
Schütte, Simon; Eklund, Jörgen
2005-09-01
Rocker switches used in vehicles meet high demands partly due to the increased focus on customer satisfaction. Previous studies focused on ergonomics and usability rather than design for emotions and affection. The aim of this study was to determine how and to what extent engineering properties influence the perception of rocker switches. Secondary aims were to compare two types of rating scales and to determine consistency over time of the ratings. As a method Kansei Engineering was used, describing a product domain from a physical and semantic point of view. A model was built and validated, and recommendations for new designs were given. It was seen that the subjective impressions of robustness, precision and design are strongly influenced by the zero position, the contact position, the form-ratio, shape and the surface of rocker switches. A 7-point scale was found suitable. The Kansei ratings were consistent over time.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
Tailoring of the Perpendicular Magnetization Component in Ferromagnetic Films on a Vicinal Substrate
NASA Astrophysics Data System (ADS)
Stupakiewicz, A.; Maziewski, A.; Matlak, K.; Spiridis, N.; Ślęzak, M.; Ślęzak, T.; Zajac, M.; Korecki, J.
2008-11-01
We have engineered the magnetic properties of 1 8 nm Co films epitaxially grown on an Au-buffered bifacial W(110)/W(540) single crystal. The surface of Au/W(110) was atomically flat, whereas the Au/W(540) followed the morphology of the vicinal W surface, showing a regular array of monoatomic steps. For Co grown on Au/W(540), the existence of the out-of-plane magnetization component extended strongly to a thickness d of about 8 nm, which was accompanied by an anomalous increase of the out-of-plane switching field with increasing d. In addition, the process of up-down magnetization switching could be realized with both a perpendicular and in-plane external magnetic field.
NASA Astrophysics Data System (ADS)
Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang
2018-01-01
Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.
NASA Astrophysics Data System (ADS)
Worden, K.; Cross, E. J.
2018-01-01
Structural Health Monitoring (SHM) is the engineering discipline of diagnosing damage and estimating safe remaining life for structures and systems. Often, SHM is accomplished by detecting changes in measured quantities from the structure of interest; if there are no competing explanations for the changes, one infers that they are the result of damage. If the structure of interest is subject to changes in its environmental or operational conditions, one must understand the effects of these changes in order that one does not falsely claim that damage has occurred when changes in measured quantities are observed. This problem - the problem of confounding influences - is particularly pressing for civil infrastructure where the given structure is usually openly exposed to the weather and may be subject to strongly varying operational conditions. One approach to understanding confounding influences is to construct a data-based response surface model that can represent measurement variations as a function of environmental and operational variables. The models can then be used to remove environmental and operational variations so that change detection algorithms signal the occurrence of damage alone. The current paper is concerned with such response surface models in the case of SHM of bridges. In particular, classes of response surface models that can switch discontinuously between regimes are discussed. Recently, it has been shown that Gaussian Process (GP) models are an effective means of developing response surface or surrogate models. However, the GP approach runs into difficulties if changes in the latent variables cause the structure of interest to abruptly switch between regimes. A good example here, which is well known in the SHM literature, is given by the Z24 Bridge in Switzerland which completely changed its dynamical behaviour when it cooled below zero degrees Celsius as the asphalt of the deck stiffened. The solution proposed here is to adopt the recently-proposed Treed Gaussian Process (TGP) model as an alternative. The approach is illustrated here on the Z24 bridge and also on data from the Tamar Bridge in the UK which shows marked switching behaviour in certain of its dynamical characteristics when its ambient wind conditions change. It is shown that treed GPs provide an effective approach to response surface modelling and that in the Tamar case, a linear model is in fact sufficient to solve the problem.
Introduction of Electronic Pressure Scanning at the Royal Aerospace Establishment
1991-09-01
electronic pressure scanning system could offer an acciracy the same as or better than that of the mechanical pressure switch system it would replace and...described it as comparable with the kind of problem encountered with pressures in a rotating pressure switch system and suggested two ways around the...sufficient to reduce the system random noise to less than the systematic errors for data from the surface of a pressure plotted model A mechanical pressure
Investigation into Contact Resistance And Damage of Metal Contacts Used in RF-MEMS Switches
2009-09-01
mechanically cycled by a piezo- electric transducer ( PZT ). The resistance through the simulated switch was measured using a four-wire measurement technique...research, including a brief overview of contact theory. Then chapter 3 gives an overview of engi- 13 V I PZT Sample Mount Cantilever Lower Contact...as described in [3, 118]. The measurement of surface texture and 4These figures were published in Materials Selection in Mechanical Design, Michael F
Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module
2015-02-01
executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
Casanova-Moreno, J; Bizzotto, D
2015-02-17
Electrostatic control of the orientation of fluorophore-labeled DNA strands immobilized on an electrode surface has been shown to be an effective bioanalytical tool. Modulation techniques and later time-resolved measurements were used to evaluate the kinetics of the switching between lying and standing DNA conformations. These measurements, however, are the result of a convolution between the DNA "switching" response time and the other frequency limited responses in the measurement. In this work, a method for analyzing the response of a potential driven DNA sensor is presented by calculating the potential effectively dropped across the electrode interface (using electrochemical impedance spectroscopy) as opposed to the potential applied to the electrochemical cell. This effectively deconvolutes the effect of the charging time on the observed frequency response. The corrected response shows that DNA is able to switch conformation faster than previously reported using modulation techniques. This approach will ensure accurate measurements independent of the electrochemical system, removing the uncertainty in the analysis of the switching response, enabling comparison between samples and measurement systems.
Verhey, Theodore B; Castellanos, Mildred; Chaconas, George
2018-05-29
The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.
Huang, Xinbo; Zhao, Long; Chen, Guimin
2016-10-09
Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.
The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability
NASA Astrophysics Data System (ADS)
Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing
2018-01-01
Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.
Gold-based thin multilayers for ohmic contacts in RF-MEMS switches
NASA Astrophysics Data System (ADS)
Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B.
2011-06-01
In RF-MEMS switches many reliability issues are related to the metal contacts in the switching area. The characteristics of this contact influence not only contact resistance and insertion loss, but also the most relevant switch failure mechanisms that are wear of ohmic contact, adhesion and stiction. Gold is widely used for this purpose because of its good conductivity and chemical inertness, but is a soft metal, and the development of hard contact materials with low resistivity is of great interest for RF-MEMS switch reliability. It is possible to increase the contact hardness preserving the convenient gold properties alternating gold layers with thin layers of different metals. The material becomes harder not only by simple alloying but also by the presence of interfaces which act as barriers for mechanical dislocation migration. A detailed study of mechanical, electrical and morphological properties of gold-chromium, gold-platinum and gold-palladium multilayers is presented and discussed. It is found that the annealing treatments are important for tuning hardness values, and a careful choice of the alloying metal is essential when the material is inserted in a real switch fabrication cycle, because hardness improvements can vanish during oxygen plasma treatments usually involved in RF-switches fabrication. Platinum is the only metal tested that is unaffected by oxidation, and also modifies the chromium adhesion layer diffusion on the contact surface.
NASA Astrophysics Data System (ADS)
Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo
Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.
Dresser, Ashley R.; Hardy, Pierre-Olivier; Chaconas, George
2009-01-01
Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process. PMID:19997508
NASA Astrophysics Data System (ADS)
Apsari, R.; Pratomo, D. A.; Hikmawati, D.; Bidin, N.
2016-03-01
This study was conducted to determine the effect of Q-Switched Nd: YAG laser energy dose to human enamel caries. The specifications of Q-Switched Nd: YAG laser as followed: wavelength of 1064 nm and 6 ns pulse width. Caries enamel samples taken from human teeth molars of 17-35 ages and the type of media caries. Energy doses used in this study were 723.65 mJ/cm2, 767.72 mJ/cm2, and 1065.515 mJ/cm2; 5 Hz repetition rate, and 20 second exposure time. Samples characterized the surface morphology and the percentage of constituent elements, especially calcium/phosphorus (Ca/P) with FESEM-EDAX. The fraction volume and crystallinity percentage of hydroxyapatite (HA) with XRD and hardness value using Vickers Microhardness Test. The results indicated that exposure of Q-Switched Nd:YAG laser on enamel caries resulting cracks, holes, and melt due to plasma production effects in the surface. Plasma production effect also resulted in micro properties such as percentage of Ca/P was close to normal, the fraction volume and crystallinity percentage of HA went up but did not change the crystal structure (in terms of the lattice structure). The hardness value also rose as linear as exposure energy dose caused by phototermal effect. Based on the results, Q-Switched Nd:YAG laser can be used as contactless drill dental caries replacement candidate with the additional therapy effect such as localized caries in order to avoid the spread, the ratio of Ca/P approaching healthy teeth, the fraction volume and crystallinity percentage of HA rose and established stronger teeth with peak energy dose 1065.515 mJ/cm2.
Metasurface quantum-cascade laser with electrically switchable polarization
Xu, Luyao; Chen, Daguan; Curwen, Christopher A.; ...
2017-04-20
Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less
Metasurface quantum-cascade laser with electrically switchable polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Luyao; Chen, Daguan; Curwen, Christopher A.
Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less
MEMS micromirrors for optical switching in multichannel spectrophotometers
NASA Astrophysics Data System (ADS)
Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.
2004-04-01
This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.
Energy Switching Threshold for Climatic Benefits
NASA Astrophysics Data System (ADS)
Zhang, X.; Cao, L.; Caldeira, K.
2013-12-01
Climate change is one of the great challenges facing humanity currently and in the future. Its most severe impacts may still be avoided if efforts are made to transform current energy systems (1). A transition from the global system of high Greenhouse Gas (GHG) emission electricity generation to low GHG emission energy technologies is required to mitigate climate change (2). Natural gas is increasingly seen as a choice for transitions to renewable sources. However, recent researches in energy and climate puzzled about the climate implications of relying more energy on natural gas. On one hand, a shift to natural gas is promoted as climate mitigation because it has lower carbon per unit energy than coal (3). On the other hand, the effect of switching to natural gas on nuclear-power and other renewable energies development may offset benefits from fuel-switching (4). Cheap natural gas is causing both coal plants and nuclear plants to close in the US. The objective of this study is to measure and evaluate the threshold of energy switching for climatic benefits. We hypothesized that the threshold ratio of energy switching for climatic benefits is related to GHGs emission factors of energy technologies, but the relation is not linear. A model was developed to study the fuel switching threshold for greenhouse gas emission reduction, and transition from coal and nuclear electricity generation to natural gas electricity generation was analyzed as a case study. The results showed that: (i) the threshold ratio of multi-energy switching for climatic benefits changes with GHGs emission factors of energy technologies. (ii)The mathematical relation between the threshold ratio of energy switching and GHGs emission factors of energies is a curved surface function. (iii) The analysis of energy switching threshold for climatic benefits can be used for energy and climate policy decision support.
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Yan; Yang, Zhuoqing; Ding, Guifu; Zhao, Xiaolin; Wang, Hong
2018-03-01
The MEMS inertial switch is widely used in various industries owing to its advantage of small size, high integration, low power consumption and low costs, especially in the timing of Internet of things, such as toys, handheld devices, accessories and vibration testing. This paper provided a novel inertial switch with a reinforcing rib structure and electrostatic power assist. The designed inertial switch can reduce the complexity of the post-processing circuit and broaden its application prospect. The continuous electrostatic force can extend the contact time of the designed inertia switch before the leakage of electricity ends. The moving electrode with a reinforcing rib structure can effectively restrain the bending of the lower surface of moving electrode caused by residual stress. The array-type fixed electrode can ensure stable contact between the electrodes when the device is sensitive to external shocks. The dynamic displacement-time curve can be simulated by the COMSOL finite element simulation software. The laminated plating process is used to produce the designed inertial switch and the drop hammer acceleration monitoring system is used to test the fabricated device. The results indicate that, compared with the traditional design, the bouncing phenomenon can be prevented and extend the contact time to 336μs.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector.
Kuszewski, P; Camara, I S; Biarrotte, N; Becerra, L; von Bardeleben, J; Savero Torres, W; Lemaître, A; Gourdon, C; Duquesne, J-Y; Thevenard, L
2018-06-20
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of [Formula: see text], much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
A study of DC-DC converters with MCT's for arcjet power supplies
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.
1994-01-01
Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.
Qu, Chen; Bowman, Joel M
2016-07-14
Semiclassical quantization of vibrational energies, using adiabatic switching (AS), is applied to CH4 using a recent ab initio potential energy surface, for which exact quantum calculations of vibrational energies are available. Details of the present calculations, which employ a harmonic normal-mode zeroth-order Hamiltonian, emphasize the importance of transforming to the Eckart frame during the propagation of the adiabatically switched Hamiltonian. The AS energies for the zero-point, and fundamental excitations of two modes are in good agreement with the quantum ones. The use of AS in the context of quasi-classical trajectory calculations is revisited, following previous work reported in 1995, which did not recommend the procedure. We come to a different conclusion here.
Schofield, A.E.
1958-07-22
A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.
Microwave-triggered laser switch
Piltch, M.S.
1982-05-19
A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Microwave-triggered laser switch
Piltch, Martin S.
1984-01-01
A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, Cecil E.
1990-01-01
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, C.E.
1990-07-31
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.
Brannon, Paul J.; Cowgill, Donald F.
1990-01-01
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.
Love, Frank
2006-04-18
An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.
Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone
2017-08-20
rechargeable, lithium - ion polymer battery that can be charged through a micro-USB input on the circuit. The micro-USB input also allows for communication to...protection, an on/off switch for the battery , status LEDs, and a logic switch that enables the `Bluetooth module to be fully functional when...simultaneously powered via USB and battery . The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127
Brannon, P.J.; Cowgill, D.F.
1990-12-18
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T. Y.; Santos, T. S.; Bode, M.
2011-06-20
In their comment, Chen et al. try to argue that the experimentally observed controllable voltage-induced surface modification, which was attributed to a local electric field-induced atom transfer from the surface to the tip, is rather caused by either an oxidation process and/or a resistance change. In this response, we will show that we can rule out these two effects in our experiment. The statements by Chen et al. are based on two arguments: (1) the tip modification after transferring an adatom should alter the dI/dV contrast, which was not seen in our experiments and (2) the vacuum conditions in ourmore » experiment are similar to earlier reports on resistance switching. First, Chen et al. discuss that the adsorption on the tip should alter the topographic contrast, as many papers have reported. In fact, in our experiments we frequently observed tip modifications at high bias voltage. These typically result in slight changes in scanning tunneling spectroscopy data [see, for example, the spectra in Fig. 3(b) in Ref. 4 and Fig. 2(d) of Ref. 5] but only weakly affected the topographic contrast. Second, Chen et al. claim that oxidation is another possible mechanism to explain our experimental observations. To support this claim, they compare our results to an earlier publication showing resistance switching. In fact, the resistance switching mechanism is related to oxygen vacancy migration or local surface oxidation. The mechanism of oxygen vacancy migration requires a 'forming' process with a threshold current in the order of microampere or even milliampere. In our experimental setup, however, we used tunneling currents in the order of 50 pA. Even during surface modification, which was performed at open feedback loop conditions with voltage pulse of up to 3 or -5 V, the maximum transient current did not exceed a few nanoampere. Therefore, we can safely exclude oxygen vacancy migration as a potential mechanism for the observed surface modification. As a second potential mechanism Chen et al. mention a local surface oxidation process. However, the total pressure at high-vacuum conditions used in experiments, where resistance switching was observed (10{sup -7} torr in Ref. 3) is three order magnitude higher than in our experiment performed under ultrahigh vacuum (UHV) conditions (below 10{sup -10} torr). Furthermore, mass spectra measured with a residual gas analyzer show that the main residue gas in our UHV system is hydrogen ({approx} 90%). Water, oxygen, and other oxygen-related gases are negligible with a partial pressure in the order of 10{sup -12} torr range or lower. Therefore, we can also exclude that local oxidation with reactants from the residual gas causes the observed modifications. In addition, in our experiment, the refilling of the modified areas at negative bias could not be observed with fresh tip, even for bias voltages as high as -10 V. In short, the mechanism for the modification on the UHV in situ fractured Nb:SrTiO{sub 3} (Nb-doped Strontium titanate) surfaces with scanning tunneling microscope (STM) tip is different from the mechanisms such as local surface oxidation or filament formation, used to explain the largecurrent induced resistance switching works.« less
NASA Astrophysics Data System (ADS)
Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.
2018-01-01
Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.
NASA Astrophysics Data System (ADS)
Zhou, Chen; Li, Guoqiang; Li, Chuanzong; Zhang, Zhen; Zhang, Yachao; Wu, Sizhu; Hu, Yanlei; Zhu, Wulin; Li, Jiawen; Chu, Jiaru; Hu, Zhijia; Wu, Dong; Yu, Liandong
2017-10-01
In this work, a kind of three-level cobblestone-like anatase TiO2 microcone array was fabricated on titanium sheets by femtosecond laser-induced self-assembly. This three level structure consisted of cobblestone-like features (15-25 μm in height and 20-35 μm in diameter), ˜460 nm ripple-like features, and smaller particles (10-500 nm). The formation of microcone arrays can be ascribed to the interaction of alternant laser beam ablation. TiO2 surfaces display dual-responsive water/oil reversible wetting via heat treatment and selective UV irradiation without fluorination. It is indicated that three-level scale surface roughness can amplify the wetting character of the Ti surface, and the mechanism for reversible switching between extreme wettabilities is caused by the conversion between Ti-OH and Ti-O. Moreover, the double-faced superhydrophobic and double-faced superhydrophilic Ti samples were constructed, which exhibited stable superhydrophobicity and underwater superoleophobicity in water-oil solution, respectively, even when strongly shaken. Finally, we present the hybrid-patterned TiO2 surface and realized reversible switching pattern wettability.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
NASA Astrophysics Data System (ADS)
Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.
2017-12-01
In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.
Charge dynamics of MgO single crystals subjected to KeV electron irradiation
NASA Astrophysics Data System (ADS)
Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.
2004-04-01
A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
Changes in water and solute fluxes in the vadose zone after switching crops
NASA Astrophysics Data System (ADS)
Turkeltaub, Tuvia; Dahan, Ofer; Kurtzman, Daniel
2015-04-01
Switching crop type and therefore changing irrigation and fertilization regimes leads to alternation in deep percolation and concentrations of solutes in pore water. Changes of fluxes of water, chloride and nitrate under a commercial greenhouse due to a change from tomato to green spices were observed. The site, located above the a coastal aquifer, was monitored for the last four years. A vadose-zone monitoring system (VMS) was implemented under the greenhouse and provided continuous data on both the temporal variation in water content and the chemical composition of pore water at multiple depths in the deep vadose zone (~20 m). Chloride and nitrate profiles, before and after the crop type switching, indicate on a clear alternation in soil water solutes concentrations. Before the switching of the crop type, the average chloride profile ranged from ~130 to ~210, while after the switching, the average profile ranged from ~34 to ~203 mg L-1, 22% reduction in chloride mass. Counter trend was observed for the nitrate concentrations, the average nitrate profile before switching ranged from ~11 to ~44 mg L-1, and after switching, the average profile ranged from ~500 to ~75 mg L-1, 400% increase in nitrate mass. A one dimensional unsaturated water flow and chloride transport model was calibrated to transient deep vadose zone data. A comparison between the simulation results under each of the surface boundary conditions of the vegetables and spices cultivation regime, clearly show a distinct alternation in the quantity and quality of groundwater recharge.
Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines
NASA Astrophysics Data System (ADS)
Zhou, Peipei; Jia, Sisi; Pan, Dun; Wang, Lihua; Gao, Jimin; Lu, Jianxin; Shi, Jiye; Tang, Zisheng; Liu, Huajie
2015-09-01
Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst’s conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions.
NASA Astrophysics Data System (ADS)
Wong, Meng Fei; Heng, Xiangxin; Zeng, Kaiyang
2008-10-01
Domain structures of [001]T and [011]T-cut Pb(Zn1/3Nb2/3)O3-(6%-7%)PbTiO3 (PZN-PT) single crystals are studied using scanning electron acoustic microscope (SEAM) technique. The observation of the orientation of domain walls agree reasonably well with the trigonometric projection of rhombohedral and orthorhombic dipoles on the (001) and (011) surfaces, respectively. After mechanical loading with microindentation, domain switching is also observed to form a hyperbolic butterfly shape and extend preferentially along four diagonal directions, i.e., ⟨110⟩ on (001) surface and ⟨111¯⟩ on (011) surface. The critical shear stress to cause domain switching for PZN-PT crystal is estimated to be approximately 49 MPa for both {110} and {111¯} planes based on theoretical analysis. Generally, the SEAM technique has been successfully demonstrated to be a valid technique for observation of domain structures in single crystal PZN-PTs.
NASA Astrophysics Data System (ADS)
Boubakir, A.; Boudjema, F.; Boubakir, C.
2008-06-01
This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.
A sliding-control switch stabilizes synchronized states in a model of actuated cilia
NASA Astrophysics Data System (ADS)
Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa
2017-11-01
A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.
Photoablation of the cornea with a Q-switched Er:YAG laser
NASA Astrophysics Data System (ADS)
Lubatschowski, Holger; Hetzel, U.; Kermani, Omid; Ziolek, Carsten; Drommer, Wolfgang; Ertmer, Wolfgang
1997-12-01
In this study the ablation characteristics and the wound healing process of rabbit cornea irradiated with a Q- switched Er:YAG laser was evaluated. The laser, emitting at 2.94 micrometers wavelength, has a pulse width of 100 ns. The spot size on the corneal surface was 1 mm in diameter at a fluence of 750 mJ/cm2. The laser beam was applied by a `flying spot' mode, performing refractive ablations of -7 to -8 dpt. As a biological model, the corneas of 9 rabbits were irradiated. The post-treatment follow-up was as long as 39 days. The treated corneas were investigated by light and electron microscopy. The wound healing on rabbit cornea of the Q-switched Er:YAG laser radiation in corneal tissue processing resembles to what is known from ArF- excimer laser application. To shorten the pulse width by means of Q-switching is one major key to the successful application of the Er:YAG laser for PRK.
NASA Astrophysics Data System (ADS)
Bazanov, A. A.; Ivanovskii, A. V.; Panov, A. I.; Samodolov, A. V.; Sokolov, S. S.; Shaidullin, V. Sh.
2017-06-01
We report on the results of the computer simulation of the operation of magnetodynamic break switches used as the second stage of current pulse formation in magnetic explosion generators. The simulation was carried out under the conditions when the magnetic field energy density on the surface of the switching conductor as a function of the current through it was close to but still did not exceed the critical value typical of the beginning of electric explosion. In the computational model, we used the parameters of experimentally tested sample of a coil magnetic explosion generator that can store energy of up to 2.7 MJ in the inductive storage circuit and equipped with a primary explosion stage of the current pulse formation. It has been shown that the choice of the switching conductor material, as well as its elastoplastic properties, considerably affects the breaker speed. Comparative results of computer simulation for copper and aluminum have been considered.
Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard
2016-01-01
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154
High-contrast and fast electrochromic switching enabled by plasmonics
Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec
2016-01-01
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey P.
2017-04-01
We consider motions of the Chaplygin sleigh on a plane supposing that the nonholonomic constraint is located periodically turn by turn at each of three legs supporting the sleigh. We assume that at switching on the constraint the respective element (“knife-edge”) is directed along the local velocity vector and becomes fixed relatively to the sleigh for a certain time interval till the next switch. Differential equations of the mathematical model are formulated and analytical derivation of a 2D map for the state transformation on the switching period is provided. The dynamics takes place with conservation of the mechanical energy. Numerical simulations show phenomena characteristic to nonholonomic systems with complex dynamics. In particular, on the energy surface attractors may occur responsible for regular sustained motions settling in domains of prevalent area compression by the map. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.
Active Radiative Thermal Switching with Graphene Plasmon Resonators.
Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A
2018-03-27
We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.
High-contrast and fast electrochromic switching enabled by plasmonics
Xu, Ting; Walter, Erich C.; Agrawal, Amit; ...
2016-01-27
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less
Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption
NASA Astrophysics Data System (ADS)
Wang, Yu; Li, Xiaoguang; Zheng, Xiao; Yang, Jinlong
2017-10-01
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
Angular dependence of switching behaviour in template released isolated NiFe nanowires
NASA Astrophysics Data System (ADS)
Sultan, Musaab Salman
2017-12-01
In this article, the magnetisation behaviour and magnetisation reversal process of both single and bundles of 3 and 7 closely-packed template released Ni60Fe40 nanowires were investigated using high-sensitivity Magneto-Optical Kerr Effect (MOKE) magnetometry. The nanowires were deposited from a dilute suspension onto gold pre-patterned silicon substrates. They were typically 9 μm in length with a diameter of approximately 200 nm. By increasing the number of clumped wires a reduction in the switching field was observed, suggesting that overall the bundle behaves like a single system and decreasing the effective external field required to switch the magnetisation. Square hysteresis loops with a sharp jump in the Kerr signal were seen for all MOKE measurement angles. This result may reflect the surface magnetisation of the nanowire, compared to their bulk behaviour as compared with the literature that adopted the same and different investigative techniques on comparable compositions and dimensions of wires. The influence of applying the magnetic field at different angles with respect to the long axis of the nanowire on the switching behaviour was analysed and compared with the theoretical calculations of non-uniform rotation of the curling model of domain reversal. An agreement and disagreement with this model was seen, respectively, for low and high angles, indicating the complexity of the magnetic state of such isolated nanowires. To confirm the results presented here, further studies are recommended using a combination of techniques sensitive to surface and bulk magnetisation on similar isolated ferromagnetic nanowires.
Double-injection, deep-impurity switch development
NASA Technical Reports Server (NTRS)
Selim, F. A.; Whitson, D. W.
1983-01-01
The overall objective of this program is the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI)(2) silicon switch that operates in the 1-10 kV range with conduction current of 10 and 1A, respectively. Other major specifications include a holding voltage of 0 to 5 volts at 1 A anode current, 10 microsecond switching time, and power dissipation of 50 W at 75 C. This report describes work that shows how the results obtained at the University of Cincinnati under NASA Grant NSG-3022 have been applied to larger area and higher voltage devices. The investigations include theoretical, analytical, and experimental studies of device design and processing. Methods to introduce deep levels, such as Au diffusion and electron irradiation, have been carried out to "pin down' the Fermi level and control device-switching characteristics. Different anode, cathode, and gate configurations are presented. Techniques to control the surface electric field of planar structures used for (DI)(2) switches are examined. Various sections of this report describe the device design, wafer-processing techniques, and various measurements which include ac and dc characteristics, 4-point probe, and spreading resistance.
Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device
NASA Astrophysics Data System (ADS)
Zhang, Jiahua; Chen, Da; Huang, Shihua
2017-12-01
The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Influence of adhesive rough surface contact on microswitches
NASA Astrophysics Data System (ADS)
Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.
2009-12-01
Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
Surface charge sensing by altering the phase transition in VO2
NASA Astrophysics Data System (ADS)
Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.
2014-08-01
Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.
NASA Astrophysics Data System (ADS)
Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei
2017-01-01
Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.
NASA Astrophysics Data System (ADS)
Wang, Mingjun; Fang, Guojia; Yuan, Longyan; Huang, Huihui; Sun, Zhenhua; Liu, Nishuang; Xia, Shanhong; Zhao, Xingzhong
2009-05-01
The electrochromic (EC) property of WO3 nanoparticles grown on vertically self-aligned ZnO nanorods (ZNRs) is reported. An electrochromic character display based on WO3 nanoparticle-modified ZnO nanorod arrays on a flexible substrate has been fabricated and demonstrated. The ZNRs were first synthesized on ZnO-seed-coated In2O3:Sn (ITO) glass (1 cm2 cell) and polyethylene terephthalate (PET) (4 cm2 cell) substrates by a low temperature hydrothermal method, and then amorphous WO3 nanoparticles were grown directly on the surface of the ZNRs by the pulsed laser deposition (PLD) method. The ZNR-based EC device shows high transparence, good electrochromic stability and fast switching speed (4.2 and 4 s for coloration and bleaching, respectively, for a 1 cm2 cell). The good performance of the ZNR electrode-based EC display can be attributed to the large surface area, high crystallinity and good electron transport properties of the ZNR arrays. Its high contrast, fast switching, good memory and flexible characteristics indicate it is a promising candidate for flexible electrochromic displays or electronic paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempa, K.; Broido, D.A.; Weitering, H.H.
Electron correlations are strongly enhanced in low dimensional systems. Taking correlations as the dominant mechanism, we provide and explanation of the recently observed electrostatically enforced structural phase transition (3x1 to 6x1) on a Si(111) surface with sub-monolayer Ag adsorption.
Paper-Thin Coating Offers Maximum Protection
NASA Technical Reports Server (NTRS)
2001-01-01
Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.
Analysis of a flux-coupling type superconductor fault current limiter with pancake coils
NASA Astrophysics Data System (ADS)
Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin
2017-10-01
The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.
NASA Astrophysics Data System (ADS)
Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Fuhrmann, Bodo; Schmidt, Georg
2016-04-01
Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.
Graphene-based nonvolatile terahertz switch with asymmetric electrodes.
Li, Yan; Yu, Hui; Qiu, Xinyu; Dai, Tingge; Jiang, Jianfei; Wang, Gencheng; Zhang, Qiang; Qin, Yali; Yang, Jianyi; Jiang, Xiaoqing
2018-01-24
We propose a nonvolatile terahertz (THz) switch which is able to perform the switching with transient stimulus. The device utilizes graphene as its floating-gate layer, which changes the transmissivity of THz signal by trapping the tunneling charges. The conventional top-down electrode configuration is replaced by a left-right electrode configuration, so THz signals could transmit through this device with the transmissivity being controlled by voltage pulses. The two electrodes are made of metals with different work functions. The resultant asymmetrical energy band structure ensures that both electrical programming and erasing are viable. With the aid of localized surface plasmon resonances in graphene ribbon arrays, the modulation depth is 89% provided that the Femi level of graphene is tuned between 0 and 0.2 eV by proper voltage pulses.
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
Ultrafast optical switching in three-dimensional photonic crystals
NASA Astrophysics Data System (ADS)
Mazurenko, D. A.
2004-09-01
The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude and may result in a true revolution in nanotechnology. The heart of such devices would likely be an optical switching element. This thesis analyzes different regimes of ultrafast all-optical switching in various three-dimensional photonic crystals, in particular opals filled with silicon or vanadium dioxide and periodic arrays of silica-gold core-shell spherical particles with silica outer shell. In the experiment an ultrashort optical pulse is used to excite a photonic crystal and change its complex effective dielectric constant. The change in the imaginary part of the dielectric constant corresponds to the change in absorption that suppresses interference inside the photonic crystal and modifies the amplitude of the reflectivity, while the change in the real part of the dielectric constant accounts for a shift in a spectral position of the photonic stop band. The first type of switching is shown on an example of an opal filled with silicon. In this crystal, switching is induced by photo-excited carriers in silicon that act as an electron plasma and increase the absorption in silicon. Within 30 fs constructive interference inside the opal vanishes and Bragg reflectivity drops down. Changes in reflectivity reach values as high as 46% at maximum excitation power. The experimental results are in a good agreement with calculations. The second type of switching is demonstrated in opal filled with vanadium dioxide. Here, the optical switching is driven by a photoinduced phase transition of vanadium dioxide. The phase transition takes place on a subpicosecond time scale and changes the effective dielectric constant of the opal. As a result, the spectral position of the photonic stop band shifts to the blue leading to large (up to 35%) changes in the reflectivity. Metallo-dielectric photonic crystals give even more possibilities for the band-tuning, since in addition to the resonance for light they posses surface plasmon resonances. The interplay of these resonances leads to unusual optical phenomena. As an example, reflected light produces an unexpected beaming in the apexes of a hexagon with a divergence angle of 8°, in our sample. This angle is too small to be attributed to a simple diffraction on the periodic lattice of core-shells but can be explained by interference between surface plasmons and propagating surface waves. Time-resolved spectra demonstrate rapid changes immediately after the arrival of the pump pulse. Ultrafast reflection changes are dramatically enhanced by the plasmon resonances, and can reach values as high as 35%. A completely different mechanism for ultrafast switching is explored, based on the excitation of coherent acoustic radial vibrations of the gold spheres. This results in a 4% modulation of the reflectivity on a subnanosecond timescale. The observed oscillation properties of our gold-shell spheres are in excellent agreement with the calculations. The described results show that the demonstrated dynamical changes in the reflectivity of a three-dimensional photonic crystal can be made both large and ultrafast and therefore may prove to be relevant for future applications.
Combined Space Environmental Exposure Tests of Multi-Junction GaAs/Ge Solar Array Coupons
NASA Technical Reports Server (NTRS)
Hoang, Bao; Wong, Frankie; Corey, Ron; Gardiner, George; Funderburk, Victor V.; Gahart, Richard; Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The purpose of this test program is to understand the changes and degradation of the solar array panel components, including its ESD mitigation design features in their integrated form, after multiple years (up to 15) of simulated geosynchronous space environment. These tests consist of: UV radiation, electrostatic discharge (ESD), electron/proton particle radiation, thermal cycling, and ion thruster plume exposures. The solar radiation was produced using a Mercury-Xenon lamp with wavelengths in the UV spectrum ranging from 230 to 400 nm. The ESD test was performed in the inverted-gradient mode using a low-energy electron (2.6 - 6 keV) beam exposure. The ESD test also included a simulated panel coverglass flashover for the primary arc event. The electron/proton radiation exposure included both 1.0 MeV and 100 keV electron beams simultaneous with a 40 keV proton beam. The thermal cycling included simulated transient earth eclipse for satellites in geosynchronous orbit. With the increasing use of ion thruster engines on many satellites, the combined environmental test also included ion thruster exposure to determine whether solar array surface erosion had any impact on its performance. Before and after each increment of environmental exposures, the coupons underwent visual inspection under high power magnification and electrical tests that included characterization by LAPSS, Dark I-V, and electroluminescence. This paper discusses the test objective, test methodologies, and preliminary results after 5 years of simulated exposure.
Micromachined mirrors for raster-scanning displays and optical fiber switches
NASA Astrophysics Data System (ADS)
Hagelin, Paul Merritt
Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.
Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity
NASA Astrophysics Data System (ADS)
Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.
2015-10-01
Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B
Moazzam, Mostafa Keshavarz; Kaatuzian, Hassan
2016-01-20
Plasmonics as a new field of chip-scale technology is the interesting substrate of this study to propose and numerically investigate a metal/insulator/semiconductor/metal (MISM)-structure 2×2 plasmonic routing switch. As a planar subwavelength arrangement, the presented design has two npn-doped side-coupled dual waveguides whose duty is to route the propagating surface plasmon polaritons through the device. Relying on the MISM structure, which has a MOS-like thin-film arrangement of typically 45 nm doped silicon covered by a layer of 8 nm thick HfO(2) gate insulator, the routing configuration is electrically addressed based on the carrier-induced plasma dispersion effects as an external electro-plasmonic switching control. Finite-element-method-conducted electromagnetic simulations are employed to evaluate the switch optical response at telecom wavelength of λ=1550 nm, due to which the balanced operation measure of extinction ratios larger than 10 dB and insertion losses of around -1.8 dB are obtained for both channels of CROSS and STRAIGHT. Compared with other photonic and plasmonic switching counterparts, this configuration, besides its potential for CMOS compatibility, can be utilized as a high-speed compact building block to sustain higher-speed, more miniaturized, and less consuming electro-optic routing/switching protocols toward complicated optical integrated circuits and systems.
NASA Astrophysics Data System (ADS)
Hsu, Chih-Chieh; Sun, Jhen-Kai; Tsao, Che-Chang; Chuang, Po-Yang
2017-08-01
Effects of bottom electrodes (BEs) of Al, Mo, and Pt on resistive switching characteristics of sol-gel HfOx films were investigated in this work. To avoid influences of plasma or thermal energy on HfOx RS characteristic, the top electrodes were formed by pressing indium balls onto the HfOx surface rather than by using a sputter or an evaporator. When using Mo as the BE, the as-deposited HfOx film can give a forming-free resistive switching behavior with low set/reset voltages of 0.28 V / - 0.54 V. In contrast, non-switching characteristics of the HfOx films were observed when using Al and Pt as the BEs. The HfOx conduction current was found to be highly dependent on the BE. However, when an annealing process at 350 °C in an oxygen ambient was performed to the HfOx films on different BEs, the resistive switching behavior of the HfOx/Mo was absent while it can be found in the HfOx/Al sample. Differences in I-V characteristics of the HfOx films on different BEs were explained by considering Gibbs free energies of interfacial oxide layers. X-ray photoelectron spectroscopy (XPS) depth profile was used to examine the interfacial oxide layer. The resistive switching mechanism was also studied.
Fujii, Akira; Hirota, Shun; Matsuo, Takashi
2013-07-17
Adenylate kinase shows a conformational transition (OPEN and CLOSED forms) during substrate binding and product release to mediate the phosphoryl transfer between ADP and ATP/AMP. The protein motional characteristics will be useful to construct switching systems of fluorophore properties caused by the catalytic cycle of the enzyme. This paper demonstrates in situ reversible switching of a fluorophore property driven by the conformational transition of the enzyme. The pyrene-conjugated mutant adenylate kinase is able to switch the monomer/excimer emission property of pyrene on addition of ADP or P(1)P(5)-di(adenosine-5')pentaphosphate (Ap5A, a transition state analog). The observation under the dilute condition (~0.1 μM) indicates that the emission spectral change was caused by the motion of a protein molecule and not led by protein-protein interactions through π-π stacking of pyrene rings. The switching can be reversibly conducted by using hexokinase-coupling reaction. The fashion of the changes in emission intensities at various ligand concentrations is different between ADP, Mg(2+)-bound ADP, and Mg(2+)-bound Ap5A. The emission property switching is repeatable by a sequential addition of a substrate in a one-pot process. It is proposed that the property of a synthetic molecule on the enzyme surface is switchable in response to the catalytic cycle of adenylate kinase.
GaAs photoconductive semiconductor switch
Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.
1998-01-01
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.
Panajotov, Krassimir P; Zujewski, Mateusz; Thienpont, Hugo
2010-12-20
We study spectral and polarization threshold characteristics of coupled-cavity Vertical-Surface-Emitting Lasers (CC-VCSEL) on the base of a simple matrix approach. We show that strong wavelength discrimination can be achieved in CC-VCSELs by slightly detuning the cavities. However, polarization discrimination is not provided by the coupled-cavity design. We also consider the case of reverse-biasing one of the cavities, i.e. using it as a modulator via linear and/or quadratic electrooptic effect. Such a CC-VCSEL can act as a voltage-controlled polarization or wavelength switching device that is decoupled from the laser design and can be optimized for high modulation speed. We also show that using QD stack instead of quantum wells in the top cavity would lead to significant reduction of the driving electrical field.
Note: Four-port microfluidic flow-cell with instant sample switching
NASA Astrophysics Data System (ADS)
MacGriff, Christopher A.; Wang, Shaopeng; Tao, Nongjian
2013-10-01
A simple device for high-speed microfluidic delivery of liquid samples to a surface plasmon resonance sensor surface is presented. The delivery platform is comprised of a four-port microfluidic cell, two ports serve as inlets for buffer and sample solutions, respectively, and a high-speed selector valve to control the alternate opening and closing of the two outlet ports. The time scale of buffer/sample switching (or sample injection rise and fall time) is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement.
Experimental study of elliptical jet from sub to supercritical conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2014-04-15
The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less
An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping
NASA Astrophysics Data System (ADS)
Bai, Xin; Qiu, Jing; Wang, Linjun
2018-03-01
We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.
Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung
2013-09-06
Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.
Lassa virus entry requires a trigger-induced receptor switch
Jae, Lucas T.; Raaben, Matthijs; Herbert, Andrew S.; Kuehne, Ana I.; Wirchnianski, Ariel S.; Soh, Timothy; Stubbs, Sarah H.; Janssen, Hans; Damme, Markus; Saftig, Paul; Whelan, Sean P.; Dye, John M.; Brummelkamp, Thijn R.
2014-01-01
Lassa virus spreads from rodents to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported to resist infection thirty years ago. We show that Lassa virus readily engaged its cell surface receptor α-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo. PMID:24970085
Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals
Diroll, Benjamin T.; Guo, Peijun; Chang, Robert P. H.; ...
2016-10-18
Here, epsilon-near-zero materials may be synthesized as colloidal nanocrystals which display large magnitude subpicosecond switching of infrared localized surface plasmon resonances. Such nanocrystals offer a solution-processable, scalable source of tunable metamaterials compatible with arbitrary substrates. Under intraband excitation, these nanocrystals display a red-shift of the plasmon feature arising from the low electron heat capacities and conduction band nonparabolicity of the oxide. Under interband pumping, they show in an ultrafast blueshift of the plasmon resonance due to transient increases in the carrier density. Combined with their high-quality factor, large changes in relative transmittance (+86%) and index of refraction (+85%) at modestmore » control fluences (<5 mJ/cm 2) suggest that these materials offer great promise for all-optical switching, wavefront engineering, and beam steering operating at terahertz switching frequencies.« less
NASA Astrophysics Data System (ADS)
Wang, Feifeng; Huang, Huimin; Su, Yi; Yan, Dandan; Lu, Yufeng; Xia, Xiaofei; Yang, Jian
2018-05-01
It has accounted for a large proportion of GIS equipment defects, which cause the disconnector switches to incomplete open-close position. Once opening operation is not in place, it will arouse continuous arcing between contacts to reduce insulation strength. Otherwise, the intense heat give rise to burn the contact, which has a severe effect on the safe operation of power grid. This paper analyzes some typical defection cases about the opening operation incomplete for disconnector switches of GIS. The COMSOL Multiphysics is applied to verify the influence on electric field distribution. The results show that moving contact out shield is 20 mm, the electric field distribution of the moving contact surface is uneven, and the maximum electric field value can reach 9.74 kV/mm.
Gas spark switches with increased operating life for Marx generator of lightning test complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru
A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltagemore » under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitnumsub, Penchit, E-mail: penchit@biotec.or.th; Ittarat, Wanwipa; Jaruwat, Aritsara
2014-06-01
The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similarmore » to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.« less
NASA Astrophysics Data System (ADS)
Pascal, Viel; Laetitia, Dubois; Joël, Lyskawa; Marc, Sallé; Serge, Palacin
2007-01-01
Absorption on resins is often used as secondary step in the treatment of water-based effluents, in order to reach very low concentrations. The separation of the trapped effluents from the resins and the regeneration of the resins for further use create wide volumes of secondary effluents coming from the washings of the resins with chemical reagents. We propose an alternative solution based on a "surface strategy" through adsorption phenomena and electrical control of the expulsion stage. The final goal is to limit or ideally to avoid the use of chemical reagents at the expulsion (or regeneration) stage of the depolluting process. Heavy metal ions were captured on active filters composed by a conducting surface covered by poly-4-vinylpyridine (P 4VP). Due to pyridine groups those polymer films have chelating properties for copper ions. Our strategy for electrical triggering of the copper expulsion in aqueous medium is based on pH sensitive chelating groups. Applying moderate electro-oxidizing conditions generates acidic conditions in the vicinity of the electrode, i.e. "inside" the polymer film. This allows a "switch-off" of the complexing properties of the film from the basic form of pyridine to pyridinium. Interestingly, no buffer washing is necessary to restore (or "switch-on") the complexing properties of the polymer film because the pH of the external medium is left unchanged by the electrochemical effect that affects only the vicinity of the electrode. Switch-on/switch-off cycles are followed and attested by IR spectroscopy and EQCM method.
Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Morrison, R. A.
1972-01-01
Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.
An ultra-fast optical shutter exploiting total light absorption in a phase change material
NASA Astrophysics Data System (ADS)
Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina
2017-02-01
In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less
Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Daniel A.A., E-mail: danielandrade.ufs@gmail.com; Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260; Zeng, Hao
2015-06-15
Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using amore » shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.« less
Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses
Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.
2015-01-01
Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106
Gate-tunable gigantic changes in lattice parameters and optical properties in VO2
NASA Astrophysics Data System (ADS)
Nakano, Masaki; Okuyama, Daisuke; Shibuya, Keisuke; Ogawa, Naoki; Hatano, Takafumi; Kawasaki, Masashi; Arima, Taka-Hisa; Iwasa, Yoshihiro; Tokura, Yoshinori
2014-03-01
The field-effect transistor provides an electrical switching function of current flowing through a channel surface by external gate voltage (VG). We recently reported that an electric-double-layer transistor (EDLT) based on vanadium dioxide (VO2) enables electrical switching of the metal-insulator phase transition, where the low-temperature insulating state can be completely switched to the metallic state by application of VG. Here we demonstrate that VO2-EDLT enables electrical switching of lattice parameters and optical properties as well as electrical current. We performed in-situ x-ray diffraction and optical transmission spectroscopy measurements, and found that the c-axis length and the infrared transmittance of VO2 can be significantly modulated by more than 1% and 40%, respectively, by application of VG. We emphasize that these distinguished features originate from the electric-field induced bulk phase transition available with VO2-EDLT. This work was supported by the Japan Society for the Promotion of Science (JSPS) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M
2015-04-01
We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.
NASA Astrophysics Data System (ADS)
Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio
2015-08-01
We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.
Thermal Control System for a Small, Extended Duration Lunar Surface Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
The presentation slides include: Introduction: lunar mission definition, Problem: requirements/methodology, Concept: thermal switching options, Analysis: system evaluation, Plans: dual-radiator LHP (loop heat pipe) test bed, and Conclusions: from this study.
A comparative study of different methods for calculating electronic transition rates
NASA Astrophysics Data System (ADS)
Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan
2018-03-01
We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong
2015-12-01
A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07076g
Plasma treatment switches the regime of wetting and floating of pepper seeds.
Shapira, Yekaterina; Multanen, Victor; Whyman, Gene; Bormashenko, Yelena; Chaniel, Gilad; Barkay, Zahava; Bormashenko, Edward
2017-09-01
Cold radiofrequency plasma treatment modified wetting and floating regimes of pepper seeds. The wetting regime of plasma-treated seeds was switched from the Wenzel-like partial wetting to the complete wetting. No hydrophobic recovery following the plasma treatment was registered. Environmental scanning electron microscopy of the fine structure of the (three-phase) triple line observed with virgin and plasma-treated seeds is reported. Plasma treatment promoted rapid sinking of pepper seeds placed on the water/air interface. Plasma treatment did not influence the surface topography of pepper seeds, while charged them electrically. Electrostatic repulsion of floating plasma-treated seeds was observed. The surface charge density was estimated from the data extracted from floating of charged seeds and independently with the electrostatic pendulum as σ≈1-2μC/m 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti
2006-06-01
A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.
Redox-Switchable Surface Wrinkling on Polyaniline Film.
Xie, Jixun; Zong, Chuanyong; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Yang, Xiu; Lu, Conghua
2016-04-01
Here the redox-driven switch between the wrinkled and dewrinkled states on poly-aniline (PANI) film is reported. This switch is derived from the reversible transition in different intrinsic redox states of polyaniline (e.g., between emeraldine salt (ES) and leucoemeraldine base (LEB) or between ES and pernigraniline base (PB)) that are involved in the redox reaction, coupled with the corresponding volume expansion/shrinkage. Interestingly, the as-wrinkled ES film becomes deswollen and dewrinkled when reduced to the LEB state or oxidized to the PB state. Conversely, oxidation of the LEB film or reduction of the PB film into the swollen ES film leads to the reoccurrence of surface wrinkling. Furthermore, the reducibility of the dewrinkled LEB film and the oxidizability of the dewrinkled PB film are well utilized respectively to yield various wrinkled PANI-based composite films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Franek, Friedrich; Neuhaus, Alexander; Reichart, Martin; Schrank, Clemens
2008-08-01
The investigation of electrical low power switching contacts, including dry-circuit, is characterized as a highly interdisciplinary research field. The knowledge of plasma physics, the influence of kinetics on contact phenomena, material science and metallurgy, as well as thermal aspects and tribology, is demanded. The methods usually used at the Austrian Center of Competence for Tribology are e.g. defined contact make and break along two-independent axis using model switches, high-resolution measurement of displacement and electrical values, including the detection of arcs, contact force measurement in the kHz and cN range (one-axis and two-axis systems), on-line optical investigations (especially time lapse movie systems), state of the art 3D surface topography measurement of eroded contact surfaces, and (electron-) microscopical evaluation of metallographic cross sections. Some aspects of this methodology are presented in this paper.
Depletion-Mode GaN HEMT Q-Spoil Switches for MRI Coils
Lu, Jonathan Y.; Grafendorfer, Thomas; Zhang, Tao; Vasanawala, Shreyas; Robb, Fraser; Pauly, John M.; Scott, Greig C.
2017-01-01
Q-spoiling is the process of decoupling an MRI receive coil to protect the equipment and patient. Conventionally, Q-spoiling is performed using a PIN diode switch that draws significant current. In this work, a Q-spoiling technique using a depletion-mode Gallium Nitride HEMT device was developed for coil detuning at both 1.5 T and 3 T MRI. The circuits with conventional PIN diode Q-spoiling and the GaN HEMT device were implemented on surface coils. SNR was measured and compared for all surfaces coils. At both 1.5 T and 3 T, comparable SNR was achieved for all coils with the proposed technique and conventional Q-spoiling. The GaN HEMT device has significantly reduced the required power for Q-spoiling. The GaN HEMT device also provides useful safety features by detuning the coil when unpowered. PMID:27362895
NASA Astrophysics Data System (ADS)
Yamaguchi, Kengo; Takeuchi, Shotaro; Tohei, Tetsuya; Ikarashi, Nobuyuki; Sakai, Akira
2018-06-01
We have performed Ti valence state analysis of our four-terminal rutile TiO2‑ x single-crystal memristors using scanning transmission electron microscopy–electron energy loss spectroscopy (STEM–EELS). Analysis of Ti-L2,3 edge EELS spectra revealed that the electrocolored region formed by the application of voltage includes a valence state reflecting highly reduced TiO2‑ x due to the accumulation of oxygen vacancies. Such a valence state mainly exists within ∼50 nm from the crystal surface and extends along specific crystal directions. These electrically reduced surface layers are considered to directly contribute to the resistive switching (RS) in the four-terminal device. The present results add new insights into the microscopic mechanisms of the RS phenomena and should contribute to further development and improvements of TiO2‑ x based memristive devices.
A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches
NASA Astrophysics Data System (ADS)
Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.
2013-10-01
Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.
Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices
NASA Astrophysics Data System (ADS)
Yusuf, Mohammed; Du, Xu; Dawber, Matthew
2013-03-01
Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)
Fundamental Studies of Transient, Atmospheric-Pressure, Small-Scale Plasmas
2017-01-23
e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms , as well as for treatment of cervical cancer , in...pressure plasma jets and jet arrays (e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms , as well as...for treatment of cervical cancer , in vitro. 4) Other studies involving portable nanosecond pulsed power generation based gas switches or
Electrically Tuneable EBG Integrated Circuits
2013-12-01
Surface Wave Propagation Along a Modulated Microstrip -Line-Based High Impedance Surface,‖ IEEE Trans. Antennas and Propagat., Vol. 56, No. 8, August...Heimlich, “Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th IEEE European Conference...patches, the structure would be an ideal microstrip configuration. Tuning is accomplished by using a pair of RF/microwave switches at opposite ends
VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.
Goldberg, Lew; McIntosh, Chris; Cole, Brian
2011-02-28
A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.
Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses
NASA Astrophysics Data System (ADS)
Baldacchini, Chiara; Kumar, Vivek; Bizzarri, Anna Rita; Cannistraro, Salvatore
2015-05-01
Redox metalloproteins are emerging as promising candidates for future bio-optoelectronic and nano-biomemory devices, and the control of their electron transfer properties through external signals is still a crucial task. Here, we show that a reversible on/off switching of the electron current tunnelling through a single protein can be achieved in azurin protein molecules adsorbed on gold surfaces, by applying appropriate voltage pulses through a scanning tunnelling microscope tip. The observed changes in the hybrid system tunnelling properties are discussed in terms of long-sustained charging of the protein milieu.
GaAs photoconductive semiconductor switch
Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.
1998-09-08
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.
Voltage-induced swelling and deswelling of weak polybase brushes.
Weir, Michael P; Heriot, Sasha Y; Martin, Simon J; Parnell, Andrew J; Holt, Stephen A; Webster, John R P; Jones, Richard A L
2011-09-06
We have investigated a novel method of remotely switching the conformation of a weak polybase brush using an applied voltage. Surface-grafted polyelectrolyte brushes exhibit rich responsive behavior and show great promise as "smart surfaces", but existing switching methods involve physically or chemically changing the solution in contact with the brush. In this study, high grafting density poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were grown from silicon surfaces using atom transfer radical polymerization. Optical ellipsometry and neutron reflectivity were used to measure changes in the profiles of the brushes in response to DC voltages applied between the brush substrate and a parallel electrode some distance away in the surrounding liquid (water or D(2)O). Positive voltages were shown to cause swelling, while negative voltages in some cases caused deswelling. Neutron reflectometry experiments were carried out on the INTER reflectometer (ISIS, Rutherford Appleton Laboratory, UK) allowing time-resolved measurements of polymer brush structure. The PDMAEMA brushes were shown to have a polymer volume fraction profile described by a Gaussian-terminated parabola both in the equilibrium and in the partially swollen states. At very high positive voltages (in this study, positive bias means positive voltage to the brush-bearing substrate), the brush chains were shown to be stretched to an extent comparable to their contour length, before being physically removed from the interface. Voltage-induced swelling was shown to exhibit a wider range of brush swelling states in comparison to pH switching, with the additional advantages that the stimulus is remotely controlled and may be fully automated. © 2011 American Chemical Society
Variable strategy model of the human operator
NASA Astrophysics Data System (ADS)
Phillips, John Michael
Human operators often employ discontinuous or "bang-bang" control strategies when performing large-amplitude acquisition tasks. The current study applies Variable Structure Control (VSC) techniques to model human operator behavior during acquisition tasks. The result is a coupled, multi-input model replicating the discontinuous control strategy. In the VSC formulation, a switching surface is the mathematical representation of the operator's control strategy. The performance of the Variable Strategy Model (VSM) is evaluated by considering several examples, including the longitudinal control of an aircraft during the visual landing task. The aircraft landing task becomes an acquisition maneuver whenever large initial offsets occur. Several different strategies are explored in the VSM formulation for the aircraft landing task. First, a switching surface is constructed from literal interpretations of pilot training literature. This approach yields a mathematical representation of how a pilot is trained to fly a generic aircraft. This switching surface is shown to bound the trajectory response of a group of pilots performing an offset landing task in an aircraft simulator study. Next, front-side and back-side landing strategies are compared. A back-side landing strategy is found to be capable of landing an aircraft flying on either the front side or back side of the power curve. However, the front-side landing strategy is found to be insufficient for landing an aircraft flying on the back side. Finally, a more refined landing strategy is developed that takes into the account the specific aircraft's dynamic characteristics. The refined strategy is translated back into terminology similar to the existing pilot training literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay
Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activationmore » of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.« less
La Niña Exit Leaves Climate Forecasts in Limbo
2011-07-06
The latest image of Pacific Ocean sea surface heights from the NASA OSTIM/Jason-2 oceanography satellite, on June 11, 2010, shows that Pacific has switched from warm red to cold blue during the last few months.
30 CFR 56.6404 - Separation of blasting circuits from power source.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL... when closed to fire the blast. (b) Lead wires shall not be connected to the blasting switch until the...
Yin, Hongyao; Feng, Yujun; Liu, Hanbin; Mu, Meng; Fei, Chenhong
2014-08-26
Owing to its wide availability, nontoxicity, and low cost, CO2 working as a trigger to reversibly switch material properties, including polarity, ionic strength, hydrophilicity, viscosity, surface charge, and degree of polymerization or cross-linking, has attracted an increasing attention in recent years. However, a quantitative correlation between basicity of these materials and their CO2 switchability has been less documented though it is of great importance for fabricating switchable system. In this work, the "switch-on" and "switch-off" abilities of melamine and its amino-substituted derivatives by introducing and removing CO2 are studied, and then their quantitative relationship with basicity is established, so that performances of other organobases can be quantitatively predicted. These findings are beneficial for forecasting the CO2 stimuli-responsive behavior of other organobases and the design of CO2-switchable materials.
Reversible adhesion switching of porous fibrillar adhesive pads by humidity.
Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N
2013-01-01
We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.
Methods and compositions for rapid thermal cycling
Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher
2015-10-27
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.
Shi, Yan; Dai, Haichao; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang
2013-12-07
This study demonstrates a cocaine sensing method employing graphene oxide (GO), gold nanoparticles and a structure switching aptamer, which can fold into a three-way junction in the presence of cocaine. On the observation of gold nanoparticles (Au NPs) induced graphene oxide fluorescence quenching, a structure switching aptamer of cocaine was introduced as the linker between the two parts. Firstly, two fragments of a cocaine aptamer were immobilized covalently onto GO and Au NPs, respectively. Then when the three-way junction formed, the Au NPs were drawn near to the GO surface and induced a fluorescence intensity decrease. The limit of detection was 0.1 μM for cocaine in purified water, and well defined results were also obtained in biological fluids and the specificity experiment, which expands the feasibility of the as-prepared sensor for practical applications.
Shape memory thermal conduction switch
NASA Technical Reports Server (NTRS)
Krishnan, Vinu (Inventor); Vaidyanathan, Rajan (Inventor); Notardonato, William U. (Inventor)
2010-01-01
A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.
Methods and compositions for rapid thermal cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Benett, William J.; Frank, James M.
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature ofmore » the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.« less
Maurer, Reinhard J; Reuter, Karsten
2013-07-07
Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.
Electron emission from ferroelectrics - a review
NASA Astrophysics Data System (ADS)
Riege, H.
1994-02-01
The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.
Di Stefano, Danilo Alessio; Giacometti, Edoardo; Greco, Gian Battista; Gastaldi, Giorgio; Gherlone, Enrico
2016-01-01
The aim of this retrospective study was to evaluate medium-term marginal peri-implant bone loss following placement of root-form implants featuring a micro-threaded rough-surfaced neck and a platform-switched implant-abutment connection. Records were identified of patients treated with such implants over a 3-year period at three Italian dental centers. Patient radiographs were digitized and subjected to computerized analysis of peri-implant bone resorption. Records of 112 patients who received 257 implants were analyzed. Although implant diameters and lengths varied, all had a 0.3-mm platform-switching width and a 2.5-mm high micro-threaded neck. All patients healed uneventfully, and no peri-implant infection, implant mobility, or radiolucency around the implant were detected at any follow-up control. At the 72-month control (average 71 ± 5 months) all implants were successful according to Albrektsson and Zarb's criteria. At implant level, average peri-implant bone resorption was 0.18 ± 0.12 mm at 6 months, 0.22 ± 0.15 mm at 12 months, 0.23 ± 0.16 mm at 24 months, 0.25 ± 0.17 mm at 36 months, 0.26 ± 0.15 mm at 48 months, and stable at subsequent controls, regardless of the implant diameter and length. At patient level, a similar trend was observed, with crestal bone loss stabilizing from 48 months onward. The surface, geometry, and platform-switching features of the implant under investigation allowed effective bone preservation on a medium-term basis.
Saleh, Fatma; Moftah, Noha H; Abdel-Azim, Eman; Gharieb, Marwa G
2017-10-22
Treatment of mixed melasma remains challenging. Promising results have been achieved with low-fluence 1064-nm Q-switched Nd-YAG laser; however, multiple sessions are necessary with occurrence of complications especially in dark skin types. So, combination methods may be recommended. To compare efficacy of Q-switched Nd-YAG laser alone or with modified Jessner's peel in mixed melasma in dark skin. Nineteen patients with mixed melasma received 6 sessions of laser on left side of face and alternating laser and modified Jessner on right side. Evaluation was carried out clinically through modified melasma area and severity index at 1 month after last session. Using histopathological, immunohistochemical, and computerized morphometric analysis, objective evaluation of melanin particle surface area and MART-1-positive cells was performed for pre- and post-treated skin biopsies. There was significant clinical improvement on both sides of face (P < .001), without significant difference (P > .05). At the sixth laser session on left side of face, ill-defined mottled hypopigmentation was observed in 21.05% of patients. Histopathologically, melanin particle surface area and number of MART-1-positive cells (total, epidermal, and dermal) were significantly decreased after two treatment modalities (P < .001), without significant difference in their reduction percentage between both sides of face (P > .05). Low-fluence Q-switched Nd-YAG laser alone and with modified Jessner's peel are equally effective regimens for mixed melasma clinically, histopathologically, and immunohistochemically. However, combined method is preferred, especially in dark skin, for obtaining better cosmetic result with fewer side effects of multiple laser sessions and decreasing cost rate of laser. © 2017 Wiley Periodicals, Inc.
Impact of switching crop type on water and solute fluxes in deep vadose zone
NASA Astrophysics Data System (ADS)
Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.
2015-12-01
Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.
Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing
2015-07-16
immobilize aptamers and peptides on the AuNP surface. The parameters optimized in this work included reaction times, ligand ratio (PEG-OH vs PEG- COOH...instructions for performing peptides and aptamers surface immobilization were provided to collaborators in order to create nanoprobes that were integrated...with sequences made of less than 20 amino acids) and DNA aptamers (via on-off structural switching properties) are appealing BREs for new sensors
Li, Yufan; Ma, Qinli; Huang, S. X.; Chien, C. L.
2018-01-01
The advent of topological insulators (TIs), a novel class of materials that harbor a metallic spin-chiral surface state coexisting with band-insulating bulk, opens up new possibilities for spintronics. One promising route is current-induced switching of an adjacent magnetic layer via spin-orbit torque (SOT), arising from the large spin-orbit coupling intrinsically possessed by TIs. The Kondo insulator SmB6 has been recently proposed to be a strongly correlated TI, supported by the observation of a metallic surface state in bulk SmB6, as evidenced by the thickness independence of the low-temperature resistance plateau. We report the synthesis of epitaxial (001) SmB6/Si thin films and a systematic thickness-dependent electrical transport study. Although the low-temperature resistance plateau is observed for all films from 50 to 500 nm in thickness, the resistance is distinctively thickness-dependent and does not support the notion of surface conduction and interior insulation. On the other hand, we demonstrate that SmB6 can generate a large SOT to switch an adjacent ferromagnetic layer, even at room temperature. The effective SOT generated from SmB6 is comparable to that from β-W, one of the strongest SOT materials. PMID:29376125
Ik Han, Seong; Lee, Jangmyung
2016-11-01
This paper presents finite-time sliding mode control (FSMC) with predefined constraints for the tracking error and sliding surface in order to obtain robust positioning of a robot manipulator with input nonlinearity due to an unknown deadzone and external disturbance. An assumed model feedforward FSMC was designed to avoid tedious identification procedures for the manipulator parameters and to obtain a fast response time. Two constraint switching control functions based on the tracking error and finite-time sliding surface were added to the FSMC to guarantee the predefined tracking performance despite the presence of an unknown deadzone and disturbance. The tracking error due to the deadzone and disturbance can be suppressed within the predefined error boundary simply by tuning the gain value of the constraint switching function and without the addition of an extra compensator. Therefore, the designed constraint controller has a simpler structure than conventional transformed error constraint methods and the sliding surface constraint scheme can also indirectly guarantee the tracking error constraint while being more stable than the tracking error constraint control. A simulation and experiment were performed on an articulated robot manipulator to validate the proposed control schemes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.